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Abstract: Digital backpropagation (DBP) is a promising digital-domain technique to mitigate
Kerr-induced nonlinear interference. While it successfully removes deterministic signal–signal
interactions, the performance of ideal DBP is limited by stochastic e�ects, such as polarization-
mode dispersion (PMD). In this paper, we consider an ideal full-field DBP implementation and
modify it to additionally account for PMD; reversing the PMD e�ects in the backward propagation
by passing the reverse propagated signal also through PMD sections, which concatenated equal the
inverse of the PMD in the forward propagation. These PMD sections are calculated analytically
at the receiver based on the total accumulated PMD of the link estimated from channel equalizers.
Numerical simulations show that, accounting for nonlinear polarization-related interactions in
the modified DBP algorithm, additional signal-to-noise ratio gains of 1.1 dB are obtained for
transmission over 1000 km.
© 2017 Optical Society of America
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1. Introduction

The ever-increasing global demand for digital-data tra�c has resulted in an accelerated develop-
ment of the optical networks. One of the key technologies supporting this demand is coherent
optical detection, which has reached maturity and is widely deployed. Among the many benefits
of this technology, it facilitates the use of polarization multiplexing and the recovery of all
degrees of freedom of the optical field, thus improving receiver sensitivity and allowing the
use of higher-order modulation formats. Furthermore, it naturally suits the use of digital signal
processing (DSP) tools to compensate for channel impairments and hardware imperfections.

Despite the fact that the optical fiber channel is fundamentally nonlinear, historically, the



maximum achievable data rates through optical fibers were limited by linear impairments, such
as chromatic dispersion (CD) and polarization-mode dispersion (PMD). However, in current
systems, these impairments are e�ectively mitigated using DSP, and the intensity-dependent Kerr
nonlinearity is suggested to be the ultimate obstacle to increase optical fiber transmission rates.
Due to the nonlinear e�ects, there exists an optimal (e�ective) signal-to-noise ratio (SNR) point
(where it is recommended to operate), which is a compromise between the additive noise and the
nonlinear interference.

Various nonlinear mitigation techniques are currently under investigation, which can be
categorized into two groups: optical and digital techniques. Optical solutions such as large
e�ective area fibers [1] allow higher signal launch powers, thus increasing the available SNR, but
transmission is still performed avoiding the nonlinear regime. Other optical solutions include
optical phase conjugation using twin waves [2] or mid-span optical phase conjugation [3]. The
drawback of the former is that it does not utilizes all degrees of freedom of the optical field
e�ciently, hence the spectral e�ciency is reduced. The latter requires a symmetric map of both
dispersion and power evolution along the link, thus making it fruitless in deployed systems.
Various digital techniques are available in the literature to mitigate fiber nonlinearities, including
perturbation-based precompensation [4], Kalman equalization [5], and digital backpropagation
(DBP) [6, 7], which has proved significantly beneficial in experimental demonstrations.

DBP compensates for the deterministic nonlinear fiber impairments by solving the nonlinear
propagation equation using the split-step Fourier (SSF) method [8, Sec. 2.4.1] and backpropagating
the received optical field with inverted channel parameters. Several variations of DBP have been
proposed and demonstrated including transmitter- [9], receiver-side [10], and both transmitter-
and receiver-side [11] compensation. Having exact knowledge of the fiber parameters, it is
believed that the deterministic nonlinear signal–signal interactions are completely removed
using DBP and that the performance of a fiber-optical system is limited by the uncompensated
stochastic e�ects, such as amplified spontaneous emission noise, which leads to signal–noise
interactions [12], and PMD, leading to polarization-dependent nonlinear interactions [13–17],
which considerably undermine the e�ectiveness of DBP. In order to account for the signal–noise
interactions, a modified DBP algorithm [18] has been proposed that takes into account the
additive noise, getting the performance of the optical fiber channel closer to the fundamental
limits. On the other hand, PMD introduces a frequency-dependent delay that accumulates as a
random-walk-like process along the fiber length and it is usually compensated for at the receiver
after DBP. When applying DBP, the entire reverse propagation is performed with the accumulated
PMD over the entire link; therefore the nonlinear compensation is mismatched and its accuracy
degrades with the backpropagated distance. However, it has been shown that low-complexity DBP
implementations (one or less steps per span) that backpropagate a single channel are marginally
a�ected by polarization e�ects since the nonlinear signal–signal interactions are not entirely
removed and dominate the achievable performance [19,20]. On the other hand, considering an
ideal DBP with su�cient number of steps where PMD is an issue, in order to remove its e�ects,
PMD should be compensated for as it naturally occurs, i.e., in a distributed fashion along the
link, rather than doing it once after DBP. It has been shown numerically that compensating for
PMD on a per-span basis decreases its impact on DBP significantly [13]. However, this approach
requires a priori PMD knowledge for every span, which is not known at the receiver.

Recently, a modified DBP algorithm that takes into account PMD was proposed in [21], where
an appropriate amount of di�erential group delay (DGD) is introduced at the link principal states
of polarization (PSP) after each span in the reverse propagation, such that the accumulation of
DGD in the forward propagation is reversed. In [22], we recently proposed a modified DBP
method that reverses the PMD e�ects in the backward propagation by passing the reverse
propagated signal through PMD sections. Unlike [21], where the DGD is subtracted along the
same PSP every time in the backward propagation, in [22] the PSPs of the backward PMD



sections are di�erent and aligned using an optimization algorithm such that the Jones matrix
modeling the total backward PMD equals the inverse of the Jones matrix modeling the PMD
occurring in the forward propagation.

In [23], we proposed a DBP method accounting for PMD, where the backward PMD sections
are computed analytically using a first-order linearization approach, which we extend in this
work. Compared to [23], herein we detail the analysis of the proposed method and extend the
algorithm to wavelength-division-multiplexed (WDM) systems.

2. Proposed algorithm

The conventional DBP algorithm is modified such that the signal is backpropagated also through
PMD sections. These sections are chosen such that, when cascaded, they match the overall
PMD accumulated over the entire link, as observed at the receiver but with opposite sign.
This method gradually reverses the PMD e�ects, mimicking the accumulation of PMD in the
forward propagation. The accumulated PMD at the receiver can be obtained from (blind) channel
equalizers, such as the constant modulus algorithm (CMA) [24] or the multiple modulus algorithm
(MMA) [25].

The inverse of the accumulated PMD at the receiver can be modeled in baseband by a
frequency-dependent 2 ⇥ 2 complex-valued Jones matrix Jk( f ), where k denotes the time index.
In order to reverse the PMD e�ects distributively, we divide Jk( f ) into a product of NPMD + 1
matrices as

Jk( f ) = Jk( f0) + ( f � f0)
J0
k( f0)
1!
+ ( f � f0)2

J00
k ( f0)
2!

+ · · · (1)

⇡ Jk( f0) + ( f � f0)J0
k( f0) (2)

= Jk( f0)
⇣
I + ( f � f0)J�1

k ( f0)J0
k( f0)

⌘
(3)

⇡ Jk( f0) exp
⇣
( f � f0)J�1

k ( f0)J0
k( f0)

⌘
(4)

= Jk( f0)Js
k( f )NPMD, (5)

where

Js
k( f ) = exp

 
( f � f0)J�1

k ( f0)J0
k( f0)

NPMD

!
. (6)

In Eq. (1), Jk( f ) is expanded into its Taylor series [26, p. 880] evaluated at f0 and then
approximated to the first order in Eq. (2). The (·)0, (·)00, . . . operators denote the first, second,
. . . derivatives with respect to frequency. In Eq. (4), I + ( f � f0)J�1

k ( f0)J0
k( f0) is approximated

using the matrix exponential [27, p. 165] defined as

exp A = I + A
1!
+

A2

2!
+ . . . , (7)

which converges for any A 2 Cn⇥n, and I is the identity matrix, whereas (·)�1 denotes the
inverse operator. Due to the unitary nature of Jk( f ), the inverse can be obtained by the conjugate-
transpose operation J�1

k ( f ) = JH
k ( f ) for any f and k. Here we introduce the matrix exponential

to facilitate the factorization of Eq. (4) in Eq. (5). Although higher order terms of ( f � f0) are
reintroduced in Eq. (4) with the wrong coe�cient by the matrix exponential, thus introducing
another approximation, counterintuitively, this is a better approximation of Eq. (1) than Eq. (2),
where the higher order terms are absent. Unfortunately, we were not able to provide an analytic
proof of this result, but observed it only numerically. Nevertheless, the approximation in Eq. (4)
is accurate for small ( f � f0)J�1

k ( f0)J0
k( f0); consequently it is inaccurate for large bandwidths, i.e.,
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Fig. 1. Schematic of the proposed DBP method, where NDBP is the number of steps used by the
DBP algorithm over the entire link and the equalizer is a conventional adaptive channel equalizer
such as the CMA or MMA. For brevity, the blocks modeling the amplifiers and attenuation are
not shown.

large | f � f0 | , or strong PMD, i.e., large J0
k( f0), resulting in a performance penalty. In Eq. (5), the

exponential matrix is divided into NPMD identical frequency-dependent matrices Js
k( f ). These

matrices are inserted equidistantly in the DBP procedure, as illustrated in the top left of Fig. 1,
to reverse the PMD e�ects in the backward propagation. As a last step, the result should be
left-multiplied with Jk( f0) to approximate Jk( f ) as in Eq. (5), but as we will see below, we
replace Jk( f0) with Jc

k( f ) to reduce the e�ects of approximations.
The approximations involved in deriving Eq. (5) hold tightly around f0, which is chosen to be

in the middle of the signal bandwidth, but the error diverges proportionally to the accumulated
DGD as f deviates from f0. Therefore, compensating for PMD by applying the approximation
Eq. (5) instead of the true matrix Jk( f ) leads to a penalty. However, this penalty can be mitigated
by replacing Jk( f0) in Eq. (5) with a frequency-dependent correction matrix

Jc
k( f ) = Jk( f )Js

k( f )�NPMD (8)

as illustrated in the top right of Fig. 1. Under ideal conditions (no nonlinear e�ects), this correction
perfectly compensates for the approximations in Eqs. (2) and (4) and brings back Jk( f ).

The modified DBP algorithm operates in a streaming block-wise fashion processing a block
of samples xk at a time and it compensates for PMD using the same Jones matrix Jk( f ) over
the entire block xk . Since PMD is a time-varying stochastic process and might not be constant
over xk , a residual PMD after DBP might occur due to these temporal variations. This residue,
denoted Jr

k( f ), is mitigated by the channel equalizer and is periodically fed back to the DBP
through a feedback loop to update Jk( f ) = Jr

k( f )Jk�1( f ). In this fashion, it is ensured that the
processed samples are PMD-free and that the PMD Jones matrix Jk( f ) implemented by the DBP
algorithm is periodically updated, tracking the temporal variations of the PMD.

The schematic diagram of the proposed algorithm is shown in Fig. 1. A typical coherent
receiver might include several di�erent blocks between DBP and the equalizer, such as matched
filtering, frequency o�set compensation, or resampling, which are skipped here since they are
not relevant to this work. The DBP algorithm receives as inputs a block of received samples xk
and the PMD residue Jr

k( f ), and outputs the processed block of samples yk , which is then further
processed by the equalizer and output as zk . Initially, at the first block of samples k = 1, the DBP
algorithm operates as in the conventional approach, without compensation for PMD (J1( f ) = I).
Thereafter, Jr

k( f ) is estimated and fed back by the equalizer, which for k = 1 is the entire PMD
of the link since the DBP did not compensate for it. Consequently, PMD will be compensated for



0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

Distance [km]

A
cc
u
m
u
la
te
d
D
G
D

[p
s]

f0 − 50 GHz

f0 − 25 GHz

f0
f0 + 25 GHz

f0 + 50 GHz

forward

backward

.
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p
km and NPMD = 10.

in the DBP routine and Jr
k( f ) will consist of only residual PMD.

The polarization-dependent nonlinear interactions, and thereby the algorithm’s e�ciency, are
immune to temporal variations of the absolute state of polarization and are sensitive only to the
frequency dependence of Jk( f ). Therefore, fluctuations of the state of polarization, which drift
much faster than the frequency dependence of Jk( f ), do not have to be fed back by the equalizer,
reducing the feedback frequency.

Figure 1 also illustrates the internal structure of the proposed DBP method. The conventional
DBP algorithm is confined in the dark gray box, whereas two extra operators are added to account
for PMD. The Js

k( f ) operator is nested in the DBP procedure and applied NPMD times, while
the Jc

k( f ) operator is applied only once at the end. It should be noted that if NPMD is chosen to
be equal to the number of spans, the Js

k( f ) operator is applied at the beginning of each span in
the backward propagation. In this paper, we chose the Wiener–Hammerstein model [28], but
this is not a general requirement. The algorithm can be implemented using the Wiener or the
Hammerstein models [28].

As mentioned earlier, Jr
k( f ) is obtained from channel equalizers. However, in general, a coherent

receiver estimates and cancels PMD using a time-domain complex-valued finite-impulse-response
(FIR) filter bank arranged in a butterfly structure. Therefore, in order to calculate the PMD
operators Js

k( f ) and Jc
k( f ) used by the modified DBP, the time-domain filter coe�cients of the

equalizer must be converted to the frequency-domain Jones matrix Jr
k( f ). Moreover, the derivative

J0
k( f0) must be calculated numerically in this case from noisy Jk( f ). In the Appendix, we present

a method to obtain the discrete-frequency unitary matrix Jr
k( f ) from the filter coe�cients of the

equalizer, and an approach to calculate J0
k( f0).

Figure 2 illustrates an example of the evolution of the accumulated DGD in the forward
propagation and in the backward propagation applying the modified DBP scheme using Eqs. (6)
and (8). As can be seen, di�erent frequency components accumulate di�erent amounts of DGD
in the forward propagation in a random-walk-like fashion. In the backward propagation, we set
NPMD = 10, therefore the Js

k( f ) operator is applied at every multiple of 100 km starting from
distance 1000 km, whereas Jc

k( f ) is applied last, at distance 0 km. The DGD at f0, where the first
order approximation was performed, decreases after every Js

k( f ) operation with a constant step
equal to 1/NPMD of the total DGD at 1000 km. On the other hand, due to the approximations



involved in deriving Eq. (5), the DGDs at the other four frequencies do not decrease monotonically
and can, in some cases, increase. Since the approximations are tighter around f0, the DGDs at
f0 ± 25 GHz have a lower residual DGD at 0 km compared to the ones at f0 ± 50 GHz. This
residual DGD is corrected by applying Jc

k( f ) at 0 km. As can be seen, this operation has no
impact on the DGD at f0, since there is no approximation in this case and the accumulated DGD
has been successfully removed already at 100 km. The average DGD grows proportionally to the
square root of the distance in the forward propagation. We replicated this in our study for the
backward direction, i.e., instead of a linear decrease of the argument of the matrix exponential
(which quantifies the DGD), we have chosen the decrease rate according to the inverse of the
square root. But we observed minor gains compared to the linear decrease and decided not to
include it as it involves extra complexity since the Js

k( f ) operators will be di�erent w.r.t. distance.
Although the evolution of the DGD in the backward propagation does not match its evolution

in the forward propagation, as we will see in the Results section, this method does provide
performance gains over the conventional approach. However, due to this mismatch between the
two evolutions, the performance does not match the case without PMD. In the conventional
approach, the backward propagation is performed with the DGD frozen to the values accumulated
over the entire link, i.e., at 1000 km in Fig. 2. However, we would like to remind the reader that
the DGD does not fully quantify PMD, therefore the match between the forward and backward
evolution of the DGD cannot be fully regarded as a performance metric. Moreover, the example
plotted in Fig. 2 is just one realization of the stochastic process PMD, and for other realizations
the forward and backward DGD evolutions will match closely or loosely.

Judging by the step-wise evolution of the DGD in the backward direction, our approach seems
to be similar to the one proposed in [21]. However, the two methods are di�erent. Opposed
to [21], where in the backward propagation Js

k( f ) is a diagonal matrix modeling a DGD element
applied at the same PSP along the entire link, our approach changes the PSPs with every Js

k( f ) in
the backward direction.

In WDM systems, the bandwidth of the signal is large and, as we saw earlier, Js
k( f ) becomes

inaccurate for large bandwidths. This inaccuracy can be lessened by, instead of approximating
Jk( f ) around one central frequency f0, approximating Jk( f ) for each channel individually around
their center frequency. The center frequency f0 of each linearization Eq. (6) can be chosen
in the middle of each channel’s bandwidth. However, this approach introduces discontinuities
between the Js

k( f ) operators of di�erent channels. For example, if Nch WDM channels with a
frequency separation of w are considered, the frequency span (including the guard band) of
the ith channel is f 2 [ f i0 � w/2, f i0 + w/2] for i = 1, . . . , Nch, where f i0 denotes the central
frequency of the ith channel. The discontinuities in Js

k( f ) will emerge at f = f 1
0 + w/2 + iw

for i = 0, . . . , Nch � 1. These discontinuities a�ect the performance and should be removed.
To do so, a continuous J̃s

k( f ) operator can be calculated by first computing the Js
k( f ) operator

according to Eq. (6) for f 2 [ f i0 � w/2, f i0 + w/2] for each channel i. Here we chose to apply
the linearization Eq. (6) once per channel. Nevertheless, this can be applied more than once,
but we observed no benefits from doing so in our simulations. Thereafter, we set J̃s

k( f ) = Js
k( f )

for f 2 [ f bNch/2c
0 � w/2, f bNch/2c

0 + w/2] at the central channel bNch/2c, where b·c indicates the
flooring function. The continuous operator J̃s

k( f ) of the outer channels is calculated recursively
as

J̃s
k( f ) = J̃s

k( f i+1
0 � w/2)Js

k( f i0 + w/2)
�1Js

k( f ) for i = bNch/2c � 1, . . . , 2, 1, (9)
J̃s
k( f ) = J̃s

k( f i�1
0 + w/2)Js

k( f i0 � w/2)�1Js
k( f ) for i = bNch/2c + 1, . . . , Nch, (10)

and f 2 [ f i0 �w/2, f i0 +w/2], where in Eqs. (9) and (10), the recursion is backwards and forwards,
respectively. Notice that the correction matrix has to be calculated accordingly in this case by
using J̃s

k( f ) in Eq. (8). It should be noted that the linearization of each WDM channel becomes
less accurate by making J̃s

k( f ) continuous in Eqs. (9) and (10). However, the continuity of J̃s
k( f )



is more critical for the performance than having the linearization of each WDM channel intact.
Complexity-wise, the computational increase over the conventional DBP is marginal. The

calculations of the Js
k( f ), J̃s

k( f ), Jc
k( f ) operators can be performed in parallel to the data-

processing stream. On the other hand, applying these operators to the data requires a single
complex multiplication and can be performed after compensating for the linear e�ects in the
frequency domain.

3. Simulation setup

We study through numerical simulations a point-to-point transmission link consisting of an ideal
transmitter and coherent receiver, and Ns spans of 100 km standard single-mode fiber with:
attenuation 0.2 dB/km, CD parameter 17 ps/(nm·km), and nonlinear coe�cient 1.2 1/(W·km).
Each span is followed by one erbium-doped fiber amplifier with a noise figure of 4.5 dB,
compensating for the exact span loss. The transmitted signal consists of Nch polarization-
multiplexed 16-ary quadrature-amplitude modulated channels at 50 Gbaud shaped using a
root-raised cosine (RRC) pulse with roll-o� factor 0.01 and spaced at 50.1 GHz. The signal was
oversampled by a factor of 2 and each channel consists of 215 symbols. The signal propagation
was simulated by solving the Manakov-PMD equation [29] using the SSF approach with steps of
0.1 km. Static PMD was emulated at every SSF step consisting of a polarization scrambler, which
uniformly [30] scatters the state of polarization, and a retardation plate. The DGD introduced by
each retardation plate was Gaussian distributed with mean �⌧p and standard deviation �⌧p/5 [31];
thus the mean accumulated DGD is ⌧̄ =

p
8NSSF/(3⇡)�⌧p, where NSSF is the total number of

SSF steps. In order to capture the stochastic nature of PMD, 120 fiber realizations were simulated
for each set of parameters, except Fig. 4(b) where we simulated 500 realizations to increase the
accuracy of the scatter plot.

We consider two receiver DSP setups: i) conventional DBP followed by a linear PMD equalizer,
and ii) modified DBP described in the previous section using Eqs. (6), (8–10) with NPMD = 10,
except in Fig. 4(a) where NPMD is varied. For both setups, we consider the equalizer to operate
under perfect PMD knowledge and then we compare this performance with results obtained
using the blind MMA equalizer in Fig. 5(b). The length of equalizer’s FIR filters was Ntaps = 31
with two samples per symbol, and the numerical derivative J0

k( f0) is averaged over 2/3 of the
bandwidth of the signal, i.e., L = 1/(3T� f ) (see appendix). DBP is performed with the same
SSF step distribution and sampling rate as in the forward propagation for both setups. Full-field
DBP is applied, i.e., all channels are backpropagated. DBP is followed by an ideal matched RRC
filter applied to the signal, after which the linear-scale SNR is averaged over the two polarizations
by comparing the transmitted and received symbols. Namely, the SNR of each polarization is
evaluated as the ratio between the variance of the transmitted complex symbols (E[|U |2]) and
variance of the noise (E[|U � V |2]), where V denotes the received symbols after DSP. Note that
this definition of the SNR over one polarization is related to the error vector magnitude (EVM)
according to SNR ⇡ 1/EVM2.

4. Results and discussion

In order to study the e�ectiveness of the proposed algorithm, we consider di�erent PMD scenarios
by studying two transmission distances: 1000 (10 ⇥ 100) km and 4000 (40 ⇥ 100) km; two
di�erent simulated bandwidths: 50 GHz (Nch = 1 channel) and 350 GHz (Nch = 7 channels);
and two PMD parameters: 0.04 and 0.1 ps/

p
km, corresponding to typical modern optical fibers.

These PMD parameters yield an average accumulated DGD of ⌧̄ = 1.26 ps and ⌧̄ = 3.16 ps,
respectively, for 1000 km, and ⌧̄ = 2.52 ps and ⌧̄ = 6.32 ps, respectively, for 4000 km.

Figure 3 shows the achieved performance obtained for the studied scenarios. In Fig. 3(a), the
single-channel scenario is considered and, as can be seen, DBP obtains gains of 9.2 and 6.5 dB



1 channel (a) 7 channels (b)
Distance [km] 1000 4000 1000 4000

PMD coefficient [ps/
√

km] 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1
CDC 18.5 18.5 12.0 12.0 17.0 17.0 10.8 10.8

Conventional DBP 26.5 24.8 17.8 16.6 21.5 19.8 14.2 13.0
Modified DBP 27.1 25.9 18.2 17.3 22.6 20.8 15.0 13.6

DBP w/o PMD 27.7 27.7 18.5 18.5 24.5 24.5 16.7 16.7
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Fig. 3. Average SNR versus input power per channel for various setups: ((a)) Nch = 1 and
Ns = {10, 40}; ((b)) Nch = 7 and Ns = {10, 40}. For comparison, the performance of CD
compensation (CDC) only and DBP, both without PMD, are shown. The maximum (in dB) of
each curve from the plots is summarized in the legend above.

compared to CDC for the two transmission distances of 1000 and 4000 km, respectively, when
PMD is not considered. This performance degrades in the presence of PMD with parameter 0.04
and 0.1 ps/

p
km by 1.2 and 2.9 dB, respectively, for 1000 km, and by 0.7 and 1.9 dB, respectively,

for 4000 km. In Fig. 3(b), the seven-channel scenario is studied, where DBP obtains gains of 7.5
and 5.9 dB compared to CDC for the two transmission distances (1000, 4000 km) when PMD
is not considered. Same behaviour as above, the performance of DBP degrades in the presence
of PMD with parameter 0.04 and 0.1 ps/

p
km by 3 and 4.7 dB, respectively, for 1000 km, and

by 2.5 and 3.7 dB, respectively, for 4000 km. Without PMD, DBP achieves the highest gains
when both the distance and bandwidth are the smallest due to the weaker signal–noise nonlinear
interactions. PMD has a stronger impact on the performance as the bandwidth and/or the PMD
parameter increases, a phenomenon also observed in [17], where PMD incurred a penalty of 16
dB for a transmission of approximately 1 THz bandwidth. However, it is interesting to notice
that the degradation of the DBP performance due to PMD relative to the gain obtained without
PMD is constant with respect to the distance. In the single-channel scenario (Fig. 3(a)), PMD
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Fig. 4. (a): Average SNR obtained at the optimal input power by the conventional DBP and
by the modified DBP scheme with varying number of PMD sections NPMD. (b): Scatter plot
of the achieved SNR gain by the proposed DBP modification versus the SNR attained by the
conventional DBP obtained over 500 fiber realizations at the optimum input power 11 and 10
dBm, respectively.

reduces the SNR gains of DBP for both distances by approximately 10% and 30% when the PMD
parameter is 0.04 and 0.1 ps/

p
km, respectively. On the other hand, in the seven-channel scenario

(Fig. 3(b)), the gains are reduced by approximately 40% and 60% when the PMD parameter is
0.04 and 0.1 ps/

p
km, respectively, irrespective of the distance.

The proposed modified DBP algorithm improves the optimum SNR in the single-channel
scenario (Fig. 3(a)) by 0.6 and 1.1 dB for 1000 km, and by 0.4 and 0.7 dB for 4000 km compared
to the conventional DBP approach when the PMD parameter is 0.04 and 0.1 ps/

p
km, respectively.

These gains represent 50% and 37% of the SNR reduction due to PMD, regardless of the distance.
In the seven-channel scenario (Fig. 3(b)), the modified DBP improves the optimum SNR by 1.1
and 1 dB for 1000 km, and by 0.8 and 0.6 dB for 4000 km, with PMD parameter 0.04 and 0.1
ps/

p
km, respectively. Here the gains represent 14% and 12% of the SNR reduction due to PMD.

It is likely that the performance of the proposed algorithm decreases for larger bandwidths and
higher PMD parameters due to the approximations used to derive Eq. (5), which becomes less
accurate.

In [22], an average gain of only 0.7 dB (cf. 1.1 dB) was obtained in the single-channel
configuration for a PMD coe�cient of 0.1 ps/

p
km and distance 1000 km shown in Fig. 3(a).

There the backward PMD sections are chosen quasi-randomly and obtained from an optimization
algorithm such that the Jones matrix modeling the total backward PMD equals the inverse of
the Jones matrix modeling the PMD occurring in the forward propagation. This leads to large
performance fluctuations since the optimization algorithm outputs both sequences of PMD
sections that match (almost) exactly the one in the forward propagation, and sequences that are
the opposite and perform poorly, lowering the average gain. On the other hand, the performance
of the method proposed here does not exhibit these two extremes of poor and ideal, which is an
advantage and disadvantage, respectively. It would be desirable to use [22] if one could distinguish
between good and bad solutions of the optimization algorithm to maximize performance.

From now on, the presented results are based on the single-channel configuration over 1000
km and PMD parameter 0.1 ps/

p
km, except in Fig. 5(a) where the PMD parameter is varied.

The achieved SNR at the optimal input power is shown in Fig. 4(a) as a function of NPMD. As
can be seen, the performance increases with NPMD, providing a gain of 1.1 dB for NPMD = 10
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Fig. 5. (a): Average SNR and SNR gain versus fiber PMD parameter obtained at the optimum
input power for each scenario. Note the y-axis on the right for the gain. (b): Results obtained
using the blind MMA equalizer compared to an ideal equalizer for both DBP schemes.

(same as the number of spans), after which it saturates, providing negligible extra gain.
Figure 4(b) illustrates the scatter plot of the achieved SNR gain by the proposed DBP scheme

versus the SNR of the conventional DBP at the optimum input power of 11 and 10 dBm,
respectively, for di�erent PMD realizations. As can be seen, the gain is positive in the majority of
the cases (>90%), and negative gain mainly occurs when the achieved SNR by the conventional
DBP is relatively high. From the same figure, it can also be inferred that the worst/best SNR
achieved by the proposed method is 2/0.5 dB better than the conventional DBP, thus improving
the required SNR margin and lowering the outage probability.

Figure 5(a) shows the average performance of the two schemes as a function of the PMD
parameter at the optimal input power for each case. As the PMD parameter increases, the
performance of both schemes degrades significantly from 27.6 dB down to 19.6 dB when the
PMD coe�cient is 1.5 ps/

p
km. The proposed DBP method provides a minor gain (0.1 dB) at

0.01 ps/
p

km, which increases up to a maximum of 1.2 dB at 0.25 ps/
p

km. After this point,
the gain declines and becomes 0.1 dB at 1.5 ps/

p
km. The performance of DBP in the weak

PMD regime is lightly a�ected by PMD; therefore the proposed algorithm provides small gains.
On the other hand, it is likely that the gain deteriorates at high PMD parameters due to the
approximation used to derive Eq. (5), which becomes less accurate. However, the proposed DBP
method provides gains greater than 0.8 dB over the range of PMD coe�cient 0.04–0.4 ps/

p
km,

which covers most of the modern optical fibers.
So far, the presented results were obtained assuming that the equalizer has ideal knowledge

of the accumulated PMD. In Fig. 5(b), results obtained using ideal equalization are compared
with results based on the blind MMA equalizer and the processing procedure presented in the
Appendix. It can be seen that the MMA induces a penalty of about 0.1 dB, which is approximately
constant over the entire range of input power and is the same for both schemes. This penalty
is likely due to the inability of the equalizer to perfectly estimate the PMD. In general, the
equalizer does not always return the true Jones matrix Jk( f ), but a matrix that minimizes the
equalizer’s cost function. Due to the symmetries of the polarization-multiplexed constellations,
the returned matrix by the equalizer might be a�ected by phase and polarization ambiguities,
therefore the returned matrix is approximately Jk( f ) multiplied with a constant matrix modeling
these ambiguities. However, the proposed algorithm is not a�ected by these ambiguities since the
performance relies only on the dependence of Jk( f ) with frequency.



5. Conclusions

We studied the achievable performance by ideal full-field DBP in systems with PMD. We saw
that the performance of DBP degrades with bandwidth and the strength of PMD. However,
interestingly, we observed that the ratio between the achieved gains by DBP considering PMD
and the gains obtained without PMD does not change with respect to the transmission distance
for all studied PMD parameters and bandwidth. Moreover, in order to improve the performance
of DBP in the presence of PMD, we proposed a simple modification of the DBP algorithm
to take into account polarization e�ects by blindly reversing the PMD e�ects in the backward
propagation. The algorithm has been proved to work with PMD information obtained from the
blind MMA equalizer and provides SNR gains over an ample range of di�erent transmission
setups. Interesting directions for future research include performance characterization in the
presence of a time-varying PMD, as well as a comprehensive study including [21,22] to investigate
which of the three methods o�ers the best performance for various simulation setups and channel
conditions.

Appendix

In this Appendix is presented the methodology of obtaining the PMD residue Jr
k( f ) from the FIR

filters of the equalizer and a numerical method to calculate the derivative J0
k( f0). In the discussion

above, the matrices modeling PMD were defined in the continuous-frequency domain. Since
DSP operates on finite-length discrete-time or discrete-frequency signals, this analysis is carried
in the discrete domain. We distinguish between continuous and discrete functions adopting the
notation f (·) and f [·], respectively.

The filter impulse response of the equalizer can be represented by a discrete-time 2 ⇥ 2
complex-valued matrix

Teq
k [n] =

©≠≠
´
Txx
k [n] Tyx

k [n]

Txy
k [n] Tyy

k [n]

™ÆÆ
¨

(11)

sampled at time instants nTs, where x and y denote the two degenerate polarizations, Ts is the
sampling period, and n = 0, . . . , Ntaps � 1, whereas Ntaps is the length of the FIR filter. Typically,
an oversampling of two samples per symbol is employed, i.e., T = 2Ts, where T is the symbol
duration. The impulse response of the filter is usually two-sided centered at dNtaps/2e, where d·e
indicates the ceiling function.

The discrete-frequency representation of Teq
k [n] can be obtained by taking the element-wise

discrete Fourier transform, denoted F {·}, with respect to n

Jeq
k [m] =

©≠≠
´
F

�
Txx
k [n]

 
F

�
Tyx
k [n]

 
F

�
Txy
k [n]

 
F

�
Tyy
k [n]

 
™ÆÆ
¨
, (12)

which is the discrete representation of Jeq
k ( f ) sampled with resolution � f = 1/(TsNtaps) at

frequency instants m� f for m = �bNtaps/2c, . . . , dNtaps/2e � 1, i.e., Jeq
k (m� f ). Typically, Ntaps is

chosen to be less than 100, resulting in a matrix Jeq
k [m] with a coarse frequency-domain resolution,

i.e., large � f . In order to refine this resolution, Teq
k [n] can be symmetrically padded with zeros,

which increases Ntaps, before applying Eq. (12) such that the desired resolution is obtained. The
finer resolution of Jeq

k [m] also improves the accuracy of the numerical di�erentiation, which is
discussed below.

However, Teq
k [n] may compensate for polarization-dependent losses (PDL), which will be

reflected in Jeq
k [m] through Eq. (12). Considering the unitary nature of PMD, PDL can be removed



from Jeq
k [m] by finding its closest unitary matrix [32]

Jr
k[m] = Uk[m]VH

k [m], (13)

which is the discrete-frequency representation of Jr
k( f ) and can be used in the DBP routine as

described in Sec. 2. In Eq. (13), the columns of Uk[m], Vk[m] are the left-, right-singular vectors
of Jeq

k [m], i.e., Jeq
k [m] = Uk[m]⌃k[m]VH

k [m] is the singular-value decomposition [33, p. 35] of
Jeq
k [m].
When calculating Js

k( f ) and Jc
k( f ) in Eqs. (6–8), the derivative of Jk( f0) is needed. Usually

numerical di�erentiation is done using the straightforward two-point derivative J0
k[m] = (Jk[m +

1]� Jk[m])/� f . However, this derivative is very sensitive to noisy signals, but it can be improved
by using multipoint di�erentiation. In the most general case, the multipoint di�erentiation can be
approximated as

J0
k[m] ⇡ 1

� f

L’
l=1

cl(Jk[m + l] � Jk[m � l]), (14)

where cl are the filters coe�cients. In this paper, we chose cl as

cl =
3(L + 1 � l)

L(L + 1)(L + 2), (15)

so that the biggest weight is given to the samples in the vicinity of J0
k[m] and then the weight

decreases linearly with l.
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