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Abstract: Some reported analyses of images of deforming granular 

materials have generated surprising vermiculate strain features which are 

difficult to reconcile with the mechanics of deformation of granular 

matter. Detailed investigation using synthetic images and improved 

processing of images of laboratory experiments indicates that such 

features can emerge as a consequence of the image acquisition (sensor, 

contrast, resolution), the subsequent image correlation implementation, 

and the user's choice of processing parameters. The two principal factors 

are: (i) the texture and resolution of the images and (ii) the algorithm 

used to achieve sub-pixel displacement resolution. Analysis of the images 

using a sub-pixel interpolation algorithm that is more robust than that 

used originally eliminates the vermiculate features for images with 

moderate resolution and texture. However, erroneous features persist in 

images with low resolution and poor texture. Guidance is provided on ways 

in which such artefacts can be avoided through improved experimental and 

image analysis techniques. 
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Reviewer 1: 

 

Comment Actions 

I really enjoyed reading this paper that I 

found very interesting. I had only a few 

comments for the consideration of the 

authors. 

N/A 

I was perhaps a little worried about the 

longevity of some of the 

recommendations and conclusions. In 

an area where I guess that the 

technology is changing rapidly, to what 

extent are the conclusions robust or are 

they a function of the current 

technology level? 

 

In particular the paper sometimes 

seemed to recommend not collecting 

too much data/information, for example 

in the overlap (Rule 5) or the number of 

pixels per particle (Rule 2). This was a 

little surprising as I can't believe that 

more data is worse than less and it 

reminds me of similar arguments in the 

early days of measuring small strain 

stiffness in lab tests, where it was 

commonly argued that the plots were 

less noisy if fewer data were collected! 

Surely this must be a function of the 

current state of the art of the images 

and also the methods currently being 

used in the analysis.  For example, in 

X-Ray CT we have moved from rather 

fuzzy images of particles defined by 

just a few voxels, for which it was even 

difficult to define a particle, to really 

quite accurate representations of the 

particle morphology and even their 

contacts. 

 

 

 

 

All recommendations are applicable to any 

image-based deformation analysis that 

processes subsets of the image pairs, 

irrespective of the algorithm employed.  

Consequently we believe that the 

recommendations and conclusions will 

prove to be robust over time and be useful 

for the geotechnical research community. 

 

The guidance given in Rule 5 is governed 

by: (i) practicalities, since too small a 

subset spacing leads to very 

computationally intensive analyses that are 

unnecessarily time consuming to run; the 

use of heavy overlapping also becomes an 

increasingly artificial way of increasing the 

number of measurements because the same 

‘data’ (pixels) are being used to contribute 

to separate determinations of displacement; 

and (ii) a desire to minimise the ‘potential’ 

impact of any bias in the computed 

displacement fields, which as demonstrated 

in the paper, can lead to erroneous strain 

fields. Rule 2 is intended as a general guide 

to be followed for typical geotechnical 

modelling scenarios where a large cross-

sectional area of a model is being 

monitored through a transparent window. It 

is concerned predominantly with the 

minimum seeding particle diameter 

required for robust sub-pixel measurements 

to be achieved. Too few pixels per particle 

leads to ‘peak-locking’ errors. In contrast, 

too many pixels per particle is potentially 

problematic only if the surface of the 

seeding particles is of low contrast (i.e. the 
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Won't this type of improvement happen 

in PIV analyses and the images used for 

them? And when that happens will we 

still be trying to identify the "centre" of 

particles with the current interpolation 

methods? At the very least, if I do have 

too much information for the current 

technology or noise levels, for example 

for the number of pixels per particle, I 

could simply recombine my pixels to 

create larger groups. 

particles are of uniform colouring) since 

the effect of camera sensor noise on the 

correlations will be amplified. This point is 

made clear by the statement that: “…more 

pixels will increase the noise unless the 

observed surfaces show adequate 

contrast.” If the seeding particles show 

reasonable contrast across the surface of 

each particle we see no disadvantage from 

having more particles per pixel than the 

minimum values given as guidance by Rule 

2 and we feel that the current text in Rule 2 

already reflects this. 

 

Potentially similar improvements in image 

capture resolution will probably occur for 

the digital cameras used in PIV/DIC 

analyses. Experimentalists will likely then 

be able to choose between capturing higher 

resolution images over the same region of 

interest, or the same resolution images over 

a larger region of interest. In either case, 

we feel that Rules 2 and 4, when used in 

combination, are appropriate in guiding 

their choice of seeding particle and subset 

size. 

On Fig.9 as the particle to pixel size 

ratio increased, shouldn't the images of 

the particles tend to get sharper? They 

seemed to just get larger but retained 

the same degree of indistinctness. 

In Figure 9 it is the particles themselves 

that are being enlarged; the images are all 

1001 by 1001 pixels in size. The fact that 

each particle is represented by a Gaussian 

distribution causes the larger particles not 

to appear more distinct at their extremities 

since the pixel intensity across the particle 

is gradually changing with respect to the 

radius of the pixel from the centre of the 

particle. 



Reviewer 2: 

 

Comment Actions 

Manuscript COGE-D-15-00327 entitled 

"Vermiculate artefacts in image 

analysis of granular materials" provides 

a cautionary tale of blindly using black-

box measurement tools such as digital 

image correlation (DIC) in the absence 

of fully appreciating the intricacies of 

the underlying working principles 

behind the method. In this case, the 

paper provides an extremely useful case 

study of how poor image texture can 

lead to completely erroneous strain 

measurements. The paper is of utmost 

importance and needs to be published. 

N/A 

Page 1. "Example experimental setups 

have been described for element testing 

(Rechenmacher & Finno, 2004; 

Bhandari et al., 2012), large scale 1g 

testing (White & Bolton, 2004) and 

centrifuge testing (Stanier & White, 

2013)." While it is understandable the 

authors naturally promote their own 

work, a considerable body of DIC work 

was conducted on the centrifuge before 

2013. Given the early 2000's references 

included in the other examples, this 

jumps out as appearing somewhat odd. 

To avoid the appearance of over-

cheerleading their own work, the 

authors are encouraged to reword this 

to make the references introduced more 

symmetrically between element testing, 

1g, and centrifuge applications. 

We appreciate the reviewers concern with 

respect to the referencing in this section. To 

alleviate the concerns an additional 

sentence referencing a number of example 

applications of PIV/DIC techniques in 

geotechnical modelling investigations has 

been added to provide balance in the 

referencing. 

Page 2. "….(ii) the image acquisition 

(sensor, lens, illumination, field of 

view, image spacing - time or 

displacement)". Encourage rewording 

to the "image formation process", or if 

acquisition is needed, "the image 

acquisition process". Encourage 

rewording of "image spacing - time or 

displacement" as this is awkward and 

unclear. 

This sentence has been reworded to read 

‘image acquisition process (sensor, lens, 

illumination, field of view, image capture 

frequency)’. 

Page 2. The paper is generally very 

well written. However, the flow of 

logic in how the manuscript has been 

structured only makes sense once the 

Two extra sentences have been added to the 

third paragraph of the first section of the 

paper. These sentences introduce the 

references that provided the impetus for the 



full paper is written. In particular, 

readers are only really informed on 

Page 15 in section 5 that the motivation 

is to attempt to debunk the 

vermiculation seen in previous 

experimental studies. At a minimum, a 

paragraph at the end of Section 1 needs 

to paint the picture of WHY the work 

was conducted and to state the 

objectives of the paper. 

work presented in this paper and read as 

follows: 

 

“Muir Wood and Lesnieswka (2012) and 

Nazhat and Airey (2015) provide examples 

of analyses that have potentially been 

affected by erroneous numerical artefacts 

that appear in the strain fields computed 

from the displacements as highly 

concentrated bands of shearing. Such 

features are difficult to reconcile with the 

mechanics of deformation of granular 

matter.”  

 

The aim of the paper is now clearly stated 

immediately after as: 

 

“This paper aims to provide guidance on 

the selection of the most influential 

experimental parameters in order to avoid 

spurious features and presents some 

examples of features that might arise for 

ill-chosen conditions.”  

Figure 4. This figure states "after Raffel 

et al." Is this a copied version of their 

figure (in which case the permissions 

for duplication need to be addressed), 

or did you replicate the same type of 

figure yourselves? If the latter, consider 

rewording the "after Raffel et al." 

We replicated the same type of figure so 

we have removed the reference from the 

figure caption. 

Page 5. "More sophisticated sub-pixel 

displacement refinement can be 

achieved by incorporating a higher-

order subset shape function that allows 

the displacements within the subset to 

vary linearly or non-linearly for first- 

and second-order shape functions 

respectively." Encourage rewriting this 

statement to state that "More 

sophisticated sub-pixel displacement 

refinement can be achieved by 

incorporating more complex basis 

spline curve-fitting of the interpolation 

peak (e.g. You could include many 

references here including Sutton et al, 

Hoult et al., Lee et al, etc, etc) or 

incorporating a higher-order subset 

shape function that allows the 

displacements within the subset to …." 

We have added the suggested comment 

about more complex basis spline curve-

fitting providing an alternative to the non-

zero order subset shape function method 

that is introduced in this section. 

Page 8. Figure 5 is referred to in the The figure references have been re-ordered. 



text before figures 3 and 4. Figures 

should be reshuffled or text modified. 

Page 8. "For geotechnical purposes it is 

recommended that each subset should 

contain a minimum of 10 grains in each 

direction (so that the total number of 

grains, n >100), so as to increase the 

likelihood that the real displacement of 

the subset of soil can be extracted." 

This is written very sand-specifically. 

Perhaps rewrite to make this applicable 

to either visible soil grains or to flock 

applied to clay specimens? 

This section of text has been revised so that 

it is relevant to both sand and clay models 

as we feel that the general rule given is 

valid whether dyed sand grains or coloured 

modelled flock are used to provide the 

image texture.  

Page 9. I must admit that I was 

somewhat surprised by the dx<0.25Ls 

restriction. Surely this is more a 

function of vol. or shear strain rate 

rather than translation as no loss in 

correlation strength would be achieved 

if this tolerance is exceeded. I 

encourage this rule to either be 

significantly shortened or removed 

entirely. 

On reflection, the authors agree with the 

reviewer that it is the deformation 

magnitude that is critical rather than the in-

plane displacement. Consequently, Rule 6 

has been re-written to focus on the 

deformation magnitude rather than the in-

plane displacement. References to Rule 6 

later in the paper have also been revised. 

Page 9. In certain parts of the 

manuscript, the text is somewhat 

repetitive and wordy. The first 

paragraph of Section 4 is one location 

where repetitive items such as retelling 

of previous section findings and 

reminding your readers of the definition 

of image texture could be removed 

without any loss of clarity. 

This section has been tightened up by 

removing the unnecessarily repetitive text 

referred to. 

Figure 9. The lines showing the 

location of the inset subset are only 

visible in part a) of the figure. This gets 

even harder to distinguish once printed 

in black and white. 

This issue has been fixed by thickening the 

yellow lines. 

Page 11. Please provide equation of 

Gaussian dots 

The equation used is now provided in the 

appendix. 

Rule three: I encourage the authors to 

place less prominence to the ASR 

concept as it is a much weaker 

framework than the MIG or SSSIG. For 

example, all of the synthetic images in 

Figure 9 have an ASR = 0.5, yet 

performed very differently with regards 

to peak locking and outcome in terms 

of error. The Authors have therefore 

shown that the ASR concept isn't (in 

itself) predictive of "good texture". 

We accept that it is not ideal that the ASR 

concept is unable to warn the user of the 

presence of texture that is susceptible to 

‘peak-locking’. However, this was not the 

intention of the ASR measure, which was 

developed to guide experimentalists in 

applying an optimal amount of seeding to 

the exposed face of a geotechnical model. 

As a result, where the ASR concept is 

mentioned in the text, the intention of this 

measure of image texture quality has been 



Indeed, in the entire DIC community, 

no universal texture measurement has 

been fully recognized as "the way 

forward" indicative of the complexity 

of the topic (the MIG being the closest 

to the current front runner). Whereas a 

"good ASR" texture with a low d/p 

could give a much worse outcome than 

a "bad ASR" with higher d/p, the ASR 

could be argued to muddy the waters. 

clarified. However, we feel that the 

criticism of the ASR measure is perhaps a 

little harsh. For instance, take the case 

where white seeding particles (sand or 

modelling flock) with d/p≈1 are applied to 

a black model plane, evenly, until ASR≈0.5. 

All of the MIG, SSSIG and σIs measures for 

such an image would also indicate high-

quality image texture was present, since the 

intensity gradients (and the standard 

deviations within the subsets) would be 

near maximal. However, as we have 

demonstrated, the small seeding particle 

diameter would lead to significant ‘peak-

locking’ for this case. Therefore none of 

the proposed measures (MIG, SSSIG, ASR 

or σIs) are capable of indicating the 

likelihood of ‘peak-locking’ occurring in 

isolation and the reviewers criticism of the 

ASR measure is equally valid for the other 

measures recommended. In all cases the 

seeding particle diameter must also be 

carefully controlled if ‘peak-locking’ is to 

be avoided. This is why we suggest 

checking multiple measures of image 

texture quality concurrently, including the 

ASR, since no one measure is sufficient to 

indicate adequate image texture quality in 

isolation. We have now clarified in the 

conclusions that the seeding particle 

diameter must also be carefully controlled. 

Page 17. "a different digital camera" - 

Higher resolution? Other differences? 

The cameras used in the two experiments 

reported were very similar (almost identical 

resolution in fact). We believe that the 

unannealed state of the glass beads in the 

latter experiment predominantly led to the 

improvement in image texture. This has 

now been clarified in an additional footnote 

to avoid confusion. 

Figure 15 caption. "No vermiculation 

present" is perhaps too strong. Consider 

applying the same wording in the text 

placed in the frame of Figure 15b? 

We agree. The word ‘no’ has been replaced 

with ‘minimal’. 

In summary, as noted in my 

introductory remarks, these comments 

are exceedingly minor in nature and the 

paper is of very high quality and 

significance to the physical modelling 

community. I therefore enthusiastically 

recommend that it be accepted after 

N/A 



 

Reviewer 3: 

 

these very minor comments have been 

addressed. 

Comment Actions 

This manuscript aims to provide 

guidance for users of image correlation 

techniques in order to avoid unwanted 

artefacts from the image processing.  

 

While the work is useful for the 

increasing community using PIV/DIC 

techniques there are few points that 

require further clarification: 

N/A 

Is the discussion limited to a 2D 

analysis? 

The discussion in the paper focusses on the 

2D case where a plane of the model is 

exposed to the camera through a 

transparent strongbox sidewall. A 3D 

PIV/DIC analysis is generally achieved by 

performing parallel analyses on multiple 

digital images captured from different 

perspectives relative to the model, with 

parallel interpretation of the displacement 

of concurrent particles in each of the 

images captured (see the VIC-3D system 

for example). Therefore, the discussion 

regarding the appropriate size of seeding 

particles relative to a single pixel in the 

captured images is probably also valid for 

3D PIV/DIC measurements. 

In section 3, for rule 1 it is stated that a 

CCD sensor should be used rather than 

a CMOS and the reference Stanier & 

White 2013 is used. How updated and 

informed is this statement? The 

reviewer is aware that precision greater 

than 10 microns can be achieved using 

a CMOS sensor, can the authors 

comment on this? 

The differences between CMOS and CCD 

sensors outlined in Stanier and White 

(2013) is still valid. CCD sensors typically 

use a charge to voltage converter; CMOS 

sensors generally have one per pixel. Thus 

CMOS sensor derived images are less 

uniform than CCD derived counterparts 

due to variability in the characteristics of 

the circuitry performing the charge-to-

voltage conversion. The additional circuitry 

utilised in a CMOS sensor typically results 

in less of the surface area of the sensor 

being used for light capture, leading to 

increased signal amplification (gain) 

requirements. However, due to 

parallelisation of the charge-to-voltage 

conversion this process is generally faster 

than on a CCD sensor allowing for faster 

frame rates. For high quality PIV/DIC 



 

 

analyses at moderate frame rates we 

recommend CCD sensors for the above 

reasons (as outlined in Stanier and White, 

2013). 

In section 5, the use of PIV/DIC 

techniques for photoelastic material is 

debatable as the texture of this material 

will change with the mechanical state. 

Can the authors comment on this? 

The mention of photo-elasticity was 

included to provide some context for the 

tests reported by Lesniewska and Muir 

Wood on assemblies of glass beads.  

Photoelastic effects are only seen when the 

assembly is viewed with polarised light.  

The PIV analyses were performed with 

images taken with unpolarised light. 

 

We agree that any change in texture 

resulting from deformation in the granular 

assembly needs to be small for image 

correlation to work.  In fact, using light 

transmitted through the multiple layers of 

grains forming the sample, the deduced 

fields of deformation are less influenced by 

wall friction effects or by the out of plane 

movement (and possible disappearance) of 

particles visible in surface observation. 

The unpublished reference Stanier et al 

2015 is cited a number of times in the 

paper as an important source of 

information and I am wondering if the 

manuscript under review shouldn't 

actually provide the relevant 

information in itself. 

The unpublished paper referred to contains 

detailed descriptions of the programming 

logic and several performance 

benchmarking analyses for a recently 

developed PIV/DIC algorithm for 

geotechnical applications. The manuscript 

is still under review; however, it has been 

accepted subject to revisions (which have 

already been re-submitted to Canadian 

Geotechnical Journal) so it will hopefully 

be published in the near-future. For this 

reason it would be inappropriate to 

duplicate the relevant information referred 

to in this paper by reference. By the time 

the present paper is accepted for 

publication we anticipate that the other 

reference will be citable more precisely. 

In the case of acceptance is the 

manuscript going to be produced using 

coloured figures?  This is an important 

issue since the b/w figures are not 

readable. 

Should the manuscript be accepted we will 

consider publication with colour figures, if 

required by the journal editors. 
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Abstract

Some reported analyses of images of deforming granular materials have gener-
ated surprising vermiculate strain features which are difficult to reconcile with
the mechanics of deformation of granular matter. Detailed investigation using
synthetic images and improved processing of images of laboratory experiments
indicates that such features can emerge as a consequence of the image acquisition
(sensor, contrast, resolution), the subsequent image correlation implementation,
and the user’s choice of processing parameters. The two principal factors are: (i)
the texture and resolution of the images and (ii) the algorithm used to achieve
sub-pixel displacement resolution. Analysis of the images using a sub-pixel in-
terpolation algorithm that is more robust than that used originally eliminates
the vermiculate features for images with moderate resolution and texture. How-
ever, erroneous features persist in images with low resolution and poor texture.
Guidance is provided on ways in which such artefacts can be avoided through
improved experimental and image analysis techniques.
Keywords: granular materials, digital image correlation, vermiculation, sub-pixel
interpolation

1 Introduction

Image analysis has become a widely used tool for obtaining full-field information
of displacements in granular media. The process starts with the design of an ex-
periment that allows the acquisition of digital images of the deforming material
(e.g. behind a transparent window) at chosen intervals. Example experimen-
tal setups have been described for element testing (Bhandari et al., 2012), large
scale 1g testing (White & Bolton, 2004) and centrifuge testing (Stanier & White,
2013).

::::::::
Similar

:::::::::::
equipment

::::
has

::::::
been

:::::
used

:::
to

:::::::::
capture

:::::::
images

:::
to

::::::::::::
investigate

::
a
::::::
wide

::::::
range

:::
of

:::::::::::::
geotechnical

::::::::::::::
phenomena,

:::::::::::
including:

:::::
the

::::::::::::::
development

:::
of

::::::
shear

::::::::
bands

::
in

::::::
sands

::::::::::::::::::::::::::::::::::
(Rechenmacher & Finno, 2004);

:::::::::
seasonal

:::::::::::::::::
rainfall-induced

::::::
slope

:::::::::
failures

::::::::::::::::::::::::
(Take & Bolton, 2004);

::::
the

:::::::
effects

::
of

:::::::::::
tunnelling

:::
in

::::::
sand

:::
on

::::::::::
greenfield

:::::::::::::
settlements

::::::::::::::::::::::::
(Marshall et al., 2012);

::::::::
and

::::::::
fault

:::::::::::
rupture

:::::::::::::::
propagation

:::::
in

::::::::
sand

::::

:::::::::::::::::::::::::::::::
(Anastasopoulos et al., 2007).

:

1
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Several image processing techniques have been developed to deduce displace-
ments from analysis of successive images captured using such experimental appa-
ratus, e.g. image subtraction (Keshavarzy & Ball, 1999; Rosenbrand & Dijkstra,
2012), particle tracking (Crocker & Grier, 1996; Ando et al., 2012) and image
correlation techniques such as Particle Image Velocimetry (PIV) (Westerweel,
1997; White et al., 2003) and Digital Image Correlation (DIC) (Sutton et al.,
1983). With adequate image texture (the number and contrast of spatial features
and/or grains), image correlation techniques are most suitable for obtaining ac-
curate displacement fields with high spatial resolution.
However, it is not trivial to retrieve meaningful displacement data from such

experiments. The quality of the image texture (or speckle pattern) is typically
dictated by: (i) the natural contrast of coarse grained material or the artificial
seeding applied to the surface of the specimen that is visible to the digital cam-
era through a transparent window (which is dependent on the scale or resolution
of the image because this determines how well individual grains can be distin-
guished); (ii) the image acquisition

:::::::
process

:
(sensor, lens, illumination, field of

view , image spacing - time or displacement
::::
and

:::::::
image

::::::::
capture

:::::::::::
frequency); and

(iii) any image pre-processing applied prior to the displacement computations.
In addition, the image correlation algorithm chosen to compute the displace-
ments needs to be carefully selected in order to avoid numerical artefacts in
the image analyses. This paper provides

:::::::::::::::::::::::::::::::::::::::
Muir Wood & Leśniewska (2012) and

::::::::::::::::::::::::::::::::
Nazhat & Airey (2015) provide

::::::::::
examples

:::
of

:::::::::
analyses

:::::
that

::::::
have

::::::::::::
potentially

::::::
been

::::::::
affected

:::
by

::::::::::
erroneous

:::::::::::
numerical

:::::::::
artefacts

:::::
that

:::::::
appear

:::
in

::::
the

::::::
strain

::::::
fields

:::::::::::
computed

:::::
from

::::
the

:::::::::::::::
displacements

:::
as

:::::::
highly

::::::::::::::
concentrated

:::::::
bands

:::
of

::::::::::
shearing.

::::::
Such

:::::::::
features

:::
are

:::::::::
difficult

:::
to

::::::::::
reconcile

:::::
with

::::
the

::::::::::::
mechanics

::
of

::::::::::::::
deformation

:::
of

:::::::::
granular

:::::::::
matter.

:::::
This

:::::::
paper

:::::
aims

::::
to

::::::::
provide

::
guidance on the selection of the most influential

experimental parameters in order to avoid spurious features and presents some
examples of features that might arise for ill-chosen conditions.

2 Image correlation: a brief description

The tools employed in geotechnical applications of image analysis have either
been developed within the community (White et al., 2003; Hall et al., 2010)
or have been borrowed from adjacent disciplines, e.g. open source PIV tools
such as MatPIV (Sveen, 2004), PIVlab (Thielicke & Stamhuis, 2014), OpenPIV
(Taylor et al., 2010) and JPIV (Vennemann, 2015). Meanwhile developments in
experimental mechanics and fluid mechanics continue (Pan et al., 2013; Scarano,
2013).
The ability to extract displacement fields from image correlation rests on four

implicit assumptions (Adrian & Westerweel, 2011):

- The particles that are observed are homogeneously distributed across the
image. This will usually be automatically satisfied for sands, where the
individual grains often contain sufficient natural colour variation to provide

2
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Fig. 1: Schematic diagram of typical PIV/DIC computations: (a) definition of mesh of
subsets on ‘reference’ image, (b) computation of cross-correlation (CC ) over a region
encompassing the subset in the ‘target’ image, and (c) location of the peak in cross-
correlation to the nearest integer pixel values.

adequate contrast. For clay models individual particles are not visible and
a (homogeneous) surface speckle has to be added by artificial seeding.

- The observed natural or imposed image texture provides a perfect represen-
tation of the displacement of the soil. Wall friction may make the observed
displacements unrepresentative of the displacements occurring through the
thickness of the material.

- The ‘reference’ and ‘target’ images are sufficiently similar (i.e. the deforma-
tion is small enough) that a spatial measure of correlation can be computed
and a clear peak isolated for all subsets (also known as patches or interro-
gation windows).

- The shape (or warp) function (which mathematically describes how the
subset is allowed to displace and deform during the displacement computa-
tion) used by the image correlation algorithm should be consistent with the
deformation being measured. Simpler correlation algorithms assume that
the transformation from ‘reference’ to ‘target’ is a pure translation; more
sophisticated algorithms may accept distortion or rotation in addition to
translation.

Most freely available PIV/DIC algorithms, including those referenced here, per-
form two separate computations: (i) selection of a subset within the ‘reference’
image for which the peak in cross-correlation can be sought in successive ‘target’
images, for each subset, to the nearest integer pixel coordinates; and (ii) refine-
ment of this measurement by interpolation of the cross-correlation for the subset
corresponding to the correlation peak and a selection of its neighbours in order to
refine the displacement measurement to sub-pixel resolution. Algorithms which
employ a zero-order subset shape function which only permits the subset to be
translated when seeking to maximise the cross-correlation cannot accommodate

3
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Fig. 2: Conventional sub-pixel refinement: (a) isolation of the cross-correlation peak
and values for neighbouring subsets (at integer pixel locations) and (b) bi-cubic inter-
polation of the cross-correlation peak and the eight nearest neighbours to identify an
interpolated peak to sub-pixel resolution.

significant distortion or rotation. Large gradients of displacement across the sub-
set being interrogated can lead to an inability to correlate ‘reference’ and ‘target’
images, inevitably resulting in measurement errors.

1.1 Cross-correlation of the subsets

Subsets of an initial ‘reference’ image are compared with subsequent ‘target’ im-
ages in order to calculate a spatial measure of cross-correlation (CC) (see Fig 1).
Two popular measures are ‘normalised cross-correlation’ (NCC) (Lewis, 1995)
and ‘zero normalised cross-correlation’ (ZNCC) (Pan et al., 2010). The zero
normalised cross-correlation coefficient (CCZNCC) represents a robust measure
of correlation as it can accommodate variations (offset and/or scale) in bright-
ness across the image, with values of 1, 0 and -1 indicating perfect, zero and
inverse correlation, respectively. Mathematical definitions for CCZNCC and other
measures used throughout this paper are provided in the Appendix.

1.2 Sub-pixel displacement refinement

The integer displacement estimate from the first step is refined using sub-pixel
interpolation functions. Typically bi-cubic splines or Gaussian functions are fitted
to the correlation peak and the neighbouring values (Figure 2). The maximum
value of the interpolant provides an improved estimate of displacement typically
to sub-pixel precision of the order of 0.01p (White et al., 2003), where p is the
pixel size.
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More sophisticated sub-pixel displacement refinement can be achieved by in-
corporating

:::::
more

::::::::::
complex

::::::
basis

:::::::
spline

::::::::::::::
curve-fitting

:::
of

::::
the

:::::::::::::::
interpolation

::::::
peak

::::::::::::::::::
(Lee et al., 2012).

::::::::::::::::
Alternatively

:
a higher-order subset shape function that al-

lows the displacements within the subset to vary linearly or non-linearly for first-
and second-order shape functions respectively . Such methods

:::::::::::::::::::
(Yu & Pan, 2015),

:::::
could

::::
be

::::::::::::::
incorporated.

:::::::::::
Methods

:::::
with

::::::::::::::
higher-order

:::::::
subset

:::::::
shape

::::::::::
functions

:
tend

to deal with spatially varying deformation fields more robustly but require addi-
tional image intensity interpolation and optimisation techniques and have until
recently not been widely available. Ncorr (Blaber et al., 2015) and GeoPIV-RG
(Stanier et al., 2015) are two recently developed examples of PIV/DIC software
which incorporate such an enhanced sub-pixel displacement refinement and which
are now freely available to the geotechnical research community.

2 Requirements for accurate cross-correlation

The following design rules are based on experiences in fluid mechanics using PIV
to analyse the trajectories of tracers in fluid flow (e.g. Adrian & Westerweel
2011), DIC analysis of a speckle pattern on a material surface (e.g. Sutton 2008),
and recent experience of performing PIV/DIC analyses on various laboratory
geomaterials (e.g. Stanier & White 2013).

R1 Image quality: A large Signal-to-Noise Ratio (SNR) (see Appendix for def-
inition) using the full dynamic range of the image sensor is desirable. Pro-
vide sufficient and uniform illumination of the specimen. Use high quality
optics characterised by a small available f -stop (absence of optical aberra-
tions); then set aperture with the highest value of f -stop (smallest aperture
size) compatible with the available illumination and desired depth of field.
Select a camera with a global rather than rolling shutter, and with a Charge-
Coupled Device (CCD) sensor rather than a Complementary Metal Oxide
Semiconductor (CMOS) sensor (Stanier & White, 2013). Images with a
uniform distribution in the intensity histogram with values between 20 and
225 are considered high quality for an 8-bit sensor (maximum 255 intensity
levels). Values lower than 20 are often associated with sensor noise, whilst
values above 220 are approaching sensor saturation (Sutton, 2008). Im-
age formats with high compression will reduce the SNR of the image (e.g.
Cosman et al. 1994). Uneven or fluctuating illumination has a large im-
pact on the subsequent analysis if non-normalised cross-correlation is used
(e.g. Tong 2005). Quantitative assessment of global image quality can be
provided by checking the Mean Intensity Gradient (MIG) proposed by Pan
et al. (2010).

R2 Information in the signal: The spatial resolution of the digital image data,
stored in a pixel array, where each pixel holds an intensity value for the
amount of light that fell on that pixel, is discrete. Hence, there should be a
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Fig. 3: Examples of suitable Artificial Seeding Ratio (ASR) for Kaolin clay and Silica
sand after Stanier & White (2013).

sufficient number of pixels in the spatial feature that needs to be followed,
for example the grain, in order to retain enough information in the signal.
Theoretical and experimental analysis from fluid mechanics has shown that
this requires 2 pixels across each particle (Westerweel, 2000), implying that
for soils d50/p ∼ 2, where d50 is the median grain size. Fewer pixels will not
resolve the grain and more pixels will increase the noise unless the observed
surfaces of the grains show adequate contrast. In solid mechanics where
higher seeding densities (denser speckles) are more common the average
recommended feature size is doubled, to 4× 4 pixels. Sutton (2008) intro-
duces a more systematic way of determining the feature size of the speckle
in an image by performing autocorrelation and recommends sizes of 3 × 3
to 7× 7 pixels.

R3 Texture or speckle quality: The grains, or imposed speckle, should pro-
vide sufficient contrast between the particles contained within the sub-
sets. The intensity differences between the grains and the voids should
be larger than the noise in the image. In medical imaging this feature is
sometimes called contrast resolution (Stelzer, 1998). This requirement is
readily satisfied when images with high SNR and materials with distinct
colour differences are used. In geotechnical applications other measures
of image texture have been recommended and acceptance values proposed
(Stanier & White, 2013). These include

:::::::::::::::::::::::::::::::::::::
Stanier & White (2013) recommend

::::
that

::::::::
seeding

:::
be

:::::::::
applied

::
to

::::::::
models

:::::
such

::::::
that:

:::
(i)

::::
the

:
Artificial Seeding Ratio

::
is

::
in

:::::
the

::::::
range

:::
of

:
0.3 < ASR < 0.7 (see Figure 3) and

::
so

:::
as

:::
to

:::::::
ensure

::::
an

::::::::
optimal

::::::::::
quantity

::
of

:::::::::
seeding

::::
has

::::::
been

:::::::::
applied

:::
to

::::
the

::::::::
model;

:::::
and

::::
(ii)

:
the

standard deviation of the subset intensities σIs >∼ 15
:::
σIs::

is
::::::::
greater

::::::
than

:::
15

::
so

:::
as

:::
to

:::::::
ensure

:::::
that

::::::
there

::
is

::::::::::
sufficient

:::::::::
contrast

:::::::
within

::::
the

::::::::
subsets. The Sum

of Squares of Subset pixel Intensity Gradients (SSSIG) provides another
alternative

::::::::
measure

:::
of

:::::::
subset

::::::::
quality with a minimum threshold for precise

measurements of SSSIG >∼ 1× 105 recommended by (Pan et al., 2008).

R4 Subset size: For geotechnical purposes it is recommended that each subset

6



sLs

(a) (b) (c) (d)

Subset

Fig. 4: Subset of size Ls × Ls at spacings of s for overlapping ratios ((Ls − s) /Ls) of:
(a) 0.0, (b) 0.25, (c) 0.5 and (d) 0.75. Darker regions represent oversampling caused
by increasing overlap, resulting in increased spatial resolution.

should contain a minimum of 10 grains
:::::::::::
contrasting

:::::::::
particles

::::::::::
(whether

::::::
sand

::::::
grains

:::
or

:::::::::
artifical

:::::::::
seeding

::::::
such

:::
as

:::::::::::
modelling

:::::::
flock)

:
in each direction (so

that the total number of grains
::::::::
particles, n >∼ 100), so as to increase the

likelihood that the real displacement of the subset of soil can be extracted.
At the same time the subset should be sufficiently small for the order of
its shape function to be consistent with the deformation being measured.
Higher-order (first- or second-order) shape functions improve correlation of
subsets which undergo spatially varying deformations and thus allow the
use of larger subsets, which will typically contain more information and
provide more robust correlations. In practice, a subset size of 24 × 24 to
48 × 48 pixels provides a good starting point from which trial and error
refinement can be performed if deemed necessary.

R5 Subset overlap: Overlapping of subsets for adjacent points permits more
data to be obtained from the image resulting in increased spatial resolution
(i.e. over-sampling; see Figure 4). However, bias errors can arise when the
subset shape function is incompatible with the deformation of the subset
that is being measured (Schreier & Sutton, 2002). Overlapping can amplify
the error in computing strains from the derivatives of the displacement
fields (Raffel et al., 2007). In fluid dynamics overlap ratios of 0.2 to 0.5
are recommended as a good compromise between maximising the number
of measurement points and minimising the impact of potential bias in the
displacement field. Plotting histograms of either the total or sub-pixel dis-
placement component magnitudes provides a ready check for the presence
of bias errors. Bias is evident when saw-toothed total displacements or
non-uniform sub-pixel displacement distributions are apparent (see Figure
5 and Raffel et al. (2007)): the locking of displacement peaks onto inte-
ger pixel values of displacement (Figure 5(a)) is unlikely to be a realistic
representation of the actual displacement field.
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Fig. 5: Histograms of displacement magnitudes: (a, b) total and sub-pixel displacement
components with bias errors and (c, d) total and sub-pixel displacement components
without bias errors.

R6 In-plane motion
:::::::::::::
Deformation

::::::::::::
magnitude: For typical

:::::
basic

:
PIV/DIC imple-

mentations that process the subsets over successive rows or columns and
use interpolation of the correlation peak to achieve sub-pixel displacement
refinement, the displacement increment

:::
do

::::
not

::::::
allow

::::
the

::::::::
subsets

:::
to

::::::::
deform

::::
(i.e.

:::::::::::
zero-order

:::::::
subset

:::::::
shape

::::::::::
function),

::::
the

:::::::::::
maximum

:::::::::::::
deformation

:::
or

:::::::
strain

:::::::::
occuring between two cross-correlated images should not be too large, i. e.
|δx| < 1

4
Ls, where Ls is the size of the subset. .

::
In some of the experi-

mental observations presented later in §4, Ls = 48 pixels and the allowed
maximum displacement would be 12 pixels ∼ 1.2mm displacement

::::::::::
relatively

:::::
large

::::::::::::::
deformations

::::
are

::::::::::
observed

:::::::::
between

::::::::::::
successively

::::::::::
captured

:::::::
image

::::::
pairs

:::::::::::::
(engineering

::::::
shear

::::::::
strains

:::::::::::
γ > 30%)

::::::::
leading

:::
to

:::::::::::
persistent

:::::
bias

:::::::
errors. In

practice such a limit is required to minimise the deformation experienced
within the subset

:::::::
subsets

:
between the ‘reference’ and ‘target’ images ,

thereby preserving
:::::::
should

:::
be

::::::::
limited

:::
to

:::::::::
preserve

::::
the

:
correlation as well as

minimising the area over which the correlation measure is to be computed,
which generally results in less computational expense. In fluid mechanics

8



where large displacements are more common, window shifting techniques
have been developed to overcome these problems (Gui & Wereley, 2002)

::::
This

::::
can

:::
be

:::::::::
achieved

::::
by

:::::::::::
capturing

:::::::::::
additional

::::::::
images

:::
at

:::::::::::::
intermediate

::::::::::
intervals.

Algorithms that use higher-order subset shape functions (e.g. Blaber et al.
2015; Stanier et al. 2015) and image intensity interpolation and optimi-
sation to achieve sub-pixel measurement resolution can tolerate greater
displacements between images and this displacement limit can be somewhat
relaxed. Such algorithms tolerate larger displacements and deformations be-
fore decorrelation leads to erroneous measurements.

::::::::::
Automatic

::::::::::::
‘reference’

::::::
image

::::::::::
updating

:::::::::
schemes

:::::
that

::::
use

::::
the

::::::::::::
correlation

::::::::::::
coefficients

::
of

:::::
the

::::::::
subsets

::
to

::::::::
decide

::::::
when

:::
to

::::::::
update

:::::
the

:::::::::::
‘reference’

::::::::
image,

:::::
such

::::
as

::::::
those

:::::::::::
described

::
by

:::::::::::::::::::::::
Pan et al. (2012) and

:::::::::::::::::::::::
Stanier et al. (2015),

::::
can

:::
be

::::::
used

:::
to

::::::::
process

:::::
the

::::::::::
additional

::::::::
images

:::
in

:::
an

::::::::::
optimised

:::::::::
manner.

:
These methods tend to be more

computationally intensive for single computations; however, precondition-
ing of the optimisation problem for each subset by assimilation of infor-
mation from the neighbouring subset having the best correlation leads to
vastly improved efficiency for subsequent computations. It is then unnec-
essary to calculate the initial measure of correlation over large areas of the
‘reference’ and ‘target’ images for every subset.

3 Spurious features: synthetic data

In the previous section bias - locking of computed displacements onto integer
pixel values - was identified as a potential source of error. The following syn-
thetic analyses demonstrate that numerical artefacts can appear in PIV/DIC
analyses of geomaterial if the particles or features that make up the image tex-
ture (the changes in image brightness resulting from the speckles or grains that
make up the image features) are too small relative to the pixel size in the im-
ages captured (contravening rule R3). In this instance ,

:::::::::
causing

:
the sub-pixel

displacements become undetectable and the sub-pixel refinement stage (Section
1.2) of the analysis breaks down.
To investigate the detectability of sub-pixel displacements, synthetic

:::::::::::
refinement

:::::::
process

:::
to

:::::::
break

:::::::
down.

:::::::::::
Synthetic

:
images containing single particles of different

sizes were generated, displaced by sub-pixel distances and subsequently anal-
ysed using zero-order PIV/DIC techniques. The synthetic images were 25 ×
25 pixels in size, with a black background onto which white dots with vary-
ing brightness of Gaussian distribution were projected to sub-pixel precision.
The intensities of each pixel in the images were estimated from the Gaussian
curves

::::::::::::
distribution

:
describing the brightness of the dot

::::
(see

::::
the

:::::::::::
Appendix

:::
for

:::
a

::::::::::::::
mathematical

::::::::::::
definition). Figure 6 shows the four initial images generated by

this process for dot sizes, d = p, 2p, 4p and 8p. The dot in the ‘reference’ im-
age was then displaced horizontally in increments δx = 0.02p over the range of
−0.5p < δx < 0.5p. The zero normalised cross-correlation coefficient (CCZNCC)
was calculated for a centrally located 15 × 15 pixel subset and the eight neigh-
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d/p = 1: d/p= 2:

d/p = 4: d/p= 8:

Fig. 6: Example images for the single particle displacement analysis with particle/pixel
size ratios: (a) d/p = 1; (b) d/p = 2; (c) d/p = 4; and (d) d/p = 8.

bouring subsets using Equation (1)(see Appendix).
A bi-cubic interpolant was fitted to the correlation surface described by the
CCZNCC values of the subsets and sampled at intervals of 0.005 pixels (i.e. the
smallest non-zero displacement that could possibly be measured was 0.005 pixels).
The location of the peak of the interpolant, which provides the best estimate of the
displacement to sub-pixel resolution, is compared with the imposed displacement
in Figure 7 for particle/pixel size ratio d/p = 1, 2, 4 and 8. Figure 8 presents
cross sections of the interpolated correlation peak at displacement increments,
δx = −0.4p, 0 and 0.3p with the inferred and imposed displacements indicated
by dashed and solid lines respectively.
When d/p is small, there is a bias in the computed displacements towards the

integer pixel value closest to the correlation peak (zero in the present example),
and the inferred and imposed displacements diverge for non-zero displacements
(Figure 7). The interpolant has a sharp peak because the neighbouring subsets
have very poor correlation by comparison with this centrally located peak correla-
tion (Figure 8). This phenomenon is known as ‘peak locking’ (Westerweel, 1997).
As d/p increases the correlation in the neighbouring subsets improves causing
the interpolated correlation peak to shift location. As a result, the bias reduces
and the displacements inferred are much closer to those imposed. However, if
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the grains are of uniform colour, and have a high d/p ratio, (so that there are
several pixels in a single particle), then undesirable ‘correlation noise’ can develop
with many spurious peaks (see rule R3). We can imagine three cases: with small
d/p the cross-correlation function has a sharp peak which cannot be refined by
sub-pixel interpolation; with large d/p but with grains which lack contrast the
correlation function is noisy; with large d/p and with contrasting grain texture
the correlation should be optimal.
In order to demonstrate the impact that ‘peak locking’ can have on strain field

computations involving geomaterials, an artificial smooth displacement field was
imposed on synthetic soil-like images. The initial ‘reference’ images were gen-
erated by randomly projecting thousands of white dots - each with intensity
described numerically by a Gaussian curve

::::
(see

::::
the

:::::::::::
Appendix

:::
for

::
a

:::::::::::::::
mathematical

:::::::::::
definition), as in the previous section - onto a black background. Sufficient dots
were projected until each image had a mean pixel intensity of ∼ 125 (for a gray
scale image intensity ranging from 0 to 255). This ensured that each image had
the same amount of pixel information, but the images were arranged in different
ways. In each analysis the dots were all of the same size, but analyses were run
with dot diameters between 1 and 10 pixels in 0.25 pixel increments. Figure 9
shows four of the images generated with particle to pixel size ratios d/p = 1, 2,
4 and 8 respectively. A Flamant displacement field (Flamant, 1892) was then
imposed onto the ‘reference’ positions of the dots to create a ‘target’ image for
each value of d/p (Figure 10). This smoothly varying displacement field contains
both supra- and sub-pixel displacement magnitudes and implies correspondingly
smooth variations of engineering shear strain, γ.
The displacement fields between each pair of images were analysed using both

GeoPIV and the first-order subset deformation variant GeoPIV-RG (Stanier et al.,
2015). The analysis control parameters adopted for both algorithms are given in
Table 1. Figure 11 presents the fields of engineering shear strain, γ, for parti-
cle size ratios d/p = 1, 2, 4 and 8 computed using GeoPIV and GeoPIV-RG.
Spurious features are clearly evident for the GeoPIV analyses for the smallest
particles but these disappear as the particle size d/p increases. Examination of
the displacement fields reveals that these features are always located where the
true displacement is a half-integer value δx = mp/2 (m ∈ Z). The interpolation
process has failed and the sub-pixel interpolation step essentially recovers the
nearest integer pixel value (cf. Figure 7). As the particle size rises to d/p = 8
the spurious features largely disappear, but the strain fields have noise of ∼ 1%.
The GeoPIV-RG analyses only show the spurious features for d/p < 2 (the the-
oretical limit derived by Westerweel (2000)), but these are less pronounced than
for the GeoPIV analysis. Figure 12 shows that the optimal correlation coefficient
(CCZNCC) output by GeoPIV-RG is much higher than that computed for the
zero-order subset deformation analyses of GeoPIV, where CCZNCC degrades as
the deformation magnitude rises. The improved algorithms are significantly less
susceptible to ‘peak locking’ and much more precise.
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(b)(a)

(d)(c)

Fig. 9: Randomly generated synthetic images with ASR ∼ 0.5 (Stanier & White, 2013)
with zoomed inset of approximate subset size (45×45 pixels) highlighted: particle/pixel
size ratios: (a) d/p = 1; (b) d/p = 2; (c) d/p = 4; and (d) d/p = 8.

4 Spurious features: real data

Reporting of surprising vermiculate strain features in model tests described by
Muir Wood & Leśniewska (2012) and by Nazhat & Airey (2015) provided the
initial impetus for the studies reported in this paper. Leśniewska & Muir Wood
(2009) observed glass ballotini, of 1mm diameter, contained in a box approxi-
mately 200 × 200 × 20mm. A series of articulated footings applied a controlled
stress to the surface of the granular material (Figure 13). The material was
retained by a wall whose outward translation could be controlled, producing de-
liberate rotation of principal axes of strain. The particles were immersed in a
fluid with closely matched refractive index so that when observed with polarised
light the photoelastic properties of the glass particles could be exploited to obtain
information connected to the stress state in the granular material. The texture
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Fig. 10: Engineering shear strain field, γ, generated for a Flamant displacement field
with an arbitrary value for the point force, P .

Table 1: GeoPIV and GeoPIV-RG analysis settings

GeoPIV*

Ls 48p× 48p‡

s 12p
szone 15p

GeoPIV-RG†

Ds 54p‡

s 12p
maxiter 50
|∆p|max 1× 10−5

CCZNCC−seed−tol 0.9
CCZNCC−max−tol 0.75

* szone is the search zone over which the cross-correlation function is estimated
for each subset, as illustrated in Figure 1 and described by White et al. (2003).
† maxiter is the maximum number of deformation parameter optimisation iter-

ations; |∆p|max is the norm of the warp function difference which is used as an
exit criterion for the deformation parameter optimisation process with small
values indicating that an optimised solution has been found; CCZNCC−seed−tol
is the tolerance on the correlation coefficient for the seed computation and
CCZNCC−max−tol is the tolerance on the correlation coefficient for the full dis-
placement field. See Stanier et al. (2015) for further details.
‡ Subset sizes chosen to have near equivalent area (within ∼ 0.6%).
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Fig. 13: Vermiculation identified in a model test of wall translation with surface footing
load (Muir Wood & Leśniewska, 2012): distribution of engineering shear strain shown
(a) with and (b) without sub-pixel interpolation.

of the glass ballotini seen with transmitted light was used in PIV/DIC analysis
of the displacement fields. In these images the contrast is lower than it might
be if the pores were filled with air or water but the displacement fields deduced
are much less influenced by possible wall friction because the received light has
passed through the full thickness of the model1.
The original images analysed by Muir Wood & Leśniewska (2012) were re-

analysed for this paper using GeoPIV. Analyses, using Ls = 48p and s = 12p,
reproduce vermiculate patterns very similar to those shown by Muir Wood &
Leśniewska (2012), with minor differences resulting from the precise location of
the PIV/DIC subsets distributed across the images (Figure 13).
Further analyses performed with different values of subset size, Ls, and spacing,
s, indicated that the locations of the vermiculate features were insensitive to Ls

but that the strain level in these features was highly dependent upon the spacing,
s, because strain is derived as a function of the gradient of displacement (rule
R5) and the spacing s provides the gauge length for strain calculation.
In this experiment the apparent particle to pixel ratio was d/p ∼ 10, which

would ordinarily indicate, according to Figure 7, that ‘peak locking’ would not
occur. However, there are a number of other potential causes for the bias errors
that cause the ‘peak locking’ effect seen in Figure 13 (a). One possibility relates

1As a relevant detailed comment, the later images were obtained using glass beads which
had been annealed, leaving them essentially stress free, and making the model almost perfectly
transparent. Previous tests had been performed using the same kind of glass beads, but in
their original unannealed state. Thermal tempering (rapid cooling) of these particles left traces
of tensile internal stress in each individual grain, making their assembly less transparent in
ordinary light and much less transparent in polarised light.
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Fig. 14: Increment of wall displacement: distribution of engineering shear strain shown
(a) with and (b) without sub-pixel interpolation. (Leśniewska & Muir Wood, 2009):

to the quality of the image texture. To demonstrate this, images of a similar ex-
periment, using the same apparatus and (unannealed) granular material but with
a different digital camerapermitting better image texture2, were processed using
the same analysis parameters. The engineering shear strain fields were again
calculated from the displacement fields to sub-pixel and integer-pixel resolution
and are shown in Figure 14. There are now fewer vermiculate features in the
engineering shear strain fields where the displacements were refined to sub-pixel
resolution (Figure 14 (a)) indicating that the sub-pixel refinement process is gen-
erally functioning quite well. The feature immediately beneath the left edge of
the footing (which remains even with sub-pixel interpolation, Figure 14 (a)) may
be spurious but this is a position in which localisation of strains is quite likely and
the gradient of deformation is high. The improved image texture has suppressed
the potential emergence of vermiculate features in the far-field.
The image texture in the subsets used to create Figure 13 was of low contrast.

As a result the simple sub-pixel interpolation process has an insignificant effect on
the calculated displacements which are all essentially integer pixel magnitudes:
there is negligible difference between Figure 13 (a) and Figure 13 (b). This,
combined with the large overlaps of subsets, leads to extreme strain localisation
in these vermiculate features as a consequence of ‘peak locking’.
How well the sub-pixel refinement process is working in these analyses can be

quantified graphically by plotting histograms of the magnitudes of the displace-

2
:
A

::::::::
different

:::::::
digital

:::::::
camera

::::
was

::::
also

:::::
used

:::
in

::::
this

:::::::::::
experiment,

:::::::::
however,

::
it

::::
was

:::
of

:::::::
similar

:::::::::
resolution

::
to

:::::
that

:::::
used

::
in

::::
the

:::::
other

:::::::::::
experiment

:::::::::
reported.

::::::
Thus,

::::
the

::::::::::::
improvement

:::
in

::::::
image

::::::
texture

:::::::
evident

:::
in

::::
this

::::::::::
experiment

::
is
::::::::

thought
:::
to

::
be

::::
due

:::
to

:::
the

:::::
glass

::::::
beads

::::::
being

:::
left

:::
in

:::::
their

::::::
virgin,

::::::::::
unannealed

::::::
state.
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Fig. 15: Normalised histograms of displacement component magnitudes for model tests
of wall/footing interaction: (a) clear vermiculation seen (Figure 13 (b)) (Muir Wood
& Leśniewska, 2012); and (b) no

:::::::
minimal

::
vermiculation apparent (Figure 14 (a))

(Leśniewska & Muir Wood, 2009).

ment components, as illustrated in Figure 15. Here, the frequencies have been
normalised by

∑
n (where n is the number of measurement points), because the

different analyses used different numbers of subsets. It is clear that bias errors
and ‘peak locking’ are occurring in both analyses, though to a much greater ex-
tent for the experiment with poor image texture (Figure 13, Figure 15(a)) than
that with improved image texture (Figure 14, Figure 15 (b)).
The quality of the image texture has a strong effect on computation precision

(Pan et al., 2008; Stanier & White, 2013) and ought to be checked by calculating a
measure of (i) global image quality via Mean Intensity Gradient (MIG) following
Pan et al. (2010)Pan, Lu, & Xie (2010), as set out by rule R1, and/or (ii) subset
image quality by calculating the standard deviation of subset pixel intensities,
σIs (Stanier & White, 2013) or the Sum of Square of Subset Intensity Gradients
(SSSIG) (Pan et al., 2008), as set out by rule R2. The values of σIs and SSSIG
for typical subsets confirm the importance of checking image texture quality (see
Figure 16). The image texture in the experiment where vermiculation was ob-
served (Figure 13) was sub-optimal (Figure 16(a)), contravening rules R1 and R2.
In contrast, the image texture for the improved experiment, where the bias errors
were less significant (Figure 14), was comparable to that for a geomaterial with
optimised image texture (Stanier & White, 2013) (compare Figure 16(b), (c)), so
it was initially surprising that bias errors were still evident in the analysis of this
image pair.
Persistent errors may also result if the magnitudes of displacement are large

::::::::::::
deformation

::::
are

:::::
too

::::::
large. compared with the subset size (see Figure 15). This

contravenes rule R6 which proposes a limit on displacement of 1
4
Ls precisely to

avoid excessive subset deformation and rotation, which would in turn contravene
rule R4 if the subset shape function were found to be of lower-order than the
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Fig. 16: Image texture for example subsets (48×48 pixels) and corresponding standard
deviation of subset pixel intensities, σIs , and SSSIG for: (a) sub-optimal texture in
a subset from the translating wall experiment reported by Muir Wood & Leśniewska
(2012); (b) excellent texture in a subset from a similar translating wall experiment
described by Leśniewska & Muir Wood (2009) with comparable quality to (c) optimally
seeded sand and (d) optimally seeded clay as reported by Stanier & White (2013).

subset deformation that is being measured.
::
In

::::::
both

:::::::::::::
experiments

:::
the

::::::::::::::
deformation

::::::::
imposed

:::::::::
between

::::
the

:::::::
image

:::::
pairs

:::::
was

::::::::::
relatively

:::::
large

::::
(as

::::::::::
indicated

:::
by

:::::::::::::
engineering

:::::
shear

::::::::
strains

::::::::::
γ > 30%)

:::::::::
leading

::
to

::::::::::
probable

:::::::::::::::
contravention

::
of

:::::
R6,

::::
and

:::::::::::::
potentially,

:
if
:::::

the
:::::::
subset

:::::::
shape

::::::::::
function

::::::
were

::::::
found

::::
to

:::
be

:::
of

:::::::::::::
lower-order

::::::
than

::::
the

::::::::
subset

::::::::::::
deformation

:::::
that

:::
is

::::::
being

:::::::::::
measured,

:::::
also

::::
rule

::::
R4. To check how these two effects

were contributing to the errors the images from the two experiments were re-
interpreted using GeoPIV-RG. The analysis settings adopted are summarised in
Table 1.
The fields of engineering shear strain γ presented in Figure 17 (a, b) show that

the vermiculate features are largely suppressed (c.f. Figures 13 and 14 respec-
tively), although there is more apparent noise than was seen in the analyses of
the ‘perfect’ synthetic images. The optimised values of the cross-correlation co-
efficient CCZNCC in Figure 17 (c, d) provide a check on the quality of the match
between the locations of the subsets in the ‘reference’ and ‘target’ images after
sub-pixel refinement. In the benchmarking of GeoPIV-RG, Stanier et al. (2015)
suggest that a minimum value of CCZNCC = 0.75 results in reliable displacement
measurements that are practically unaffected by the loss of correlation caused by
deformation. If the same criteria were applied to the analysis with clear vermic-
ulations (Figure 17 (a, c)) 86% of the measurement points would be discarded.
In contrast, for the analysis with better image texture (Figure 17 (b, d)) only
22% of the measurement points would be discarded by applying the same crite-
rion, and most of these data points clearly lie in the region of intense straining
swooping down from the edge of the footing. Evidently the better image texture
leads to improved correlation and reduction in associated measurement errors.
Normalised histograms of the displacement components shown in Figure 18

(comparable to Figure 15) illustrate that for both experiments the bias errors are
almost completely eradicated by the use of the first-order subset shape function of
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Fig. 17: Re-interpretation of the model tests of wall translation with surface footing load
reported by (a, c) Muir Wood & Leśniewska (2012) and (b, d) Leśniewska & Muir Wood
(2009) using GeoPIV-RG: (a,b) engineering shear strain, γ; and (c,d) optimal cross-
correlation coefficient, CCZNCC .
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reported by: (a) Muir Wood & Leśniewska (2012) and (b) Leśniewska & Muir Wood
(2009) (c.f. Figure 15 (a) and (b) respectively).

GeoPIV-RG. This supports the hypothesis that such higher order functions can
be used for accurate determination of larger displacements

::::::::::::::
deformations than

can zero-order methods which use correlation peak interpolation for sub-pixel
refinement.
To show (i) that these erroneous vermiculate features are amplified by increased

overlapping when using GeoPIV, and (ii) that GeoPIV-RG is less susceptible to
‘peak locking’ for real data, a series of additional analyses with spacing s = 48p
(corresponding to overlapping ratio ((Ls − s) /Ls) = 0) were performed. The
resulting engineering shear strain fields are presented in Figure 19, side-by-side
with those for s = 12p (corresponding to overlap ratio of 0.75). For the model
test reported by Muir Wood & Leśniewska (2012), where the ‘peak-locking’ was
extreme, the vermiculate features are still apparent for the zero-order GeoPIV
analyses, even for s = 48p; only the magnitude of the features has changed
(because the strain is calculated from the ratio of displacement step to subset
spacing). In contrast, for the model test reported by Leśniewska & Muir Wood
(2009), where the ‘peak-locking’ was moderate, increasing the subset spacing (and
thus reducing the overlap ratio) results in the masking of bias errors, as suggested
by rule R5. For GeoPIV-RG the vermiculate features are suppressed for all cases,
though it appears that detail is lost when the subset overlapping is reduced

:::
so

::::
that

:
s = 48p. There are no major disadvantages in using quite large degrees of

overlap in order to extract more detailed observations, so long as the underlying
subset shape function is able to describe the deformations that have occurred.
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eś
n

ie
w

sk
a

(2
01

2)
an

d
(c

,
d

,
g,

h
)

L
eś
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Conclusions

This paper has explored the possibility that vermiculate features observed in
image analyses of some experiments involving deformation of granular materials
might be spurious artefacts. Analyses of synthetic images, and reinterpretation
of image pairs from experiments using state-of-the-art image analysis algorithms,
have demonstrated that the vermiculate features are almost certainly the product
of a combination of both the experimental setup and shortcomings in the image
analysis algorithms originally employed.
The studies of synthetic and real images of granular materials have demonstrated

that an improvement of performance can be obtained using computationally more
intensive algorithms which apply higher order shape functions to describe the
deformations occurring within the analysis subsets. However, while such algo-
rithms can suppress the appearance of spurious vermiculate features, the quality
of the resulting measurements is still compromised if the image texture is of sub-
optimal quality. If the particles are too small or are not easily distinguished from
the background, then their movement cannot be reliably detected no matter how
sophisticated the subsequent image analysis. The resulting bias errors become
more dramatic when strains are calculated from derivatives of the displacements.
Subset overlapping can also lead to the amplification of resulting errors and, in
some cases, to the generation of spurious strain features.
There are several specific recommendations:

1.
:::::::
Choose

:::::::::
seeding

:::::::::
particles

:::::
that

:::::
are

::
of

::::::::::
sufficient

::::::::::
diameter

::::::::
within

::::
the

::::::::
images

:::::::::
captured

::::
for

:::::
each

::::::::::::::
experimental

::::::
setup

:::::
(i.e.

::::::::::
d/p > 4).

:

2.
:::::
Seed

::::
the

::::::::
exposed

:::::::
plane

::
of

:::::::::::::
geotechnical

::::::::
models

:::::
with

::::::
dyed

:::::
sand

:::
or

:::::::::::
modelling

:::::
flock

:::::
such

:::::
that

:::::::::::::::::::
0.3 < ASR < 0.7,

:::
so

:::
as

:::
to

::::::::
ensure

:::::
that

:::
an

:::::::::
optimal

:::::::::
amount

::
of

::::::::
seeding

::
is
:::::::::
applied

:::
to

:::::
each

::::::::
model.

:

3. Evaluate the quality of the images to be analysed using appropriate statis-
tical measures of contrast and signal/noise ratio

::::::
image

:::::::::
texture

:::::::
quality

::::::
(e.g.

::::::
MIG,

:::::::::
SSSIG

::::
and

:::::
σIs).

4. Inspect the histogram of displacements to ensure no integer pixel bias.

5. Make use of image analysis software that incorporates higher-order subset
deformation functions.

6. Explore the effect of varying the spacing of correlation subsets.

7. Confirm the mechanical plausibility of the patterns of displacement and
strain that emerge from the image analysis.

Users of advanced image correlation techniques need to be aware that spurious
numerical artefacts can be unwittingly generated in the computed strain fields.
Such awareness should then prompt them to consider the potential for introduc-
tion of improvements at all stages of the image acquisition and processing chain.
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Guidance has been given concerning details of the experimental equipment and
procedures and concerning the selection and application of the image analysis
algorithms. As is often the case, apparently simple-to-use but sophisticated pro-
grams contain hidden traps for the unwary.
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quantify suffusion. Géotechnique Letters 2, 37–41.

Scarano, F. (2013). Tomographic PIV: principles and practice. Measurement
Science and Technology 24 (1), 012001.

Schreier, H. & Sutton, M. (2002). Systematic errors in digital image correla-
tion due to under matched subset shape functions. Journal of Experimental
Mechanics 42 (3), 303–310.

Stanier, S., Blaber, J., Take, W., & White, D. (2015). Improved image-based
deformation measurement for geotechnical applications. Canadian Geotechnical
Journal , accepted.

Stanier, S. & White, D. (2013). Improved image-based deformation measurement
in the centrifuge environment. ASTM Geotechnical Testing Journal 36 (6), 915–
928.

Stelzer, E. (1998). Contrast, resolution, pixelation, dynamic range and signal-to-
noise ratio: fundamental limits to resolution in fluorescence light microscopy.
Journal of Microscopy 189 (1), 15–24.

Sutton, M. (2008). Digital image correlation for shape and deformation mea-
surements. In W. Sharpe Jr. (Ed.), Springer Handbook of Experimental Solid
Mechanics, Chapter 20. Springer.

Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determi-
nation of displacements using an improved digital correlation method. Image
and Vision Computing 1 (3), 133–139.

27



Sveen, J. (2004). An introduction to MATPIV v. 1.6. 1. Eprint no. 2, issn 0809-
4403, Dept. of Mathematics, University of oslo.

Take, W. & Bolton, M. (2004). Identification of seasonal slope behaviour mecha-
nisms from centrifuge case studies. Proceedings of the Conference on Advances
in Geotechnical Engineering: The Skempton Conference, 992–1004.

Taylor, Z., Gurka, R.vand Kopp, G., & Liberzon, A. (2010). Long-duration
time-resolved PIV to study unsteady aerodynamics. IEEE Transactions on
Instrumentation and Measurement 59 (12), 3262–3269.

Thielicke, W. & Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable
and accurate digital Particle Image Velocimetry in MATLAB. Journal of Open
Research Software 2 (1), e30.

Tong, W. (2005). An evaluation of digital image correlation criteria for strain
mapping applications. Strain 41 (4), 167–175.

Vennemann, P. (2015). JPIV online manual: http://www.jpiv.vennemann-
online.de.

Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Mea-
surement Science and Technology 8 (12), 1379.

Westerweel, J. (2000). Effect of sensor geometry on the performance of PIV inter-
rogation. In Laser techniques applied to fluid mechanics, pp. 37–55. Springer.

White, D. & Bolton, M. (2004). Displacement and strain paths during plane-
strain model pile installation in sand. Géotechnique 54 (6), 375–397.
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619–631.

Yu, L. & Pan, B. (2015). The errors in digital image correlation due to over-
matched shape functions. Measurement Science and Technology 045202, 1–9.

Appendix: definitions of image analysis variables

For completeness the various variables that have been mentioned are briefly de-
fined here.
The zero normalised cross-correlation coefficient (CCZNCC) is defined as:

CCZNCC =

∑
i,j∈ns

(
Irij − Īr

) (
I ti,j − Ī t

)√∑
i,j∈ns

[
Iri,j − Īr

]2∑
i,j∈s

[
I ti,j − Ī t

]2 (1)
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where Iri,j and I ti,j are the pixel intensities for a given i, j coordinate in the
‘reference’ and ‘target’ images respectively. The mean pixel intensities for the
‘reference’ and ‘target’ images, Īr and Ī t are calculated as

Īr =
1

ns

∑
i,j∈ns

Iri,j; Ī t =
1

ns

∑
i,j∈ns

I ti,j (2)

where ns is the number of pixels in the subset.
The Signal to Noise Ratio SNR is defined as:

SNR =
Isignal
Inoise

(3)

where Isignal and Inoise are the intensity components representing the signal and
the noise respectively.
The Mean Intensity Gradient MIG is defined (after Pan, Lu, & Xie (2010)) as:

MIG =
∑
i,j∈nI

1

nI

√
(I ′

x)2 +
(
I ′
y

)2
(4)

where I
′
x and I

′
y are the intensity gradients in the x and y directions respectively

and nI is the number of pixels in the image.
The Artificial Seeding Ratio ASR is defined (after Stanier & White (2013)) as:

ASR =
Ī − ĪASR=0

ĪASR=1 − ĪASR=0

(5)

where Ī is the mean pixel intensity of the image, ĪASR=0 is the mean pixel intensity
for an image with no artificial seeding and ĪASR=1 is the mean pixel intensity for
an image with saturated artificial seeding.
The standard deviation of the subset pixel intensities σIs is computed as:

σIs =

√
1

ns

∑
i,j∈ns

(
Ii,j − Ī

)2
(6)

where Ii,j and Ī are the pixel and mean subset pixel intensities respectively and
ns is the number of pixels in the subset.
The Sum of Squares of Subset pixel Intensity Gradients (SSSIG) are defined

(after Pan et al. (2008)) as:

SSSIGx =
∑
i,j∈ns

(
I

′

x

)2
(7)

SSSIGy =
∑
i,j∈ns

(
I

′

y

)2
(8)
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where I
′
x and I

′
y are as defined previously and ns is the number of pixels in the

subset.

::::
The

::::::::::
intensity

:::
of

::::::
each

::::::
pixel

:::
in

:::::
the

:::::::::
artificial

::::::::
images

:::::
was

::::::::::::
generated

::::::
using

:::::
the

:::::::::
following

::::::::::
function:

Ii,j = min

(
np∑
n=1

C exp

(
− (i− xp(n))2 − (j − yp(n))2

(dp/2)2

)
, 255

)
(9)

::::::
where

::::
Ii,j ::

is
::::
the

:::::::::
intensity

:::
of

::::
the

:::::
pixel

:::
in

::::
row

::
i
::::
and

::::::::
column

::
j
:::
of

::::
the

::::::::
artifical

::::::::
image,

::
np:::

is
::::
the

:::::
total

:::::::::
number

:::
of

::::::::::
projected

:::::
dots

:::::
and

::
n

::
is

::::
the

::::
nth

::::::::::
projected

:::::
dot.

:::
C

::
is
:::::
the

::::::::
contrast

:::
of

::::
the

:::::
dots

:::
in

::::
the

:::::::
range

::
of

:::::::
0-255

:::
(in

:::::
this

:::::::::
instance

:::
C

::::
was

:::::::
taken

:::
as

::::::
200),

::::::
xp(n)

::::
and

:::::::
yp(n)

::::
are

::::
the

:::::::::::::
coordinates

:::
of

::::
the

::::
nth

:::::
dot

:::::::
(taken

:::
as

:::::
the

::::::::
central

::::::
pixel

:::
for

::::
the

:::::::
single

::::
dot

:::
in

::::
the

:::::::
images

:::
in

::::::::
Figure

::
6

::::
and

:::::::::::
randomly

:::::::::::
generated

:::
for

::::::
each

:::
of

:::
the

:::::
dots

:::
in

::::
the

::::::::
images

:::
in

:::::::
Figure

:::
9)

::::
and

:::
dp:::

is
::::
the

::::::::::
diameter

::
of

::::
the

:::::::::::
projected

::::::
dots.

::::
The

::::::::::
intensity

:::
of

:::::
each

::::::
pixel

::::
Ii,j:::::

was
::::::::
capped

:::
at

:::::
255

::::::
since

:::::
that

:::
is

::::
the

::::::::::::
maximum

::::::::::
brightness

:::
of

::
a
::::::
pixel

::
in

::::
an

:::::
8-bit

::::::::
digital

:::::::
image.
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