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Abstract

We introduce an approach for identifying disease-relevant tissues and cell types by analyzing gene 

expression data together with genome-wide association study (GWAS) summary statistics. Our 

approach uses stratified LD score regression to test whether disease heritability is enriched in 

regions surrounding genes with the highest specific expression in a given tissue. We apply our 

approach to gene expression data from several sources together with GWAS summary statistics for 

48 diseases and traits (average N=169K), detecting significant tissue-specific enrichments 

(FDR<5%) for 34 traits. In our analysis of multiple tissues, we detect a broad range of 

enrichments that recapitulate known biology. In our brain-specific and immune-specific analyses, 

significant enrichments include an enrichment of inhibitory over excitatory neurons for bipolar 

disorder but excitatory over inhibitory neurons for schizophrenia and body mass index. Our results 

demonstrate that our polygenic approach is a powerful way to leverage gene expression data for 

interpreting GWAS signal.

INTRODUCTION

There are many diseases whose causal tissues or cell types are uncertain or unknown. 

Identifying these tissues and cell types is critical for developing systems to explore gene 

regulatory mechanisms that contribute to disease. In recent years, researchers have been 

gaining an increasingly clear picture of which parts of the genome are active in a range of 

tissues and cell types: for example, which parts of the genome are accessible, which 

enhancers are active, and which genes are expressed1–3. Combining this type of information 

with GWAS data offers the potential to identify causal tissues and cell types for disease.
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Many different types of data characterizing tissue- and cell-type-specific activity have been 

analyzed together with GWAS data to identify disease-relevant tissues and cell types, 

including histone marks4–8, DNase I hypersensitivity (DHS)9–12, eQTLs3,13, and gene 

expression data14–17. Of these data types, gene expression data (without genotypes or 

eQTLs) has the advantage of being available in the widest range of tissues and cell types. 

Previous studies have shown that gene expression data are informative for disease-relevant 

tissues and cell types, and have led to biological insights about the diseases and traits 

studied14–17. However, the methods applied in these studies restrict their analyses to subsets 

of SNPs that pass a significance threshold. To our knowledge, no previous study has 

modeled genome-wide polygenic signals to identify disease-relevant tissues and cell types 

systematically from GWAS and gene expression data.

Here, we apply stratified LD score regression7, a method for partitioning heritability from 

GWAS summary statistics, to sets of specifically expressed genes to identify disease-relevant 

tissues and cell types across 48 diseases and traits with an average GWAS sample size of 

169,331. We first analyze two gene expression data sets3,17,18 containing a wide range of 

tissues to infer system-level enrichments. We then analyze chromatin data from the 

Roadmap Epigenomics and ENCODE projects1,2 across the same set of diseases and traits to 

validate these results. Finally, we analyze gene expression data sets that allow us to achieve 

higher resolution within a system3,19–21, identifying enriched brain regions, brain cell types, 

and immune cell types for several brain- and immune-related diseases and traits; we validate 

several of our immune enrichments using independent chromatin data. Our results 

underscore that a heritability-based framework applied to gene expression data allows us to 

achieve high-resolution enrichments, even for very polygenic traits.

RESULTS

Overview of methods

We analyzed the five gene expression data sets listed in Table 1, mapping mouse genes to 

orthologous human genes when necessary. To assess the enrichment of a focal tissue for a 

given trait, we follow the procedure described in Figure 1. We begin with a matrix of 

normalized gene expression values across genes, with samples from multiple tissues 

including the focal tissue. For each gene, we compute a t-statistic for specific expression in 

the focal tissue (Online Methods). We rank all genes by their t-statistic, and define the 10% 

of genes with the highest t-statistic to be the gene set corresponding to the focal tissue; we 

call this the set of specifically expressed genes, but we note that this includes not only genes 

that are strictly specifically expressed (i.e. only expressed in the focal tissue), but also genes 

that are weakly specifically expressed (i.e. higher average expression in the focal tissue). For 

a few of the data sets analyzed, we modified our approach to constructing the set of 

specifically expressed genes to better take advantage of the data available (Online Methods). 

We add 100kb windows on either side of the transcribed region of each gene in the set of 

specifically expressed genes to construct a genome annotation corresponding to the focal 

tissue. (The choice of the parameters 10% and 100kb is discussed in the Supplementary 

Note; our results are robust to these choices (see below).) Finally, we apply stratified LD 

score regression7 to GWAS summary statistics to evaluate the contribution of the focal 
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genome annotation to trait heritability (Online Methods). We jointly model the annotation 

corresponding to the focal tissue, a genome annotation corresponding to all genes, and the 

52 annotations in the “baseline model”7 (including genic regions, enhancer regions, and 

conserved regions; see Table S1). A positive regression coefficient for the focal annotation in 

this regression represents a positive contribution of this annotation to trait heritability, 

conditional on the other annotations. We report regression coefficients, normalized by mean 

per-SNP heritability, together with a P-value to test whether the regression coefficient is 

significantly positive. Stratified LD score regression requires GWAS summary statistics for 

the trait of interest, together with an LD reference panel (e.g. 1000 Genomes22), and has 

been shown to produce robust results with properly controlled type I error7. We have 

released open source software implementing our approach, and have also released all 

genome annotations derived from the publicly available gene expression data that we 

analyzed (see URLs). We call our approach LD score regression applied to specifically 

expressed genes (LDSC-SEG).

Analysis of 48 complex traits across multiple tissues

We first analyzed two gene expression data sets — GTEx and a dataset which we call the 

Franke lab data set — and we classified the 205 tissues and cell types in these data sets into 

nine categories for visualization (Tables S2 and S3, Online Methods). We analyzed GWAS 

summary statistics for 48 diseases and traits from the UK Biobank23 (Online Methods), the 

Brainstorm Consortium16,24–32, and publicly available sources33–43, with an average sample 

size of 169,331 (Table S4), applying LDSC-SEG for each of the 205 specifically expressed 

gene annotations in turn. We excluded the HLA region from all analyses, due to its unusual 

genetic architecture and pattern of LD.

For 34 of the 48 traits, at least one tissue was significant at FDR<5% (Figure 2, Figure S1 

and Tables S5 and S6). Several of our results recapitulate known biology: immunological 

traits exhibit immune cell-type enrichments, psychiatric traits exhibit strong brain 

enrichment, LDL and triglycerides exhibit liver-specific enrichments, BMI-adjusted waist-

hip ratio exhibits adipose enrichment, type 2 diabetes exhibits enrichment in the pancreas, 

and height exhibits enrichments in a variety of tissues in a pattern similar to previous 

analyses of this trait44. In addition, several of our results validate very recent findings from 

other genetic analyses: in particular, smoking status, years of education, BMI, and age at 

menarche show robust brain enrichments that recapitulate results from our previous analysis 

of genetic data together with chromatin data7. Our results were robust to the choice of 

percent of genes used (10%) and to the size of the window used (100kb) (Figure S2). We 

assessed correlations in enrichment patterns for pairs of traits (Online Methods), and found 

large and significant correlations among many brain-related phenotypes, among many 

immune-related phenotypes, and among a third set of phenotypes including height and blood 

pressure that tended to have enrichments in the musculosketal/connective, cardiovascular, 

and other categories (Figure S3). The most significant annotation for each of these 34 traits 

spanned 11%-23% (mean 16%) of the genome and explained 21%-62% (mean 36%) of 

SNP-heritability, with enrichments varying from 1.4× to 4.7× (mean 2.3×) (Table S5).
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Because related tissues have highly overlapping gene sets and we fit each tissue without 

adjusting for the other tissues, related tissues often appear enriched as a group. In this 

analysis and the analysis in the next section, both focused on identifying system-level 

enrichments, these correlated results do not limit interpretability. In later sections, we focus 

on differentiating among related tissues/cell types within a system. We note also that the 

correlation structure among annotations can lead to a distribution of P values that is highly 

non-uniform (Online Methods).

Validation using independent chromatin data

We analyzed the same 48 diseases and traits using stratified LD score regression7 in 

conjunction with chromatin data from the Roadmap Epigenomics and ENCODE projects1,2 

(see URLs) instead of gene expression data, with three goals: (1) to validate the results from 

our analysis of gene expression data using a different type of data from an independent 

source, (2) to identify new enrichments using chromatin data that we did not observe using 

gene expression data, and (3) to compare enrichments from the two types of data. The 

ENCODE data we used was from a subproject called EN-TEx, which includes epigenetic 

data on a set of tissues that match a subset of the tissues from the GTEx project but are from 

different donors. In total, we analyzed 489 tissue-specific chromatin-based annotations from 

peaks for six epigenetic marks (Online Methods).

We considered two types of validation for the results of the multiple-tissue analysis of gene 

expression described above: validation at the system level and validation at the tissue/cell-

type level. For validation at the system level, we classified the top tissue or cell type for each 

trait with a significant enrichment into one of nine systems (Online Methods), and we 

considered an enrichment to be validated if a tissue or cell type from the same system passed 

FDR < 5% for the same phenotype in the chromatin analysis. For validation at the tissue/

cell-type level, we only analyzed the 27 tissues present in both GTEx and EN-TEx, and we 

considered an enrichment of a tissue in GTEx to be validated if any mark in the same tissue 

in EN-TEx passed FDR < 5% for the same phenotype. The top enrichment from our multi-

tissue analysis of gene expression was validated at the system level for 33 out of 34 

phenotypes (Figure 3a, Table S5), and the top enrichment of a tissue or cell type shared 

between GTEx and EN-TEx was validated at the tissue/cell-type level for 13 out of 20 

phenotypes, rising to 16 with a more lenient definition (Table S5, Online Methods). In many 

instances, the analysis of chromatin data detected more enrichments, larger enrichments, 

and/or enrichments at higher significance levels than the analysis of gene expression data, 

though this was not always the case (Figures S4-S5, Table S7, Online Methods). The 

enrichment correlations in this analysis showed a similar pattern to the gene expression 

analysis above (Figure S6).

There is a long-standing scientific debate as to whether migraine has a primarily 

neurological or vascular basis45. We analyzed GWAS summary statistics for migraine with 

aura, migraine without aura, and migraine (all subtypes)16. The migraine (all subtypes) data 

set contained the data sets for migraine with aura and for migraine without aura, as well as a 

large number of additional subjects whose subtype was unknown. We found cardiovascular 

enrichments for migraine without aura with gene expression data, and for migrane without 
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aura and migraine (all subtypes) with EN-TEx data, consistent with previous work16 (Figure 

3b). Our analysis of Roadmap data, however, yielded qualitatively different results: the 

strongest enrichment for migraine (all subtypes) was a neurological enrichment. The top two 

annotations were neurospheres and fetal brain, neither of which was present in the gene 

expression data we analyzed nor in EN-TEx. The correlation in enrichments between 

migraine (all subtypes) and migraine without aura in the gene expression analysis was 

estimated to be 0.48 (s.e. 0.15), and in the chromatin data was estimated to be 0.60 (s.e. 

0.13). Our results are consistent with the hypothesis that migraine without aura does indeed 

have a vascular component, and that another subtype of migraine may have a neurological 

basis which is sufficiently cell-type specific that the relevant cell types are not represented in 

either the GTEx or Franke lab data sets. These results highlight the importance of having as 

many tissues and cell types as possible represented in a multiple-tissue analysis.

A major advantage of gene expression data is that it is available at finer tissue/cell-type 

resolution within several systems. In the within-system analyses that follow, we investigate 

these finer patterns of tissue/cell-type specificity.

Analysis of 12 brain-related traits using fine-scale brain expression data

We identified 12 traits with CNS enrichment at FDR<5% in our gene expression and/or 

chromatin analyses (Online Methods). We first investigated whether some brain regions are 

enriched over other brain regions for these traits using gene expression data from GTEx 

(Figure S7, Online Methods). The results are displayed in Figure 4a and Table S8a. We 

identified significant enrichments in the cortex relative to other brain regions at FDR<5% for 

bipolar disorder, schizophrenia, depressive symptoms, and BMI, and in the striatum for 

migraine. These enrichments are consistent with our understanding of the biology of these 

traits46–49, but to our knowledge have not previously been reported in any integrative 

analysis using genetic data. We also identified enrichments in cerebellum for bipolar 

disorder, years of education, and BMI. However, we caution that differential gene expression 

in samples from different brain regions can reflect the cell type composition of these brain 

regions as well as their function. In particular, the cerebellum is known to have a very high 

concentration of neurons50, and thus cerebellar enrichments could indicate either that the 

cerebellum is a region that is important in disease etiology, or that neurons are an important 

cell type. While many pairs of phenotypes had high estimated enrichment correlations in this 

analysis, migraine tended to have low enrichment correlations with other phenotypes (Figure 

S8); for example, the estimated enrichment correlation between migraine and schizophrenia 

was 0.06 (s.e.=0.30) while the estimated enrichment correlation between bipolar disorder 

and schizophrenia was 0.96 (s.e.=0.05).

To address the question of the relative importance of brain cell types, as opposed to brain 

regions, we analyzed the same set of traits using a publicly available data set of specifically 

expressed genes identified from different brain cell types purified from mouse forebrain19 

(Online Methods). The results of this analysis are displayed in Figure 4b and Table S8b. We 

identified neuronal enrichments at FDR<5% for five traits: bipolar disorder, schizophrenia, 

years of education, BMI, and neuroticism. The other cell types did not exhibit significant 

enrichment for any of the 12 brain-related traits. The enrichment of neurons for all three of 
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the traits with enrichment in cerebellum in the brain-region analysis supports the hypothesis 

that analyses of brain regions may be confounded by cell-type composition.

To more precisely characterize the neuronal enrichments, we analyzed the five traits with 

neuronal enrichment at FDR<5% using t-statistics computed by the PsychENCODE 

consortium20 on differential expression in glutamatergic (excitatory) vs. GABAergic 

(inhibitory) neurons (Online Methods). The results are displayed in Figure 4c and Table S8c; 

we used Bonferroni correction in this analysis, as we were testing only 5×2=10 hypotheses. 

For bipolar disorder, genes that are specifically expressed in GABAergic neurons exhibited 

heritability enrichment, while genes specific to glutamatergic neurons did not. This result 

supports the theory that pathology in GABAergic neurons can contribute causally to risk for 

bipolar disorder51,52. For BMI and schizophrenia, on the other hand, we found significant 

enrichment in glutamatergic neurons but not in GABAergic neurons.

We were unable to validate the results of these analyses using independent chromatin data. 

For the two analyses of brain cell types, this was because we were not aware of any available 

data sets with analogous chromatin data. For the analysis of brain regions, this was because 

the chromatin annotations that we analyzed were highly correlated across different brain 

regions and thus some phenotypes showed enrichment in nearly every brain region; we did 

not consider these non-specific enrichments to be a meaningful validation of our region-

specific results using gene expression data.

Analysis of 25 immune-related traits using immune cell expression data

We identified 25 traits with immune enrichment at FDR<5% in our gene expression and/or 

chromatin analyses (Online Methods). We investigated cell-type-specific enrichments for 

these traits using gene expression data from the ImmGen project21, which contains 

microarray data on in 292 immune cell types from mice (Online Methods). This data set 

contains data for many immune cell types that are not available in the multiple-tissue 

analysis, and because we compute t-statistics within the data set—i.e., each immune cell vs. 

other immune cells—the gene sets are less overlapping than those of immune cell types in 

the multiple-tissue analysis.

We identified enrichments at FDR<5% for 16 traits. Results are displayed in Figure 5, 

Figure S9 and Tables S9 and S10, and reveal highly trait-specific patterns of enrichment. For 

primary biliary cirrhosis, the largest and most significant enrichment was in B cells, 

consistent with literature on the importance of B cells for this trait54. Alzheimer’s disease 

exhibits enrichment in myeloid cells, as seen previously from genetics55. Asthma and 

eczema both exhibited enrichment in T and NKT cells; several subclasses of T cells have 

been shown to be important in asthma,57 and a previous study using chromatin data found an 

enrichment in T cells for asthma but not in other immune cell types6. Rheumatoid arthritis, 

Crohn’s disease, inflammatory bowel disease, and multiple sclerosis all exhibited 

enrichments in a variety of cell types, consistent with complex etiologies for these diseases 

that involve many different immune cell types58–60. Schizophrenia and bipolar disorder both 

exhibited an enrichment in T cells. Patients with bipolar disorder have been shown to have a 

reduction in certain types of T cells, but have equal levels of B cells, NK cells, and 

monocytes compared to controls61. T cell levels have been shown to vary between 
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schizophrenia cases and controls, but existing literature is not consistent in its description of 

the direction of effect62. Note that our analysis excludes the HLA region; a previous analysis 

of the HLA region for schizophrenia implicated the complement system through its role in 

synaptic pruning, a signal that is distinct from the signal we observe here63. Finally, we 

identified an enrichment in stromal cells for both diastolic and systolic blood pressure. For 

each of these two traits, we identified enrichments in the musculoskeletal/connective 

category in the multiple-tissue analysis that were stronger than the immune enrichments in 

that analysis, and thus we hypothesize that the enrichment in stromal cells is not providing 

better resolution on the immune enrichment but instead reflects the more general importance 

of connective tissue. In enrichment correlation analyses, schizophrenia and bipolar disorder 

clustered with immunological diseases, while metabolic traits, neurological diseases, and 

other psychiatric diseases did not (Figure S10).

To validate these results, we analyzed ATAC-seq (chromatin) data from 13 cell types 

spanning the hematopoietic hierarchy in humans64. We validated 10 out of 14 top results 

(Table S9, Online Methods). The only immunological disease whose result was not validated 

was lupus; the top result for lupus in the ImmGen analysis was a myeloid cell type, while the 

largest and most significant enrichment in the hematopoiesis data set was a B cell 

enrichment, consistent with other genetic studies of this trait14.

DISCUSSION

We have shown that applying stratified LD score regression to sets of specifically expressed 

genes identifies disease-relevant tissues and cell types. Our approach, LDSC-SEG, allows us 

to take advantage of the large amount of gene expression data available—including fine-

grained data for which we do not currently have a comparable chromatin counterpart—to 

ask questions ranging in resolution from whether a trait is brain-related to whether excitatory 

or inhibitory neurons are more important for disease etiology. Our results improve our 

understanding of the phenotypes studied here, highlight the power of GWAS as a source of 

biological insight, and may also be useful for choosing the relevant tissue or cell type for in-

vitro experiments to further elucidate molecular mechanisms underlying genome-wide 

significant loci identified in genome-wide association studies.

There are several key differences between LDSC-SEG, which relies on gene expression data 

without genotypes or eQTLs, and approaches that require eQTL data3,13 (Online Methods, 

Figure S11, Supplementary Note). Our polygenic approach also differs from other gene 

expression-based approaches such as SNPsea14,15 and DEPICT17, which restrict their 

analyses to subsets of SNPs that pass a significance threshold (Supplementary Note, Figures 

S12-S16, Tables S11-S15).

We cannot conclusively say whether gene expression or chromatin data is preferable when 

both types of data are available in the same tissues and cell types (Online Methods, Figure 

S4, Figure S17, Table S10, Table S16). Instead, we conclude that the question of which type 

of data is preferable may depend on complex factors such as which chromatin marks were 

analyzed, the sample size with which the specifically expressed genes are called, and the 

overall quality of the data set. When gene expression and chromatin data are available on the 
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same set of tissues or cell types, it may be possible to combine these types of data to 

improve power, for example by restricting an annotation to tissue-specific chromatin marks 

near specifically expressed genes, or by combining the P-values from separate analyses of 

the two types of data. We defer a thorough exploration of this set of possibilities to future 

work.

Our work is based on the assumption that a tissue or cell type is important for a particular 

disease if and only if SNPs near genes with high specific expression in that tissue/cell type 

are enriched for heritability. This assumption leads to several limitations of our approach. 

First, when analyzing gene expression data from different tissues, cell type composition can 

confound the analysis, as we demonstrated in our comparison of brain regions; this makes 

enrichments of organs such as the esophagus or uterus hard to interpret. Second, tissues/cell 

types with similar gene expression profiles to a causal tissue/cell type will be identified as 

relevant to disease, just as SNPs in LD with a causal SNP will be identified as associated to 

disease in a GWAS; thus, significant tissues/cell types should be cautiously interpreted as the 

“best proxy” for the truly causal tissue/cell type, which may be unobserved. Third, our focus 

on nearby SNPs prevents us from leveraging signal from regulatory SNPs that act at longer 

distances. Our approach is also fundamentally limited by the availability of gene expression 

data and cannot rule out the importance of a given cell type; for example, if the tissue/cell 

type that is most relevant for a disease occurs in a stage of development or under a stimulus 

that has not been assayed, then we may not identify enrichments in that tissue/cell type. We 

would also like to highlight that for most of these phenotypes there is likely not just one 

causal tissue/cell type, but many.

Our use of a heritability-based approach has advantages but also leads to some limitations. 

First, our approach will not detect strong but highly localized signals. Second, power 

increases only modestly with sample size at very large sample sizes (Supplementary Note). 

Also, because our approach uses stratified LD score regression, it cannot be applied to 

custom array data, it requires a sequenced reference panel that matches the population 

studied in the GWAS, and can be affected by model misspecification7. Recent 

augmentations to the baseline model65 have been shown to help ameliorate model 

misspecification, but we leave further investigation of this in the context of cell-type-specific 

analyses to future work.

Another limitation of our method is that its results may be difficult to validate. We undertook 

a type of validation using independent chromatin data, when there was comparable 

chromatin data available. However, this type of validation involves a number of challenges. 

First, we often do not have chromatin data in the same tissues and cell types as the gene 

expression data. Second, it is not clear that we should always expect results to replicate; for 

example, it is biologically plausible that SNPs near specifically expressed genes in the 

relevant tissue are enriched, while SNPs in H3K36me3 peaks called in the tissue are not. 

Third, our gene expression annotations represent relative activity—we select genes with 

higher expression in the focal tissue compared to other tissues—while the chromatin 

annotations that we use here represent absolute activity (although relative chromatin 

annotations are also possible6,66). Despite these limitations, replicating an enrichment for a 

Finucane et al. Page 9

Nat Genet. Author manuscript; available in PMC 2018 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particular system, tissue, or cell type using independent chromatin data can provide a strong 

validation for gene expression results.

Our power to identify disease-relevant tissues and cell types will improve as large GWAS 

sample sizes become available for more phenotypes, and as gene expression data is 

generated in new tissues and cell types. This will help advance our understanding of disease 

biology and lay the groundwork for future experiments exploring specific variants and 

mechanisms.

ONLINE METHODS

Computing t-statistics

When computing the t-statistic of each gene for a focal tissue, we excluded all samples from 

similar tissues category (described for each data set below). For example, when computing 

the t-statistic of specific expression for each gene in cortex using GTEx data, we compared 

expression in cortex samples to expression in all other samples, excluding other brain 

regions. We chose to exclude other brain regions because we wanted to include genes that 

are more highly expressed in brain tissues than in non-brain tissues, even if they are not 

specific to cortex within the brain. This procedure results in a higher correlation among the 

t-statistics for the different brain regions; in a separate analysis, we compute within-brain t-

statistics to disentangle this signal.

Thus, for a focal tissue (e.g., cortex) in a larger tissue category (e.g., brain), we computed 

the t-statistic for gene g as follows. We first constructed a design matrix X where each row 

corresponds to a sample either in cortex or outside of the brain. The first column of X has a 

1 for every cortex sample and a -1 for every non-brain sample. The remaining columns are 

an intercept and covariates (see below). The outcome Y in our model is expression. We fit 

this model via ordinary least squares, and compute a t-statistic for the first explanatory 

variable in the standard way:

t =
XTX

−1
XTY 0

MSE . XTX
−1 0, 0

where MSE is the mean squared error of the fitted model; i.e.,

MSE =   1
N Y − X XTX

−1
XTY

T
Y − X XTX

−1
XTY

where N is the number of rows in X. This gives us a t-statistic for each gene for the focal 

tissue. We then select the top 10% of genes, add a 100kb window around their transcribed 

regions, and apply stratified LD score regression to the resulting genome annotations as 

described below.

For visualization purposes and discussion of results, it is often useful to color tissues or cell 

types according to a categorization; the categorization for visualization is not always the 
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same as the categorization for computing t-statistics. We give the categorization for 

visualization in the supplementary tables listed in the respective figure captions.

Modifications of our approach

For some analyses, we modified our approach to constructing sets of specifically expressed 

genes to better take advantage of the data available.

• Franke lab data set. The values in the publicly available matrix are not a 

quantification of expression intensity, but rather a quantification of differential 

expression relative to other tissues in this data set17,18. Thus, it was not 

appropriate to compute t-statistics in this data set. We used the original values in 

place of our t-statistics, then proceeded as described in Figure 1.

• Cahoy data set. The data set of Cahoy et al. had available sets of specifically 

expressed genes for the three cell types that each had between 1,700 and 2,100 

genes. We took these to be the gene sets for the three cell types, then proceeded 

as in the standard approach, adding a 100kb window and applying stratified LD 

score regression.

• PsychENCODE data set. The PsychENCODE data set had available t-statistics 

for GABAergic neurons vs. Glutamatergic neurons. We used these t-statistics, 

rather than computing our own.

For the other data sets we analyzed (GTEx, GTEx brain regions, ImmGen), we used the 

approach described in Figure 1. We view it as an advantage of our method that it can be 

flexibly adapted to many different types of data.

Application of stratified LD score regression

Stratified LD score regression7 is a method for partitioning heritability. Given (potentially 

overlapping) genomic annotations C1, …,   CK, one of which is the category of all SNPs, we 

model the causal effect of SNP j on phenotype Y as drawn from a distribution with mean 0 

and variance

Var βi =  ∑
k

τk1 i ∈ Ck . (1)

(If the genomic annotations are real-valued rather than subsets of SNPs, we can replace 

1 i ∈ Ck  with any other function of the SNP indices65.) We then model the phenotype Y as 

depending linearly on genotype: Y = X ⋅ β + ε, where X is a vector of SNP values for an 

individual, and each SNP has been standardized to mean 0 and variance 1 in the population. 

Because each SNP is standardized, and because βi has mean zero, we can call Var βi  the 

per-SNP heritability of SNP i. (Note that here, because we model β as random, our definition 

of heritability is different from definitions of heritability in which β is fixed, and so we are 

estimating a fundamentally different quantity than some other methods67.)
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Under this model, the expected marginal chi-square association statistic for SNP i reflects 

the causal contributions not only of SNP i but of SNPs in LD with SNP i. Specifically,

E χi
2 =  1 + Na + N∑

k
τk𝓁 i, k ,

where N is the GWAS sample size, a is a constant that reflects population structure and other 

sources of confounding,68 and 𝓁 i, k  is the LD score of SNP i to category Ck, defined as 

𝓁 i, k =   ∑
j
r2 i, j 1 j ∈ Ck , where r2 i, j  is the squared correlation between SNPs i 

and j in the population. To estimate the τk, we first estimate 𝓁 i, k  from a reference panel, 

and we then perform weighted regression χi
2 on N ⋅ 𝓁 i, k , using a jackknife over blocks of 

SNPs to estimate standard errors.

The regression coefficient τk quantifies the importance of annotation Ck, correcting for all 

other annotations in the model; τk will equal zero if Ck is not enriched, will be negative if 

belonging to Ck  decreases per-SNP heritability accounting for all other annotations 

included, and will be positive if belonging to Ck  increases per-SNP heritability, accounting 

for all other factors. Thus, as in our previous cell-type-specific anlaysis7, we compute P-

values that test whether τk is positive. When reporting quantitative results, we normalize the 

coefficient τk by our estimate of the mean per-SNP heritability ∑
i
Var βi /M to make it 

comparable across phenotypes. The normalized coefficient can be interpreted as the 

proportion by which the per-SNP heritability of an average SNP would increase if τk were 

added to it. In addition , it is possible to estimate the total heritability, defined as 

∑
i
Var βi , as well as the heritability in category Ck, defined as ∑

i ∈ Ck
Var βi , by 

plugging estimates of τk into Equation (1), and to compare the proportion of heritability, 

∑
i ∈ Ck

Var βi /∑
i
Var βi , to the proportion of SNPs, Ck /M, where M is the total 

number of SNPs7.

We analyzed autosomes only and excluded the HLA from all analyses. In each analysis, we 

jointly fit the following annotations:

1. The annotation created for our focal tissue by adding 100kb windows around the 

top 10% of genes ranked by t-statistic.

2. An identical annotation created for all genes included in the gene expression data 

set being analyzed.
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3. The baseline model with 52 functional categories, described previously7 and 

listed in Table S1.

GTEx data set

We downloaded the RNA-seq read counts from GTEx v6p (see URLs), removed genes for 

which fewer than 4 samples had at least one read count per million, removed samples for 

which fewer than 100 genes had at least one read count per million, and applied TPM 

normalization69. We analyzed 53 tissues with an average of 161 samples per tissue. We used 

the “SMTSD” variable (“Tissue Type, more specific detail of tissue type”) to define our 

tissues and the “SMTS” variable (“Tissue Type, area from which the tissue sample was 

taken”) to define the tissue categories for t-statistic computation (Table S2). We used age 

and sex as covariates for our t-statistics.

Franke lab data set

The Franke lab data set is an aggregation of publicly available microarray gene expression 

data sets comprising 37,427 samples in human, mouse, and rat17,18. We downloaded the 

publicly available gene expression data from the DEPICT website (see URLs). The available 

gene expression values already quantify relative expression for a tissue/cell-type rather than 

absolute expression for a single sample17,18, and so we used these values in place of our t-

statistics. We determined that several pairs of tissues had values that were correlated at 

r2>0.99, including several that had r2=1. We pruned our data so that no two tissues had 

r2>0.99. Most of the closely correlated pairs were also biologically closely related so that the 

interpretation did not depend on which tissue we chose to keep (e.g., plasma and plasma 

cells, joint and joint capsule). For pairs of tissues where one tissue was more specific than 

the second, we kept the more specific pair (e.g., nose vs. nasal mucosa, quadriceps muscle 

vs. skeletal muscle). There were two clusters of highly correlated tissues for which we 

decided to remove the entire cluster, not keeping any of the tissues, because these clusters 

had very strong but biologically implausible correlations. The first such cluster was made up 

of eyelids, conjunctiva, anterior eye segment, tarsal bones, foot bones, and bones of the 

lower extremity. The second such cluster was made up of connective tissue, bone and bones, 

skeleton, and bone marrow. After pruning, this data set contained 152 tissues, listed in Table 

S3.

UK Biobank data

We analyzed data from the full N=500K UK Biobank release23 for 13 traits (P.R. Loh et al., 

unpublished data). The summary statistics were generated using BOLT-LMM v2.3, an 

unpublished extension of BOLT-LMM70.

Enrichment correlation

For a pair of phenotypes and a set of tissues/cell types, we defined the enrichment 

correlation to be the correlation between the regression coefficients corresponding to each 

tissue/cell type. We estimated the enrichment correlation by correlating the estimates of the 

regression coefficients, and we quantified uncertainty via block jackknife over 200 sets of 

consecutive SNPs. We note that when the number of tissues/cell types included is small, the 
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true underlying enrichment correlation may be large even though there is no relationship 

between the two phenotypes, so we only estimate enrichment correlations when there are at 

least 10 tissues or cell types.

Distribution of P-values

The correlation structure among annotations can lead to a distribution of P values that is 

highly non-uniform with many P-values close to 0 or 1 (Figure 2). This is caused by our 

one-sided test for enrichment, testing whether the regression coefficient—which represents 

the change in per-SNP heritability due to a given annotation, beyond what is explained by 

the set of all genes as well as the baseline model—is positive. The P-values near 0 occur due 

to correlated annotations with true signal, and the P-values near 1 occur due to annotations 

without true signal that, conditional on the baseline model, are negatively correlated to 

annotations with true signal as a consequence of our construction of sets of specifically 

expressed genes; these annotations thus have negative regression coefficients.

Chromatin-based annotations

We downloaded narrow peaks from the Roadmap Epigenomics consortium for DNase 

hypersensitivity and five activating histone marks: H3K27ac, H3K4me3, H3K4me1, 

H3K9ac, and H3K36me3 (see URLs). Each of these six features was present in a subset of 

the 88 primary cell types/tissues, for a total of 397 cell-type-/tissue-specific annotations. We 

also analyzed peaks called using Homer from EN-TEx, a subgroup of the ENCODE project, 

for four activating histone marks: H3K27ac, H3K4m3, H3K4me1, and H3K36me3. Each of 

these four features was present in a subset of 27 tissues that were also included in the GTEx 

data set, for a total of 93 cell-type-/tissue-specific annotations. For each of these two 

datasets, of each of the annotations, we tested for enrichment by adding the annotation to the 

baseline model (see Table S1), together with the union of cell-type-specific annotations 

within each mark and the average of cell-type-specific annotations within each mark. A 

positive regression coefficient for a tissue-/cell-type-specific annotation represents a positive 

contribution of the annotation to per-SNP heritability, conditional on the other annotations. 

We again computed a P-value to test whether the regression coefficient was positive.

Our analysis of chromatin in this work differs from our previous analysis of chromatin data7 

in three ways. First, we use a larger range of marks and tissues/cell types: every track 

available from the Roadmap Epigenomics website (see URLs) for any of six activating 

marks, H3K27ac, H3K4me1, H3K4me3, H3K9ac, H3K36me3, and DHS, in any of the 88 

primary tissues and cell types available, in addition to recent EN-TEx data. Second, for our 

analysis of Roadmap data, we used narrow peaks from Roadmap for all of the marks. 

Previously, we analyzed H3K27ac data from one source6 and H3K4me1, H3K4me3, and 

H3K9ac data from another source5,12; now that there is a single standard source with 

uniformly processed data for all Roadmap data, we have switched to using this data. Finally, 

we controlled more strictly for confounders by including the average across cell types of the 

cell-type-specific annotations for a given mark as an annotation in the model, so that 

annotations that tend to fall in areas that are more active overall are not falsely interpreted as 

cell-type-specific signal.

Finucane et al. Page 14

Nat Genet. Author manuscript; available in PMC 2018 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Classification of tissues/cell types for system-level validation of the results of the multiple-
tissue analysis of gene expression

We used the classification for visualization used in Figure 2, classifying the top tissue or cell 

type for each trait with a significant enrichment into one of the eight systems (excluding 

“Other”) in the Figure 2 legend. There were three phenotypes whose top tissue fell in the 

“Other” category; two of these we classified into a new “Reproductive” category. The last 

one, serous membrane, did not have any comparable tissues in our chromatin data and so we 

instead attempted to replicate the second most significant result for that phenotype.

Multiple-tissue validation results

The top enrichment from our multi-tissue analysis of gene expression was validated at the 

system level for 33 out of 34 phenotypes, and at the tissue level for 13 out of 20 (Results). If 

we allowed an enrichment of any artery sample in GTEx to be validated by an enrichment of 

any artery sample in EN-TEx (instead of requiring strict matching of aorta, tibial artery, and 

coronary artery), the number of validations rose from 13 to 16. Of the four remaining results 

that were not validated, three were an enrichment in lung for an immunological disease; for 

all three diseases, the top enrichment in the analysis of gene expression (not restricting to 

tissues shared between GTEx and EN-TEx) was an immune category from the Franke lab 

dataset, and the top enrichment in the analysis of chromatin data was an immune category in 

the Roadmap dataset. We hypothesize that the lung samples analyzed in GTEx may have 

contained substantial amounts of blood and thus exhibited a gene expression signature 

reflecting immune activity; this is supported by a GO enrichment analysis of the lung gene 

set, in which the top three results were related to antigen presentation, immune response, and 

cytokine-mediated signaling, respectively.

Heritability enrichments of chromatin-based annotations

Aggregating all results of the Roadmap and EN-TEx chromatin analyses, at least one tissue 

was significant at FDR<5% for 44 of the 48 traits (Figure S5 and Tables S5 and S7). 

Averaging across the most significant annotation for each of these 44 traits, the tissue-

specific chromatin annotation spanned 3.3% of the genome and explained 43% of the SNP-

heritability (Table S5). The sizes of the annotation ranged from 0.8% to 7.8%, and the 

estimates of enrichment varied from 3.5× to 33×, representing much more variability than 

for the top annotations in the multiple-tissue gene expression analysis. Because the 

annotations were much smaller, the estimates of proportion of heritability tended to be much 

noisier.

Phenotypes with CNS enrichment

The following 12 traits had CNS enrichment at FDR<5% in either the multiple tissue 

analysis of gene expression or in the analysis of chromatin data above: schizophrenia, 

bipolar disorder, Tourette syndrome, epilepsy, generalized epilepsy, ADHD, migraine, 

depressive symptoms, BMI, smoking status, years of education, and neuroticism. The 

nervous system has been implicated, either with genetic evidence or non-genetic evidence, 

for each of these traits7,34,24,32,45,71–73.
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Analysis of 13 brain regions using data from GTEx

While the multiple-tissue analysis included annotations for many different brain regions, the 

gene sets for the different brain regions were often highly overlapping so that for many 

traits, many brain regions were identified as enriched. For example, nearly every brain 

region in either the GTEx or Franke lab data was found to be enriched at FDR<5% in 

schizophrenia (Figure 2). To differentiate among brain regions, we restricted ourselves to 

gene expression data only from samples from the brain in the GTEx data. We computed t-

statistics within the brain-only data set; e.g. we computed t-statistics for cortex vs. other 

brain regions instead of cortex vs. other tissues in GTEx, and we used these new t-statistics 

to construct and test gene sets as in the multiple-tissue analysis. In this analysis, we set each 

tissue to be its own category for computation of t-statistics, and we used age and sex as 

covariates. Individual-level data was not available for the Franke lab data set, and thus we 

could not compute within-brain t-statistics for this data set.

An alternative approach would be to undertake a joint analysis of the original 13 annotations 

from the multiple-tissue analysis. However, joint analysis of 13 highly correlated annotations 

is likely to be underpowered, while re-computing t-statistics within the brain allows us to 

construct new annotations with lower correlations (Figure S7), increasing our power. 

Moreover, differential expression within the brain may allow us to isolate signals from cell 

types or processes that are unique to a single brain region, separately from the cell types or 

processes that are unique to the brain but shared among brain regions. Thus, we use 

differential expression within the brain, rather than joint analysis of the original annotations, 

to differentiate among brain regions.

Data on three brain cell types from Cahoy et al.19

The authors of Cahoy et al.19 purified neurons, astrocytes, and oligodendrocytes from mouse 

forebrain, and made lists of specifically expressed genes available for each of these three cell 

types, which we downloaded (see URLs). To obtain a list of all genes, we also downloaded a 

list of all genes that passed quality control in their analysis (Table S3b of Cahoy et al.). We 

mapped from mouse to human genes using orthologs from ENSEMBL (see URLs).

Data on two neuron types from PsychENCODE20

PsychENCODE20 generated RNAseq data from the nuclei of GABAergic and Glutamatergic 

neurons from the dorsolateral prefrontal cortex of four neurotypical human donors, and 

computed t-statistics using limma74. We used these t-statistics.

Phenotypes with immune enrichment

Twenty-five traits had immune enrichment at FDR<5% in either the multiple tissue analysis 

of gene expression or in the analysis of chromatin data. This includes many immunological 

disorders: celiac disease, Crohn’s disease, inflammatory bowel disease, lupus, primary 

biliary cirrhosis, rheumatoid arthritis, type 1 diabetes, ulcerative colitis, asthma, eczema, and 

multiple sclerosis. It also includes Alzheimer’s and Parkinson’s diseases, which are 

neurodegenerative diseases with an immune component previously identified from 

genetics75,76, as well as several brain-related traits—ADHD, anorexia nervosa, bipolar 

disorder, schizophrenia, Tourette syndrome, and neuroticism—and HDL, LDL, triglycerides, 

Finucane et al. Page 16

Nat Genet. Author manuscript; available in PMC 2018 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diastolic and systolic blood pressure, hypertension, and BMI. Several of the brain-related 

traits have been previously suggested to have an immune component32,77,78; HDL, LDL, and 

triglycerides have been linked to immune activation79–82; immune cells are causally 

involved in blood pressure and hypertension83; and obesity, in addition to contributing to 

inflammation84, can also be induced in mice through alterations of the immune system85.

Data on 292 immune cell types from ImmGen

We downloaded publicly available microarray gene expression data on 292 immune cell 

types from the ImmGen Consortium (see URLs). We used both Phase 1 (GSE15907) and 

Phase 2 (GSE37448) data. The data on GEO were on an exponential scale, so we log 

transformed the data and mapped to human genes using ENSEMBL orthologs. We defined 

tissue categories for t-statistic computation using the classification on the main page of 

immgen.org of cell types into categories: B cells, gamma delta T cells, alpha beta T cells, 

innate lymphocytes, myeloid cells, stromal cells, and stem cells (Table S10). The 

classification at immgen.org also has a “T cell activation” category that we collapsed into the 

alpha beta T cell category because it had data on alpha beta T cells at different stages of 

activation. We did not include any covariates.

Validation of immune results

To validate the results of the ImmGen analysis, we analyzed ATAC-seq peaks from 13 cell 

types spanning the hematopoietic hierarchy in humans64. The 13 cell types did not allow us 

to validate at very high resolution; instead, we classified all cell types from ImmGen and 

from the hematopoiesis data set using the classification for visualization of Figure 5 into five 

categories: B cells, T cells, NK cells, myeloid cells, and other cells. There were no stromal 

cells in the hematopoiesis data set and it was not possible to validate the enrichments for 

diastolic and systolic blood pressure; this left us with 14 phenotypes with an enrichment at 

FDR<5% in the ImmGen analysis where the top result fell into one of the first four 

categories (excluding “Other”). We considered one of these 14 results to be validated if any 

cell type in the same category from the hematopoiesis data set passed FDR<5%. The four 

phenotypes whose top results did not replicate were Lupus, schizophrenia, bipolar disorder, 

and neuroticism.

Differences between LDSC-SEG and eQTL-based approaches

Our approach differs in several key ways from approaches that require eQTL data3,13. First, 

our approach can be applied to expression data sets such as the Franke lab data set, the 

Cahoy data set, the PsychENCODE data set, and the ImmGen data set that do not have 

genotypes or eQTLs available (Table 1). Second, methods based on eQTLs require gene 

expression sample sizes that are large enough to detect eQTLs. In an analysis of data from 

the GTEx project, we determined that we could identify strong enrichments such as brain 

enrichment for schizophrenia with just one brain sample, though subtler enrichments had 

decreasing levels of significance as the gene expression data were down-sampled (Figure 

S11, Supplementary Note). Results from our analysis of ImmGen data, which has 2.8 

samples per cell type on average, confirm that LDSC-SEG can identify significant 

enrichments even when the gene expression data has a small number of samples per tissue/

cell type, in contrast to eQTL-based methods. Finally, we note that a recent study86 tested 30 
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phenotypes for tissue-specific enrichment in 44 tissues from GTEx using the TWAS 

approach87 but concluded that their results “did not suggest tissue-specific enrichment at the 

current sample sizes.” We share their hypothesis that this is because eQTLs are often shared 

across tissues even when overall expression levels are very different.

Comparison of gene expression and chromatin for cell-type specific analysis

Our estimated enrichments were higher for the chromatin-based annotations than for the 

gene expression-based annotations, but the gene expression-based annotations are larger and 

have less LD to the rest of the genome. Some chromatin marks tend to be more cell type-

specific than overall gene expression, but our specifically expressed gene sets have low 

correlation across tissues (Figure S17). There were two instances in which we had gene 

expression and chromatin data on the same set of tissues/cell types, and we compared the P-

values in our analyses of these data sets. First, we compared our results from GTEx (gene 

expression) and EN-TEx (chromatin) for the tissues shared between these two data sets in 

the multiple-tissue analysis, and we found that the two data sets had comparable 

distributions of P-values (Figure S4). On the other hand, the hematopoietic data set that we 

analyzed64 had matched ATAC-seq and RNA-seq data, and while our analysis of the ATAC-

seq peaks lead to significant enrichments for many traits (Figure 5, Table S10), the RNA-seq 

data set yielded only a single enrichment for a single trait (Table S16).

Data availability

We have released all genome annotations derived from the publicly available gene 

expression data that we analyzed at http://data.broadinstitute.org/ alkesgroup/LDSCORE/. 

This includes all annotations used in Figures 2–5 with the exception of the annotations 

derived from the PsychENCODE data in Figure 4c, for which we did not have permission to 

release annotations.

Code availability

Open source software implementing our approach is available at http://www.github.com/

bulik/ldsc.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the approach. For each tissue in our gene expression data set, we compute t-

statistics for differential expression for each gene. We then rank genes by t-statistic, take the 

top 10% of genes, and add a 100kb window to get a genome annotation. We use stratified 

LD score regression7 to test whether this annotation is significantly enriched for per-SNP 

heritability, conditional on the baseline model7 and the set of all genes.
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Figure 2. 
Results of the multiple-tissue analysis for selected traits. Results for the remaining traits are 

displayed in Figure S1. Each point represents a tissue/cell type from either the GTEx data 

set or the Franke lab data set. Large points pass the FDR<5% cutoff, –log10(P)=2.75. GWAS 

data is described in Table S4, gene expression data is described in the Online Methods and 

Tables S2-3, and the statistical method is described in the Overview of Methods and the 

Online Methods. Numerical results are reported in Table S6.
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Figure 3. 
Validation of gene expression results with chromatin data. (A) Examples of validation using 

chromatin data (bottom) of results from gene expression data (top), for selected traits. 

Results using chromatin data for all traits are displayed in Figure S5, with numerical results 

in Table S7. For the chromatin results, each point represents a track of peaks for H3K4me3, 

H3K4me1, H3K9ac, H3K27ac, H3K36me3, or DHS in a single tissue/cell type. (B) Results 

using gene expression data (including GTEx), Roadmap, and EN-TEx, for migraine (all 

subtypes) and migraine without aura. For both subfigures, large points pass the FDR<5% 

cutoff, –log10(P)=2.85 (chromatin) or –log10(P)=2.75 (gene expression). GWAS data is 

described in Table S4; gene expression data and chromatin data are described in the Online 
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Methods, Tables S2-3, and Table S7; and the statistical method is described in the Overview 

of Methods and the Online Methods.
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Figure 4. 
Results of the brain analysis for selected traits. Numerical results for all traits are reported in 

Table S8. (A) Results from within-brain analysis of 13 brain regions in GTEx, classified into 

four groups, for seven of 12 brain-related traits. Large points passed the FDR<5% cutoff, –

log10(P)=2.34. (B) Results from the data of Cahoy et al. on three brain cell types for seven of 

12 brain-related traits. Large points passed the FDR<5% cutoff, –log10(P)=2.22. (C) Results 

from PyschENCODE data on two neuronal subtypes for three of five neuron-related traits. 

Large points passed the Bonferroni significance threshold in this analysis, –log10(P)=2.06. 

GWAS data is described in Table S4, gene expression data is described in the Online 
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Methods and Table S8, and the statistical method is described in the Overview of Methods 

and the Online Methods.
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Figure 5. 
Results of the analysis of ImmGen gene expression data (top) and hematopoiesis ATAC-seq 

data (bottom) for selected traits. Results for the remaining traits are displayed in Figure S9. 

Large points passed the FDR<5% cutoff, –log10(P)=3.03 (Gene expression) or –

log10(P)=2.32 (Chromatin). Numerical results are reported in Table S10. GWAS data is 

described in Table S4, gene expression and chromatin data is described in the Online 

Methods and Table S10, and the statistical method is described in the Overview of Methods 

and the Online Methods.
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Table 1

List of gene expression data sets used in this study. We analyzed five gene expression data sets: two (GTEx 

and Franke lab) containing a wide range of tissues and three (Cahoy, PsychENCODE, ImmGen) with more 

detailed information about a particular tissue.

Name Organism Tissues/cell types Technology

GTEx3 Human   53 tissues/cell types RNA-seq

Franke lab17,18 Human/mouse/rat 152 tissues/cell types Array

Cahoy19 Mouse     3 brain cell types Array

PsychENCODE20 Human     2 neuronal cell types RNA-seq

ImmGen21 Mouse 292 immune cell types Array
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