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Multi-omic Network Regression: Methodology, Tool and Case Study

Vandan Parmar, Pietro Lió

Abstract The analysis of biological networks is characterized by the definition of precise linear constraints used to

cumulatively reduce the solution space of the computed states of a multi-omic (for instance metabolic, transcriptomic

and proteomic) model. In this paper, we attempt, for the first time, to combine metabolic modelling and networked

Cox regression, using the metabolic model of the bacterium Helicobacter Pylori. This enables a platform both for

quantitative analysis of networked regression, but also testing the findings from network regression (a list of significant

vectors and their networked relationships) on in vivo transcriptomic data. Data generated from the model, using flux

balance analysis to construct a Pareto front, specifically, a trade-off of Oxygen exchange and growth rate and a trade-

off of Carbon Dioxide exchange and growth rate, is analysed and then the model is used to quantify the success of

the analysis. It was found that using the analysis, reconstruction of the initial data was considerably more successful

than a pure noise alternative. Our methodological approach is quite general and it could be of interest for the wider

community of complex networks researchers; it is implemented in a software tool, MoNeRe, which is freely available

through the Github platform.

1 Introduction

Large scale networks have increasingly become ubiquitous with the development of the Internet of Things [1], the

smart grid [2, 3] and smart motorways [4]. These networks have also been developed for biological purposes, both to

identify significant genes for the growth of cancer (networked Cox regression [5]) and model whole cell behaviour

(metabolic modelling [6]).

Both networked Cox regression and multi-omic metabolic modelling are new techniques which aim to develop the

more established Cox regression and metabolic modelling. Cox regression attempts to find significant genes within

a dataset of gene expression data. Previously this would have only been found by taking samples from patients or

bacteria. However, with multi-omic metabolic modelling, gene expressions can be incorporated into the modelling

framework, meaning gene expression data can be generated computationally using these models. Where normally it is

difficult to verify the effectiveness of Cox regression, when the gene expression data is created using a computational

model, the same computational model can be used to test the predictions of the Cox regression.

This paper focuses on the metabolic network of Helicobacter Pylori, a bacterium usually found in the stomach.

Originally found in 1982 to be causing stomach ulcers [7] and linked to stomach cancer [8], Helicobacter Pylori

causes no symptoms in approximately 80% of infected individuals and is thought to be important for the stomach

ecology [9].
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Datasets were created using the H. Pylori metabolic

model, the regression was analysed and tuned, and the

success of the overall regression was then tested by at-

tempting to reconstruct the original data. A visual repre-

sentation of the developed work flow is shown in figure

1. The following section contains a summary of related

research, section 3 details the theory and computational

methods required, results and discussion is provided in

section 4 and concluding remarks are given in section

5. The code from this paper can be found at: https://

github.com/vandanparmar/MoNeRe.

Fig. 1: A visual representation of the work flow developed in this
project.

2 Background

2.1 Metabolic Modelling

The emergence of new sequencing methods allowing for

complete organism genomes to be sequenced and the ex-

plosion of computing power over the past 30 years, has

lead to the emergence of Systems Biology as a field of

study [10]. This has allowed increasingly good models

of a cell to be developed. Specifically, models of a cell’s

metabolism (the set of chemical reactions taking place in

the cell) can be made. The first was created by Tomita et

al. [11], however more recent metabolic models are de-

signed to include data from other sources. These include

the proteome (set of proteins expressed by a genome) and

the transcriptome (set of messenger RNA molecules ex-

pressed by the genome) and are collectively known as

‘omic’ data. A multi-omic model of this type can be pre-

dictive [12], often aiming to find unexpected behaviour

which can then be tested in vitro.

Once a model is constructed, analysis is primarily car-

ried out using Flux Balance Analysis (FBA). There are

several existing toolboxes which provide frameworks for

carrying out FBA on genome scale metabolic models, in-

cluding COBRA [13], METRADE [12] and DFBALab

[14], in this study, COBRA will be used for FBA calcula-

tions. FBA is a particularly powerful method, as it reduces

the multidimensional search for an optimal metabotype

(set of fluxes through all reactions in the system) to a lin-

ear program [15], under the assumptions of a steady state.

FBA has been used to model bacteria such as Escheria

Coli [16] and more recently breast cancer cells [17].

2.2 Cox Regression

Cox regression [5] was created as an extension of Kaplan-

Meier survival analysis [18]. Kaplan-Meier survival anal-

ysis aims to find the probability of survival for a species

whilst incorporating data from living individuals. The Cox

model furthers this by including extra data (other than

survival time) about each individual. This data could be

anything, but is most often gene expression data. More

recently, this has been extended by adding network con-

straints [19] both to enhance the regression and discover

networks relating to the regression. This has been used

successfully identify significant biomarkers in predicting

the outcome of Ovarian cancer treatment [20].

3 Theory and Computational Methods

3.1 Network Regression

Network regression [21] is the primary method of Pareto

data analysis used in this study. Compared to linear re-

gression, networked constraints are imposed on regression

coefficients, enforcing similarity between the regression

coefficients of linked genes.

Cox regression [5] is used as a basis for the networked

regression used. The Cox hazard model assumes a hazard

function, h(t|Xi), the risk of death at time t,

h(t|Xi) = h0(t)exp(Xi ·βββ ) (1)

where Xi is the ith gene expression profile, h0(t) is the

baseline hazard and βββ is the vector of regression parame-

ters.

https://github.com/vandanparmar/MoNeRe
https://github.com/vandanparmar/MoNeRe
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Within the Cox model, the regression parameters are

estimated by maximizing the Cox log-partial likelihood,

pl(βββ ) =
n

∑
i=1

δi

{

Xi ·βββ − log

[

∑
j∈R(ti)

exp(X j ·βββ )

]}

(2)

where δi = 0 if the ith individual is alive and δi = 1 if

the ith individual is dead and R(ti) is the set of individuals

alive at time ti.

The network constraints can be added in a variety of

ways [19], in this study a networked penalty, pn(βββ), was

subtracted from the log-partial likelihood,

pn(βββ ) =−λ α|βββ |2 −λ (1−α)βββT
Sβββ (3)

where λ and α are tuning parameters, I is the identity

matrix and S is a weight matrix related to the network. The

second term is the network penalty itself and the first term

is a sparsity constraint, forcing the regression to identify

only a few significant genes. α controls the ratio between

the sparsity and network constraints and λ controls the ra-

tio between the simple Cox regression and the networked

constraints.

S is computed by first computing W, a gene coexpres-

sion network,

wi j = PMCC(gi,g j) (4)

(W)i j =

{

w2
i j w2

i j > ζ

0 w2
i j < ζ

(5)

where PMCC indicates the product moment correla-

tion coefficient, so the values of W are between ζ and 1.

The value of ζ can be tuned to change the connectivity of

the network. The adjacency matrix of the network is thus

the ceiling of W. From this S can be calculated,

(S)i j =



















1 i = j anddi 6= 0

−(W)i j
√

did j

(i, j) ∈ E

0 otherwise

(6)

where di is the degree of the ith node and E is the set

of edges within the network. S is a weighted version of

the normalized Laplacian of a graph [22] and this matrix

is always positive semidefinite (i.e. βββ T
Sβββ ≥ 0).

As S is always positive semidefinite, all terms in the

penalty function pl(βββ)− pn(βββ ) are convex (surprisingly

log∑i exp(Xi ·βββ ) is convex [23]), meaning that convex op-

timization [24] can be used to perform the regression.

In the case of a Pareto front, we perform regression on

each side of the phase transition individually, considering

individuals in one phase to be alive and those in the other

dead. The optimization can then be simply formed as,

max{pl(βββ )− pn(βββ ;λ ,α)}

s. t. |βββ | ≤ 1
(7)

where xp is the value of an objective function at the

phase transition and x j is the corresponding objective

value of the individual.

3.2 Network Reduction

When reconstructing Pareto fronts after completing re-

gression, to further impose network constraints, a subsec-

tion of the relevant network containing significant nodes

can be found. This was done by creating a subset of the

network where each node is at a maximum of one edge

from a node in the subset as shown in figure 2. The proce-

dure for this is as follows,

1. Create a new copy of the graph (to edit)

2. Create a list of nodes, sorted by degree descending.

3. Remove the first node in the sorted list, add it to the re-

duced network, add its neighbours to a list of accounted

for nodes, remove the node from the graph.

4. Update the sorted list of nodes.

5. Repeat steps 2 and 3 until all nodes are accounted for.
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Fig. 2: A network showing nodes included in the reduced network
in blue and others in red. Red nodes are connected to at least one
blue node.
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3.3 Implementation Outline

The code for the project was exclusively written in Python3,

however, multiple libraries were used in conjunction. The

external libraries used were: Numpy, Networkx, CVXpy,

COBRA, DEAP, TQDM. Networkx is used for construc-

tion and calculation on networks, CVXpy for the network

regression, COBRA for handling the metabolic model,

DEAP for the genetic algorithm and TQDM for provid-

ing progress bars for code with longer run times. The H.

Pylori model [25] used is taken from BiGG Models [26].

The code for this paper is available at:

github.com/vandanparmar/MoNeRe.

4 Results and Discussion

4.1 Data Generation

The network of focus in this study is the metabolic net-

work of H. Pylori. To see the way the genetic algo-

rithm works, the Pareto front for the trade-off between

Biomass (the amount of cell growth) and Oxygen up-

take was found, shown in figure 3. After exploring several

trade-offs, this trade-off was chosen as it gives a particu-

larly nice phase transition. The Oxygen, biomass trade-off

is also closely linked to energy, thus we thought it likely

that many genes would be involved. The values for Oxy-

gen uptake are negative, thus maximising this has the ef-

fect of attempting to reduce the amount of Oxygen ab-

sorbed by the cell. This graph therefore shows the compar-

ison of growth rate in aerobic compared to anaerobic con-

ditions. We thus might expect that there would be a phase

transition between the aerobic and anaerobic regime.

The Pareto front was calculated again, with both more

individuals in each generation and more generations, as

shown in figure 4. This shows a phase transition, with

the Pareto front changing gradient from -0.051 to -0.059

either side of the transition. Transitions like these were

found with a range of different objective functions. In or-

der to investigate these, a simplified model was created.

4.2 Loopless FBA

It is clear that the initial flux bounds used within a model

are significant. Changing flux bounds is equivalent to

changing the environment (both internal and external) that

a cell is operating in. In the literature, FBA is typically

used to investigate a specific function or behaviour only,
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Fig. 3: Graph showing the progression of the genetic algorithm,
forming the Pareto front between Oxygen uptake and Biomass (cell
growth rate). Points from earlier generations are in green, points
from later generations are in purple. The general progression is to
the upper right quartile, the non dominated area.
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Fig. 4: Graph showing a Pareto front with more points than in figure
3. This Pareto front shows a phase transition, the gradient of the
Pareto front changes from -0.051 to -0.059 on either side of the red
star indicating the phase transition point.

appropriate flux bounds can thus be found from experi-

mentation or to enforce desired conditions [6]. However,

in this case, we are looking at arbitrary pairs of objectives,

where the large flux bounds used in the H. Pylori BiGG

model [26] are not appropriate.

To find reasonable upper and lower bounds for each re-

action, we use a technique known as Loopless FBA. This

adds an additional thermodynamical constraint to FBA,

which makes loops or cycles infeasible. Loopless FBA

(implemented in the COBRApy toolbox [13]) was used

to maximize and minimize the flux through each cell re-

action. The maximum and minimum flux through each re-

action across all of these runs was then used as the initial

github.com/vandanparmar/MoNeRe
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flux bound. In this way we avoid the need for biological

data to set specific reaction constraints, though in practice

this would still be ideal.

4.2.1 Parameter Comparison

The Cox based network regression, as described in sec-

tion 3.1, has 3 parameters that can be tuned. λ controls the

ratio of the network constraints to the simple Cox regres-

sion, α controls the ratio between the network constraint

and the sparsity constraint and ζ controls the connectiv-

ity of the gene coexpression network. These values can be

found using cross-validation.

To analyse the performance of network regression with

differing parameters, two test data sets will be used. One

from the Oxygen, Biomass trade-off shown at the be-

ginning of section 4, but with the new flux bounds, the

other from a Carbon Dioxide, Biomass trade-off. Figure 5

shows the Pareto fronts in both cases. These were chosen

as they are very different data sets, the Oxygen trade-off

is very dense whereas the Carbon Dioxide trade-off has

very few points.
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Fig. 5: The Pareto fronts from the Oxygen and Carbon Dioxide
trade-offs with Biomass. The Oxygen trade-off is particularly dense,
whereas the Carbon Dioxide trade-off is very sparse.

4.3 Pareto Reconstruction

The regression parameters used were (α = 0.5,λ = 1.0,τ =
99). From this, the effectiveness of the network regres-

sion can be tested. Using exclusively the gene expression

data, without knowledge of the metabolic or genetic net-

work, the significant genes can be set to particular values,

whilst leaving insignificant genes to take random values.

The objectives can then be calculated using the generated

gene expression data and compared against gene expres-

sion data comprised of pure noise.

The relevant measure of spread for the values of β is

the interquartile range. A significant value (outlier larger

than the mean) is classed as a value one interquartile range

larger than the mean. The network of significant genes is

then the network formed from the subsection of the gene

coexpression network containing only significant genes.

These are shown in figures 8 and 9. The green nodes are

those that are more significant and red nodes are less sig-

nificant. The names used are taken from the metabolic net-

work. Red edges are those from a coexpression network

with τ = 95 compared to 99 used in the regression itself

which are indicated in blue.

With the significant genes identified, a distribution of

noise must be chosen for the insignificant genes. To choose

this, we look at the distribution of gene expression values

in the original dataset. From figure 6 the distribution of

insignificant genes appears to be uniform between 0 and

2.
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Fig. 6: Histogram of the distribution of gene expression values in the
Pareto datasets. This appears to be a uniform distribution between 0
and 2.

Values for the significant genes, are chosen as follows.

Key nodes are identified using the network reduction tech-

nique described in section 3.2, values from the original

data are selected for each of these nodes. Values for other

significant nodes are chosen to be values from the orig-
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inal dataset corresponding to adjacent key nodes. By do-

ing this the existing distributions of values is kept for each

of the significant nodes and the network relations are en-

forced.

This process gives a new set of gene expression data,

the objectives for this data can be calculated and a new

Pareto front constructed. These reconstructions are shown

in figure 7, there are 800 points constructed from the re-

gression (400 left, 400 right) and 400 points constructed

from pure noise. The Oxygen reconstruction is not partic-

ularly successful, the random data appears to do as well

at constructing the Pareto front as the reconstructed data.

However, for points on the left hand side of the Pareto

front, the reconstructed data is a more successful. The

Carbon Dioxide reconstruction is, however, clearly more

successful. The red points constructed from the regression

on the left hand portion of the Pareto data are considerably

more successful than the green noise points.
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Fig. 7: Reconstructed trade-offs using gene expression created based
on the network regression. Points created from pure noise are in
green, those from the regression on the left hand side of the Pareto
data in red and right are blue. The Carbon Dioxide reconstruction
appears to have worked well, whereas points based on Pareto data
seem similar to those created from noise for the Oxygen trade-off.

5 Conclusions

Networked Cox regression was used, for the first time, to

analyse data from a multi-omic metabolic model of H.

Pylori. It is clear that the flux bounds used within the

metabolic model are significant, this prompted the use of

loopless Flux Balance Analysis to choose the flux bounds

in this instance.

Two example datasets were then chosen to tune the pa-

rameters for the network regression, a Biomass and Oxy-

gen trade-off and a Biomass and Carbon Dioxide trade-

off. These were chosen as the Carbon Dioxide trade-off

has a small number of points whereas the Oxygen trade-

off has a far larger number of points. The regression pa-

rameters used were (α = 0.5,λ = 1.0,τ = 99).

With regression variables for each dataset chosen, an

attempt was made to reconstruct the original Pareto data.

The distribution of gene expression values in the origi-

nal datasets were used to choose a noise distribution, uni-

form from 0 to 2. Significant genes were then chosen from

the regression variables, those that were one interquar-

tile range above the mean. The reduced network of these

genes was then constructed. Significant genes in the re-

duced network selected values from the original dataset,

nodes adjacent to the significant nodes selected values

corresponding to those of the adjacent significant nodes.

Non-significant genes were left as noise. From this new

gene expression datasets were generated and the objec-

tives calculated. The reconstruction for the Oxygen data

did not seem to be very different from the noise distri-

bution, except for the values on the left hand side of the

Pareto front. In contrast, the reconstruction of the Car-

bon Dioxide data was successful, with exclusively recon-

structed points forming the Pareto front.

In summary we present a computational framework for

the integration and analysis of biological network data.

Such a challenge can be mapped into three main computa-

tional problems: (a) data integration: merging data at dif-

ferent scales (multi-omic data) is necessary to understand

the different levels of network evolution and how these

levels interact each other; (b) high dimensionality: multi-

omic data exists in a high dimensional matrix describing

the expression level of each gene or protein; (c) merging

statistical and biological knowledge in genomic data anal-

ysis: accurate data analysis cannot be performed using

only statistical approaches, but rather a priori biological

knowledge needs to be included in the final computational

framework. Indeed, appropriate data investigation should

be based both on statistical and biological knowledge in

order to merge the information that can be extracted from

the data (statistical information) and the biological knowl-

edge (marker related information already known in litera-

ture).
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The methodology and the software presented in this

work could be used for a variety of research useful to the

molecular biology community. For example, in bacterial

genomes there are high levels of functional redundancies

which represent mechanisms employed in cells to achieve

robustness. These mechanisms allow, under different en-

vironmental conditions, very different sets of reactions to

compensate for one another [27]. An interesting applica-

tion of this method is the possibility of integrating differ-

ent metabolic networks or different multi omic networks.

Another application is the study of the metabolic model

of the human (for example from Recon 2) and reconstruc-

tions for the dozens of bacterial species forming the gut

microbiome.
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Fig. 8: Significant gene networks for the Carbon Dioxide data. See
figure 9 for further explanation.
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6 Code Guide

The code is written in such a way as to enable the user to avoid as much of the underlying complexity as possible. A

guide to producing results similar to those listed in this paper follows;

1 i m por t cob ra
2 i m por t p a r e t o
3 i m por t p a r e
4 i m por t n e r e

Cobra, the pareto, pareto reconstruction and network regression files are imported. Next the model is loaded and

the objectives are chosen. The example listed is for the E. coli model found on BiGG models.

5 m o d e l s t r = ’ iJO1366 . j s o n ’
6 model = cob ra . i o . l o a d j s o n m o d e l ( m o d e l s t r )
7 o b j 1 s t r = ’ BIOMASS Ec iJO1366 core 53p95M ’
8 ob j 1 = model . r e a c t i o n s . g e t b y i d ( o b j 1 s t r ) . f l u x e x p r e s s i o n
9 o b j 2 s t r = ’ EX O2 e ’

10 ob j 2 = model . r e a c t i o n s . g e t b y i d ( o b j 2 s t r ) . f l u x e x p r e s s i o n
11 f i l e n a m e = ’ t e s t d a t a . j s o n ’

Basic parameters for the dataset generation, regression and reconstruction can then be set.

12 LAMBD = 1 . 0
13 ALPHA = 0 . 5
14 CUTOFF = 99
15 GENS = 20
16 INDIV = 200
17 NODES = 40
18 RECON POINTS = 200
19 CORES = 0

Here, the values of (λ = 1.0,α = 0.5,τ = 0.99) are used and typical values for the number of generations, individuals

per generation and reconstruction points. This would use the single threaded version of the code, but ‘CORES’ can be

set to the desired number of cores to be used in order to enable multithreading (with 0 using the sequential version).

Running Pareto data generation and storing to initial JSON file.

The initial Pareto data can then be generated. This data is converted into a dictionary which can then be easily

stored within a JSON file.

20 pops , va l s , p a r e t o d a t a = p a r e t o . p a r e t o (GENS, INDIV , model , obj1 , obj2 , c o r e s = CORES)
21 t o s a v e = { ’ o b j 1 s t r ’ : s t r ( ob j 1 ) , ’ o b j 2 s t r ’ : s t r ( ob j 2 ) , ’ model ’ : m o d e l s t r , ’ p a r e t o ’ : [{ ’

ob j 1 ’ : p . f i t n e s s . v a l u e s [ 0 ] , ’ ob j 2 ’ : p . f i t n e s s . v a l u e s [ 1 ] , ’ g e n e s e t ’ : l i s t ( p ) } f o r p i n
p a r e t o d a t a ]}

22 w i t h open ( f i l enam e , ’w’ ) a s o u t f i l e :
23 j s o n . dump ( t o s a v e , o u t f i l e )

Running the network regression and storing in JSON file is simply done with a single command.

24 n e r e . a d d l i n e a r r e g r e s s i o n ( f i l enam e , CUTOFF)

The Pareto Reconstruction can then be added to the JSON file.

25 p a r e t o l e f t , p a r e t o r i g h t , p a r e t o n o i s e , p a r e t o y , p a r e t o x = p a r e . r e c o n s t r u c t ( f i l enam e , NODES,
RECON POINTS , model , obj1 , obj2 , c o r e s =CORES)

These individual parts are all stored within the JSON file, so can then be easily plotted at a later date, and a batch

script can easily be used to generate large amounts of complete data.
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