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Sciences Po, Département d’économie,, 28 rue des Saints Pères, 75007 Paris, France

E-mail: koen.jochmans@sciencespo.fr

First version: June 12, 2015. This version: June 4, 2016

We derive a bias-corrected least-squares estimator for panel vector autoregressions with fixed
effects. The estimator is straightforward to implement and is asymptotically unbiased under
asymptotics where the number of time series observations and the number of cross-sectional
observations grow at the same rate. This makes the estimator particularly well suited for most
macroeconomic data sets.

JEL classification: C33

Keywords: bias correction, fixed effects, panel data, vector autoregression.

1. INTRODUCTION

Vector autoregressions are a standard tool in macroeconometrics since the work of Sims

(1972, 1980). A growing literature exploits the availability of large longitudinal data

sets to fit panel versions of vector autoregressive models; see, e.g., Canova and Ciccarelli

(2013). In addition, panel vector autoregressions also find application in microeconomics;

examples include the estimation of wage equations in Holtz-Eakin et al. (1988) and

Alonso-Borrego and Arellano (1999).1

We consider the estimation of vector autoregressions from panel data on N units and

T (effective) time periods. While it is well-known that least-squares estimators of vector

autoregressions that feature fixed effects are heavily biased in short panels, the fact that

they are also asymptotically biased as N,T ! 1 unless N/T ! 0 (Phillips and Moon

1999; Hahn and Kuersteiner 2002) seems to be largely neglected in the empirical liter-

ature. At the same time, the generalized method-of-moment estimator of Holtz-Eakin

1
Further examples of the use of panel vector autoregressions include studies of fiscal policy and in-

vestment (Alesina et al. 2002), fiscal policy and consumption (Tagkalakis, 2008), financial intermediation

and growth (Rousseau and Wachtel 2000), risk-sharing (Asdrubali and Kim 2004), savings (Loayza et al.

2000, Attanasio et al. 2000), and crime (Fajnzylber et al. 2002).
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et al. (1988), which performs well under fixed-T asymptotics, is asymptotically biased

under asymptotics where N,T ! 1 unless N/T ! 1 (Alvarez and Arellano 2003). In

addition, such estimators are well known to have poor finite-sample properties when the

data are persistent, and their performance is sensitive to the distribution of the fixed

effects. Here we consider estimation under asymptotics where N/T converges to a (pos-

itive) constant. Such an asymptotic approximation represents a middle ground between

the two sampling schemes discussed above. It is well suited for most macroeconomic data

sets, where T typically cannot reasonably be considered small relative to N .

We extend the bias-correction approach of Hahn and Kuersteiner (2002) from first-

order vector autoregressions to models with higher-order dynamics. This is important,

not in the least because the lag length is generally unknown. Bias-corrected estimation

under lag-length misspecification can exacerbate the bias, thus worsening inference; see

Lee (2012) for theoretical and simulation results. We also derive the corresponding bias

correction for impulse-response functions.

2. VECTOR AUTOREGRESSION FOR PANEL DATA

Consider panel data on N units observed for T + P consecutive time periods. For each

unit i we observe M outcome variables yit1, . . . , yitM , where t ranges from 1�P to T . The

behavior of yit = (yit1, yit2, . . . , yitM )0 is described by the P th order vector autoregression

yit = �1yit�1 + �2yit�2 + · · ·+ �Pyit�P + ✏it, (2.1)

where yit�p = Lp yit is the pth lag of yit, �p is the associated M ⇥M coefficient matrix,

and ✏it is an M -dimensional error term. We assume that

✏it = ↵i + �it

for a fixed effect ↵i = (↵i1, . . . ,↵iM )0 and an error vector �it = (�it1, . . . , �itM )0. We

normalize E[�it] = 0 and let ⌦ = E[�it�
0
it].

Equation (2.1) can be extended to include time dummies, one for each period. Time

dummies change the least-squares estimator but they leave the bias adjustment and the

asymptotic approximation developed below unchanged (see Hahn and Moon 2006 for a

discussion on this).
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We complete the model by imposing the following conditions.

Assumption 1 (Stationarity condition). The roots of the determinantal equation

det
�
IM � �1z � · · ·� �P z

P
�
= 0

lie outside the unit circle.

Assumption 1 implies that the vector autoregressive process is stable.

Throughout, we treat the ↵i as fixed, that is, we condition on them. We also condition

on the initial observations, yi(1�P ), . . . ,yi0. This allows the initial observations not to be

generated from the corresponding stationary distribution, and so, does not require the

time series processes to have started in the distant past.

Assumption 2 (Regularity conditions). �it has finite eight-order moments and, as

N ! 1,

1

N

NX

i=1

k↵ik2 = O(1),
1

N

NX

i=1

kyi1�pk2 = O(1),

for p = 1, . . . , P .

Assumption 2 ensures regular asymptotic behavior of the least-squares estimator.

For simplicity, we will assume that the errors �it are independent and identically

distributed.

Assumption 3 (Errors). �it is independent and identically distributed across i and t,

and E[�it] = 0.

Independence across time can be relaxed to allow for dependence between �it and �it�p

through their higher-order moments. This would come at the cost of more complicated

regularity conditions, parallelling Hahn and Kuersteiner (2002, Conditions 1 and 2), but

would leave our bias calculations unchanged.

Under these conditions, as t ! 1, yit has the moving-average representation

yit =
1X

k=0

�k ✏it�k = µi +
1X

k=0

�k �it�k,
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where µi =
P1

k=0 �k ↵i and the matrices �k are defined by

�
IM � �1L� · · ·� �PL

P
��1

=
1X

k=0

�kL
k. (2.2)

This representation is important as it implies @yit+h/@�
0
it = �h, which quantifies the

impact on yit+h of a unit increase in the elements of �it. As a function of h, this defines

the impulse-response functions, which are key parameters of interest (see, e.g., Hamilton

1994, Section 11.4).

3. BIAS-CORRECTED ESTIMATION

Define the M ⇥ MP matrix � 0 = (�1, . . . ,�P ) and xit = (y0
it�1,y

0
it�2, . . . ,y

0
it�P )

0 to

write (2.1) as

yit = ↵i + � 0xit + �it.

Collect all time-series observations and error terms for unit i in the matrices

Yi = (yi1, . . . ,yiT ), Xi = (xi1, . . . ,xiT ), ⌥i = (�i1, . . . ,�iT ),

and let ◆T denote the T -dimensional vector of ones to define Ai = ◆0T ⌦↵i. We may then

write

Yi = Ai + � 0Xi + ⌥i.

The within-group least-squares (WG-OLS) estimator is

b� =

 
NX

i=1

XiMX 0
i

!�1 NX

i=1

XiMY 0
i

!
,

where M = IT � ◆T ◆
0
T . We consider asymptotically unbiased estimation of � under

asymptotics where N,T ! 1 with N/T ! ⇢2 and 0 < ⇢ < 1. Under this asymptotic

scheme, WG-OLS is asymptotically normal, but biased. Let

⌃ = plim
1

NT

NX

i=1

XiMX 0
i = lim

t!1
Var(xit),

B = �(◆P ⌦ (IM � �1 � · · ·� �P )
�1)⌦, (3.1)

and b = vecB = �(IM ⌦ ◆P ⌦ (IM � �1 � · · ·� �P )�1) vec⌦.
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Lemma 1 (Within-group least-squares estimator). Let Assumptions 1–3 hold. Then

p
NT vec ( b� � � )

d�! N
�
⇢ (IM ⌦⌃�1) b,⌦ ⌦⌃�1

�
(3.2)

as N,T ! 1 with N/T ! ⇢2.

(Proofs are given in the Appendix.)

Lemma 1 suggests the bias-corrected WG-OLS (BC-WG-OLS) estimator

e� = b� �
b⌃�1 bB
T

, (3.3)

where

b⌃ =
1

NT

NX

i=1

XiMX 0
i,

bB = �(◆P ⌦ (IM � b�1 � · · ·� b�P )
�1) b⌦, (3.4)

with

b⌦ =
1

NT

NX

i=1

�
Yi � b� 0Xi

�
M
�
Yi � b� 0Xi

�0
. (3.5)

This estimator is asymptotically unbiased. Lemma 1 immediately implies the following.

Theorem 1 (Bias-corrected least-squares estimator). Let Assumptions 1–3 hold. Then

p
NT vec ( e� � � )

d�! N
�
0,⌦ ⌦⌃�1

�

as N,T ! 1 with N/T ! ⇢2.

When M = 1 the model in (2.1) reduces to

yit = ↵i + �1yit�1 + · · ·+ �P yit�P + �it, �it ⇠ i.i.d. (0,!2). (3.6)

In this case a simpler, yet asymptotically equivalent, bias correction may be performed.

Write (3.6) as

yit = ↵i + �0xit + �it,

where � = (�1, . . . , �P )0 and xit = (yit�1, . . . , yit�P )0. The WG-OLS estimator of � is

b� =

 
NX

i=1

TX

t=1

(xit � xi·)(xit � xi·)
0

!�1 NX

i=1

TX

t=1

(xit � xi·)(yit � yi·)

!
.
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Write ⌃ = !2 V , where V is the variance matrix of !�1xit in the limit t ! 1. By

combining Lemma 1 with the expression for V �1 in Galbraith and Galbraith (1974), we

show in the Appendix that

p
NT (b� � �)

d�! N (⇢c,V �1), (3.7)

where c = (c1, c2, . . . , cP )0 and cp = cP�p+1 = �(1��1��2�· · ·��p�1+�P�p+1+· · ·+�p)

for p = 1, . . . , dP/2e. (This expression is also implicit in the result of Lee 2012.) Thus, a

bias-corrected estimator is

e� = b� �
bc
T
, (3.8)

which does not require estimating !2.

Corollary 1 (Single-equation bias correction). Let Assumptions 1–3 hold. Then

p
NT (e� � �)

d�! N
�
0,V �1

�

as N,T ! 1 with N/T ! ⇢2.

When P = 1, (3.8) reduces to the well-known correction (Nickell 1981, p. 1422)

e� = b� +
1 + b�
T

,

and Corrolary 1 yields

p
NT

✓
b� +

1 + b�
T

� �

◆
d�! N

�
0, 1� �2

�
,

which agrees with Hahn and Kuersteiner (2002, p. 1645).

Finally, besides � , estimation of the impulse-response functions is of interest. Recall

that

�h = �1�h�1 + �2�h�2 + · · ·+ �P�h�P ,

with �h = 0 if h < 0 and �0 = IM (see, e.g., Hamilton 1994, Eq. 10.1.19). Clearly,

a plug-in estimator of �h based on the WG-OLS estimator will suffer from asymptotic

bias. However, Theorem 1 directly implies that the bias-corrected estimator based on the

recursion

e�h = e�1
e�h�1 + e�2

e�h�2 + · · ·+ e�P
e�h�P
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will be asymptotically unbiased if N,T ! 1 with N/T ! ⇢2. Asymptotically valid

inference on the impulse-responses can then be performed. To state the result, let

Gh =
hX

s=1

�s�1 ⌦ (�0
h�s, �0

h�s�1, · · · , �0
h�s�P+1).

Theorem 2 (Bias-corrected impulse-response functions). Let Assumptions 1–3 hold.

Then
p
NT vec ( e�0

h ��0
h)

d�! N
�
0,Gh(⌦ ⌦⌃�1)G0

h

�

as N,T ! 1 with N/T ! ⇢2.

4. SIMULATIONS

We present simulation results for a two-equation two-lag autoregressive model with

�1 =

✓
.75 �.20
.20 .25

◆
, �2 =

✓
.20 �.10
.10 .05

◆
, ⌦ =

✓
1 .2
.2 1

◆
,

errors generated as �it ⇠ N (0,⌦), and various panel sizes. We start the time series

processes in the distant past, so the initial observations are drawn from their steady-

state distribution. The results are invariant to the choice of ↵i.

We computed point estimates and confidence intervals for the elements of the coefficient

matrices, �1 and �2, and for the impulse-response functions

�mn(h) =
@yi(t+h)m

@�itn
,

using WG-OLS and BC-WG-OLS estimates. For brevity we do not consider generalized

method-of-moment estimators. They are not designed for problems where T/N is not

very close to zero, and so are not well suited for most macroeconomic data sets; see also

Juessen and Linnemann (2010, 2012).

Table 1 reports the biases, standard deviations, and coverage rates of 95% confidence

intervals centered at point estimates (WG-OLS in the top half of the table, BC-WG-OLS

in the bottom half), computed from 10, 000 Monte Carlo replications. The (m,n)th el-

ement of �p is denoted as �pmn. Clearly, the bias of the within-group estimator varies

substantially across the coefficients and is non-negligible relative to the standard devia-

tion. Consequently, the confidence intervals centered at the within-group estimator suffer
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Table 1. Coefficient matrices

N T �111 �121 �112 �122 �211 �221 �212 �222
WG-OLS: BIAS

25 25 �.0557 .0006 �.0230 �.0256 .0089 �.0459 .0376 �.0367
50 50 �.0237 �.0012 �.0101 �.0137 .0040 �.0211 .0186 �.0171

100 100 �.0109 �.0008 �.0046 �.0070 .0019 �.0102 .0093 �.0083
200 200 �.0052 �.0004 �.0023 �.0034 .0009 �.0051 .0045 �.0040

WG-OLS: STD
25 25 .0432 .0416 .0443 .0405 .0420 .0426 .0446 .0408
50 50 .0210 .0205 .0220 .0203 .0204 .0208 .0220 .0201

100 100 .0102 .0101 .0111 .0100 .0100 .0102 .0109 .0100
200 200 .0051 .0051 .0054 .0050 .0050 .0051 .0054 .0050

WG-OLS: COVERAGE
25 25 .6991 .9391 .9131 .8968 .9338 .7825 .8578 .8429
50 50 .7734 .9434 .9222 .8905 .9428 .8143 .8606 .8588

100 100 .8084 .9490 .9252 .8939 .9433 .8234 .8635 .8683
200 200 .8183 .9466 .9331 .8919 .9474 .8281 .8678 .8740

BC-WG-OLS: BIAS
25 25 �.0175 .0048 �.0047 .0008 .0024 �.0078 .0034 �.0054
50 50 �.0043 .0010 �.0012 .0001 .0006 �.0017 .0009 �.0013

100 100 �.0011 .0004 �.0002 .0000 .0002 �.0004 .0003 �.0004
200 200 �.0003 .0001 �.0001 .0001 .0000 �.0002 .0000 .0000

BC-WG-OLS: STD
25 25 .0430 .0417 .0445 .0413 .0421 .0426 .0458 .0417
50 50 .0209 .0206 .0220 .0205 .0204 .0208 .0223 .0203

100 100 .0102 .0101 .0111 .0101 .0100 .0102 .0110 .0101
200 200 .0051 .0051 .0054 .0050 .0050 .0051 .0055 .0050

BC-WG-OLS: COVERAGE
25 25 .8719 .9059 .9071 .9072 .9380 .9331 .9369 .9374
50 50 .9125 .9265 .9245 .9247 .9483 .9428 .9454 .9483

100 100 .9322 .9408 .9357 .9380 .9476 .9469 .9459 .9478
200 200 .9416 .9437 .9443 .9450 .9521 .9516 .9498 .9530

from substantial undercoverage and the distortion persists as the sample size grows. The

bottom half of the table shows that much of the bias of the within-group estimator is

successfully removed by the bias correction. Furthermore, the correction has very little

effect on the variance of the estimator: the standard deviation of the corrected estimator

is almost identical to that of the uncorrected estimator. The bias correction leads to

confidence intervals with substantially improved coverage rates. Therefore, the conclu-

sions from Table 1 support our theoretical findings summarized in Lemma 1 and Theorem

1.
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Figure 1 summarizes the simulation results for the impulse-response function estimates

for N = T = 25 (the plots in the upper half of the figure) and N = T = 100 (bottom

half), based on the within-group estimator (left half) and on the bias-corrected estimator

(right half). Each plot corresponds to a particular impulse-response function, �mn, as

indicated, and displays the true �mn (solid grey line), the average (across the Monte Carlo

replications) of the estimated �mn (solid black line), and pointwise 95%-confidence bands

constructed from the Monte Carlo standard deviation (dotted black lines) and from the

estimated standard error based on Theorem 2 (dashed black lines). The four plots in the

upper left part of the figure, corresponding to N = T = 25, show that least-squares may

introduce substantial bias in the impulse-response function estimates, of the same order as

the width of the confidence bands. As evidenced by the four plots in the upper right part

of the figure, the bias-corrected impulse-response function estimates suffer from much

less bias. The remaining bias is small relative to the standard error. These findings are

in line with Theorem 2. Moving to the bottom half of the figure, where N = T = 100, we

see that the ratio of bias to standard error of the least-squares estimator of �mn persists,

with confidence bounds settling around the wrong curve. In contrast, as shown by the

four plots in the bottom right part of the figure, the corrected impulse-response function

estimates are asymptotically unbiased.

5. CONCLUSION

We derived an approximate bias correction for panel vector autoregressions with fixed

effects. It extends the correction of Hahn and Kuersteiner (2002) to higher-order panel

vector autoregressions and should be useful for macro-panel data sets, where the number

of time periods is often of the same order as the number of cross-sectional units (e.g.,

countries or states). The correction is given in closed form and, therefore, straightforward

to implement.

APPENDIX

Proof of Lemma 1. A standard argument (Phillips and Moon 1999; Hahn and Kuer-

steiner 2000) yields the asymptotic-normality result of the within-group least-squares

estimator centered around its probability limit. It therefore suffices to calculate the bias
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term in the limit distribution. Given the sampling-error representation

p
NT vec

� b� � �
�
=

 
IM ⌦ 1

NT

NX

i=1

XiMX 0
i

!�1  
1p
NT

NX

i=1

vec(XiM⌥ 0
i )

!
,

the bias follows as ⇢ (IM ⌦ ⌃�1) vecB where B = limT!1 E [XiM⌥ 0
i ] is the large-T

approximation to the bias in the normal equations, as in Hahn and Kuersteiner (2002).

B consists of the M ⇥M matrices B1, . . . ,BP , where

Bj = lim
T!1

E

"
TX

t=1

 
yit�j �

1

T

TX

t0=1

yit0�j

!
�0
it

#
= � lim

T!1
E

"
1

T

TX

t=1

TX

t0=1

yit0�j�
0
it

#

= � lim
T!1

E

"
1

T

TX

t=1

TX

t0=1

1X

k=0

�k�it0�j�k�
0
it

#
= �

1X

k=0

�k ⌦

= �(IM � �1 � · · ·� �P )
�1 ⌦,

which does not depend on j. Hence, B = �(◆P ⌦ (IM ��1 � · · ·��P )�1)⌦, as defined

in the main text.

Proof of (3.7). In the single-equation case, Lemma 1 and Theorem 1 hold with

⌃�1b = � V �1 ◆P
1� �1 � · · ·� �P

.

Galbraith and Galbraith (1974, p. 70) showed that V �1 = AA0 �H 0H where

A = �

0

BBBB@

�0 0 · · · 0

�1
. . .

. . .
...

...
. . .

. . . 0
�P�1 · · · �1 �0

1

CCCCA
, H = �

0

BBBB@

�P �P�1 · · · �1

0
. . .

. . .
...

...
. . .

. . . �P�1

0 · · · 0 �P

1

CCCCA
,

and �0 = �1. Now,A0◆P = a+(1� �1 � · · ·� �P )◆P andH◆P = h+(1� �1 � · · ·� �P )◆P ,

where

a =

0

BBB@

�P
�P�1 + �P

...
�1 + · · ·+ �P

1

CCCA
, h =

0

BBB@

�0
�0 + �1

...
�0 + · · ·+ �P�1

1

CCCA
.

Noting that Aa�H 0h = 0, we find ⌃�1b = �(A�H 0) ◆P = c.

Proof of Theorem 2. The result follows along the same lines as in, e.g., Hamilton

(1994, Section 11.7) from Theorem 1 by an application of the delta method.
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