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Thesis Summary

"A Microprogrammed Operating System Kernel"
Andrew James Herbert

St. John's College

The subject of the thesis is the design and implementation of an
operating system kernel for the Cambridge Capability Computer (CaP).
The kernel of an operating system is its most primitive level of facilities
and forms the foundation stone around which the rest of the system is
structured.

The particular emphasis of the CAP kernel is concerned with protection -
the control of access to information. The kernel uses the notion of
capabilities to provide a flexible and controlled mechanism for the sharing
of information within a computer system. The protection mechanisms include
provision for the efficient: control of access to menory as well as facilities
for handling abstract resources like files and virtual peripherals. The |
kernel allows the introduction of new types of resources in addition to the j
basic set of hardware resources to permit user extension of the systen. ‘
Attention is given to the problem of recall of privilege or revocation in
capability systems and the kernel includes operations for both permanent and
temporary revocation of particular access rights to information in a selective
manner.

In the past many of these functions have only been found in kernels
implemented in user-level software which are frequently cumbersome and
inefficient. An examination is made of why this should be and- how efficiency
and simplicity can be gained by a microprogrammed implementation. The thesis
draws on the experience of a number of software kernels to discover the various
design decisions that have to be made and the techniques that may be used to
implement a successful kernel.

The feasibility of the design arrived at by considering these issues
is demonstrated by describing its implementation on the Cambridge Capability
Computer in terms of the primitives provided and the internal organisation
of the proposed kernel. 1In an evaluation, the kernel is examined in the light
of the analysis of other kernels to paoint out its strengths and weaknesses
and to gain insights into the utility of the design as a practical operating
system kernel, ' :
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CHAPTER ONE.

INTRODUCTION,

1.1. Overview..

The subject of this thesis is the design and implementation of
a mnmicroprogrammed operating system kernel. The kernel of- an
operating system is the most primitive level of the system and
forms the foundation of the rest of its structure and so it is
important that the kernel is well-designed and efficient if the

entire system is to be successfuls

An operating system can be considered as a mapping between
rudimentary hardware resources and the advanced facilities of an-
abstract machine. The duties of a kernel include the provision of
mechanisms for performing this mapping and also making abstract
resources such as files and virtual mnmemory available to users
through some addressing and access control schemes. The
cost-effectiveness of an operating system can be judged by
weighing the benefits of an elegant abstract machine, such as ease
of use, against its cost, both in terms of development and the
machine cycles consumed in its operation. The effectiveness of an
entire system will be greatly impaired by any weaknesses or
inefficiencies in -the kernel and this is the -motivation for
investigating the structure and organisation of operating system

kernels,

The major concerns of a kernel are protection (the control df
access to information by programs running within a computer
system), multiprogramming, I/0 control and fault handling. This
thesis 1is primarily concerned with the protection aspects of
kernel design and the influence of protection on the other kernel
functions. A protection architecture which permits flexible and
controlled sharing of information by all programs; including those
that make up the operating system will be described in the latter

part of this thesis.

Many operating system kernels have been implemented in

software rather than microprogram. Normally they execute in a
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highly privileged special state or supervisor mode in which powers

are available that allow the contents of processor deScriptor
registers, and so on, to be modified. The close relationship
between the kernel and the underlying hardware means that it is
usual to find that the kernel has been written as a large
" monolithic assembly code program because of the difficulties of
writing compilers to generate compactlfast code that interfaces in
a straightforward fashion with the hardware primitives used. - In
consequence, such kernels are difficult to verify and debug, even
if great care .is taken to ensure that code is wfitten and tested

in a well-structured and organised way.

In general, a software kernel preserves a lot of information
about the state of the hardware so that it may decide what action
to take in response to a kernel call by a program. It is
therefore necessary for the kernel to carry out all operations
that involve modifying hardware protection registers and the like;
even quite +trivial functions have to be directed through the
kernel so that changes to the state of the hardware can be
recorded. This will involve the considerable overhead of
establishing kernel calls, which might include preserving and
restoring the state of executing processes, and checking the
arguments presented against tables of privileges before any
function can be carried out. There is also a temptation,; if an
operating system service does 1little else beyond a series of
kernel calls, to build it into the kernel and this further
compounds the problem. Much of the clumsiness of a scftware
kernel comes from a lack of intimacy with the hardware of the
underlying machine that carries out the operations programmed in
the kernel and this 1leads wus to <consider the wuse of a
microprogrammed kernel because of the closer association between

microprogram and the basic hardware.

Microprogramming is a long established : technique for
organising computer hardware [Wilkes 51]. Microprogramming has
many properties that aid the development of machines which include
complex operations in their instruction repertoire. A
microprogrammable machine consists of a simple, fast microprogram

processor with rudimentary logical, control and arithmetic
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facilities that executes microinstructions held in a microprogram

memory. The microprogram emulates user instructions by activating
other parts of the machine in the correct sequence and arranging
for the passage of data through' the machine's registers. If the
user machine is to be reasonably fast, the microprogram must be
fetched from microstore and executed at high speed. 1In the past,
when the cost of very fast memory was high, microprogram memories
were very small, but now with falling hardware costs owing to
large scale integration (LSI) technology, quite substantial
memories of sufficient speed can be obtained for a reasonable
brice. This enables critical components of the software of a
system to be put into microprogram to reap benefits in the areas
of high level facilities and efficiency; for example, the GEC 4000
range of computers [GEC 72] have a microprogrammed nucleus that is
respons;ble for the control of multiprogramming, synchronisation

and inter-process communication.

There are other advantages apart fron efficiency to be gained
from microprogramming. A microprogrammed operating system kernel
has a much greater degree of intimacy with hardware addressing and
protection functions, interrupt handling and sc on than a special
state supervisor for a conventional machine. This makes it easier
for the kernel to provide a powerful machine to users without the
expense'of kernel calls in software, because the microprogram is
better placed to carry out access checking and argument
verification cheaply as part of the normal hardware instruction
decoding and addressing operations. Kernel functions can be
encoded as a single instruction at the user level which means that
interfaces tend to be simple in terms of a few_ arguments in
registers and kernel calls are uhiform with the hardware
instruction and addressing formats. On‘ the other hand,' in a
software kernel it is easy to make interfaces very complex and

confusing for users.

It is an unfobtunate fact of life that microprograms are on
the whole harder to write and 1less easy to wunderstand than
assembly code programs. This is because microinstructions spécify
the operation of basic hardware components rather than the higher

level logical functions expressed by machine instructions.
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Furthermore, debugging is not straightforward as it requires use
of the raw hardware for hands-on access which is wasteful of
computer resources, whereas software _systems can ‘be tested
concurrently on a time-shared system with other programs and can
be written in high level languages. There is often insufficient
room in microstore to include both a development microprogram and
a debugging system, so that a lot of testing has to be carried out
with just the aid of register display lights and control switches.
To some extent these difficulties can be avoided by the use of a
microprogram processor simulator, although it must be ensured that
the simulation faithfully duplicates the hardware because
microprogrammers are fond of taking advantage of hardware
peculiarities and side-effects to save on instructions or time.
If oddities are not carefully duplicated in the simulation, there

is a strong likelihood that a microbrogram will behave wrongly on

the real machineg.

Even in these days of large semiconductor memories,
microprogram memories are usually of modest size, often only a few
thousand bytes, which greatly restricts the amount that can be
included in a microprogrammed kernel, whereas a software kernel
may be many hundreds of thousands of bytes 1long. On the other
hand, if there 1is microprogram memory space available, it 1is
tempting to put more and more into the kernel on the grounds of
efficiency, with the result that the kernel becomes cumbersome,
unwieldy and much harder to debug fully and test. The key to
microprogramming operating system kernels is the correct
identification of those primitives that rightly belong in the

kernel and those that should be left to software.

Microprogrammed machines may not be as fast as those built in
hard-wired logic because of the overheads of fetching and decoding
microinstructions. This is the penalty paid for the ability to
implement highly complexbfunctions and to change the nature of the
machine by modifying its microprogram. Some speed can Dbe
recovered by providing functions sSuch as user instruction
decoding, address translation and protection checks in raw
hardware and leaving the microprogram to handle more difficult

things, at a 1loss of some flexibility in the range of
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architectures that can be presented at the user level.

1.2. A Wider View of Protection.

The bulk. of this thesis 1is concerned with mechanisms for
protection [Lampson 71, Jones 73, Graham 68, Saltzer and Schroeder
75],.which can be defined as the control of access to information

by executing programs. Protection is just one facet of the
overall issue of computer security [Ware 67, Anderson 73, Branstad
73, Hoffman 73]. In recent times, computers have been used more
and more as repositories for large volumes of information of a
confidential or proprietory nature, shared by a large community of
users who are unwilling to trust one another not to steal or
access private data. The social and 1legal implications of
retaining information within a computer have genérated a
requirement for the formulation of policies goverhing the security
of computer systems [U.S. Department of Health, Education and
Welfare 73] and to implement such policies there is is a need for
a technological framework within which it is possible to discuss

and judge the security of a computer systemn.

Aspects of security include hardware reliability, secure
communication between terminals and computers, authentication of
access to machines and the physical security of the computing
system hardware and ancilliary equipment such as magnetic tapes
and discs. These external issues of security can be characterised
by the property that it is not possible to achieve total security
in any of them; instead the measures taken to enhance security can
be judged only in terms of the cost-effectiveness of reaching some
level of quéntified optimism about the degree of security

attained. The notion of the work factor involved in breaching the

security measures is often used as an indication of the amount of
effort that must be expended to defeat security, and in many cases
to diécourage deliberate attack it is sufficient to ensure that
the cost of the work done exceeds the value of the information
that is illegally obtained. A system is only as strong as its
weakest component and if the security of the system is undermined
at any point allrother aspects of it including protection, are put

at risk.




If an artificial view of the real world in which external
security can be guaranteed completely is adopted, it is possible to
describe protection mechanisms which enable positive and absolute
statements to be made about the security of information within a
compﬁter system in terms of which programs may access information
and change it. This approach is useful despite its divergence
from reality because, if protection gcan be established within a
computér system, it is only necessary to concentrate upon the.
external aspects of security, safe in the knowledge that the
system cannot be subverted from within. The protection state of a
computer system can be represented'by an accéss matrix [Lampson
71] whose columns correspond to items of information and whose

rows refer to programs as shown below:

program item
' A B C D , %
a -~ RW
b R - - R
e RW - - -
d RW - RW R

Program a has R (read) access to items A,B,D and also W (write)

access for D, but is unable to access item C at all. Indeed, item
C can only be accessed by program d. Obviously, in a real 1life
system, an access matrix is vast, with entries for many items of
information and programs. In the design of a protection system it
is necessary to look for some suitable representation of the
information in the matrix. There are two main approaches: (i)

access control 1list systems such as MULTICS [Organick 72] in which

each item has associated with it an access control 1list that
encodes the information in a column of the matrix, stating which
~programs are allowed access to the iteﬁ, and (ii) capability
systems [Dennis and Van Horn 66, Lampson-69 and Needham 72] where
each program is given a set of tickets stating which privileges
are possessed by the program in respect of each item; that is to
say, a program's set of capabilities is an encoding of a row in

the access matrix.

It is fairly straightforward to arrange that information

belonging to one program cannot be ‘accessed by another, but in
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general it should be possible to allow information to be shared by
programs with possibly differing degrees of privilege; for
example, in the access matrix above, the item A 1is shared by

programs a, b, ¢, d with read access, but only d has the ability

to write to it. 1In a closed community, programs and data might be
shared with no restrictions, in a spirit of free cooperation, but
"if the computer is éhared by a general public with competing
interests, users will not trust one another and the sharing of
information will take on the nature of commercial bargaining in
which each party to a transaction is suspicious éf the others.

Schroeder calls this mutual suspicion [Schroeder T72]. A

protection mechanism must be able to support controlled sharing in
this sort of environment. For example, it should be possible for
one user to allow another to have use of a program performing some

service, while at the same time not allowing him read access to

the binary code of the program, so that it may not be stolen or

misused.

The level of trust between users will change with time and the
owner of a privilege may subsequently wish to restrict use of it,
perhaps because a user has defaulted on the payment of a rental.
The action of recalling a privilege is known as revocation.
Revocation may be temporary, and privileges might subsequently be
restored when circumstances change. Sometimes it is only desired
to recall a particular privilege while leaving other privileges
for the object undisturbed, and this is known as . partial

revocation.

To summarise, protection is just one aspect of computer system
security and protection mechanisms must be able to support a
variety of protection policies that reflect the relationships

between users of a system and the information it retains.

1.3. A Framework for Discussion.

For this discussion, it is convenient to regard an operating
system as an abstract machine that defines operations which can be
carried out on a set of abstract objects such as files, I/0
streams and virtual memory. The operating system is responsible

for the mapping between basic hardware resources and the the set
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of objects. Each object has an attribute known as its type which
specifies the set of operations that can be meaningfully applied

to it.

There are many types of object. Processes are the most
important from the point.of view of protection because a process
is the unit of execution and represents the locus of execution of
a virtual processor through a procedure or sequence of code. The

state of a process 1is held in a process base or .state vector.

Processes can synchronise and exchange information 'with one
another by use of an inter-process communication system. At any
time a process will have a set of privileges describing the

information to which the process is allowed access.

Only capability-based systems are considered in this thesis.
A privilege is represented by a capability that specifies both an

object and an access code describing the privileges the capability

confers. A capability is not an object; it 1is a ticket of
permission that cannot be forged or corrupted. Capabilities are
stored in memory marked in some way to distinguish them from
ordinary data and it is not possible for arbitrary programs to
mark items in memory; otherwise, it would be possible for users
to manufacture bogus capabilities. Processes can share access.to
a common object by having copies of a capability for the object,
each containing identical information about the substance of the
object, although the access codes might differ if the various

processes have unequal rights of access. A process can share its

privileges with others by distributing copies'of capabilities and

if one of these capabilities is subsequently revoked, all copies

derived from it must also be revoked.

LY

The set of privileges owned by a process at a given time form

a protection domain. The privileges of the process can be altered

either by transferring capabilities in or out of the current
domain, or by switching to another domain. In capability systems,
domains consist of a set of capabilities that form an environment,
one component of which is the code associated with the domain.
Execution is switched between domains by use of a domain ecall

primitive which has a domain capability, specifying the

environment of the called domain, as its argument. After a domain
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call, execution continues with the privileges of the called domain
made available and those of the calling domain made inaccessible.
Control is always transferred to a predetermined starting address -
in the procedure of the new domain so that the domain's privileges
cannot be misused by Jjumping into its code at somé random point.
The process may call other domains for which there are
capabilities in the current domain's environment. When execution
in the.domain has finished, a domain return operatidn is performed
which resumes control in the original calling domain immediately
after the point at which it was left, with the privileges of the
called domain disabled and those of the caller restored. The
"domain call mechanism is very similar to the notion of a
subroutine in a high level language and the similarity extends to
inter-domain commﬁnication by a parameter mechanism which permits

capabilities to be transmitted between protection domains.

An important property of a domain architecture based on
capabilities is that it is non-hierarchical and can be used to
model situations of mutual suspicion because the capabilities of
different protection domains can be disjoint. This means that the
only privileges that can be acquired by a called domain from its
caller are those passed as arguments in the ~domain call.
Similarly, a calling domain has no influence on the privileges of
the called domain and can only gain capabilities that are returned

as results.

So far, domains have ©been characterised passively as
repositories for capabilities and code in which a process can
execute. However, it is often useful to consider a domain in é
more active sense as the exercisor of the privileges bound into it
whenever a process executes within the domain and the term
'domain' will be used for either interpretation provided that any

ambiguity can be resolved by the context of its use.

The memory of a domain will be aésumed to consist of a number
of segments [Dennis 65] each of which consists of contiguous
addressable items. To be able to protect small data structures
effectively, a protection mechanism must be capable of protecting
many small segments only a few words in length as well as larger

ones. It is also necessary to be able to generate capabilities
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for only some portion of a segment and this can be achieved by
holding refinement information in a capability for a segment to
select some sub-segment of the total segment referenced by the -

capability.

1.4, Extensibility

In the design and construction of large software systems there
is need for a suitable design methodology to describe the ‘
relationships between all of the components of the system so that
its comblexity can be reduced to manageable proportions. Perhaps
the most promising scheme is that of layering in which the system
is constructed as a base level or kernel surrounded in an onion
skin like manner by a series of extension layers. Each layer
enriches its environment by adding to the features provided by the
inner layers to produce an enhanced environment for higher layers.
The CAL-TSS operating system was designed as a sequence of
protected layers and the technique proved successful in aiding the

construction of the system [Lampson 76].

The primary rule of the methodology is that knowledge about
higher layers must not be built into lower layers. This 1is so
that, in conjunction with the obvious precaution of protecting
lower layers against interference from higher layers, there will
be a structure in which modifications to, and malfunctions of),
higher 'layers cannot affect the correct functioning of lower

layers in the systenmn.

From a top-dowh point of view the construction of a layered
design can be seen as the successive decomposition of a complex
system into simpler functions until eventually, in the kernel,
they can be directly mapped onto hardware operations. On the
other hand, a bottom-up view shows each' level of extension as
transforming some pre-existing system into a more complete
environment by adding useful new features and facilities. This
latter view is the most appropriate in the case of extensions
written by users Eo tailor the system to suit their requirements,
although to a considerable degree the exact distinction between

Systems programs and user programs becomes blurred in a layered

system.
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In the object oriented approach, extensions are viewed as
defining new types of object and providing the operations that
manipulate them. Each layer in the system can be thought of as
providing a new abstract machine whose operations are constructed
out of the operations of the abstract machines running in inferior
layers. The objects provided by extension layers are described as
extended objects and they are represented in terms of objects
adminiétered by lower layers. In general, representations are
concealed from the users of extended objects who see these objects
as atomic items. The manipulation of extended objects in terms of
modifications to their representations is the duty of software
running in the level providing the extension. An obvious
constraint is that the layer providing the abstraction of a new
extended object must not be able to subvert the layers providing

the types of object it uses to implement its own types.

In an operating system kernel, the sort of abstract objects
expected are files, directories, I/0 streams and so on. The base
level protection mechanisms of the kernel must be capable of
exténsion to provide access control and naming functions for these
objects in a manner uniform with that used for with hardware
resources. The features of a kernel for coping with extended

objects are known as type-extension features.

1.5. Scope of the Thesis.

The work described in this thesis follows up work on the CAP
project which led.to the building of a microprbgrammable processor
for investigating a powerful and efficient memory protection
architecture based on capabilities [Needham 77, Needham and Walker
7T7]. The CAP project successfully demonstrated the usefulness of
capability-based protection in the construction and debugging of
an operating system. The protection mechanisms of the CAP machine
were all microprogrammed, which greatly contributed to their

simplicity and efficiency.

By concentrating purely upon memory protection, the CAP
microprogram lacked some of the more advanced features of software
kernels such as HYDRA for C.mmp [Wulf et al. T74] and CAL-TSS

[Sturgis 73, Lampson and Sturgis 76] in the area of type-extension

-11=




and revocation of access. The aim of the research leading to this

thesis was to ‘investigate the possibility of providing a kernel in
microprogram which was comparable with the software kernels, but
retained the effectiveness of the CAP memory protection
architecture, especially with respect to efficiency. It was also
decided to investigate some other addressing and naming strategies
in the new kernel both because they aided the introduction of new
facilities and also to compare the various mechanisms used in
protection systems. The work involved designing a kernel and
implementing it in microprogram for the CAP machine as a

substitute for the memory protection microcode.

The CAP has a modest amount of microprogram memory (4K of
sixteen bit words) which has to hold code for emulating basic
instructions and organising I/0 in addition to protection
mechanisms, so the range of facilities that can be considered;is
fairly limited, although not too severely. The CAP processor
includes hardware for instruction decoding, virtual address
translation and carrying out access checks, which helps both to

reduce microprogram length and to increase efficiency.

This thesis falls into two parts: the first seven caapters
deal with the design of protection kernels and ths remaining six
chapters describe the' implementation of a kernel for the CAP
machine, whose design evolved from a consideration of the issues
discussed in the first part. This latter. part 1is entirely
‘original work, whereas the first part compares and analyses work

by others which is acknowledged appropriately in the text.

Chapter Two is devoted to a description of the design aims and
guiding principles involved in kernel design. Chapter Three deals
with the ways in which capabilities can be associated with
objects, and Chapter Four explores the relationships betweeén
capabilities and addressing mechanisms. Chaptets Five and Six
deal with type-extension and revocation and in Chapter Seven there

is a discussion about protection domains and processes.

Part Two starts at Chapter Eight in which there is a detailed
description of the CAP hardware which provides the basis for

Chapters Nine to Eleven that describe the following aspects of a
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kernel for CAP: basic mechanisms, type-extension and revocation
scheme and a process and protection domain architecture. Chapter
Twelve gives a detailed description of the internal organisation
of the kernel microéode. The final thirteenth chapter reviews and

evaluates the kernel and looks towards future research.
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CHAPTER TWO.

KERNEL DESIGN PRINCIPLES.

2.1. Protection Mechanism Design.

From their experience with the construction of protection
systems, many people have proposed guidelines for the design and
construction of successful systems and these are enumerated by
Saltzer and Schroeder [75] in their paper on protection. 1In the
following paragraphs these principles will be examined to see how
they influence the design of a protection kernel and, in the next
section, particular attention will be paid to their implications
for a microprogrammed kernel. Many of the design principles may
may be described as common sense and they are applicable to all

aspects of system design, not just to protection.

It is universally acknowledged that a simple small design is
better than one which is 1large and complex because it is mnuch
easier to check the correctness of its implementation (by simple
line-by-line inspection of its code, for example) and also because
it is 1likely to be more efficient. If the number of functions
carried out by a mechanism is small, it is a simple task to
exhaustively test all of its operations to verify their accuracy.
v An economy of mechanism has benefits for the users of the system
too, as the amount of information they have to learn will be
small, and this increases the likelihood that they will understand
the mechanisms and use them effectively. To the system designér
this principle suggests that he ought to consider carefully the
primitives he is going to supply and ~ruthlessly remove any
facilities which are redundant or unlikely to be used. An analogy
may be drawn from the language Algol68 [Van Wijngaarden et al. 76]
whose basic constructs are designed to be 'orthogonal'! in the
sense that to achieve a particular effect it is obvious which
construct is appropriate. It is clear that the benefits of a
compact design must be traded against any loss in the number of
functions provided by of the system or inefficiency caused by the

lack of an important operation.
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In a protection system it is important to arrange that the
default relationship between programs and information is that of
'no access permitted' until an appropriate privilege has been duly
checked. This is true of capability systems because every access
to an'object must be accompanied by a capability that is inspected
before the access can proceed. The explicitness of privilege in
this sort. of arrangement makes it easy to find out which objects a
program can access by looking at 1its stock of capabilities.
Furthermore, if the default state is to refuse access, any error
in a program has 1less chance of causing harm by spoiling

information to which it has no right of access.

In Chapter One it was noted that the degree of privilege
possessed by a program will change with time and it is therefore
not sufficient to perform access checks statically or just once
only on the first access to an object, because subsequently the
execution of a program running in parallel may cause an access
code to be modified by revocation of a capability. This implies
that there must be complete mediation, whieh is to say that every
access to an object must be verified independentlj of whether or
not the access has succeeded in the past. This imposes a
system-wide view of protection. independent of considerations of
the structure and constitution of objects and provides the
motivation for designing protection mechanisms as a low level
component of a system. However, the implementor of a kernel does
not have the full benefit of protection machinery and has to rely
on weak hardware support for protection. For -this reason, a
kernel should contain as 1little as possible in the way of
facilities beyond basic protection primitives so that as much of
the system as possible is built upon the protection mechanism as
its foundation to obtain a greater 1level of ruggedness. By

contrast, in software kernels like HYDRA and CAL-TSS it is common

to find that the kernel is a substantial operating system in its
own right and makes little use of its own protection services.
The designer of a kernel should aim to implement the basics of his
protection machinery as a simple, small core which is then used by
every other component of the kernel to access objects so that the

kernel does not have private (and therefore suspect) protection,
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naming and addressing schemes. Access control must pefsist at all
stages in the life of a system from initialisation through normal
running to shutdown. For example, it should not be possible for a
user to tamper with the information that is to be loaded at the
next system start up while the‘system is running, otherwise he
could modify the system to pass him privileges illegally the next

time it is reloaded.

A protection system that relies on the concealment of a secret
or password to ensure the non-subvertibility of its mechanisms
should be treated with suspicion because the security of the
system will not be assessable in absolute terms. Passwords belong
to the external realms of authorisation of access and it is only
possible for a protection mechanism to prevent unacceptable access
to secrets; it is not safe to assume that secrets can neither be
guessed nor deduced from the observation of external events.
Reliance should not be placed on the concealment of system code as
a protection mechanism either, because if the protection gystem is
free of secret algorithms, it can be reviewed independently by
sceptical users without fear of abuse. This builds up the trust
held in the sysﬁem by its users and if the protection mechanism is
audited independently by several people; the probability of

outstanding errors remaining within it is decreased.

The ruggedness of a protection mechanism is greatly dincreased
if it requires the presence of two 'keys' to open a 'lock' because
no single mishap can lead to a breach of security. The major
example of the separation ofiprivilege in protection schemes is
that of type managers whieh are programs responsible for looking
after all objects or resources of a particular type. A type
manager usually has privileges relating to the class of cbjects as
a whole, such as being able to create objects in the class or to
alter = their representation, whereas the privileges to use
particular members of the class are distributed amongst the users
of the system. The only time at which a particulér object can be
modified is when two keys in the form of a privilege for a
particular object and a privilege for the class of objects to
which it belongs are brought together when the user responsible

for the object passes a privilege for it to the type manager.
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Possibly the most important design principle is that of

minimum privilege, or as it is known in security conscious
evironments, "the need to know", which is to say that a program
should only have access to the information strictly necessary to
carry out its function. In a capability system, this means that a
protection domain should contain just those capabilities essential
to completing its task and that a complex series of operations
should be divided out amongst a set of domains, each element of
which performs a simple, well—defined job and has exactly the
privileges required to carry it out. Putting firewalls into a
system in this way limits the propagation of damage after an error
because only the few objects accessible to the erring domain ecan
be harmed. It is also easier to locate errors because any failure
can be directly accounted to the domains that have access to the
information damaged by the error. A common practicé is to
associate a protection domain with each distinet data structure or
abstraction so that a domain is rather like a module of the sort
proposed by Parnas [72]. This organisation has the advantage that
all of the operations for an abstraction -are located in one place
and it is éasy to lget interlocks right and to -ensure the
consistency of internal tables. However, for each particular
service provided by the module, its domain is over-privileged
because it carries around privileges for all of the services of
the module. To some extent, this over-privilege can be overcome
by use of the separation of privilege described earlier or by the
use of templates, as found in HYDRA [Jones 73], that modify the
privileges of a domain according to the access codes of capability
arguments presented to it. A major consequence of minimum
privilege for the designer of a protection mechanism is that it
must be capable of efficiently supporting .the interaction of many
small, independent domains and this demands that the cost of a

domain call operation be small.

Small protection domains tend to contain very simple data
structures and in consequence it must be possible to protect very
simple objects and segments just a few words in length. The
notion of the 'grain' of a system is used to indicate to what

degree it is reasonable to distinguish between items of data and
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protect them individually. In general terms compared to most
software kernels, the CAP memory protection system has a very fine
grain of protection and this greatly contributes towards the

ruggedness of the operating system built upon it [Needham 77].

Jones [73] proposes a yardstick known as a suitability factor,

which indicates how closely a protection mechanism will allow the
principle of minimum privilege to be attained. For every domain
in the system, Jones defines an accuracy megsﬁre which is the
ratio of the number of privileges exercised by a domain to the
total number of privileges it owns. Clearly in the state of
minimum privilege, this ratio will be one and will fall away to
zero as the degree of over-privilege rises. The suitability
factor of the entire system is defined as the average accuracy
measure across the system and Jones shows that for a capability
system with a non-hierarchical domain structure, it is possible to
approach very ciose to the ideal value. This has also been

demonstrated in an analysis of the CAP system [Cook 78].

Most conventional computer systems have very weak prectection
mechanisms and in consequence, users have 1little experience of
taking full advantage of a welljprotected system. So, fcr this
reason, it is essential that protection mechanisms should be
straightforward so that it is easier for users to remember
protection techniques and how to employ them. To a great extent,
this principle can be met by keeping to a simple, compact design
in which all of the basic primitives are distinct and easy to
understand. The psychological acceptability of a protection
system depends wupon users being readily able to 'employ the
functions of - protection machinery to suit their particular

requirements.

A cornerstone of the HYDRA project has been the‘separation of
policy from mechanism [Levin et al 75]. For example, a process
scheduler in an operating system may be driven by interrupts alone
or may allocate fixed duration time-slices, and there are many
different ways of organising priority queues in response to
different modes of operation. Ideally, these policy matters
should be parameterised so that common kernel primitives can serve

all possibilities. This is an important design prinoiple'because,
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in the lifetime of a system, it is likely to be put to a variety

of uses that may not have been apparent at the time that the
kernel was designed and it is clearly undesirable to have to
modify the kernel for every new application of the system.
Separating policy from mechanism also holds advanﬁages if it is
required that the system should be able to provide two different
services ‘simultaneously, such as a transaction-based information
retrieval system and a general purpose time-sharing systen,
because the same mechanism can be used for both services which may

have different sets of policy parameters.

2.2. Microprogrammed Kernel Design.

It has been a long standing principle throughout the life of
the CAP project that the set of facilities provided by the
microprogram should be a self-contained whole that does not rel&
on the integrity of the software built upon it, rather than a
microprogrammed extension of systems software. This is so that
the wverification of the ©basic protection machinery can be
accomplisﬁed simply by inspecting the ~microcode free of any
considerations relating to other software. It is 1likely that
there will be awkward and complex interfaces between microprogram
and software if the kernel is split between them because of the
difficulty of keeping state information in step between the two
levels. On those occasions when the microprogram is unable to
cope, for example on a virtual memory fault, the bnly acceptable
means of communication to the software is by raising an interrﬁpt
and the microprogram must not make any assumptions about whether
or not the software will handle the condition correctly. Whenevér
the software wishes to negotiate with the microprogram, it must
present its arguments in a form which the microprogram can check
against appropriate capabilities before going ahead. Thus for
example it would be inadmissible for the microprogram to accept an
absolute address or to manipulate an object in the absence of a

suitable capability.

The need for simplicity in a microprogrammed kernel is much
greater than in a software kernel because of the lack of space for
long sequences of code and the untidy nature of microinstructions

and their side-effects. A lot can be gained by sharing as much
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common code as possible in the kernel between its primitives, for

example, to evaluate capabilities, modify representations of
objects and carry out access checks. The advantage of this is
that 1t is only necessary to verify the correctness of a
particular function once and also there is a saving of program
code. Naturally, this must be balanced against the overheads of
microprogram subroutine calls and any inefficiencies introduced by
calling routines that handle general cases rather than using
possibly shorter code to handle particular simple cases. This can
often be circumvented by careful design of kernel subroutine entry

points and parameters.

To avoid confusion in software or accidentally. permitting
. breaches of security, the microprogram must check all of the
arguments of a kernel operation before it goes on to modify any
data structures so that a protection violation cannot occur during
the execution of the primitive and leave things in an inconsistent
state. This means that kernel functions must be restartable and
on a restart all arguments must be checked from scrateh, because
an excursion into software caused by an interrupt is liable to

result in the modification of the state of the machine.

Complete mediation is possible by ensuring that the
microprogram always uses virtual addresses to access data
structures through the addressing and protection mechanism and not
by remembering evaluated absolute addresses, so that an error in
the microprogram or a bad argument causing the kernel to make an
illegal access will be duly trapped and reported as an access
violation. This increases the ruggedness of the kernel and
greatly aids debugging at the cost of an increased overhead in
accessing information owing to the protection checks. If the
microprogram has some device for optimising efficiency by
retaining evaluated capabilities and representations of objects,
it must detect when such an optimisation is no longer wvalid,
perhaps because a capability has been overwritten in store. It is
in the area of these optimisations that there are most likely to

be mistakes that will allow unauthorised access to privileges.
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CHAPTER THREE.

CAPABILITIES AND NAMING.

3.1. Names and Objects.

In Section 1.3 the essential contents of a eapability were
said to consist of an access code . describing the privileges
conferred by the capability and information to identify uniquely
the object which the capability protects. 1In an early capability
scheme due to Fabry [68], the information simply consisted of the
representation of the object; for example, a segment capability
contained the absolute base of the segment and its size. This is
rather unsatisfactory because information about the structure of
objects is not centralised and leads to difficulties if the
representation of an object needs to be modified. A typical
example occurs in virtual memory management: a segment can be
relocated in store by altering its absolute base address and it is
essential that all capabllltles for the segment refer to its new
position. To do so in Fabry's design involves searching through
all of the capabilities in the system to locate those to modify.
This tedious task is easily avoided by holding the representation
data in some central tables and retaining a pointer into the
tables within a capability. This pointer is known as the name of
the object. ' |

If the naming mechanism only accepts names -that are embedded -
in capabilities, names can be kept free from forgery or
corruption. ' The name of an obJect serves to identify it uniquely
from all other objects known to the system. As names are found in
capabilities, the issues of naming and protection are very closely
related; in particular, naming mechanisms have a considerable
influence upon the nature of the protection system that can be

built around them.

Naming schemes may be divided into two categories: nested and
global [Lauer 74]. In a nested naming scheme the name of an
object is only meaningful within one node of a hierarchical tree

of name spaces. In each name Space there is a table giving
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information about all the objects which exist within it and an
object is defined in terms of selecting objects in an immediately
superior name space in the tree, apart from at the top level where
representational information is found. Thus, the entries in a
particular table will contain names belonging to its higher name
space. The bit pattern of a name has a different significance in
every name space and it is necessary to translate names if they

are passed between name spaces.

A global naming system is characterised by having a central
table of object representations and names which are pointers into
the table and have the same significance everywhere. It is

usually the case that each object has a name different for all
time from every other name, known as its unique identifier.

Uniqueness implies that there is a single entry in the table for

every object and that modifying this entry will affect all
capabilities for the object throughout the system.

3.2. Nested Naming Schemes,

The major example of a protection architecture based on a
nested naming scheme is the CAP system [Needham and Walker T77].
The system supports a hierarchical tree of processes and each node
of the process tree acts as a coordinator to the processes
immediately descending from it. These processes in turn are
responsible for coordinating their sub-processes and so on. A
typical process hierarchy is illustrated in Figure 3.2-1. There
is a name space associated with each process and capabilities
Wwithin a process contain short (sixteen bit) names that point into
a table of objects available to the process, known as the Process

Resource List (PRL) which contains information about the

representation of the process's objects. For segments, the PRL at

the top level, known as the Master Resource List (MRL), holds
absolute base addresses and sizes. A segment entry in a PRL lower
down the process hierarchy contains the address of a capability
for the segment in the immediately superior address space. These
data structures are illustrated in Figure 3.2-2. There is a
mechanism by which segment capabilities can contain refinement
data so that a junior process can have access to sub-segments of

segments at higher levels with the same or reduced access.
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Evaluating a capability involves ascending through a hierarchy of

name spaces, following indirections from capabilities to PRLs, to
capabilities in higher name spaces until an MSL entry is reached.
At this point, the position of the segment in memory can be

determined and data within it may be accessed.

The rationale of the CAP scheme is that a coordinator should
have complete control over the processes it schedules [Needham and
Wilkes 74] and for this reason the privileges of a sub-process are
a subset of those of its coordinator. 1In fact the only privileges
that really belong to a coordinator are those that relate to the
scheduling of processes. As it stands the CAP system suffers from
a confusion between the control of  time and the control of
privilege which may be directly attributed to the fact that PRL
entries define the representation of objects by addressing
capabilities at the next level, rather than by pointing directly
to a superior PRL. The - reascn for the capabilities of a CAP
process leading to capabilities in the address space of its
coordinator process is because CAP processes have no existence
until they are actualiy running. A process is started by
presenting to the microprogram a data segment of the coordinator
that is to become the PRL of the new process and there is no
static way of deciding which segments in the machine are potential
PRLs or .not. This means that the only possible place at which the
privileges of a process can be gathered together is within the

coordinator process from which the apparatus of the new process is

taken.

The CAP architecture will support an indefinite depth of
nesting, subject to hardware constraints, although in practice,
various considerations 1lead to the adoption of Jjust a single
Master Coordinator and one 1level of sub-processe in the CAP

operating system.

Moving capabilities around within a pbocess is‘straightforward
in CAP: all of the protection domains in a process belong to the
Same process-wide name space so it is sufficient just to copy the

bit pattern of a capability whenever it is moved and CAP provides

microprogrammed instructions for this purpose. If a capability is

to be transmitted between processes having a common coordinator,
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the transfer involves establishing a PRL entry in the receiving
process identical to the PRL entry in the sending process and then
copying the source capability to its destination slot with the
name field translated to point at the new PRL entry in the
receiver. Moving capabilities between processes that do not share
a common coordinator is more involved: firstly a node in the
process tree that embraces the name spaces of the communicating
processes must be located; then the capability to send must be
evaluated as far as this common node and finally, the capability
must be allocated space in all of the intervening name spaces in
the tree down to the receiver. There is no microprogram support
provided for these operations so they must be performed by

software. The complication of inter-process communication between

different 1levels of the hierarchy has lead the CAP operating

system to only permit messages containing capabilities to be
despatched between sub-processes of the Maéfer Coordinator. As
message . passing is implemented by software and involves the
translation of names between name spaces it is considerably slower
than the microprogrammed orders that may be used to communicate

between domains within a process [Cook 78].

The CAP inter-process message system will only perform the
transfer of segment capabilities with the result that it is not
possible to send capabilities for objects containing names, such
as protection domains. A CAP protection domain is known as a

protected. Drocédure and it 1is defined by an ENTER capability

(named after the ENTER instruction which is wused to change
protection domains) that points to a PRL entry that in turn points
at up to three other PRL entries for capability tables‘holding the
capabilities that form the protected procedure. Figure 3.2-3.
shows the structure of a ENTER capability. To transfer an ENTER
capability between processes it would be necessary to make new
copies of these-tables so that all of the capabilities within them
can be edited to index the correct offsets in the destination PRL
when the procedure.is transferred and space has to be allocated in
this PRL for all of the segments accessible from the procedure.
If the protected procedure included capabilities for other
protected procedures, these too would have to be unravelled. Even

if it were possible to pass protected procedures between
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processes, there are other problems concépned with parallel

execution in a single protection domain which will be discussed

further in Chapter Seven.

In conclusion, the advantages of a nested naming scheme mainly
arise from the efficiency of name look-up by simple indirection
and compactness of short names, together with the simplicity of
the object tables found in each name space. In return, there are
problems concerned with passing names between “name spaces and
managing objects whose representations are distributed around the

system in the several name space tables. :

3.3. Global Naming Schemes With Forever-Unique Names.

All of the naming problems mentioned above may be avoided by

the use of global names which are independent of domain and

process architectures, so there is no difficulty in passing a
capability around by copying its bit pattern. The HYDRA system
[Wulf et al. T4] uses global naming and ensures that names are
unique in space and time by deriving them from a fast clock that
will never stop during the entire lifetime of the system.  Every
object ever known by HYDRA is given a unique name which remains
associated with the object, even after it has been deleted. To
cope with the number of objeects that will exist during the
system's life, unique identifiers are long (sixty-four bits), as
oppbsed'to the smaller sixteen bit name field of CAP capabilities.
As well as being vast, the HYDRA name space is also sparse because
of gaps owing to objects that have been deleted, and the intervals
in which the clock runs but no new names are generated. For this
reason, associating names with entries in the central table must

'S

be done by hashing. The entire hash table is too massive to
retain in primary memory and it is paged from a fixed head disc.

A small hash table in memory, the Active Global Symbol Table holds

map entries describing objects that have been used recently and a
low priority process slowly scans the table and arranges that it
only contains information corresponding to objects that are in
current use. If an entry for an object is not found in the active

table, an entry must be found for it from the Passive Global

Symbol Table on disec. The process of hashing in the active table

is quite slow even compared to the time taken to traverse the
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naming hierarchy in the CAP system and if an object is not in the

active table, the time taken to find it is considerably longer

because of real-time delays while the disc is accessed. Thus,
although the mechanisms of HYDRA are conceptually simpler than
those of CAP they are much more expensive in terms of time and

computation.

A major advantage of a unique identifier scheme is that it is
possible to preserve capabilities directly in a filing system. Iﬂ
a nested scheme this is not possible as a capability may be
subsequently retrieved in a name space different from that in
which the name it contains is valid. In the CAP system, filed

objects are given a wunique System Internal Name and when a

capability is filed, its nrame field is translated from a 1local
name to a System Internal Name [Needham and Birrell 771. For this
reason capability segments are not filed, as to do so would
require the translation of all of the names in the capabilities

within the segment. CAP capabilities are preserved in filing

system directories and it is the responsibility of the directory .

nanager program to perform translations between local and System
Internal Names. With HYDRA this is not necessary, as the unique
identifier in a capability is always valid and has the same
meaning throughout the system at all times. However, the
integrity of the unique naming scheme depends upon the object
table being kept scrupuiously up-to-date and consistent; it must
be retained without corruption over a system break and the table
management software must guarantee that the table is never left in

an ill-defined state. The same remarks apply to the internal name

table in CAP, but that table only has to be updated whenever a

capability is preserved in the filing system and the overheéd of
keeping this table up-to-date on disec is 1less severe than in
HYDRA, where the table is modified more frequently in response to

operations on all objects and not just those in the filing system.

The advantages that a global naming system has over a nested
naming scheme for transferring capabilities between domains and
processes is a strong influence on the level of type-extension
features found in a protection system. In most type-extension

schemes, abstract objects are represented by a data structure that
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contains information aboﬁt the 1lower. level components of the
object which is frequently in the form of capabilities. In a
nested naming system the problems faced in moving these structures
around are similar to those provoked by trying to pass ENTER
capabilities  in CAP. If a type-extension mechanism is to be
useful, it must be possible to protect a large number of objects
of varying levels of complexity which can be transmitted easily
between protection- domains and processes. For these reasons,
those protection architectures that wish to support abstract
objects are 'normally based on global naming schemes, so that
capabilities and names may be passed around in a free and flexible
manner. Furthermore, if a filing system is to allow protected
objects to be preserved, the expense of translating run-time names
to filing system names within the representation of objects may
prove too great and unique identifiers are most commonly used as

global names to avoid this overhead.

3.4, Other Global Naming Mechanisms.

It is possible to have global naming schemes that do not rely
on forever-unique identifiers. A system considered by Watson [78]
uses global names that are only unique for a run of the system,
that is, whenever the operating system or machine is stopped and
subsequently restarted, identifiers are issued afresh from their
origin. This approach relies on the observation that most
computeri systems are halted at frequent intervals for routine
maintenance, lack of work or because of hardware malfunction.
Usually these events are separated by days or weeks rather than
years, so the identifiers in Watson's scheme need noﬁ be as 1long
as those in a forever-unique scheme, with the advantage that
capabilities are smaller and less work is required to hash names.
Hashing is still the only method applicable for organising the
global object table because, even in a few days, its size would

become immense if measures were not taken to keep it compact.

In this scheme it is not possible to place capabilities in a
filing system without translating names into some internal unique
form because preserved names will become invalid whenever the
system restarts. On the other hand, it is no longer necessary to

go to great lengths to keep the table intact over a system break
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since the names it contains are volatile. As the table will no
longer require backing up on disec, it can be looked after by
microprogram because most table operations like identifier look-up
will not need the advanced facilities (such as paging from disc)
used by the HYDRA global symbol‘table machinery. Some software
might still be required to locate and remove garbage from- the
table and perform other high level operations, but otherwise it
would not be unreasohable'to expect the microprogram to provide
primitives for evaluating capabilities, distributing them, simple
type-extension (including object creation and deletion) and so on.
Unique identifier look up by hashing, however, can lead to a waste
of machine cycles when collisions occur in the hash table and a
search must be continued. In particular, looking for an entry for
an object that has been deleted may occupy the kernel for a long

time, causing a degradation of efficiency.

The Plessey System 250 [England TY4] circumvents the cost of
hashing short term names by arranging that names in capabilities
directly index a global name table which is called the System

Capability Table (SCT) as shown in Figure 3.4-1. The Plessey

system only provides memory protection and does not support any
form of extended objects, so all objects in the SCT are segments.
The operating system for the Plessey machine detects and recovers
any slots in the SCT that are occupied by segments that are no
longer accessible from active capabilities so that they may be
given to segments that are created subsequently. Names in the
Plessey system are still global, but they are only unique in the
.Sense that at any time a name is only assbciated with a single
segment, although at another time the name might refer to a
different segment if the original has been destroyed. Finding
free slots in the SCT requires the use of a garbage collector that
periodically scans all of the capabilities that are active in the
system to determine which SCT slots are not referenced. The
frequency at which the garbage collector runs and the size of the
SCT must botﬁ be carefully tuned to avoid wasting space in the
table and also to prevent the system locking up if the SCT is
full. Names in the Plessey system are just sixteen bits long,
which greatly contributes towards having short capabilities and

n
the prifcipal advantage of this scheme over Watson's proposal is
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that proceeding from names to table entries only involves
following a simple indirection and avoids the expense and

complication of hashing.

The essential point to notice about the architecturgs proposed
by Watson and Plessey is thaﬁ, unlike the active global symbol
table of HYDRA, the tables in memory are not caches for a larger
data structure owned by the kernel. It might be the case that a
higher level unique name table (such as the CAP System Internal
Name table) exists, but the primitive naming and protection
mechanisms kpow nothing about it and the management of
forever-unique names is not a kernel function. The main advantage
of addpting this view is that the global name table need on;y be
of moderate size and resident in membry so that kernel naming and
protection mechanisms can be implemented in simple and efficient
code. The price paid for this facility is the need for
translation between filing system names and run time names. In
HYDRA the active global symbol table is purely a cache for the
passive symbol table kept on disc and it is the duty of the HYDRA
kernel to maintain both data structures, which isvone reason why
the HYDRA kernel is slow and unwieldy and has to be implemented in

software rather than microprogram.

A compromise suggested by Lampson and Sturgis [76] to gain the
benefits of short names whilst retaining a forever-unique name
system is to make capabilities hold both a short run-time nams and
a 1dng forever-unique name. Operations on the global name table
in memory are carried out using short names to address slots
within it and a quick check is made to ensure that a unique name
held in the slot matches the unique name held in the capability
being exercised. If the unique names do match, the operation is
allowed to proceed, otherwise a trap is generated and the
operating system can use the unique name to find or construct an
entry in the table for the object, and the short name field of the
faulty capability is then made to be the offset of the new slot.
In essence, a short name is a 'hint' to the position of an entry
for an object in the map. With this sort of organisation the map
can function as a cache for a unique name table that is keptbon

backing store without involving the kernel in disc operations.
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The kernel uses short names as pointers and this avoids the

expense of hashing and leaves the management of forever-unique

names to higher 1level components of the systen. While this ’

technique may seem to offer an ideal compromise between short

names and unique names, there are many pitfalls to avoid. l

Capabilities are very long because of the need to hold both short

and long names, and space must be found in the central object W

table entries for 1long names as for well as details of
- representations. It is necessary to provide code to manage both 1

the small resident map and the larger permanent structure which :

have different naming conventions, and the interactions between

the tables and the algorithms for managing them must be carefully

considered to avoid problems of inconsistency, over-complication

and loss of efficiency.

In general terms, all of the different management strategies

for global name tables represent a compromise between the usage of
space and time, so it is unreasonable to expect any single
mechanism to be ideal. Instead it is necessary to consider the
desired behaviour of a system and to adopt the techniques most

suited to it.
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CHAPTER FOUR.:

CAPABILITIES AND ADDRESSING.

4.1. Capability Structure and Organisation.

The natural place at which to start considering capabilities
and addressing is with the nature and substance of capabilities
themselves: a capability is evaluated from the contents of a data
structure in memory which serves td define both the object
protected by the capability, the privileges the capability
confers, and in some systems (CAL-TSS for example), information
about the type of the protected object. It is useful to be able
to refer to the data structures themselves as capabilities
although, in the strictest sense, it is the result of evaluating
the data structures that yields capabilities. In this thesis, the
term 'capability' is used with both meanings provided that it is

possible to resolve any ambiguity from the context.

Because they contain names, capabilities must not be either
forged or corrupted if protection is to be guaranteed. It is

therefore necessary to have some method for distinguishing

capabilities from ordinary data so that they can be recognised and .

only authorised capability operations carried out upon themn.
_ Thefe are two common techniques for performing this
discrimination: firstly, each item of information in memory may
be tagged with a bit saying whether br not the item is a
capability, and secondly, memory may be partitioned into dlSJOlnt
capability and data regions.

Tagging has been successfully employed by the Burroughs B5000

computer system and its descendants [Burroughs 61] and has been
extensively investigated by Feustel [73]. The protected items in
these systems are 'descriptors' rather than capabilities, but the
differences between them are of no immediate cohéern except for
one point: descriptors typically tend to be smaller than
capabilities as they contain less information. The impact of this
becomes apparent in the light of current trends to reduce the size

of addressable items in memory. In the past, machines with items
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of thirty-two, forty-eight and even sixty bit items were common,

but nowadays the eight bit character, or byte, 1is becoming
universal and proposals have been made for bit-addressable
memories. In such addressing organisations a large object such as
a capability is implemented as a contiguous sequence of locations
of memory usually addressed by the offset of the first element in
the frame. If tagging is to be used, it would seem that at first
sight two tag. bits are required, with the significance 'first item
of a capability? and 'subsequent item of a capability"
respectively, so that it may be ensured  that capabilities are
correctly manipulated, but clearly the overhead of associating two
extra bits with a small item of, say, eight bits is wasteful and

expensive.

A simple way of avoiding the expense 1is to insist that

capabilities can only be stored starting at addresses that are a
multiple of the 1length of a capability and that capability
addresses must locate one of the predetermined cabability frames;
this only requires a single tag bit but complicates software
because of the need %o align capabilitieé'which sacrifices many of
the advantages of being able to access small items. A full

discussion of tagging hardware for a capability machine can be

found in Redell [7U4] together with some proposals for a scheme

which is economic in terms of the number of tag bits, yet permits

items to be arbitrarily laid out in store.

The generality of being able to mix capabilities and data
freely in a tagged memory regime poses some system problems: some
part of the protection system must be responsible for creating néw
capabilities and destroying unwanted onesiand to do so it must be
possible to write arbitrary bit patterns in capabilities, although
the wuse of this privilege must be protected to ensure the
integrity of the rest of the protection machinery. This operation
conflicts with the setting of a capability's tag bit and some
escape mechanism must be'provided to overide tags which, in most
tagged machines, is available only in a special or privileged
state that allows any capability to be modified. This 1latter
privilege is more sweeping than that which is actually requifed

and it is not possible to limit selectively the capabilities which
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may be affected.

A  further problem arises from the observation that an.

operating system is obliged to know the location of capabilities
and other protection data structures; for example, it may be
necessary to scan all the capabilities belonging to a protection
domain to find lost objects, or to detect garbage in internal
tables. If capabilities are freely distributed throughout a
domain's memory}(as tagging would allow), the séan would have to
include every item in memory that could possibly contain a
capability. In any system, and even more so in one that has a
large backing store, this task would be exceptionally expensive in

both ‘processor time and virtual memory traffic.

The difficulties éncountered in a tagged architecture may be
avoided by partitioning capabilities and data. In a partitioned
system the access code of a capability for a segment will belong
to one of two categories: capability type access or data type
access. To perform data operations such as addition of”shifting

on items in a segment, it is necessary to present a capability

bearing the appropriate data type access code such as read, write

or execute and for a capability operation, a capability presenting

a capability type code such as read-capabilitv or write-capability

must be used. Thus the interpretation of the contents of a’

segment depends upon the capability used to gain access to it and
it is usual to refer to a segment for which capability access is
held as a capability segment ; otherwise, if the access is of data
type, it is referred to as a data segment. In this scheme, the

b
part of the operating system concerned with altering the content

n

of capabilities would have a capability giving data access to
segments that are elsewhere accessed with capability access and
because the ability to modify a particular capability is itself
controlled by a capability, it is possible to control the

privilege.

The software for managing capabilities in a partitioned
architecture does not have to scan the entire memory of the system
to find all capabilities, instead it is only necessary to consider
capability segments, that is, those for which there is a

capability with a capability type access code in existence. It
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may be expected that there will be far fewer of these segments

than data segments.

The disadvantage of partitioning is that a certain amount of
generality is lost: it is not possible to have data structures
represented by segments that contain a mixture of capabilities and

data and there are occasions when the lack of this feature is a

nuisance. Consider, for example, a directory or catalogue for a

filing system: the directory cannot be implemented as a segment
containing both capabilities for the objects filed within it
together with data representing file names and access control
information, whereas in a tagged machine the directory could
easily be made from a single segment . In - a partitioned

architecture it would have to be implemented as two segments, one

for data and one for capabilities, which is inefficient as it

requires two transfers to bring all of the directory into store.
The HYDRA system [Cohen and Jefferson T4] employs partitioning but
tries to recapture generality by providing 'universal' objects,
holding both data and capabilities, that are formed from two
segments, one of which holds the data part of the object and one
for its capabilities. The implementation of the object as two

segments 1is concealed from the user, but it is not possible to

interleave capabilities and data arbitrarily inside the object as

the two sorts of information are addressed in different ways. By
careful allocation of disc space it can be arranged that the two
segments of a universal objectvare adjacent on disc and can be
brought into Store in a single transfer. The CAP and Plessey 250
systems also partition capabilities and data but neither has any

facility for mixed type segments.

An important consequence of adopting a partitioned
architecture is that, unless cordinary orders recognise ‘capability
and data type access codes, they cannot be wused to move
capabilities around between capability segments which means that a

special suite of capability orders must be provided.
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4.2, Capabilities and Virtual Address Translation,

In a segmented addressing architecture, an address contains
two fields, one of which selects a descriptor for one of the
segments in a virtual address space and the other indexes a
particular item within the segment. Capabilities can be usefully
employed as descriptors because they are protected from forgery or
corruption and can be passed between address spaces to permit
sharing, without the need to resort to complex linkage tables such
as those found in MULTICS [Organick T72]. Capability segments can
take the place of descriptor tables and each capability within the
tables will define a segment associated with some virtual
addresses. Two address spaces sharing access to some object will
have similar capabilities for it in their (descriptor) capability
Segments. A capability used as a descriptor provides a bridge
between virtual address spaces and the naming machinery because an
address nominates a capability which in turn, provided there are
N0 access violations, yields the name of an object which is the

key for obtaining its representation.

There are two ways of using capability descriptors: explicitly
by loading them into capability registers or implicitly by making
the virtual address translation mechanism evaluate descriptor

capabilities automatically.

The Plessey System 250 [England T74] is a capability register
machine in which all of the capabilities available to a protection
domain (or package in System 250 nomenclature) are held in a

single capability segment, the Central Capability Segment, which

is local to a process. The capabilities in this table hold names
that point at entries in the global system capability table and
access codes. The System 250 processor makes available to users
eight capability registers which hold evaluated (segment)
capabilities in three fields: absolute base address, size and
access code. The .data structures of the System 250 are shown
diagrammatically in Figure L4.2-1. Capabilities are 1loaded
explicitly in the registers by instructions of the form ‘'load
capability register r with capability i' which causes the i-th
capability in the central capability segment to be evaluated and

then to be made available in the r-th capability register,
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overwrltlng the previous contents of the register. Addresses in
thls system take the form of a duplet <capab111ty register number,
offset in segment>. Whenever execution crosses a protection
domain‘boundary, all of the capability registers must be flushed
out as their contents will not be valid in the new domain and the
contents of the registers are preserved on a stack so that the old

environment may be restored when the called domain is left.

 HYDRA likewise specifies objects by their offset in a central
table. Associated with each protection domain is a capability

segment known as the Local Name Space (LNS) and capabilities may

be moved in and out of the LNS by kernel primitives which take LNS

offsets as arguments. Objects in HYDRA can contain capabilities

within their representation and the addressing mechanism permits

these capabilities to be addressed by a path name which specifies
a route starting at the LNS through the capability parts of a
series of objects leading to the target capability. Fach
component of the path name consists of an offset into the
capability segment of the 1last object reached. A typical path
from a LNS through several objects is shown in Figure 4.2-2. The
LNS is a normal HYDRA object; the capability part describes the
privileges of a prbtection domain and the data part holds system
and accounting data such as the number of capabilities present and
50 on.. The ability to follow a path and pluck capabilities out of
obJects is controlled by an complex set of access codes [Cohen and
Jefferson 751]. In HYDRA, a segment of memory is addressed by
indexing a capability for the segment into the LNS and then
.causing the kernel to evaluate the capability and configure a
nominated relocation register of the underlying hardware

accordingly so that memory can be addressed through it.

Explicit capability register machines are unsatisfactory for a
number 6f reasons. The most apparent is that programmers have to
concern themselves with the allocation and priming of capability
registers and this activity is not confined to systém programmers;
it must be carried 6ut at all levels. Register allocation can be
left under the control of a high level language compiler, although
in doing so it is difficult to avoid introducing machine dependent

features into the language. This can be a great disadvantage if
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the language is portable such as BCPL [Richards 69] or Algol68C

[Bourne et al. 74], where all machines share the same compiler but.

have their own intermediate code translators. Introducing
protection facilities in the translator is not easy as much of the
information needed to decide the contents of capability registers

is only available in the compiler.

If the working set of capabilities needed by an executing
program exceeds the number of registers available, many machine
cycles will be wasted in repeatedly loading and wunloading
capabilities. This loss can be diminished by increasing the
number of registers available at the expense of more state
information to preserve over a process or domain switch. Another

danger is that a register may be left containing a capability when

it is no longer required and subsequently, because of a

programming error, the register may be exercised by accident or
may be thought to refer to another object. This sort of thing can

lead to very obscure program failures.

If a change is made to system tables, such as the SCT and
Central Capability Tables of the Plessey system, any registers
previously  loaded from the tables must be flushed out and
evaluated from scratch, as the data on which they reiy might have
changed. By the simple expedient of holding table offsets in
capability registers it is possible to reduce the flush to only
those capabilities dependent on the changed data. Additionally,
if the change was in the global name table, it is necessary to
flush out capabilities not only in the currently running process
but also any preserved in process Dbases and other state

information.

Many of these problems can be avoided by arranging for the
addressing mechanism to select automaticaily and to evaluate a
capability to determine an object's representation. In the
Plessey system this would correspond to making addresses of the
form <offset in SCT, offset in segment> rather than {capability
register, offset in segment>. If every reference to an object,
especially if it were a segment, caused a capability to be
evaluated, the overheads of the mechanism would be immense but

they could be avoided if evaluated capabilities are retained in
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some form of capability cache. For example, in the case of the
modified Plessey system, it would be possible to provide a bank of
capability registers each preceded by a tag which is used to hold
the central capability segment table slot of the capability from
which the register is loaded as is shown in Figure 4.2-3. When an
address is presented to the cache, an associative search can be
made for a register whose tag matches the SCT offset of the
address. If a match occurs, the selected register can be used to

be loaded and the store access re-tried. The function of the
associative capability cache is similar in operation to the
current page registers found in machines with paging hardware
[Denning 70J]. The management of the cache can be carried out by
software running in a privileged state which permits changes to
the contents of the registers or, as is the case in the CAP

computer, by microprogram.

An associative cache is more expensive than directly
addressable registers in terms of hardware, although the falling
costs of integrated circuits is reducing the price of assoceciative
memory. In return for the investment, the advantages of slaving
capabilities are of great benefit: no longer is it necessary for
programmers to become involved in capability registeﬁ lcading and
dumping and the protection mechanism becomes an integral part of
addressing which offers simplicity for naive users of the system
who are dnly required to understand the addressing architecture of
the machine and not nécessarily its protection mechanisms as well.
This latter feature is also useful in the area of high 1level
languages as the objects accessible to a program can be mapped
into a language's view of the address space in which it runs,
rather than forcibly having to bolt on knowledge of capability
mechanisms. Whilst there is no longer the problem of leaving
unwanted capabilities lying around in registers or misloading
registers and accidentally permitting protection violations, the
difficulty still exists at a higher level in that the proformae
that an operating sYstem uses to Set up capability tables prior to
running a program must agree with the addresses used by the
program. This can be skirted around to a fair extent by allowing

compilers to construct the proformae, as is the case with the CAP
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A1gol68C compiler [Birrell 78]. It is, of course still possible

for programs to become confused if they compute an address

l wrongly; however if the address space is vast, there is a good
chance that misleading addresses will turn out to be invalid, more

So than if an address is a small integer or register number.

If the associative selection mechanisms of the capability
cache are sufficiently powerful, it is possible to arrange that
capabilities are left in the cache over a domain call so that on
returning from the domain they may be made accessible again
without having to construct them afresh. It is a necessary
requirement that capabilities held over in this way are only
accessible in the domain to which they belong. The cache of the
CAP computer is driven like ﬁhis and the retention of capabilities
during protected procedure calls leads to a considerable saving of
machine cycles [Cook 78]. Similarly with the need to flush out
capabilities in a register machine, it must be possible to clear
capabilities out of the cache if the data structures from which
they are evaluated have been altered. As each register in the
cache proposed above is keyed by the address of the capability it
is derived from, any change to a capability can be accomplished by
flushing out any entry whose tag matches the index of the modified
capability. Changes in the global name table can cauée the entire
cache to be flushed or, by providing a field in each register

giving the table offset of the objeect it protects, a selective
clearing can be made.

4.3. Structured Addressing Architectures,

Having just a single capability table in a domain is not
entirely satisfactory as it is not possible to share those parts
of the domain that are common to other instances of it elsewhere
in the system. An example of the usefulness of such a feature is
prcvided by filing system directories in the CAP filing system: a
directory consists of a -segment describing the contents of the
directory embedded within an instance of a diréctory manager’
protected procedure and every incarnation of the procedure can
usefully share capabilities for segments of pure code, libraries
and read-only data structures. The workspace of a directory

manager 1is local to a process and can be shared between all
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instances of the directory manager within a process because
control will only be in one of the managers at any time. Some

data structures, such as directory segments, are 1local to each
instance of the directory manager and cannot be shared. If the
capabilities of a protection domain can be divided up into these
various classes and shared there is considerable scope for saving
space as is illustrated in Figure L4.,3-1. Furthermore, by ‘
splitting the table into a number of capability segments, it is J
possible to protect some of the capabilities belonging to a domain |
from being overwritten by placing them in a segment for which only

read capability access is held. In HYDRA, where a process's

capability table, the LNS, is a single table, there is a complex
set of access controls provided to prevent individual capabilities I
within it being overwritten by accident. The ability td partition
the layout of the capabilities belonging to a protection domain
helps to prevent addressing the wrong capability by accident as,
particularly if a domain is small, the capability address space
will be spafse and arbitrary addresses prodﬁced by programs are

- likely to reference slots that are not in use and will cause a

protection violation.

The CAP computer has an elegant addressing and capability
architecture which serves to illustrate some of these points and
is dépicted diagrammatically in Figure b 3.2, For the current
purpose it is sufficient to assume that evaluated capabilities are
effiéiently cached in a large bank of capability registers. (The
hardware for supporting the cache is described fully in Chapter
Eight). As outlined in Section 3.2, the Process Resource List of
eévery process contains an entry for every object available to the
process and the address space of a protected procedure is defined
by up to three capability tables (i.e. capability segments), the
entries in which select a subset of the objects in the PRL. As
control is passed between protected procedures, different sets of
capability tables become enabled and so the selection of objects
available changes. A distinguished entry in the PRL describes the
process base which, as well as state ‘information, also holds
sixteen pointers to PRL slots that define the currently enabled

capability tables of the pbrocess. A pointer may be null, in which

case the corresponding capability table is disabled. The fourth,
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fifth and sixth capability table pointers are changed whenever a
protected procedure is entered and the new values indicate the
capability tables defining the address space of the called
procedure. The second and third capability tables are used for
argument passing between protectlon domains and the remainder
provide a set of a' tables that are globally available to all
procedures executing in the process. Each of the capability
tables may hold upto 256 capabilities, although in practice only a
small number of capabilities are kept in a few tables and most of
the address space remains unused. An address consists of three
fields: a capability table number, a capability index and a
segment offset. The first two fields taken together are known as
a capability specifier. The capability table number nominates,
via one of the pointers in the process base, the capability table
containing the addressed capability and the capability index
chooses the capability from within the table. The segment offset
field is used to address words within a segment if the capability
is store type, but ENTER capabilities and other no n-store type

objects are addressed by the capability specifier alone

As was described in Section 3.2, PRLs contain the addresses of
capabilities in the immediately superior address space and they
are in the form of a capability table number and capability index

pair.

Because of the changes of virtual address spaces arising

during process and protected procedure switching in the CAP

system, care has to be taken not to pass addresses between address'

'spaces because they are not valid in any other context than the
Space in which they are defined. In particular it must not be
Possible for any part of the system to be duped into giving away
privileges in an unauthorised fashion by a misleading address
Passed as an argument. This restriction on the propagation of
addresses has not been found to be a great nuisance with the CAP
System because any reference to an object during a protected
procedure call is always accomplished by using a capability rather
than an address and addresses are relegated to the simple task of
identifying capabilities in the current procedure. The one

difficulty that ecan arise is with multi-segment data structures
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that contain inter-segment addresses because, if a capability for
a particular component of the structure is moved to a different
address, all of the addresses for it in the remaining segments

must be edited appropriately.

4.4, Capability-Based Addressing. .

In an important paper, Fabry [T74] shows that the naming
function of capabilities and their relationship to addressing
descriptors can be used to provide a very elegant form of
context-free addressing. His approach relies on capabilities
being readily identifiable in both memory and processor registers.
A machine operation which expects a register to contain a
reference to an object will complain if the register does not
contain a capability; on the other hand if it does, the machine
will evaluate the capability to acquire the name within it and
hence the representation of the object to be accessed. On entry
to a domain, a processor register is loaded with a capability for

the domain descriptor so that by addressing with this capability

b=i

it is possible to access the other capabilities in the domain. t
is important to note that unlike capability register machines, it
is not necessary to consider in advance the allocation of
capabilities to capability registers; instead correspoending to
loading an address as data from memory into a register in a
conventional machine, there 1is the action of picking up a
capability. Thus the distinction between capabilities and data
serves two purposes: firstly, to prevent a capability from being
corrupted or forged and secondly to indicate to the addressing

machinery that an item can be used as a valid address.

The schemé has the advantage that there are no problems
concerned with shared addresses between domains and processes
because the capabilities provide a global address space and do
away with the need for virtual address translation. It is still
possible to carry out the relocation of segments in virtual memory
by modifying the contents of the global object table so that the
scheme retains the power of a conventional - virtual addressing
scheme. Unfortunately, to implement this very pure scheme, it is
necessary to use tagging to mark capabilities because it is

unreasonable to expect data structures that contain a mixture of

o




capabilities and data to be paftitioned into separate data and
‘capability regions. As was pointed out earlier this can lead to a

number of difficulties in an operating Systém.

!
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CHAPTER FIVE.

TYPE-EXTENSION MECHANISMS,

5.1. Objects, Representations and Types,

In an object orientated System, the concept of extensibility
as the introduction of further levels of abstraction corresponds
to the provision of new objects beyond those provided by the
hardware or kernel. These new objects must be protected by
restricting the operations to which they may be subject in the
same way that the kernel controls access to basic hardware objects
such as processes and segments. Mechanisms are required for
naming and describing abstract objects in addition to basic

objects.

An important consequence of the layering methodology is that
the kernel has no knowledge of its surrounding layers; indeed, if
the dynamic creation of new types of objects is permitcted, the
kernel cannot have any built-in data about the range of objects
that may exist. However, it would be unreasonable to have to
implement parallel copies of the kernel protection machinery in
ever layer, both because of the implementation difficulty of
ensuring that one layer cannot subvert another and the nuisance to
users who have to cope with a multiplicity of mechanisms for
manipulating objects. The functions of the kernel concerned with
naming and protection, such as creating capabilities, copying them
and performing access checks, can and should be available in every
layer. This means that the kernel must be able to employ its
capability mechanisms for objects which it is not able to

interpret directly.

A particular layer in a hierarchical system builds upon the
facilities afforded by lower layers and any new object that is
introduced must be constructed from lower level objects which will
form its representation. Objects made in this way are described

as extended objects and the layers that implement them carry out

operations wupon then by manipulating their representations.

Obviously this right must be denied to the users of extended
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objects, otherwise they could undérmine the layer implementing an
object. It is therefore necessary for the abstraction mechanism
to provide some means of concealing the representation of an
object from its users, yet at the same time permitting the layer
responsible for an object to get inside it. Furthermore, a layer

should only be able to unpick the objects it implements and no

others.

Objects can be partitionéd into types; a type 1is an
equivalence class of objects of identical structure, with the same
operations defined for every member of the class. Every object
has associated with it a type code which identifies the class to
which it belongs. Typed objects are similar to 'eclasses' in
Simula [Dahl and Hoare 72] or 'clusters' in CLU [Liskov 76]1. The

part of a system that implements a particular type is known as the

type manager for that type. The term typed object is often used

as a synonym for extended object and a collection of typed objects
together with their manager 1is sometimes known as a protected
sub-system. The primary motivation for an extensible system is to
enable wusers to tailor its basic facilities +to suit their
requirements by the construction of protected sub-systems for

additional types of objects beyond those already provided.

5.2. The Use of Protection Domains as Extended Objects.

The CAP [Needham and Walker 771 and Plessey System 250
[England 74] have a simple way of protecting the representations
of extended objects that requires no additional machinery outside
of memory protection, which is to embed extended objects within
protection domains. The security of the representation of an
object shielded by a protection domain is guaranteed if users are
only given the right to call the domain so that they cannot tamper
with the contents of its environment. Opergtions upon an extended
object are carried out by calling it, with an entry code to
identify the service required and the code executing within the
domain uses the privileges available to it to modify the
representation of the object accordingly. It is easy to see that
this scheme 1is extensible because the protection domains
describing objects whose representations are also extended

objects, will contain domain capabilities for their components.
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A protection domain that is used in this fashion to stand for
a protected object can be viewed as an instance of a type manager
with the identity of a particular object bound to it. Thus, for
objects of a given type there will be distinct copieé of the
domain responsible for the | type containing different
representation capabilities. ‘However, this does not imply that
there will be multiple copies of code of the type manager and its
data structures as they can be shared by virtue of the normal

capability mechanisms.

The control of access to the extended object, as opposed to
its representation, is carried out by building into the domain
information about the operations that it is willing to carry out.
If, as is the case with the Plessey System 250 and early versions
of the CAP, access information is built into the data structures
of a protection domain, there is a lack of ﬁniformity with the
kernel access contrcl primitives.. In particular, when users
interrogate the accessAcode of an extended object, they will only
be told about privileges relating toc the object as a domain and
access codes for objects can only be obtained by calling the
domains implementing them with an entry code which signifies "what
is your access code?". To make a capability for an extended
object that has weaker privileges, it is necessary to create a new

copy of its domain containing a reduced access code.

More recent versions of the CAP system hold access codes for
extended objects within domain capabilities and when a domain is
~called, the access code contained in tlie capability tﬁat was»used
to address it is loaded into a register so that it can be
inspected by the program executing inside the domain. This
artifice has the advantage of homogeneity with the primitive
mechanisms for querying access states and making reduced privilege
copies of capabilities, but it is only possible because CAP has no

intrinsic access codes associated with domain capabilities.

A domain capability does not convey any informétion‘to the
kernel about the type of object it protects; to the kernel type
checking mechanisms, an extended object will always be simply a

domain. For the benefit of users, a type code can be embedded in
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the capability for an exténded object, if there is room, or as an
alternative, a type code can be built into the data structure of a
domain in the same way that was suggested for access codes. To
prevent bogus domains from masquerading as bona-fide extended
objects, type codes must be well protected. If they are part of a
domain capability there is obviously no protection problem, but
the lack of space for holding the bits of a type code will reduce
the size of the type code space and this in turn will affect the
extensibility of the system. To prevent forgery, type codes kept
ihside a domain must be held as special type capabilities that can
be inspected by the kernel. - The lack of consistency of these
devices with the type conventions of the kernel makes them 1less

than perfect.

The freedom with which capabilities for extended cbjects can
be passed between procesées depends upon the willingness of the
system to support independent domains that can be called by any
process and implicitly includes provision for several processes to
be executing concurrently in a single domain. This can be very
difficult to arrange, as each process running in a demain must be
given its own workspace so that it cannot interfere with any other
processes that are present. Most protection systems do not permit
multi-threaded protection domains (this point will be returned to
in Chapter Seven), instead, every process 1is given a copy of a

shared domain with the process's workspace bound into it.

There is a further restriction on protected procedures in the
CAP system which greatly impairs their utility as extended
objects. It was indicated in Section 3.2 that it is not
reasonable to expect the CAP inter-process message system to
construct copies of a protectioh domain dynamically because of the
work involved and thus it is difficult to pass extended objects
between processes. In the CAP system, an extended object is sent
to another process in the form of its filing system name that can
be used to retrieve a filed prescription which specifies how to
create a copy of the domain. The overheads of this jury rig
mechanism are rather‘high and the frequent use of it is not to be

recommended.
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A further point of interest arises from_the observation that
type managers typically retain a lot of information about the
process in which they run for the “purposes of collecting
statisties and charging. If a domain is unattached to a
particular process, it ecannot make use of 1local memory within a
process to hold this sort of information. In the CAP system and
others (MULTICS, CAL-TSS) considerable use is made of this Algol
own like storage for accounting and housekeeping purposes. It is
not clear to what extent it is strictly necessary, as it would be
perfectly possible for an independent domain to keep, within its

own space, a record for each process that calls it.

A less important restriction owing to the use of domains as

extended objects is that it is not possible to carry out other

than monadic operations,. because a domain stands for a single

object. For example, services 1like CLOSE ALL FILES or FILE TO
FILE COPY or even CREATE A FILE cannot be implemented unless they
are posed as operations upon a single object, which will seem
artificial to users.  The CAP operating system frequently splits
the functions of a type manager into two'parts to circumvent the
prohibition on multiple operands. For example, in the CAP I/0
stream system there is a protected procedure, the 1/0 Controller,
which creates new streams and keeps a record of which streanms are
attached to devices and so on. Users see a stream as a Streanm
Protected Procedure holding the  representation 6f the stream,
either asba message channel to a device or a segment in the filing
System, with operations such as OPEN, CLOSE and TRANSMIT BUFFER

that affect the contents of the stream.

5.3. Sealed Capability Type Extension.

To overcome the difficulties associated with using domains as
protected objects it is necessary 1look ' for some means of
constructing a capability for an extended object that is
recognised as such by the kernel and can be passed around freely
while, at the same time, it must be possible for a ddly-authorised
type manager to use the extended capability to get at the
representation of an object. In his thesis, Redell [74] surveys a

number of proposals for describing extended objects. He shows
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that the most reasonable' mechanism is that based on 'sealed'
capabilities, in which a capability for an extended object can be
viewed as a box with capabilities for the objects from which it is
i made sealed inside [Lampson 69]. The front of the box is labelled
with the type and access code of the extended object and its
contents are concealed from users, although a type manager can be
given the privilege to acquire the capabilities held within it.
Type-extension is portrayed by the act of nesting boxes within

boxes as illustrated in figure 5.3-1.

HYDRA is a practical example of a system that has a sealed
capability type-extension mechanism and its essential principles
are outlined in Jones' thesis [Jones 73]. As was described in
Chapter Three, HYDRA has a global table with an entry for every |
object which is marked with the object's type. An entry for an
extended object additionally contains a pointer to a capability
segment that holds capabilities for its components or constituent
rights. The environment described by these capabilities is never
used for executing instructions, in contrast to the environment of
a protection domain used as a protected object; instead it is

burely a repository for capabilities.

When an object is created, it is not sufficient just to issue
a name by allocating space in the global symbol table, in addition
the environment for its components must be set up and initialised.
For thls‘purpose, there are two kernel primitives calledeOAD and

STORE: LOAD permits a capability to be copied out of the

environment of an object and put in the current domain, provided
that the object was addressed with a capability possessing load
access; STORE, in conjunction with the store access code, is used
for the converse operation of copying a capability from the

current domain into the envir nment of an object. Both 1load and

store are generic access codes that are defined for all types of
extended objects, and the interpretation of other access codes in

a capability depends upon the type of the object it protects.

Users of protected 6bjects are not granted the potent load and
store privileges and they see an object as a single atomic whole.

Type managers may use the process of amplification to acquire

their privileges for an object. Amplification is controlled by a

~4g-

| |




template in the form of a triplet <type, required code, amplified
code> which is used as follows: if the type of a capability for.an
extended object matches 'type' and the capability possesses at
least 'required code' in its access code, a new capability for the
object is created holding 'amplified code' in its access code. By
the use of amplification, it is‘only possible to increase the
degree of access permitted to the extended object, usually to
include LOAD and STORE; and the access codes of the capabilities
sealed within the object remain unaltered from the values they had
when they were 1last stored. Otherwise, if this was not the case,
it would be possible to use amplification to acquire illegally new

privileges in capabilities by the Sealing mechanism, Templates

are protected by storing them in capability segments and treating

them as prototype capabilities.

The HYDRA scheme outlined above ideally fits into the criteria
for type-extension supported by the kernel because the
amplification mechanism does not rely upon any knowledgeaof the
representation of extended objects and the kernel is only involved
to the extent of matching type codes in the global symbol table
entries and templates. HYDRA actually has~a far more extensive
set of access codes for amplification, that permit different sorts
of restricted access to the components of an object than the
simple load and store privileges [Cohen and Jefferson 751,

although the same principles hold in their use.

5.Y4. Types as Objects. ' )

The integrity- of thé type-extension primitives based on
capability sealing rely oﬁ the authenticity of type codes, which,
like names, should be unique and insubvertible. In an extensible
System it must be possible to cope with ‘a potentially large number
of types. If the set of type codes is limited in size, there are
likely to be Severe resource control problems. The management of
types can be made a kernel function by encoding type codes as

names for type objects and thereby provide both protection and a

suitably large type code space,

A type object is used to stand for the entire class of objects
of its type and the privileges in a type object capability refer
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to the cléss as a whole; for example, the implicit type object
capability found in an amplification template controls the ability
to manipulate the representation of a class of objects and it is
possible to propose other access codes, such as create which

permits the size of the class to be increased.

Just as objects of the same type form an equivalence class,
type objects also form a eclass. It is possible define a 'master!'
type which stands both for itself and for all other type objects
and is used to control the creation and proliferation of types.
In this way, there is a hierarchy of objects as shown in figure
5.4-1. The 'master!' type object is the property of the kernel and
describes the class of types, each member of which denotes in turn

a distinct class of objects.

There is another hierarchy in a layered system corresponding
to the partial ordering of types imposed by the increasing levels
of abstraction. The hierarchy is not a tree like that of objects
and types, instead it is a diredted graph containing no cyecles.
Figure 5,4—%. {based upon Redell [747; sShows a selection of basic
and extended objects and the relationships between them. The
extended types 'text file', 'sorted file' and 'linked 1list' are
represented as 'segments' and a 'document' can be any of these
types. The arc joining 'documents' to 'segments' reflects a
possible implementation of a long document as a segment of

capabilities for smaller documents.

5.5. A Simplified Scheme.

Redell proposes a simpler variant of the HYDRA mechanism whiéh
retains the sameé power over the control of objects and types. 1In
his scheme, an object may only be represented by a single
capability - objects with many components can be represented by a
segment of capabilities for +their constituents - and this
capability is held in the global object table entry for the
extended object so that the kernel does not have to administer a
pool of storage for variable length representation capability

lists.

As in HYDRA, types are represented by type objects for which

there are two recognised access codes: seal and unseal. Extended
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objects are created by the SEAL kernel primitive which takes two

arguments, a capability for a %ype object with seal access and a

capability for the representation of the object. The kernel
acquires a global object table slot for the new object and sets
the type field to be the name of the type object and its contents
to be a copy of the representatioh capability. The result of the
entire operation is a capability for the newly constructed
extended object as shown in Figure 5.5-1. The sealed capability
is not visible to the user, who sees the extended object as a
wholesome entity. The owner of a capability with unseal access
for a type object can interrogate the representation of any member
of the class using the kernel UNSEAL primitive which delivers_a
copy of the representation capability sealed within an object as

its result.

This mechanism has the advantages of simplicity, flexibility
and, as will be seen in the next chapter, considerable unity with
a powerful revocation scheme. What the scheme lacks is any
facilities for creating basic hardware objects that have a data
rather than a capability representation. For these objects there
is a common requirement to modify their representations; for
example, to relccate a segment in store by éltering an absolute
address in its map entry. Thus for these reasons it is necessary
to augment the basic set of orders provided in Redell's scheme to

arrive at a full suite of operations for both basic and extended

objects.
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CHAPTER SIX.

e

REVOCATION MECHANISMS,

l ‘ 6.1. A Review,

In a capability-based system, one user can allow another to
have access to an object by passing him a copy of a capability for !
it and in the interests of his own security, the original owner i
might well pass a capability #ith weaker privileges than his own. |
If the act of sharing corresponds to renting use of the object
temporarily rather than to mutual cooperation, the level of trust
the owner of the object has for the eclient is 1likely to‘ be
reviewed, especially if the latter neglects to pay a rental fee or
some such thing. In these circumstances, the owner will wish to

recall the privileges that he gave the client earlier, although

perhaps only until the client redeems himself by making a suitable

payment. To handie this sort of situation, there is a the need

for revocation of access that takes immediate effecte Note
that revocation may only be temporary and need not necessarily
cause the loss of all privileges for an object, but only a subset

of them.

The situations outlined above demonstrate that revocation is
closely bound up with the notion of ownership. It is generally
understood that the owner of an object is the user or funding
agency which the system charges for storing and manipulating it.
Some systems only permit an object to be owned by a single user or
principal, although in real 1life there are much more complex
patterns of ownership; for example, a database jointly owned by a
group of cooperating users. Ownership need not be static and can
iﬁself‘ be considered as a privilege that‘ can be shared. Some
everyday analogues of passing on the right of ownership are
sub-letting and bill collection. 1In the former, the user of an
object passes on a copy of his capability to another user, who may
use revocation to restrict the privileges available to a set of
sub-users independently of the original owner, who in turn ecan
restrict the activities of all the users. The second example,

bill collection, corresponds to a user passing the right of
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control over an object to an agency that revokes access for users
who default on their debts and, naturally, the original owner of
the object will wish to reserve the right to withdraw the agency's

revocation privileges when he has done with their services.

The notion of ownership provides a means for describing the
use. of revocation, but it doeé not provide a mechanism for
carrying it out. An important property of capability systems is
that a privilege can be passed between domains or processes quite
freely and when the owner of an object revokes access to it, the
kernel is obliged to stop all programs executing until the access
code vin every capability for the revoked object matches the
object's changed status. Obviously it would be madness to secan
exhaustively every capability in the system to be sure of finding |

those to check; nor is it reasonable to consider implementing a

scheme of pointers from parent capabilities to their descendants

because, as a capability can be copied many times, vast amounts of

memory would be needed to hold all the pointers. The need to ‘
locate and modify many distributed copies of a capability is the Ul
- fundamental problem of revocation and, the solution 1lies in the M
formulation of revocation as an operation involving the mapping

between capabilities and objects.

For the time being, it is instructive to turn to some of the
systems implications of immediate revocation. The first
observation is that any service, and especially the operating
system, must be prepared to find that a capability it has been
passed as an argument might suddenly become impotent because an

~asynchronous process has carried out a revocation operation. If
the service was in the middle of a critical section, there is a
high probability that the revoked object would be 1left in an
“inconsistent state. The standard remedy against this effect is to
ensure that a program accesses its arguments once only to take a
copy of them for use as data in its computations and any update
operation on a data structure must be done atomically so that

revocation cannot prevent it from completing.

Revocation poses some particular problems in systems that
support protected objects. Uniformity requires that it should be

possible to revoke capabilities for extended as well | as basic
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objects. Furthermore, it should be possible to incorporate
revocable capabilities into the representations of objects, which
means that the revocation machinery must be able to monitor these -
capébilities as well as those in protection domains, otherwise a
user can shield a capability from revocation by disguising it as

an extended object.

There are some éircumstances in which it may be desirable to
delay the effects of revocation; for examble, cdnsider a
capability for a protection domain: if revoking the‘capability is
defined to withdraw immediately the right of execution within it,'
the system is obliged to identify'all of the processes running in

the domain and force them to exit straight away. Furthermore, the

domain has no opportunity to tidy up or recover from the \
interruption of its duties and may well be left in an irregular /
condition. This point can be addressed by defihing the sequence _ ‘
of instructions executed between a domain call and exit to be J
atomic with respect to the domain making the call, which will mean

that revoking a domain capability will prevent any further call to . i
it . being made, but ény call that is in progress is allowed to |

finish.

Within the context of an operating system there are two main
uses of revocation: the first is the reflection of revocation
operations in a filing system by the immediate revocation of
access to versions of filing system objects that are active in the
machine, and the second is to prevent malicious domains from
retaining copies of capabilities that they were passed as
arguments and from interfering later on with the objects that the
capabilities protect. The rationale of immediate revocation in
response to filing system operations stems fronm systems 1like
MULTICS [Organick 72] that have one level filing systems in which
segments are swapped between main memory and the filing system,
whereas two level systems copy segments out of the file system
into an autonomous virtual memory swapping regime. In a one level

system, revoking access in the file system automatically includes

revocation of actiVe objects because of the intimacy -of the
swapping and filing systems, whereas in a two level system, there

is a considerable amount of work to be done to find the active
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copies of a filing system " object. A This can be avoided by
declaring that revocation only affects subsequent filingAsystem
accesses to objects and leaves any currently active versions of a
revoked object alone. This latter approach to revocation has the
advantage that it need not involve the kernel and can be carried

out entirely at the level of the filing system.

Unfortunately the second use of revocation, the control of
capabilities passed as parameters to a domain, does require the
intervention of the kernel because of its association with the
domain call mechanism. The problem to be solved is one of

confinement [Lampson 731, in that it is required to control the

proliferation of any capabilities that are passed to a domain, in
particular to ensure that it neither retains an argument
capability in its own storage nor covertly hides it away in some
other domain. It is not reasonable to rely on the use of generic
access codes that prevent a capability from being copied as this
hinders a domain that legally passes its arguments on to other

domains in the course of its actions.

Domain call parameter revocation is iess disastrous from the
Systems point of view than its immediate filing system counterpart
because it only takes place on domain exit, and does not interfere

With the programn running within the domain.

Even with the use of revocation, it is not generally possible
to prevent a domain from remembering information that it is passed
and leaking it elsewhere. Revocation can only be used to confine
the proliferation of privileges; it is no use at all as a
mechanism for preventing the flow of information and data. It is
necessary to ‘look teowards the analysis of information flow
[Denning et al T4, Fenton 7U4] to evaluate[pgésibility of a data

leakage from a protection domain.

6.2, Revocation in Capability-Based Systems.,

It might seem that the simplest way to allow .one domain to
revoke privileges that it has passed to another domain is for the
former toA have complete control over the capabilities of the
latter. This assumes that the domain which is given a revocable

capability has complete faith that its controlling domain will not
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take advantages of its privileges and interfere with any other
capabilities, ' apart from those which .are to Dbe revoked.
Coordinators in the CAP system have a relationship of this sort
with respect to their sub-processes and they can revoke a N

capability in a junior process by modifying the capability for the

revocable object in the Coordinator's address space. Notice that,

because of the nested address Sspaces 1in CAP, this mechanism f
revokes access in any copies of the capability in all the I
sub-processes of the Coordinator, so ﬁhat a sub-process cannot [
cheat by hiding a revocable capability in any of its brother |
processes. »If CAP had a global naming scheme instead, the [l
Coordinator could still use its position in the process hierarchy f
to get inside the processes it controls to carry out revocation,
but the task would then be much harder as it would need to scan i
every capability within the controlied process, which might have i
taken many copies of the target capability. Furthermore, the ) JW
controiled process would have to be confined so that it may not
transmit a revocable capability to a process over which the Iil

Coordinator had no powers,

An alternative mechanism, is to encapsulate a revocable
capability in a domain that monitors all access to it. Mutual H
suspicion is now handled successfully because the shielding domain i
has no control over the domain which calls it, but the scheme is il
faced by a number of difficulties not very dissimilar to those
encountered with the use of protection domains for typed objects.
There is the problem of type recognition; to the base level, a UN
revocable capability for any sort of object always appears to be Hﬁ
of the type ‘domain', although the confusion can be avoided by |
using the auxiliary type marks that were suggested in Section 5.2. it
More important, there is a loss of efficiency caused by the time ‘
taken by the domain to check and interpret every service it is
asked -to do, and in the case of kernel-defined objects such as

segments the losses are immense. il

Ifr copies of a revocable capability are given out to a number
of different users, it is necessary to consider how a caretaker
domain distinguishes between them. A simple approach is to pass

to éach user a separate copy of the domain with his access status
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bound into it, otherwise the domain must recognise each of its
callers and check their correspondlng access codes, which is a
direct copy of the kernel protection fa0111t1es and a wasteful -

duplication of machinery.

The two schemes outlined above are the only two revocation !
strategies available for users of the CAP system, the designers of ﬁ
which felt that revocation was undesirable as a matter of policy _ [
‘and were not willing to add any additional machinery to handle it. {
Redell's thesis [74] investigates many of the possible paths that |
may be followed if further mechanisms are introduced into the |
kernel specifically to handle revocation, The systems he '

describes fall into two classes: revoker capabilities and

dependent capabilities. ' hi
|

- I

Revoker capabilities [Neumann et al 7T4] are capabilities for I

the mapping between a capability and the object it names. A
revoker capability can be used to alter the mapping and vary the
accesses conveyed by capabilities that map onto cbjects through it
as illustrated in Figure 6.2- t. In effe ect, the mapping between a
capability and an object is itself treated as an object which
suggests as an implementation that a revoker capability will map
onto a revoker object whose representation describes the mapplng
for another object. The main difference between this and the
gate-keeper domain scheme is that the revoker capdblllty does not

describe an active object which guards all access to the revocable

object, instead it is a contrivance for interfering with the
mapping between names in capabilities and entries 'in obJect
tables. A corollary of this is that the privilege of revocation
can itself be made revocable by controlling the mapping between

revoker capabilities and revokers,

The dependent capability scheme is rather different; there are
- no spedial revoker capabilities, but instead it is arranged that
all copies of a capability are dependent on the original so that
when the holder of a capability revokes access, all of the copies
dependent upon it are similarly affected, which is to say that
capabilities somehow depend on the source from which they were
derived. In this approach there is a distinction between

transmitting a plain copy of a capability and a revocable one.
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This distinction establishes a tree of dependencies between copies
of a capability which is structured as follows:
a) The initial capability occupies the root node. \\¥
b) A non-revocable copy of a capability occupies the same
node as the capability from which it was derived.
¢) A revocable copy of a capébility occupies a new successbr |
node descended from the node of the original capability.
A diagrammatic representation of a typical tree is shown in Figure
. 6.2-2. All of the capabilities in an individual node of the tree
always contain the same privileges, since any change to one of
them affects all of its companions equally because they are all '
dependent on the capability from which they are descended. If a
revocation alters a privilege at some 1level in the tree then
privileges are affected in the levels descending from it. The
main point to notice about the tree is that it demonstrates that
with the two different copying primitives, dependent capabilities
pose no constraints on the use of revocation because the tree

describes a general hierarchy of controi.

Dependent capabilities have a great deal to recommend them.
They avoid the need for special capabilities authorising
revocation and also escape from treating the capability to object
mapping as an object which is not straightforward to implement,
although it dces not mean that revocation itself cannot be made
revocable. The main complaint against dependent capabilities is
that an eérly decision is required to determine whether or not a
capability should be revocable because, once a non-revocable copy
is given away, all control over it is lost forever. However, it
is reasonable to suggest that any level of trust apart from
absolute confidence is liable to change and should be mirrored by

the use of revocable capabilities at all times.

6.3. A Sealed Capability Implementation.

In the 1last chapter, the  use of sealing to conceal the
representation of an object was described; Redell calls this

opague sealing and it is also possible to consider transparent

Sealing in which a sealed object can be read, but cannot be
modified. Redell describes a mechanism based on a mixture of

these two types of sealing to implement a dependent capability
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revocation scheme. He introduces a new sort of slot, called a

J
revoker, in the global object table which resembles an extended _
object, except that its type 1is recognised by the kernel. e |
Capabilities for revocable objects are iliustrated in Figure
6.3-1. A revoker contains a capability together with an access |
mask and every field in a revoker; with the exception of the bits
of the access mask that are off, is transparent. If, in the ' |
course of the evaluation of a capability, a revoker is
encountered, the transparent capability sealed within it leads on
to anothef table global object table entry which might also be a
revoker until eventually either a basic or an extended object is !
found, which is taken to be the object the original capability |
denotes. The opaque parts of the access masks, that is the bits N
that are off, cut out accesses that are not to be permitted an@ l

this selective filtering action is used to capture the action of

revocation.

Redell introduces a kernel primitive, REVOKE, which takes two
arguments: a capability and an access mask. If the name in the
capability points immediately at a revoker, the kernel modifies
the access mask of the revoker to be the intersection of the
access mask sealed in the revoker and the access mask argument ,
otherwise it signals a fault, Whenever any capability.pointing at
the revoker is subsequently evaluated, the privileges it conveys
will be tempered by the new access mask so that if, for example,
‘every bit in the mask was off, the effect would be one of total
revocation of privilege. Thus, the main difference between
dependent capabilities and revoker capabilities is that revocable
dependent capabilities may be used to access the revocable objeét,

but revoker capabilities may not,

It may be noted that Redell's scheme in this form only allows
access to be reduced; there is no mechanism for temporary
revocation and it will be shown in the design of the CAP kernel
(Section 10.4) that it is only hecessary to make a few changes in

order to remove this restriction.

So far, the mechanism developed permits capabilities that ecan
be revoked to be established by sealing in the presence of a

revoker type object; some additional mechanism is required so
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that it is possible to copy revocable capabilities, leéving the
power of revocation with the oﬁner of the revocable object,
without allowing the privilege to others. For example, it might
be required to pass copies of a revocable capability to several
people without wishing to allow any one of sub-users to affect
the powers of the others. On the other hand the owner of the
object will wish to be able to deny access to the object to all of
the sub-users. This is accomplished by an additional type of
extended object called a locker which is totally transparent to
the capability evaluation process. The only purpose of a locker
is to prevent the REVOKE operation from being able to succeed,
because the type of first table entry leading from a locked
capability will be a locker and not a revoker. Thus, only the
holder of a revocable capability can exercise REVOKE, although the
its effect will be noticed by every capability that denotes a
chain passing through the revoker controlled by the revoked
capability. An example of this sort of sealing is shown in figure
6.3-2. The UNSEAL operation is not allowed for revokers and

lockers because it is not a acceptable function.

In Redell's design,‘REVOKE is the only operation available for
reducing access to objects because his capabilities do not contain
access codes and therefore it is not possible to carry out any
form of access code refinement as is carried out in the CAP
system. A capability on its own denotes full privileges for an

object and the access masks in any revokers intervening in the

path between a capability and its root object table entry are the

-only means available for reducing access.
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CHAPTER SEVEN.

PROCESSES AND PROTECTION DOMAINS.

1.1. Protection Domains.

A capability for a protection domain leads to an object whose
representation holds information about the state of the domain and
its capabilities in the form of a segment known as the domain
descriptor. Because nothing is ever done by a domain in
isolation, but always, by a process executing within it, there is a
relationship between domains and processes, which is called
'environment-binding' by Jones [73]. 1In the most general terms,
domains and processes ecan be considered separately and processes
allowed potentially complete freedom in their association with‘
protection domains. This means that a process can move through
many domains in the course of its execution and, on the other
hand, allows many processes to execute concurrently in a éingle
domain. Most sSystens impose Pestrigtions - on this total
flexibility to reduce the amount of machinery needed for

inter-domain and inter-process communication.

One simplification is tb make a process intc a single
protection domain so that the inter-process communication
facilities can also be used for inter-domain calls; this means
that’a task, which in the general scheme would have been a process
with several protection domains, has to be impiemented as a
multiple set of processes, only one of which will be active at any
one time. This is a clumsy use of parallelism and can be rather
inefficient if- inter-process communication is slow. In a
traditional computer architectﬁre, this is the only domain
structure which exists and process switqhing is a slow and
lumbehsbme task carried out by software. This discourages the use
of small domains for reasons of inefficiency and leads 6n to

contraventions of the principle of minimum privilege because

processes (i.e. domains) will typically be large and encompass

many activities. It is possible to circumvent these problems by
making the cost of a process change small and by building a simple

inter-process communication system which has the parameter passing
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capabilities and the speed that is expected of a domain call

mechanism.

The main reason for wanting no more than one process - executing
in a domain at any one time is because of the 1likelihood of
addressing conflicts between parallel invocations of a domain
[Lampson 69]. There are a number of ways in which multiple
execution in a domain can be prevented, of which the simplest is
to make an entire domain into a critical section, not unlike a
Hoare monitor [Hoare TA]. However, it may well be that this
introduces iunnecessary serialisation for domains that are not
critical regions. There is also a further problem concerned with
the degree of parallelism associated with monitors: in general
there are two forms of monitor call [Lauer and Needham 78]: one
that diverts a process into a monitor directly and another that
divides a process into  two parallel forks, dynamically creating

new workspace for both forks, only one of which enters the

monitor. In a capability based protection system, a process has

to carry a considerable amount of state information around
describing its current seot of capabilities and so on, which would
make the cost of a forking monitor call prohibitive because of the
expense involved in duplicatin ng the protection strgcture of a

process as well as its workspace.

Addressing conflicts in a domain that admits several processes
at once can be avcided by one of two techniques, the first of
which is to provide a2 stack-like implementation of dynamic
workspace in each process, so that on calling a shared domain, a
process can acquire its own 1local workspace and be free from
interference from other processes executing in the same domain.
The second technique is really a modification of this in that,
instead of setting up the workspace dynam1ca‘ly, each process is
given its own private copy of the domain with the process's local
workspace built into it and relies on the normal capability
sharing mechanisms to avoid the wastefulness of duplicate copies

of pure code and data. Protected procedures in CAP are shared

between processes in this way.




7.2, Inter-Domain_ Communiecation.

When a process moves from one domain to another, it needs to
be able to pass capabilities as well as data parameters. It would
not be reasonable for domains to pass arguments by putting them in
shared segments because of the amount of memory that would be
wasted setting up a buffer for every pair of communicating
domains. Domain c¢all mechanisms normally transmit privileges
between domains by copying capabilities out of one domain into
another: for example, in the CAP system [Needham and Walker Ttd;
a particular capability table, number three, known as the
N-capability table, becomes the number two, or A-capability, table
in the called protected procedure after executing an ENTER
instruction and capability parameters can be passed to the called
procedure by copying them to the N-capability table prior to the
call. This mechanism is illustrated in fig;re T7.2-1. When
>contr01 returns to the calling protected procedure, the
A-capability table of the called procedure reverts to its previous
state as the N-capability table of the caller and result
capabilities can be taken out of it. The switching of the
capability tables is carried out by manipulating those pointers in
the process base that describe the current set of capability
tables and effectively amounts to copying the capabilities for the
capability tables in and out of the domain descriptors of the
protected procedures. In advance of calling a’ procedure, an
N—cabability table can be. allocated dynamically from a stack by
the MAKEIND instruction and then capability arguments can be
copied into it. The stack, called the C-stack, is controlled by
the microprogram and also holds linkage information for use by the
RETURN instruction which will cause control to resume in the
calling domain immediately after the ENTER instruction that

invoked the domain call.

The HYDRA kernel has a more complex domain call mechanism
[Cohen and Jefferson 75] although the principles are essentially
similar to CAP. The main additional feature 1is the use of

parameter templates, similar in form to the type-extension

templates described in Section 5.3, to ecarry out argument

checking. The domain call primitive compares each argument passed
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to a domain against a set of parameter templates in the domain
object and signals a fault if an argument capability does not
match the type of the corresponding template, or if its access
code is weaker than the 'required access' field in the template.
Provided that an 'argument capability is consistent with the #
matching.template during a domain'call, the domain is given a copy

of the argument with the 'amplified access' field of the template

included in its access code. The 1last facility 1is used |

extensively by type managers to acquire load and store privileges

for extended objects.

7.3. The Use of Protected Domains,

There are four principal applications of protected procedures 4
in the CAP systenm [Needham and Walker T77]: gate-keeping, j
protected objects, trivial services and operating system
interventicon. It is useful to look briefly at this spectrum with ‘ 1
the aim of indicating how much the efficient domain machinery of
the CAP system contributes to the success of the CaAP ¢perating

system.

The first application includes domains guarding the use of
other system facilities, such as the Enter Coordinator Procedure
(ECPROC) which provides an interface to the Master Coordinator and

performs validation checks on Coordinator calls. ECPROC is in a

much better position to look at capabilities during a Coordinator
call than the Coordinator itself, because it runs in the same name
Space as the process making the call, whereas the Coordinator
--would have to interpret sub-process addresses and duplicate the .
naming mechanisms of the microprogram in software. There is also
a gain in efficiency because arguments are verified within a
process and this reduces the amount of time spent with interrupts

disabled and cuts down on the number of context switches between

processes and the Coordinator.

The CAP system embeds system data strdctures into protected

procedures that implement all of the operations allowed to be

carried out upon the data which, as was stated in section 2.1,
helps to achieve both minimum privilege and accountability. For

example, the data structures of the inter-process message system
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are guarded by ECPROC because the interactions between the message
system and multi-programming require access to Coordinator data
structures. This data must be protected from being corrupted by
ordinary programs and also it is neceSsaPy to prevent users from

tampering with the contents of messages.

In Section 5.2 the use of protection domains as protected
objects was investigated and it was noted that, for CAP, this was
the only way of implementing extended types. Even if the CAP had
a more powerful protected object mechanism, protection domains
will still be needed for use as type managers. This wuse of
domains is rather like the protection of data Structures described
above, because a type manager encapsulates the privileges for
getting into the structure of protected objects and performing

operations upon them.

A somewhat surprising use of protected procedures peculiar to
the CAP system, and directly attributable to the cheapness of the
ENTER and RETURN orders, is the implementation of trivial services
as protected procedures. CAP has a general purpose program called
PARMS which takes a character string representation of a command
line and will decode and command parameter strings from it. All
protected procedures invoked by the CAP Command Program are given

capabilities for PARMS, together with the command line that caused

the procedure to be loaded and the procedure can call PARMS to’

decode its command parameters. PARMS is a protected procedure
simply so that the interface to it is well-defined and
straightforward in terms of the ENTER/RETURN and capability

passing primitives.

Casting services of this sort as procedures is very useful in
systems that support a multiplicity of languages because it avoids
the need for one language system to have to know how to make
subroutine calls in another, which would be the case if say PARMS,
written in Algol68C, was called by a BCPL or a FORTRAN program as
a subroutine. Instead, it is only necessary for each language to
provide a mechanism for calling protected procedures and passing
arguments, to make it possible to use service utilities written in
any other language. From the point of view of both documentation

and implementation, it is useful to have the common base level of
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the hardware primitives ‘for describing interfaces in terms of
domain ecalls with simple numeric and capability parameters,

| independently of 1anguage considerations.

After a fault or trap, a process has often to be involuntarily
forced into the operatingb system ~So  that the event can be
processed. In order to preserve the principle that the operating
system should have as 1little access to wuser capabilities as
possible, CAP makes the entry to the operating system take the
form of simulating the effect of an ENTER at the point of the
fault into a special protected procedure that inspects the trap

and decides what is to be done. The procedure, called FAULTPROC, \
{ can then call other protected procedures to recover from the ‘
’ fault. For example, after a virtual memory trap ECPROC will ecall
the store management system to 1load a segment into store and
RETURN to the procedure from which it was forc1bly called so that

normal execution can resume. \1
|

‘ In an evaluation of the CAP system, Needham [77] shows how the
exploitation of protected procedures by the CAP opera ting syvstem
falls in line with the desiderata appearing in Chapter Two, and
the conclusion that can be drawn is that the effectiveness of the
CAP operating system is founded on the use of small independent
protection domains. These domains exploit a very efficient domain
call mechanism in which a domain call takes a time comparable to
about one hundred ordinary instructions [Cook 78]. Software
kernels 1like HYDRA, in which the time taken to switch between
domains is measured in the equivalent of thousands of basiec
instructions, cannot match this performance and the operating

systems built around them suffer accordingly.

The cost of domain ecalls can be cut down by making the
parameter passing mechanisms as straightforward as possible. Much
of the cost of a domain call in HYDRA comes from the parameter
template machinery for checking arguments because it has to be

sufficiently general to match most user requirements and naturally

the price of this complexity is a high overhead. Simple
transactions normally only involve a few trivial arguments and it
is likely that user-written code within a domain, using knowledge

of the nature of expected arguments can do a more efficient job of

|
|
|
|
|
|
|
{
|
|
|
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parameter verification.

A lesson to be learned from the implementation of the CAP
ENTER/RETURN orders is that the domain ecall operation itself
should carry the smallest overhead possible when establishing a
new protection domain and should leave tasks iike evaluating the
capabilities in the new domain and setting up its capability
tables undone, until they are referenced by the code running in
the domain. Furthermore, efficiency will be increased if it is
possible to preserve as much as possible of the state of the
calling domain, so that on return to it there is no need ‘to
re-evaluate the capabilities that were current at the time of the
call.

T.4. Unified Communication Systems.

Inter-domain communication is based on a procedure call model.
Inter-process communication, on the other hand, is more complex
because it is bound up with the synchronisation of parallel
processes. For the purposes of discussion, a simple system with
processes communicating by messages using the primitive operations
SEND, RECEIVE, REPLY and WAIT and domains using CALL and RETURN
will be considered. Users of the system need to know in advance
whether or not a particular module is either a parallel process or
a domain in the current process so that they can use the
appropriate communication functions.” This can -lead to great
inconvenience if at some later stage it is decided to convert a
module from a process to a domain or vice-versa to suit a change
in hardware or software configuration. In the CAP system the
general structure of system modules is very simple as shown below:

b6 ¥ Foravery’ calls
CﬁSE get arguments; entry code

service 1,
service 2,
service n
ESAC;
return results
(0))]

If the service is provided by a protected procedure, the arguments
are passed in the course of the CALL operation and the answer is

delivered by RETURN; whereas, if a message interface is used, the
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module will execute WAIT and hold up until a message despatched by
SEND in another process arrives, so that the arguments in it can

be picked up by RECEIVE and processed before the results are
returned by using REPLY.

\
CAP disguises the implementation of modules in the operating

system from users by concealing them in gate-keeping protected

procedures that check arguments and then communicate with system
modules either by domain calls or messages, depehding on the type |
of the module. The use of a gate-keeper reduces the efficiency of
the concealed module by adding to the overheads of transactions _ W
with it, but on the other hand, if a system module is to be |
reconfigured, it is only necessary to edit and recompile the |

gate-keeper and users do not have to alter their programs. Sl

If there was a single set or communication primitives that
could be used for both varieties of modules, there would be no
need to recompile anything at all, instead it would be sufficient
just to switeh the type of the module ppropriately between |
'‘process' and 'domain'., There would be an increase in efficiency
as gate-keeper domains could be disposed of, and in addition,

users would only have to know about a single communication ‘
mechanism rather than two.

In a simulator for investigating the effects of hardware and
software configuration on system performance, Stroustrup [77]
supports three types of modules: processes, prccedures and
monitors with two communication primitives, ACTIVATE and GET
ARGUMENTS. ACTIVATE takes two arguments,bthe identity of a module
to run and the name of an argument block which is used for passing
arguments and results. The operand of GET ARGUMENTS is a notional
communication channel which can take the two wvalues 'request' and
'reply'. These are a set of minimal facilities that can be
expanded to allow for more ambitious communication protocols. As

an example, the following procedural ecall can be implemented

results := CALL (module, arguments)

as the sequence
ACTIVATE (module, arguments) ;
result := GET ARGUMENTS (reply)
If the module woken up by ACTIVATE is of the type 'process' or
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'monitor' as opposed to 'procedure', it can be run in parallel to
the calling module and GET ARGUMENTS functions as a
synchronisation primitive to ensure the desired ordering of

events.

It is clear that in this unified scheme a module can be
written without knowledge of how it, or the modules it calls, are
configured, and changing the type of a module does not require its
recompilation which provides a potent degree of flexibility.
However, despite the utility of the mechanism for experimenting
with the effects of reconfiguring systems, it is rather too
fundamental to be included in a practical implementation and
attention mﬁst be directed to see how similar freedom can be

included into a mechanism that is reasonable for incorporation

“into an operating system kernel. -

Earlier it was stated phat it is not reasonable to implement
protection domains as monitors and thus it is necessary to turn to
message-based communication systems. Watson [781, in his
alternative protection system for CiP, has a non-hierarchical
module structure which allows a module tc be either a domain or a
process. The unit of communication is a fixed size argument block
issued from a central resident table. The ENTER instruction takes
a capablllby for a module and an argument block as its operands
and attqphes the argument block to a queue of 1ncom1ng messages
for the called module. This module will be marked as either a
process or a domain: in the first case, the calling module is
allowed to continue execution after the ENTER instruction, while
in the second case, the calling module is held up until iﬁs
argument block is processed by the called module. Upon receipt of
an argument bldck a module is activated and the head message is
taken off its incoming queue and made available so that arguments
can be extracted from it. When an activation has been processed,
a module can execute the RETURN instruction which will return the
current argument block to to a queue of returned messages in its
originator where it» can be picked up by the RESULTS order. A
module is deactivated if it tries to execute RESULTS when its
returned messages queue is empty and will be awoken when a results

message arrives. After the use of RETURN, the incoming message
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qQueue of a module is inspected and if there is more work to do,
the module will stay active, otherwise it will be held up until a

new message turns up.

The microprogram implementing Watson's scheme carries out
Simple scheduling operations between modules as they execute the
various message primitives, and it will select which processes to
run on the basis of priorities held in process baées after
précess-type calls. More complex scheduling decisions are left to

a software coordinator.

Argument blocks are concealed from users; they are the private
property of the microprogram. The capabilities they contain
become available as a current capability table after use of the
RESULTS operation, and the data arguments are loaded into
registers. The remaining information in an argument block such as

return links and status bits is private to the microprogram.

Watson's scheme achieves the objective of unifying
inter-process and inter-domain communication but it suffers from a
number of drawbacks. Firstly, a module is only allowed to be in
receipt of a single message at a time so that it is not possible
for a module to multiplex calls as might be required by a disc

driver that schedules disc accesses to minimise head movements.

Modules communicate directly with other modules and thére is
no notion of a message channel which would permit a utility to be
served by several parallel modules, or for message paths to be
dynamically switched between processes. Furthermore, since
messages are routed to the same queue, it is not possible for a
module to associate priorities to different sources of calls; for
example, the CAP real store manager has a high priority channel

for virtual memory fault handling and a low priority channel for

user services, such as demands to modify the ‘1ength of a sesmené'-

A  fundamental difficulty is created by having a single
resident table of argument blocks because of the possibility that
the 1limited stock of blocks may be overdrawn with disastrous

consequences for the operating system.

Despite these objections, Watson's scheme has the advantage of
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efficiency and simplicity because of its microprogrammed
implementation and it demonstrates that it is possible to provide
a basic set of primitives that encompass many of the prbperties of
the fundamental scheme described by Stroustrup. In terms of
microinstructions, the part of Watson's microprogram concerned

with inter-module communication consumes a similar amount of space

to the protected procedure and hierarchical process call

facilities of the original CAP system. The cost of an ENTER in

Watson's scheme is much less than a message transaction in the CAP

operating system and is comparable to the cost of an ENTER in the

earlier CAP system in terms of machine cycles taken.




CHAPTER EIGHT.

THE CAP COMPUTER,

8.1. The Hardware.

The hardware of the CAP computer was designed and built in the
.Computer Laboratory at Cambridge. For several years prior to
~commissioning the machine, there had been a project to design and

implement a capability-based memory protection system and by 1973

the project had arrived at an architecture [Walker 73] that was

considered worthy of turning into a machine so that the design
could be evaluated in terms of real-life computing. To facilitate
experimentation and possible changes in design, it was decided to
to make the machine microprogrammable and to equip it with a
substantial microprogram memory. Many of the features of the
machine reflect the original architecture, though, fortunately for

the work described in this thesis, the hardware is suf' ficiently

=

general to permit investigation of alternative protection systems.

The configuration of the CAP machine and its related hardware
is  shown in figure 8,1-1. The two intimately connected
peripherals are wunder direct microprogram control;‘ the tape
reader is used to bootstrap new microprograms from paper tape into
microstore and the teletype is used purely for fault reporting and
diagnostic purposes. All other peripherals are connected to a CTL
Modular One Computer which acts as a front-end for CAP and 1is
connected to it by a fast link. Either machine may send
interrupts along the link and CAP has the ability to transfer data
in and out of"the Modular One's 1local memory. There is a
permanently resident executive and link program in the Modular One
which provides CAP with access to its peripherals and it is left
to the CAP microprogram to map this interface onto the 1I/0
architecture that is to be presented at the user level. The
Modular One can function iﬁdependently to carry out peripheral
tests and its own housekeeping; similarly, CAP is free to run in

the absence of the Modular One although it may only use the

intimate devices for I/0.
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The main memory of CAP is provided by two interleaved 32K
Plessey two microsecond, thirty-two bit core stores and 512K bytes
of Philips core which also has an cycle time of two microseconds.
The CAP has a thirty-two bit word length and the time taken to
access and merge four bytes serially from the Philips store to
make a word is ten microseconds. The rather dismal speed of the
stores is compensated for by three slave (or cache) memories that

have been observed to be vefy effective in operation [Cook 78].

‘Within the CAP processor there is an autonomous floating-point
arithmetic unit which has a sixty-four bit mantissa and an eight
bit exponent working register. The unit has its own internal

microprogram and processor to carry out addition, subtraction,

multiplication, division and type conversion operations for

fixed-point and floating-point numbers. The CAP microprogram can

transmit arguments and pick up results from the unit.

The CAP supports a fixed format for ordinary instructions and
has hardware to assist in function decoding. The instructioh
layouts are shown in figure 8.1-2. F is an eight bit function
code, Ba, Bm and Bn are all four bit fields that select one of
sixteen general registers (BO to B15). Register B0 always reads
zero and B15 is the program counter. N is a sixteen bit offset.
In Type I instructions, Ba is an operand register. The contents
of the register selected by the Bm field and the value of the N
field (sign extended to thirty-two bits) are added to generate
either a thirty-two bit address or literal data depending on the
specification of the particular instruction. Type II orders are
used to present three operands held in the registers nominated‘by
Ba, Bm and Bn.

8.2. The Microprogrammer's Machine,

The structure of the microprogram processor is shown in figure
8.2-1. The microprogram memory holds 4K sixteen bit words, the
top sixty-four words of which contain a hard-wired bootstrap
routine, while the remainder may be dynamically 1loaded with

microcode and data. The V-store provides the microprogram with

access to the registers and control signals of other parts of the

processor, such as the store logic and the floating point unit.

T
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It appears to the programmer as a bank of 256 registers. Some
V-stores representing control signals have the property that the
microprogram processor is held up until the function associated
with the V-store is ecarried out. For example, writing to VI17
prints the character in bottom eight bits of the D register on the
intimate teletype and reading V1 ad&ances the intimate tape reader
'so that a character can be latched into the D register. Other
V-stores trigger events that are to take'place asynchronously with

the execution of microprogram instructions.

The sixteen general B registers availableAat the user leVel
are also addressable from the microprogram and in addition there
are a further sixteen registers (A0-A15) that are private to the
microprogram. The D register is the central data highway of the
machine; the Arithmetic and Logic Unit (ALU) deposits the result
of a computation in D before routing it elsewhere. There is an
interface between the ALU and the floating point unit and data
sent between the units passes along this route. The microprogram
contrcls the bperation of the floating point unit by depositing
data into the accumulator and, to a lesser extent, through the

V-store.

The ALU is driven by a 50ns clock. A microinstruction takes
between three and seven clock beats to complete, provided that
there are no waits for external events. The microinstruction set
resembles the rder code of a simple old-fashioned machine;
microinstructions are short (sixteen bits) and heavily encoded.
This style of microprogram instruction set is often referred to as
being 'vertical' in contrast‘to a 'horizontal' instruction set,
where instructions are much longer and each bit of an instruction
controls an individual function. The CAP microprogram instruction
set is better illustrated by an example rather than by enumeration

of the complete set of micro orders. The notation used is that of

the standard microprogram assembler and the fragment of code is

the part of the microprogram that decodes instructiqns, known as

stage one.




) B15+1->I.FETCH

start fetch, increment B15
§ STORE->FR, AR

|
|
instruction to FR,AR
BM+AR->P.FETCH modification - start fetch
STORE->D, AQ read data (only for R or RW FMR) |
instruction from FM intervenes
AD->STORE:RESTART // return from FM for W type .
AD->STORE:RESTART // return from FM for RW type

The first instruction causes register B15 to be incremented after

oW1 EWN —
NNNNN
NNNNN

sending its contents to P, the store address register, then the
store access register, PAR, is set to be execute access and the
store 1logic is started. The next instruction (2) completes the
store cycle and routes the user instruction fetched from store,
via the D register, to registers FR and AR. (AR is set to be the
least significant sixteen bits of the instruction, sign extended
to thirty-two bits). Instruection (3) carries out the standard
address modification: the contents of the B register selected by
the Bm field of register FR are added to AR and sent to register P
via D. The function code field of FR is used to index a bank of
256 registers (FMR) that hold access requests which are routed to
PAR during this microinstruction. The access requests held in PAR
may be 'read', 'write', 'read and write®, or 'none', depending on
whether or not data is fetched from or updated in main memory by
the user instruction. The none code indicates that thé modified
address is being used literally and no store access is required.
Instruction (4) is only obeyed if the FMR value is 'read' or 'read
and write' and causes data to be loaded from store into registers
D and AO. The next instruction (5) is rather special; it is held

in the function memory (FM), a 256 word microprogram memory, which

is indexed by the function field of FR. The order executed from
FM will either complete the user instruction or else it will jump
to the microstore'addresé of further micro orders for more complex
user instructions. For example, the order BBPS (B register
incremented by contents of store) can be completed by:
BA+AD->B:RESTART // ba:=ba+word from store

To implement JNEQ (jump if B register=0) a jump is placed in the
function memory:
JMP JN.EQ // bl15: = n,if ba=0
| which transfers control to the following orders:

JN.EQ, BA OR NIL->D:CSKIP // skip next micro instruction if Ba=0

:RESTART // start next user instruction
| BM+AR=->D // reconstruct literal address
: B15=D:RESTART // set program counter to Jjump address

The RESTART option indicates that the instruction has been
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finished off Successfully and stage one decoding may begin for the
next user instruction. If the intervening FM instruction in stage
one does not jump out or restart either instruction (6) or (7) is
éxecuted depending on whether the currently selected FMR register
has the value ‘'write' or 'read and write'. These final
instructions enable orders that update store to be.completed. For
example, the order SSPB (add B register to store) has in its FM
slot the instruction: 7
BA+AD->D | // D:=store + Ba

which computes the new value in register D aﬁd returns to
instruction (6) to write the result to the store 1location whose

address was computed by instruction (3}

There are several other operations and instruction types apart
from those illustrated above, which include various shifts, byte
masking, reading and writing microstore, accessing the V-store,

logical operations, subroutine and unconditional jumps.

The essential difference between microprogramming and assembly
code programming is that in microcode, it is left to the
programmer to ensure that he gets hardware interlocks correct.
For instance, in the CAP it is possible to halt the processor by
reading the store data lines if the store address lines have not

been set previously.

There are a number of faults primarily associated with
addressing violations and arithmetic overflow in the floating -
point unit, which are trapped by the hardware and if one of these
eéxceptions occurs, microprogram control is immediately switched to.
a specific location of  microstore. It is left to the
microprogrammer to provide code starting at- that location to
investigate the nature of the fault  and to take appropriate
action. External interrupts, for example those from the Modular
One, ére only noticed whenever a return is made to stage one. If
an interrupt is signalled at stage one, control is diverted to an
interrupt routine starting at a fixed address in microstore and
the interrupt routine can determine the type of interrupt by

reading registers in the V-store.

The microprogram instruction set has a number of weaknesses
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that are a nuisance to the microprogrammer and waste precious
instructions in the cramped microprogram store. By far the
greatest difficulty is caused by the subroutine jumpband return w\\_,;
mechanism which has only two registers available for holding
return links, because in general, two levels of subroutine are
insufficient in a complex micropfogram énd experilence suggests

that four link registers would probably be better.

It is not possible to perform every operation on all
registers, nor 1is it possible to route results back to all
registers because many instructions are defined only to utilise a
subset of the available registers. In general, the D register is
the primary working register; the A registers are less useful in
terms of the operations that can affect them and the ease with
which they are accessed. As a result, the microprogrammer
frequently has to waste instructions loading wvalues into D to
perform a calculation upon them and then copying the result to
another register. This fault is directly attributable to the
compactness of the microinstruction format which does not have
enough space to encode all of the possible register combinations.
A further consequence of this arises in connection with an option
which permits the next instruction to be skipped over if register
D has a certain value after the current order. Unfortunately,
each microinstruction supporting the option only generates a
single condition and it is frequently necessary to write a further
instruction to test a condition different from that available
after a computation. A Dbetter mechanism would be to allow
conditional skipping on a condition that may be specified within

an instruction, for example, from the set {=0,>0,<0}.

The difference between thevthirtY—two bit wofd length of the
machine and the sixteen bit word length of the microprogram memory
causes difficulty if copies of thirty-two bit words are to be kept
in microstore. LOAD DOUBLE WORD and STORE DOUBLE WORD
microinstructions would be very useful. If there were more
registers there would be less need to use microstore as a

repository for data.

There are, however, several benefits to be gained by having a

simple and compact microprogram instruction set. It is much
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easier to write code than would be the case in a highly parallel
horizontally microprogrammed machine and this is helpful from the
point of view of debugging microcode, making modifications to it
and also for program verification. The last point is crucial: the
state of the art of program verification is such that, for
.microcode at least, it is necessary to rely on visual checking
alone. Therefore it is  an advantage to have a microprogram which
is easy to read and follow. In return, of course, there is not
the same scope for carrying out several operations in parallel in
a vertical microcode and efficiency will be 1lost because of

unnecessary serialisation.

8.3. Accessing Main Memory,

In this section the hardware in the CAP system that is
responsible for virtual address translation and memory protection
will be dﬁtlined. The store 1logic operates in a number of
different modes whiéh may be selected by setting flip-flops in the
V-store. In all cases an address is taken from the P register

together with an access code from register PAR.

The simplest addressing mode is called absolute mode. The

least significant twenty bits of P are treated_ as an absolute
address and are passed directly to the store address lines. The
access code in PAR is used to determine whether a reading or a
writing store cycle is to be generated. After setting register P,
the microprogram will read or write to the store data 1lines to
complete the store transfer. The slave store mechanisms are
interposed between the addressing logic and the physical memory so
that, at the level of addressing, the slave is transparent to the

microprogram.

The other addressing modes are used to carry out address
translations and access checks and for this purpose there is a

capability unit, the organisation of which is shown in figure

8.3-1. The wunit divides into two parts: a bank of sixteen
registers known as the tag mémorz (TGM) and sixty~four capability
registers. The latter divide into six sub-registers known as the
tag, base, limit, access, count and spare registers. The TGM and

tag registers are concerned with address translation and will be

P

EEEE———




[£a] ~
2= o~
<z ~r
[a 9}
12}
=
= ~
=] b~
QO | ~
(&)
2]
n ~
£ ~
(&b] ~r
o
<
3] ~
N | WO
=} -
[7p] ~r
|
m o
[72] o
<z ~r
m
~
\Xo]
N~
O
<q ~
B (o o]
~
o

L= D e cmen eum S cees Gwmes mes  cmm e

o mame  Ee e aD e e o oo

= @ e w0 et am e o

(6)

TGM

©

63

Register PAR

Register P

match

15

-(8)

(8)

(16)

(4)

Virtual Address

Capability Unit Organisation

Figure 8.3-1




described later. The count and spare registers take no part in
addressing or access control and are used by the microprogrammer
for housekeeping purposes that will be the subject of a  later
chapter. The remaining registers function similarly to segment

descriptor registers that are found in other machines.

In last mode, a particular capability register may be Selected
by writing to a V-store location. When an address is written to
P, only the least significant sixteen bits are used. They are
compared to the 1limit field of the selected capability register
and if the address exceeds the 1limit field, an error is trapped
and control is diverted to 1location eighteen in the microstore.
Similarly, a check is made to see that all of the bits set in PAR
(the access request) are also set in the access field of the
capability register. An access violation also causes a trap to
location eighteen. Provided that the access and limit checks are
successful, the sixteen bit addrese in P is added to the twenty
bit absolute base address in the base field of the selected
capability register to calculate an absolute address which is sent
to the store address 1lines. Last mode is wused extensively to
address data structures whose entries in the unit have been loaded
by one of the two remaining addressing modes so that address
relocation can be carried out automatically and also to prevent

the microprogram from carrying out an illegal access to the data.

Direct mode enables capability registers to be selected by a

field in addresses. As with 1last mode, the least significant

sixteen bits of register P form a segment offset which, together
with the access request in PAR, are compared with the contents»of
the selected capability register. The selection is determined by
the six bits preceding the segment offset in P. Using direct
mode, it is possible to build a capability register system that

resembles the Plessey System 250.

The final addressing mode, normal mode, is the most involved

as it carries out virtual address translation in addition to
access checking. A CAP virtual address is thirty-two bits 1long

and laid out thus:
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{ number EXXXXXXXX{ index offset I
| e e e e e e e

e e |
31 28'271 24 '23 16!15 | o'

As before, a store cycle is started by writing an address to P and
an access request to PAR. The four bit capability table number
indexes the TGM to yield a six bit tag. An associative search is
then made through the capability unit looking for a register which
has a fourteen bit tag field matching the concatenation of the six
bit tag from the TGM and the capability index part of the address.
If a register is selected, the remainder of the addresg is
interpreted similarly to the last and direct modes of addressing.
Otherwise a trap to microstore location seventeen is'generated to

indicate that a matech was notAmade.

The capability registers are divided into banks of four
registers. The searching algorithm proceeds by selecting a bank
and then performs an associative match on the registers within the
bank. If there is no match, the search moves on to the next bank
cyclically, wuntil all of the registers in the unit have been
looked at. Thus there is a high premium on ensuring that the
capabilities are loaded near the point at which the unit will

start searching.

The intricate structure of the unit allows capabilities to
remain within the unit even when they are no longer addressable
because of a protection domain or process change. This is userful
if domains are small and are called frequently, as it avoids the
overhead of flushing out and reloading the unit on every domain
entry and exit. The details of the ofganisation of capabilities
Wwithin the unit and the way that the TGM and tag registers are
used is discussed in more detail in Chapter Twelve. For the time
being, it is sufficient to say that for each capability segment in
a protection domain, the TGM holds a kKey which is in the tag
register of every capability 1loaded from the segment into the
capability unit. If a protection domain change occurs, new keys
are put into the TGM, so that previously accessible capabilities
Wwill not match wuntil the original keys are restored after

returning from the called domain.
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It is up to the microprogram to handle faults and exceptions
reported by the capability unit. Furthermore, it is also the
responsibility of the microprogram to allocate slots for newly
evaluated capabilities and to arrange that any operations carried
out on capabilities in store are reflected by changes_ to the
contents of the capability wunit. The microprogram ié able to
interrogate and modify the contents and state 'of the unit by
depositing information in the accumulator and to a lesser degree

by accessing parts of the V-store.

It is the use of the capability unit as a cache for store
capabilities that contributes most to the effectiveness of the CAP
memory protection system: once a capability has been evaluated,
address translation and access checks are carried out with only a
minimal overhead and the unit is sufficiently large that
capabilities are re-evaluated infrequently. The cost of a large
cache has been traded agéinst the time that would be wasted
loading and unloading the unit if it held fewer capabilities and

suffered from ‘capability thrashing’.

8.4, Microprogramming Aids.

There 1is a standard microprogram assembler for the CAP
machine. The assembler is not very rich in facilitiés and has a
number of idiosyncracies. Despite this, the CAP kernel was
written for this assembler so that code for emulating user
instructions, performing I/0 and so on, could be borrowed from the
existing microprogram. The assembler was originally written for
an IBM System/370 but at the time that the kernel was being
developed, the CAP operating system became available and the
assembler was moved across to it. At this stage, I modified the
assembler so that it put microprograms onto disc in a format that
can be loaded into CAP microstore by a simple bootstrap program.
This step greatly increased the rate at which new versions of the
kernel could be assembled and tested, as in the past it was
necessary to conduct an assembly on the IBM machine and then to
punch out binaries on paper tape for loading via the CAP intimate

tape reader.




The kernel was debugged using Just the raw hardware. CAP is
well equipped with LED displays of registers and control signals,
and there is a well-endowed control panel with facilities for
obeying single shot instructions, setting a break point and
obeying instructions set up on the hand keys. - There is also a
postmortem program which will tabulate the values of all of the

microprogram registers (including the V-store) - on the line
printer.

Working in this way. it is surprisingly easy to test large
tracts of microprogram in a short time. The main difficulty is in
persuading other users of the machine to desist so that hands-on
access could be gained. Fortunately, during the period in which

the kernel was written, this was not too great a problem.




CHAPTER NINE.

A KERNFL FOR THE CAP COMPUTER.

9.1. Preliminaries and,thation.

In this and the following chapters the design of a kernel for
the CAP computer and its implementation will be documented. The
discussion will distinguish between the earlier memory protection

system and the kernel by referring to them as CAP-I and CAP-III

respectively. The rationale for the decisions 1leading to the

architecture about to be described can be found in the first

section of the thesis.

- The instruction‘format, addressing conventions and word length

of the new system is identical to that of CAP-I for two reasons:"

firstiy, so that utility programs like compilers can run unchanged
on either system and secondly because CAP-III uses the same hard
wired logic for instruction decoding and virtual address
translation as CAP-I for reasons of efficiency. The microprogram
for the basic instructions and organising I/0 across the link to
the Modular One computer within CAP-III is more or less an exact
copy of its oouﬁterpart in CAP-I. The remainder of the
microprogram is concerned with protection, which is very different
in the two systems, although many of the kernel instructions have
direct analogues in the memory protection system. The
implementation of this part 6f the kernel was carried out from
scratch through a number of iterations to the current

specification.

The standard microprogrammed instruction set for the CAP
machine is both conventional and extensive; it includes integer
and logical operations between B-registers and store, conditional
Jumps, subroutine entry and exit, byte addressing, byte packing
and unpacking, multiple register to store dump and reload, fixed
and floating point arithmetic, block move and élear, Algol 68

CASE, modification of next instruction, integer and floating point

conversions, test-and-count and exchange register with store .

functions. The full set is documented in Herbert [78]. In the
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following chapters, a standard notation is wused for describing

instructions thus:

dxx digit xx of a binary number (d0 is the least significant
digit)

F function code identified by d31-24 of the current order.

Ba B register identified by d23-20 of the current order.

ba The contents of Ba. 7

Bm» B register identified by d19-16 of the current order.

bm The contents of Bm.

Bn B register identified by d3-0 of the current order.

bn the contents of Bn. ' .

N The signed integer formed by d15-0 of the current order.

n The value bm+N.

[x] The contents of the store location whose virtual address
is x.

s The value [n],

# Used to introduce a hexadecimal number.

It is always assumed in the description of an instruction that
any reference to reading store implies that a protection check is
made every time store is accessed. Thus a protection violation is
signalled if insufficient access rights are held or if an address
is invalid or beyond the end of a segment or capability table.
The kernel indicates these exceptions, along with other faults, as
an interrupt toc the software which contains a code indicating the
nature of the fault. The program counter (register B15) of the
current process at the time of the fault is set back so that if
execution in the process is resumed, the failing order will be
retried. The kernel always arranges that a process and all of the

protection apparatus is left in a consistent state after a fault
so that the integrity of the system will remain guaranteed.
Furthermore, the kernel places no reliance on any data structures
kept in main memory so that if a program, either by accident or
malice, interferes with an intimate part of the protection

apparatus, the kernel cannot be induced to give awéy privileges or

behave in an unreasonable manner.




9.2. Naming.

It was decided to employ a global naming system for the kernel
because global names are conceptually easier to understand and
they are more suited to extended object manipulation. Another aim
was to gain experience in the use of global names and to compare
global naming schemes with the nested naming schemes. A
forever-unique global naming scheme was obviously not suitable for
microprogram implementation because of the large amount of code
required to administer an object table that is kept partially on
disc. Instead, a scheme that uses short names and a modestly
sized resident table for just the set of currently-active objects
is employed. As a consequence, active capabilities cannct be kept

in the filing system and it is necessary to have operating system

support for translating capabilities from the filing system into

the run-time capabilities manipulated by the kernel. Experience
with the CAP-I operating system Syétem Internal Name mechanism
(Chapter Three) suggests that the necessary trahslations can be
performed at a cost that is at worst comparable to, but probably
less than, the expense of organising passive and active object

tables in a forever-unique scheme.

In CAP-III the descriptions of all currently active objects
are found in a resident table consisting of four word slots known
as the map. The maximum size of the map is 65535 words (i.e.
16383 slots) although in practice, its size is expected to be in
‘the order of four to eight thousand slots. An attempt to access a
slot that is out of the bounds of a map will result in a'fault.
In general, the kernel will only take names from capabilities or

entries in the map.

An object is said to be 'active' if there 1is at least one
capability for it in a capability segment. To help detect objects
that ére no longer referenced, the kernel keeps a reference count
for each entry in the map, and it is incremented whenever the
kernel sets up a capability or map slot pointing to it and is
decremented whenever the kernel deletes such a pointer. As will
be shown in Section 9.8, reference counts alone cannot detect all
free slots in the map and it is necessary for the software to

include a garbage collector which can function asynchronously
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without holding up the remainder of the system.

The kernel maintains a pool of map slots that are currently
free and takes a slot out of the pool whenever a new object is set
up. The pool is organised as a list and information about it can

be obtained by the FREEQ instruction:

FREEQ no arguments.

ba2d31—16) :
ba(di5-0) :

ead slot of free list.
ength of free 1list.

==

If the pool is empty when a new slot is required, a fault is
generated and the failing instruction can be retried once some

space has been recovered in the map.

vThe layout of a capability is shown diagrammatically in Figure
9.2-1. A capability is two words 1long and consists of four
sixteen bit fields. The name field will nominate the map slot
containing the descripticon. of the object protected by the
capabilities. In fact only fourteen bits are required to address
all of the slots in a map of maximum size and a sixteen bit field
is only wused for convenience in the kernel microprogram. The
interpretation of the access code field depends upon the type of
the object named in the capability, with the exception of bit
fifteen, the revoke bit which is a generic code associated with
revocation (Section 10.4). The use of the base and size

refinement fields will be dealt with in Section 9.3.

There is one name that is treated specially; it has the value
65535 and implies that the capability is null, that is to say, the
capability is not bound to an object; This capability is useful
for overwriting capabilities that are no longer required to
prevent them from being used any further. The kernel will signal
a fault if any attempt is made to evaluate a null capability but
it is perfectly permissable to move such capabilities around with

the capability transfer instructions.

The format of a map.slot is shown in figure 9.2-2. The type
field (sixteen bits) identifies the class of objects to which the
particular object belongs. Some types (segment, process, message
channel, message and type-object) are recognised and supported by

the kernel; other types are defined by software and are the
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REVOKE access bit (d15)
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Word 1 oo NAME . CODE |
|
Word 2 BASE SIZE ' ‘ |
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|
I
31 16 15 ’ 0
|

Figure 9.2-1 Capability Format
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I
|
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Figure 9.2-2 Map Slot Format -




currency of the operating system.

The tag field (sixteen bits) is not interpreted by the kernel
and can be used by software as a label for the slot and is
initialised when it is set up. One potential use of these tags is
so that the software for translating filing system names to map
slot numbers can record a key in a map slot that can be used to
locate information about the corresponding object in its

translation tables.

The representation words in a map entry are used to describe
the substance of an object and may either be a capability or
simple binary data. In the latter case, the name field of the
representation will have the value 65535, which imposes the minor
restriction that it is not possible to have extended objects with
null capabilities as their representation. This restriction is

enforced by all of the kernel type—extehsion facilities.

The use of the twenty-eight bit reference count and the

reference count marker bit is deferred until Section 9.8.

In the rest of this description it will be convenient to refer
to the type of an object as an attribute of the capabilities for
it although type codes are only held in map entrigs. Thus, the
term 'segment capability' means a capability that names a map slot
defining a segment-type object. It is also useful to let the term
'object'! denote the map slot holding information about the
representation of an object. When talking about 'objects', it
will be clear from the context whether the actual object itself or

the map entry that describes it is intended.

9.3. Segments.

The unit of memory protection is the segment which is a
contiguous set of words in store of an arbitrary length up to a
maximum of 65535 words. The access codes defined for segments are

read- and write-capability, and read, write and execute data.

Segment type map entries are basic objects, which is to say that

they have a data type representation as shown in figure 9.3-1.

The twenty bit absolute base field defines the starting

location of the segment in physical memory and therefore, the
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Figure 9.3-1 Segment Map Entry Format




maximum memory address that can be accommodated is 102L4K words,

which is in fact a hardware limit imposed by the addressing logic.

The sixteen bit size field defines the length of the segment
in words, although individual capabilities may select just a small

portion of the whole.v Capability segments are aligned so that

capabilities occupy adjacent pairs of words starting from the base

of the segment and most instructions reference capabilities by an
index such that the first word of the’capability will be found at

the word in the segment whose offset is twice the index.

The 'outform' status bit can be used for organising virtual
memory swapping. The kernel signals a fault if the evaluation of
a segment capability yields a map entry in which this bit is set.
When the bit is on, the operating system may utilise the other
fields of the entry to hold information abouﬁ disc addresses and
so onj; at all other times, the absolute base and size fields are

interpreted normally.

The other two status bits, ‘'dirty' and ‘'used', record
information about the types of access made to a segment. The
'used' bit is set tec one if it is read as zero when the capability
for a segment is evaluated. The 'dirty' bit is set if it is read
as zero when the capability for a segment 1is evaluated in the
course of a store demand that includes 'write data' or 'write
capability' access. The software can reset these bits and monitor
them from time to time to discover which segments are accessed

frequently and which ones have been modified.

Sub-segmentation is performed by the base and size refinement
fields of segment capabilities as illustrated in figure 9.3-2.
The base refinement field must be less than or equal to the size
of the absolute segment and the sub-segment begins at the absolute
address formed by adding the absolute address of the segment to
the ©base refinement of the capability. The size of the
sub-segment is the smaller of the size refinement field of the
cabability and the remaining length of the absolute segment beyond
the base of the sub-segment. The refinement mechanism provides a
means for selecting small portions of larger structures and this

is particularly useful in the manufacture of argument capabilities
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during inter-process communication.

In capabilities for objects other than segments, the
refinement fields are not significant and have no effect on the

process of capability evaluation.

9.4, Addressing.

The fact that capabilities and data are partitioned rules out
the possibility of using Fabry's capability-based addressing
scheme for CAP-III. Instead, the addressing architecture of CAP-I
is adopted with the important restriction that there is only one
domain per process. The CAP-III kernel has an efficient
inter-process communication facility and the analogue of a CAP-I
process consisting of several domains in CAP-III is a team of
processes with shared capabilities for common objects. This means
that the problems that can arise when CAP-I protected procedures
pass addresses around or share multi-segment data structures do
not cause concern, but the difficulties of addressing clashes
remain for inter-process communication. However, it is much
better practice to transfer capabilitieé rather than addresses,

and the CAP-IIT message system is suited to this.

The ©root of a process®s address space is its domain
descriptor, which is a capability segment local to the process.
The first sixteen slots in this segment define a set of capability
tables which are capabillity segments. If one of the slots in the
domain descriptor is a null capability, the corresponding table is
deemed to be absent. Each table may contain up to 256 addressable
capabilities and the complete set of all of the capabilities in
the tables forms the process's domain of protection. The format

of a thirty-two bit wvirtual address is shown below:

e = e = = =

________________ ] |________________________.__________
"table Ixxxxxxxx! capability | " segment '
! |
|number iXXXXXXXX‘ index i offset i
31 28 '27 24 ' 23 1615 o'

The table number selects one of the sixteen capability tables and
the capability index then nominates a particular capability from
within the table. These two fields of an address taken together

are known as a capabilitv specifier. The offset part of an
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address only applies to segment capabilities and indexes an

individual word in the segment defined by the capability selected

by the capability specifier part of the address.

The virtual address translation mechanism will fault the

evaluation of a capability if it is wunable to read the domain

descriptor or capability table with read-capability access, if any
of the address fields index beyond the end of the appropriate
segment, if the capability for a capability table in the domain
descriptor is null, or if any of the capabilities for the various
_ capability segments turn out to be for types of objects other than

segments. ' ‘

The structure of a CAP-III address space and an example of ‘
address translation is shown in figure 9.4-1. It should be noted
that both capability segments and data segments have the same type [
('segment') and thus the interpretation of a segment capability

depends on the access code within the capability. It is perfectly

permissible for the software to have a data-type capability and a
capability-type capability for the same segment in order that some
part of the operating system can create or modify capabilities
within the segment. 1In particular, the software responsible for
translating between permanent and active names will need this
privilege in order to create additional instances of capabilities
for already active objects. The kernel caches evaluated
capabilities for kernel-defined objects in the hardware capability
unit and if the software overwrites a capability wusing the
contrivance described above, it is necessary to ensure that the

kernel notices the modified value of a capability. For this

purpose, there is the following instruction:

FLUSH n (d31-16) capability specifier.
Any entry for the capability specified by n(d31-16)

in the hardware capability unit is disabled, to force the
re~evaluation of the capability from the updated segment

if it is used again.

This facility is only intended for use by operating systems
software but it is perfectly in order for other programs to use it

as the instruction causes no harm, except to force a spurious
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re-evaluation of the nominated capability.

9.5. Information Orders.

There are three instructions for obtaining information about

capabilities and objects:

OBJINF n (d31-16) capability specifier.
ga$d31—16) := tag field of object n(d31-16). :
a(d15-0) := access code of capability n(d31-16). |
SEGINF n (d31-16) segﬁent capability specifier.
ba(d31-16) := length in words of segment n. |
ba(di5-0) := access code of segment capability n. (
CSEGINF n (d31-28) capability table number.
REE L e S S it S
In these and other orders, arguments are interpreted as
addresses which select capabilities which in turn Alead to the
description of particular objects. Thus, 'object n' denotes the w
object defined by the capability at address n. If the object
iocated in this manner is inappropriate to the function of the
instruction, such as SEGINF on a non-segment capability, a fault

is signalled.

9.6. Capability Transfer.

It is useful to be able to move capabilities between
capability tables in the current process. The capability transfer
suite of orders are concerned purely with capabilities and do not

affect the objects protected by them. Transfers are carried out

by making a copy of the source capability and then overwriting the
previous contents of the destination capability slot. It must be
possible to read the source and destination capability tables and ‘
to write to the destination table with capability-type access. i

The cépability transfer orders are specified thus:

MOVECAP ba$d31-16§ source oapabilitg specifier.
n (d31-16 destination capability specifier.

The capability is copied, without modification from |
source to destination. The previous capability at the N
destination capability slot is lost and any entry in the

hardware capability unit for it is flushed out so that
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REF INE

MOVECAPA

the capability will be re-evaluated to pick up its new
value.
31-16) source capability specifier.
5 Og access mask. .
n 31-1 destination capability specifier.
In addition for segment source capabilities:

b(a+1)(d31-16) base refinement.
b(a+1)(d15-0) size refinement.

For segment capabilities, the source segment is
inspected to ensure that the base refinement does not
exceed the current size of the sub-segment nominated by
the source capability. The access of the copy is the
logical 'and' of the access code in the source capability
and the access mask . For non-segment source
capabilities, the second word of the capability is copied
unaltered; otherwise the base of the copy is the sum of
the base of the source capability plus the Dbase
refinement, and the size of the copy is the size
refinement or the remaining size of the source capability
after base modification, whichever is tﬁe smailier. For
capability segments, it is only permitted to have an even
base refinement otherwise capabilities could be
misaligned in store. The previous capability at the
destination slot is 1lost and any entry for it in the
hardware capability unit is flushed out.

}gg Sgéiiﬁagigﬁbiéégzlf?%;lgéggent specifier.
0) destination capability segment offset.

The capability specifier part of n selects a
capability for a capability segment. Provided that the
destination offset is even, (to avoid alignment problems)
the source capability is copied without modification'to
the two words starting at offset in the destination
segment. This order is used to transfer capabilities
from the capability  tables of an address space into

general capability segments.




9.7. The P-store and Peripheral Devices,

Device transfers are initiated either by block transfer or by
single character transfer instructions depending upon the nature
of the device being driven. One argument of the I/0 orders is

always a device specifier that consists of a sixteen bit

capability specifier and a seven bit device number. Before
starting a transfer, the I/O orders evaluate the capability
nominated by the device specifier to see if it names a segment of
memory whose absolute span embraces a wérd of store, the absolute

address of which is given by the device number. Thus, permission

- to use a device is controlled by the possession of a capability

for a word of store associated with the device. The device

numbers are in the range nought to thirty-one so that the first

thirty-two words of store are tied down for device control and are

known collectively as the P-store.

Reéding or writing to the P-store has no external effect on
devices themselves; the mechanism 1is purely a contrivance for
compatibility between CAP-I and CAP-IIY and takes advantage of the
efficiency of the memory protection arrangements to provide a
convenient and fast access check on the use of peripherals. It
would be perfectly acceptable to introduce 'device'_objects known
to the kernel, with device numbers built into them, as a mechanism

more in the spirit of the CAP-III kernel design.

All buffering of peripheral transfers is carried out by the
Modular One front-end computer and the kernel can transfer a
buffer acrdss the link at a comparable rate ko the CAP store
cycle speed. For this reason, transfers are carried out in a
single burst during which no other activity occurs. This greatly
simplifies the internal organisation of the kernel and means that,
during a block transfef, it is only necessary to evaluate the
capability for the CAP buffer at the start of the transfer and,
because no other program may executé during a transfer, there is
no possibility that the buffer will be swapped out or the
capability for it being otherwise invalidated. If CAP had devices
that use asynchronous channels directly attached to it, the kernel
would have to 1lock down buffer capabilities in the hardware

capability unit and fault any attempt to destroy or modify them.
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The kernel does possess this facility although it is used -for a

different purpose and it will be described in Section 11.3.

9.8. Reference Counts.

Whenever the kernel creates an object by allocating a slot in
the map, its reference count is set to one. If a capability for
an object is copied, its reference count is ihcremented and if the
kernel overwrites a capability, the latter's count is decremented.

In this way, by testing the value of its reference count, the

" kernel can detect whether or not any references exist to a map

slot.

The kernel will automatically return to the free list any map
slot whose reference count falls to zero when it is decremented so
that the map is kept free of useless entries., If the liberated
slot is an extended object, the kernel goes on to decrement the
count of the capability which is sealed in its representation and
SO0 on, potentially releasing a long chain of slots. It is the
responsibility of the operating system to flush out the contents
of any capability segment that is no 1longer active, because
clearing out all of the capabilities in a segment could be a

deeply recursive and time consuming activity for the kernel to
perform.

Unfortunately, reference counts are not sufficient to detect
every sort of garbage. 1In particular cyeclic structures can arise;
for ’example, an extended objéct. represented by a capability
Ssegment that in turn contains a capability for the extended object
is a simple looped structure, and one can construct more
complicated ones. Cyclie structures that are inactive will remain

in the map  because the loops that they contain will prevent

reference counts from falling to zero.

To solve this problem, there is a need for a map garbage
collector. Since the‘garbage collector will be system wide, it
must run asynchronously to avoid holding up the machine while the
map is scanned. In the CAP-I system where each.process has a
private, synchronous software garbage collector for its Process
Resource List, the occurrence of a garbagé. coliection has a

noticeable effect on the speed of execution of a process and
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therefore, if the CAP-III garbage collector was synchronous, the

effect would be greatly magnified across the system as a whole,

with a disastrous result on response times and throughput.

The main difficulty with an asynchronous garbage collector is
that the map and active capability segments are changing as the

garbage collector runs. To cope with this, the kernel sets the

reference count marker bit in a map entry whenever it increments a

reference count, creates a new map entry or puts a slot on the
free list. A simple garbage collector can proceed as follows:

a) gggn the map unsetting all of the reference count marker
its.

b) Use the FREEQ order to determine the free 1list and set all

of the marker bits for slots in the list.

c) Scan the map and all active capabilit¥_ segments marking
i ~

slots in the map for which there is a valid capability.

d) All slots whose marker bits are unset can be returned. to
the free list because they are no longer active.

e) Go back to a) and repeat indefinitely.

This garbage collector will detect any slots that were
inactive at the start of its secan, and any that become inactive
thereafter will be found in subsequent cycles. The size of the
mapvand the frequency with which the garbage collector runs are
parameters that must be adjusted in the 1light of experience in

order to obtain the optimum system performance with the minimum

overheads. The algorithm given above is based on the CAP-I filing

| system garbage collector [Birrell and Needham 787].




CHAPTER TEN.

TYPE-EXTENSION AND REVOCATION OPERATIONS.

10.1. Sealing and Types,

The type-extension mechanisms of the CAP-III kernel are based
on the facilities proposed by Redell [T4], with a number of
additions. In the last chapter, two forms of map entry were
described, corresponding respectively to basiec and extended
objects. The representation of basic objects consists simply of
binary data, the interpretation of which depends upon the type of

the object. Extended objects on the other hand,‘ have a single

capability as their representation and objects that are made up of

several components can be manufactured by sealing a capability
segment that holds capabilities for all of the constituent
objects. This scheme has the advantage over the universal 6bjects
of HYDRA that all objects have fixed size entries in the map and
the problems of handling small bundles of capabilities can be left
to the operating system, rather than being the responsibility of

the kernel.

The kernel supports three basic primitives with .variants for
basic and extended objects: SEAL is used to create new objects,
UNSEAL to interrogate the representation of an object and ALTER to
modify representatioqs. To use one of these primitives it is
necessary to quote a capability for a type object that bears the

appropriate access code from the set seal, unseal and alter. Type

objects are basic objects whose type is recognised by the kernel.
The representation of a type object includes a sixteen bit type
mark that is found in the type field of all objects belonging to
the class nominated by the type object. Operations upon type
objects are contrdlled by a type object whose type mark is ‘'type'.
During the process of sealing, a type object acts as a proforma
for setting up a new object, by informing the kernel of the type
mark that is to be placed in the type'field of the object's map
entry. In the other two operations, UNSEAL and ALTER, a type
object is used rather like a key to unlock a protected object and

the key will only fit if the type mark of the type object is
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’ identical to the type field of the object in question. A type

‘ object map entry is shown in figure 10.1-1.

The principal difference between type objects in the CAP-III \'*J
kernel and Redell's scheme is that Redell places the name of a |
type object in the type field of protected objects, as opposed to
the arbitrary type codes -employed -ty the kernel. Redell's w
approach is conceptually more simple and unifies the management of - w
types with all names, but in the CAP-III kernel, where names Il
contribute towards reference counts, it is difficult to free slots |
automatically in the map if the scan of a chain of extended type
map entries has to be altered from a linear progression to a tree
walk that includes pointers to type objects. It would be
unreasonable to ignore the contribution of type fields to the
reference count of a type object, because'if the count of the type'
object did reach zero, all'of the objects of that type would be » {
left pointing at an invalid map entry. In the CAP-III system, the l
management of type names must be carried out by the operating ‘
system type-object manager, rather than by the kernel unique name [

mechanisms. » v ' Il

In the case of extended objects, there is no restriction on i
the type of capability that 1is sealed in the presence any |
particular type object. In this way it is poséible for an
extended object to have different forms of representation and it
is ~ up to the type managers of objects with multiple
representations to take steps to cope with the range of

capabilities that might be extracted by the UNSEAL operation.

The kernel will fault any attempt to unseal data from an
extended object or a capability from a basic object, although
ALTER will permit the representation of an object to be switched
between the two forms. In the next two sections, the variants of
SEAL, UNSEAL and REVOKE will be enumeratéd for data sealing and

capability sealing respectively.
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Word 1| "TYPE' ' o TAG : w

Word 2 - 65535 TYPE MARK

Word 3 ) ~ M

Word 4 REFERENCE COUNT

31 30 28 27 16 15 ‘ : 0 o

Figure 10.1-1 A Type Object Map Entry 1




L 10.2. Basic Objects and Data Sealing.

| SEALD (seal data)
\ ba(d31-16) type object capability speclfler.
: Pa(d15—0) tag for new object.
bm], [bm+1] representation” data.
‘ bn(d31-16) destination capability specifier.

The type object capability is checked for seal access

‘ and then a map slot slot is detached from the map free
i chain and initialised as follows (using the terminology
I of Section 9.2): the type field is set to be the type
mark of the type object, the tag field is set to be
ba(d15-0), the representation words are set to be [bm],
[bm+1] with the top sixteen bits of [bm] forced to be all
: ones, the reference count is set to one and the reference
count marker bit is set. Finally, a capability prointing
\ to the newly created slot with all the access bits except
d15 (the revoke access bit) set, isr written to the
destination slot. The previous capability in this slot

is lost and any entry for it in the hardware capability

unit is flushed out. This instruction is illustrated by

\
L Figure 10.2-1.

UNSEALD (unseal data)
aéd31-16; type object caDabllltg specifier.
bm(d31-16 basic object capability spac;fler.
[bn], [bn+1] destination buffer.

The type object capability is checked ~for unseal
access, the type mark of the type object is checked to

" match the type field of the basic object and then the two
words of data forming the representation of the object
are copied to the two words of store [bn], [bn+1]. This

instruction is illustrated by Figure 10.2-2.

ALTERD (alter datag
ba(d31-16 type object capability specifier.
bm(?31-16) source object capability specifier.
[bn], [bn+1] new representation data.

The type object capability is checked for alter
access, the type mark of the type object is checked to
match the type field of the source object and the two
words of representation in the map entry for the Bbject
are overwritten by the contents of the two words of store
[bn], [bn+1] with the top sixteen bits of [bn] forced to

be all ones. If the previous representation of the
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source object was a capability, the reference count of
the capability is decremented and processed in the
standard manner. Finally, any capability in the hardware
capability unit derived from the object which has Jjust
been modified is flushed out so that it will be
subsequently re-evaluated to take account of the new
representation. This instruction is 1illustrated by
Figure 10.2-3. ’

As an example of the use of the data sealing instruction
suite, consider the management of segment objects. When a . new
segment is created by SEALD, the segment type manager will
initialise. the data represention of the segment to hold the

absolute location and size of the segment and set the usage bits

to zero. If subsequently it is required to swap in a segment that

is on backing store, the segment manager can scan every segment
object with UNSEALD to read the usage bits for use in calculating
the cost of swapping out currently in-store segments to make room
for the one to be brought in. The ALTERD order can then be used

tc reset the status bits in segment objects once they have been

inspected and also to switch on the outform bit in any segment‘

that is to be swapped out. ALTERD may be used to change the
representation data of a segment that is repositioned in store by
the simple expedient of modifying its absolute address field.
These uses of ALTERD justify the extensive scan and flush of the
hardware capability unit after exercising the order, as clearly
the system has to guarantee that all capabilities for the segments
that have been taﬁpered with are freshly evaluated to avoid the

risks of accessing the wrong region of memory.

It should be noted that neither data sealing nor the ALTER
operation is present in Redell's design and they were invented for
the CAP-III kernel to unify and enhance the range of operations
that can be carried out on all objects, whether basic or extended.
The capability sealing operations described in the next section

(with the exception of ALTERC) are much closer to Redell's orders.
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10.3. Cababilitv Sealing and Extended Objects,

Unlike capabilities in Redell's system, the capabilities
supported by the CAP-III kernel contain access code information
and, in the case of segment capabiiities, refinement data. When a
capability is sealed it is necessary to include all of this data
in the representation of the extended object, otherwise the
process of unsealing would not know how to set up the fields in
any capabilities that are extracted from extended objects. The

capability suite of type extension orders is listed below:

SEALC (seal capability) : .

A ba(d31-16) type object capability specifier.
ba(d15-0) tag for new object. .
bm(d31-16 representation capability specifier.
bn(d31-16 destination capability specifier.

The type object is checked to hold seal access and
then a slot is taken off the chain of free map entries
and initialised as follows: the type field is set to be
the type mark of the type object, the tag field is set to
be ba(d15-0), the representation is set to be a copy of

the capability specified by bm (which must not be null},
the reference count is set to one and the reference count
marker bit is set. Finally, a capability pointing to the
newly created slot, with all of the access bits except
d15 set, is written %to the destination capébility slot.
The previous capability in this slot is lost and any
 entry for it in the hardware capability unit 1is flushed
out. As a side-effect of this order, .the reference count
of the object named by the representation capability will
be incremented by one. It is not possible to seal a null
capability. This instruction is illustrated by Figure

10.3-1.

UNSEALC (u?seal g pability) . . o
S ba(d13-1 type object capability specifier.
bméd31-16 extended object caEability specifier.
bn(d31-16 destination capability specifier.

The type object capability is checked for unseal
access and the type mark of the type object must match
the type field of the extended object. A copy of the
capability representation of the extended object is made

in the destination capability slot. The previous
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capability in this slot is lost and any entry for it in
the hardware capability wunit is flushed out. As a
side-effect of this instruction, the reference count of
the map slot pointed to by the sealed capability will be
incremented by .one. It is not possible to seal a null

capability. This instruction is illustrated by Figure

10.3-2.

ALTERC (alter capability)
ba(d31-16 type object capability specifier.
bm2d31—16 source object capability specifier.
bn(d31-16 destination capability specifier.

The type object is checked for alter access and the
type mark of the type object is checked to be identical

to the type field of the source object. The two words of

representation information in the map slot for the source

object are overwritten by a copy of the capability
specified by bn(d31-16) which must not be hull. This has
the side effect of incrementing the reference count of
the map slot pointed to by the new representation
capability. - If the previocus representation of the object
was also a capability, the reference count of the slot
that it pointed to is decremented and processed in the
standard manner. Finally, any capability in the hardware
capability unit that was derived from the mddified object
is - flushed out, so that it will ©be subsequently

. re-evaluated to pick up the new representation. This

instruction is illustrated by Figure 10.3-3.

10.4. Revocation.

The kernel revocation mechanism 1like the type-extension
scheme, is closely modelled on Redell's work. There is a special
sort of map slot, called a revoker, that does not stand for an
object in its own right, which is used to control access to
objects. Revoker map entries are recognised by the kernel and the

layout of one is shown in figure 10.4-1.

If, in the course of evaluating a capability, the name field
points to a revoker map slot, the kernel will modify the computed
access code to be the intersection of the access mask in the

revoker and the access bits in the capability before going on to

-102-




ﬂ
I
If
| 11‘
' {
] I
' S
) Sealed object ‘=W
' . w
‘ V‘
! ;
|
1 2 l
u
Type object ' Object to unseal
. . 11
J:‘}
'type' ' 'type mark' i
type mark B : access

\
| Vo
i
1
N “i
X |
Lol
i
| J r;
| !
| |
| I ‘
I . , J
unseal - ' l |
| Lo
ﬂ _ I

ll | [
‘ Type object capability - Capability for object to | il
' unseal I |
‘!
/ [
I / |
| P ’,
e }
- |
- ~access ‘ / i
Unsealed capability ' — 4§ - — ‘ [

Figure 10.3-2 Action Of The UNSEALC Instruction ; I




——————

Type object

Object to alter

'type mark'

Capability for object to

1] type T
type mark )
—P .
s
/
’ /
‘ /
M I
' {
[}
|
i
]
\
]
alter |
/
/J
/
Vi
V4
Type object capability’
/
/
]
|
AY
New capability e
representation
Bm

Figure 10.3-3 Action Of The ALTERC Instruction

—

alter i




Word 1 'REVOKER' 7 TAG

I

|

Word 2 NAME MASK
, ;

|

1

wora 3 | | ' |

: ; ' I
Word U4 _ REFERENCE COUNT H
\

31 30 28 27 | 16 15 ‘ ‘ 0

Figure 10.4-1 Revoker Map Entry Format




the map slot nominated by the name field of the revoker. If this
slot too is a revoker, the process of access masking is repeated
until a non-revoker map slot is reached. The final slot is the
one that stands for the object protected by the original
capability. Where, previously, the name of a capability has been
taken to point at an object, what was actually meant was that the
name pointed at a (possibly null) chain of revokers ending with
the object in question. Thus,- in most cases, any intervening
revokers between a capability and an object are transparent to the
user, apart from the modification of access codes, so that for
example, OBJINF when applied to a .capability that points at a
chain of revokers will report, not the access code in the
capability, but the computed access code together with the tag

field of the root object.

Map slot reference count management is done a 1little
differently; whenever a name, be it in a capability or a map slot,
is - copied or deleted, it is the reference count of the first
object in the chain pointed at by the name that is affected, so
that revoker map slots will be treated uniformly with those that

denote objects from the point of view of automatic deletion.

The access mask of a revoker can be changed by the REVOKE
instruction. REVOKE must be applied to a capability, which has a
name that immediately points at a revoker and the revoke access
bit (d15) that is generic to all capabilities must also be set in

its access code. The function of the revoke bit is analogous to

the use of lockers in Redell's system in that the presence of the

revoke bit conveys the privilege of being able to exercise
revocation. If it is desired to copy a revocable capability as a
parameter without passing on the right of reveccation, a copy of
the capability should be made using the access code masking

facilities of the REFINE order to cancel the revoke access bit.

Redell makes objects revocable by sealing them in revokers and
then returning a capability that points at the revoker, but in the
CAP-IITI system, sealing a capability involves preserving all of
the fields of the capability and that would leave no space in a
revoker map entry for an access mask. At one stage in the kernel

design whole capabilities were sealed and the revoke operation was
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defined only to reduce the access code of the sealed capability.
This was unsatisfactory as ideally it should be possible to
support temporary as well as permanent revocation. Users cannot
be allowed to increase the access code of a sealed capability,
otherwise they could easily gain extra privileges in their
capabilities. To solve this problem the mechanism was revised so
that the act of making a revoker does not seal the original
capability. Instead a revoker was arranged to be interposed
between the capability and the first object that it pointed to.
With this organisation it is safe to allow users to increase
access in a revoker's access mask because the privileges that they
can gain are constrained by the access code in the capability that
has been made revocable. Revoker sealing is carried out by the
‘SEALC instruction which behaves in a different way for revoker
type-objects from the way it behaves with other type-objects. The

specification of the two instructions concerned with revocation

follows:
SEALC (cagability sealing - revokers only)
a(d31-16) revoker type-object capability specifier.
baéd15—08 tag for revoker map slot.
bm(d31-16) source capability specifier.
bn(d31-16) destination capability specifier.

The revoker type-object capability is checked for
seal access and a slot is taken from the chain of free
map entries and initialised as follows: the type field
is set to be 'revoker', the tag field is set tc be
ba(d15-0), the most significant sixteen bits of the first
representation word are set to be a copy of the name
field of the capability, the least significant sixteen
bits (the access mask) are set to be all binary ones, the
second word of representation is not used, the reference
count is set to one and the reference count marker bit is
switched 9on. Finally, a version of the source
capability, with d15 (the revoké access bit) of its
access code forced to be one, is moved to the destination
capability slot. The previous capability in this slot is
lost and any entry for it in the hardware capability unit

is flushed out. A side-effect of this order is to

increment the reference count of the map slot pointed to

by the name field of the source capability. It is not
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possible to seal a null capability. This instruction is

illustrated by Figure 10.4-2.

REVOKE n §d31-16) revocable capability specifier. ‘i\*”
: n (d15-0) new access mask. {
The access code of the revocable capability is ‘

checked to contain the revoke access bit and a check is -
also made that the capability points directly at é |
revoker map slot. The new access mask specified by
n(d15-0) is written in the revoker map slot and any
capabilities in the hardware capability unit that were
derived from a chain of map slots including the modified
slot are flushed out so that they will be computed afresh

to take account of the hnew access mask. ;

The SEALD, UNSEALD, ALTERD, UNSEALC and ALTERC instructions
all signal a fault if an attempt is made to use them in the 7 _ E

presence of the revoker type object.
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CHAPTER ELEVEN.

DOMAIN AND PROCESS STRUCTURE.

11.1. Preliminaries,

The CAP-III kernel attempts to unify inter-process and
inter-domain communication by making each protection domain a
separate process in conjunction with a message system ‘that is
equivalent, in both speed and power, to the domain call machinery
of the CAP-I memory protection system. There is no within-process
communication facility which means that the analogue of a CAP-I

process with many protected procedures will be a cooperating group

of processes in CAP-III and it may be hoped that the greater

potential parallelism of - the CAP-III arrangements will have
beneficial effects in the area of efficiency. The message system
is designed to handle procedure call 1like communication in a
simple and direct fashion, while at the same time providing
support for more complicated protocols. The global naming scheme
employed by CAP-III makes it possible for all varieties of objects
to be sent as the contents of messages without any need for
translating names or duplicating data structures. There are no
problems concerned with parallel execution within a‘single domain
because each process can control its own activations by choosing
to ‘accept and either handle just a single message, or many

messages, at a time.

The advantages of a non-hierarchical domain structure within
CAP-I processes suggests that in CAP-III it would be most suitable
to have a non-hierarchic process structure and that all processes

should be equal in status. However, the CAP-III kernel needs to
‘be able to notify an operating system about faults, interrupts and

scheduling requests. For this purpose one process, known as the

Interrupt Process, is distinguished from all others. The kernel

will cause this process to run whenever it wishes'to inform the
operating system about some event and it is also the initial
process to be run by the kernel when the system is loaded. The
remaining processes 1in the system are treated equally by the

kernel, although the operating system can elect to set up a
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dynamic hierarchy of control by making the scheduling of some
processes the responsibility of others; these coordinator
processes will notify the Interrupt Process of their intentions to

get them carried out.

11.2. Data Structures.

A process is represented in the map by a process object which

contains a capability for the domain descriptor of the proéess.

The first sixteen slots in this capability segment are. for the

capability tables of the process and there are two further slots
that define other parts of a process's apparatus as described in
the previous chapter. The seventeenth slot defines the process

base which is a data segment. These data structures are

illustrated in Figure 11.2-1. Like the domain descriptor, the
process base is private to the process. Part of it is a dump area
to hold the contents of the processor registers whenever control
leaves the process. There is a time-slice word that contains a
negative count and this is incremented at regular intervals while
the process 1is running. Whenever the c¢ount reaches zerc an
interrupt is generated to signify that the process has exhausted

its ration of time. Another word holds a wake up waiting flag

that is used to prevent a program from accidentally.ignoring some
event, such as the arrival of a message or a peripheral interrupt.
The flag is set whenever the kernel wishes to notify a process
about an event and discovers that the process is already active.
A process is prevented from waiting when the flag is 'set, and any
attempt by the process to hold wup results in an immediate
resumption so it can then poll message channels and peripherals to
discover the exact nature of the wake up. The condition of a

process is held in a state word in the process base and this can

take one of two values 'active' or 'held up'. An active process

is one that is free to run whenever the processor is available and
a held up process is one that is awaiting an event. The priority
word in the process base holds a numeric value that is used when
the kernel has to choose between processes that are free to run;
in such a case the numerically highest priority will take

precedence.

-107-




Process object w
: |
'process'!
|
Process base capability !
Capabilities for e s v
Capability tables ’ _ ‘
Message pool ;
- ) capability ‘
4
Domain descriptor
e
i
\
——————— o e = !
\
—————— o= - }
/’;‘ N J
0 // 16 \17 l
i |
] // \
‘ i Process Base I
o / —————————
t W p s |
i a r t |
m k i a
e e 0 t
r u
Register dump area s u i s
1 P t
i y ‘
! C |
| ' e |
I O S SR
0 19 20 21 22
|
| ;\
! l
| . |
| ;:
! I
| |
Figure 11.2-1 Process Data Structures |




The messages that can be sent between processes take the form

of capability segments, known as message blocks, which are

allocated from larger segments known as message pools and are
shown diagrammatically in Figure 11.2-2. The eighteenth slot in a
process's domain descriptor coptains a capability for the pool
from which the process's message blocks are to be issued. A
message pool can be local. to a single process or éommon to a group
of processes and there is no need for message pools to be resident
in memory, as the kernel treats the message system segments
uniformly with ordinary segments. This allows us to escape from
the resource control problems of Watson's system with its single,
central, resident pool. CAP-ITI message pools can be part of

virtual memory and swapped or extended at will. The first two

capabilities in a message pool are head and tail pointers to a

chain of inactive message blocks within the pool. These pointers,
in common with others in the message system data structures, take
the form of refined capabilities for sub-segments of message pools
so that the kernel reference count mechanisms will lock down any
apparatus belonging to an active message transaction. The null

pointer is indicated by a null capability.

Message blocks are of fixed 1length and c¢an hold five
capability arguments. There is no provision for daté arguments as
such, but of course it is possible to pass a capability for an
area of store that embraces some data parameters. There is a link
capability which is used to hold a pointer to the next message
block in a chain, such as the free chain in a message pool or a
queue of messages waitihg on a message channel. A message block
holds information about the size of the pool from which it was
allocated andAits offset within the pool, so that it is possible
for the kernel to undo the refinement data in a message block
capability when it wishes to gain access to the pool to return a
dead message to the pool's free list. This may take place in a
process different from the one which constructed the block in the
course of a non-reply type transaction or during fault processing.
A message block may be labelled with a tag when it is created and
this tag can then be used by processes that multiplex messages to

correctly identify replies to them. To facilitate replying to
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messages, a capability for a message channel, known as the reply

channel, can be incorporated into a message block so that the

recipient of the message can return it without requiring a.

pre-existing channel to the sender. A non-reply type message will
have a null capability instead of a channel capability in this
field. Users only see message blocks as capabilities for message
objects and they are not given access to the contents of a block
except through the kernel operations to load and unload argument

capabilities.

Message blocks as such are never given directly to processes.
Instead they are always encapsulated in messagé objects which are
extended objects (whose type ‘'message' is recognised by the
kernel) and have a segment capability for a message block as their
representation. This is done so that the kernel can cause a
process to relinquish access to a message block by updating the
contents of a méssage object no matter however the process has

duplicated and distributed capabilities for it.

Messages are sent along message channels which are described

by channel objects that have a capability segment as their

representation and a channel is shown in Figure 11.2-3. The first
two capabilities in the segment act as head and tail pointers for
the queue of messages despatched on the channel thaﬁ have yet to
be received. If there are no outstanding messages %the pointers
will be null. The remaining, third capability in the channel
segment is a capability for a process object defining the process
to be woken up whenever.a message arrives on the channel. The
refinement field of this capability is utilised to hold a count of
the number of messages gqueued upcn the channel. There are two
access codes, send and receive associated with message channels
that are used to control the transmission and reception of

messages on the channel respectively.

A more general scheme would be to introduce 'mail boxes' into
which any process could deposit messages and can be served by a
number of processes. However this would require the kernel to
keep track of all the processes waiting on a channel and then to

wake them all up when a message arrives. This is a complicated
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task that it would be difficult to do efficiently in microprogram.
Instead, a slightly simpler approach has been chosen, in which
only one process can be attached to a channel at any one time.
There is complete freedom in the number of channels by which a

process can send and receive messages.

A process. can obtain a message object ready for use by
application of the MAKEBLOK order which takes a block off the
process's message pool free chain. It is possible to specify the
tag of the message block and also to set up the reply capability
to be either a channel capability or null. Thé‘result of this
operation is a capability for a message object encapsulating the

message block.

Capability arguments are put into a message by the PUTARG
instruction and can be extracted by GETARG which are rather
similar in function to the MOVECAP instruction for shipping

capabilities between capability tables.

When a message block is finished with, the KILLBLOK
instruction can be used to overwrite any éapabilities'in the biock
with null capabilities and then to return the block to the pool
from which it originated. The destruction of the capabilities
within the block prevents dead messages from wastefully keeping
slots tied down in the map. Once a message has been killed, it is
necessary to prevent the message object from being used to access
the messége block any more, and this is done by replacing the
capability for theAmessage block in the message object with a data
type representation that will cause any attempt to extract a
capability from the message object to fail. The invalidation of
the message object in this way will cause any occurences of the
message block in the hardware capability unit to be 1lost. This
contrivance 1is wused in several places in the message system‘
whenever it is desired that a process should lose access to a
message. The instructions concerned with message blocks are
listed below:

MAKEBLOK ga d31—0g message block tag. e L
SRR SRS S ey seoterer.

If the reply capability is not null, it must possess
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KILLBLOK

PUTARG

GETARG

the send access code. The head and tail pointers of the

éurrent process's message pool are inspected to see if
there is a free message block available. If there is
not, a fault is signalled and the instruction terminates,
otherwise the head block on the free chain is detached
and initialised as follows: the size and pool offset
fields are set up to describe the current message pool,
the tag field is set to be ba(d31-0) and the reply
capability is copied to the reply capability slot in the
block. A message object is set up in the map with a
capability for the message block as its representation
and a capability for this object 1is copied to the
destination capability slot. The previous capability in
£

this slot is lost and any previous entry for it in the

hardware capability unit is flushed out.

n (d31-16) message object capability specifier.

If there is an unused reply capability in the

- message,  a fault is signalled and the instruction

terminates. Otherwise the pool size and offset fields
within the block are used to reconstruct a capability for
the message pool from which the block was allocated and
then the block is attached to the free chain in the pool.
A1l of the capabilities in the message block are set to

be null and the message object is then invalidated to

| ensure that the message object cannot be used again and

any entries for it in the hardware capability unit are
flushed out. |

ba argument number. .
bm(d31-16) message object capability specifier.

The argument number must be in the range 0 to 4
inclusive. The capability specified by bn is copled to
the (ba)-th argument capability slot in the message

block.

ba ) argument number.
bmgd 1—163 message object capability specifier.
bn(d31-16 destination capability specifier.

The argument number must be in the range 0 to h

inclusive. The (ba)-th argument capability in the

'} § s




|
)
|
message object is copied to the destination capability

slot} The previous capability in this slot is lost and
any entry for it in the hardware capability unit is
flushed out.

11.3. The Interrupt Process,

The kernel transfers control to the Interrupt Process whenever
an interrupt or fault occurs. If é fault arises when the
Interrupt Process itself is running, the kernel will print some
diagnostic information on the CAP intimate teletype and resign.
The. major implication of this 'is the restriction that the
Interrupt Process must be resident, as it must not be subject to
any virtual memory faults. Interrupts are held off by the kernel
when the Interrupt Process is running but they will automatically
lead to a resumption of the process if it tries to transfer

control elsewhere.

The Interrupt Process can start up other processes by using
the WAKEUP order which takes a capability for a process ochject as
its argument. To succeed, the corresponding process must be
marked as active in its process base, otherwise control will
remain in the Interrupt Process and a characteristic code will be
delivered by WAKEUP. To start up the process, the kernel will
preserve the processor registers in the Interrupt Process's
process base and reload them from the process base of the target
process; Then the capabilities of the Interrupt Process will be
made'inaccessible and control can be switched to the new process.
When control is subsequently redirected back to the Interrupt
Process, in response to an external interrupt or some other event,
a register specified by the WAKEUP instruction will be set to a
characteristic code which can then be interpreted to discover what

has happened.

The Interrupt Process can determine which device caused an

external interrupt by using the WAIT 1 instruction which will

return the number of the device with the 1longest outstanding

interrupt. The Modular One front-end computer will maintain a

queue of interrupts and it may take several applications of the

WAIT 1 operation to clear the entire queue. The invalid device
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number zero is returned if the queue of waiting interrupts is

exhausted.

If the Interrupt Process has no useful work to perform because
all processes are held up awaiting some event, by obeying the WAIT
0 instruction it can request to be suspended until an external
interrupt arrives. It is normal practice to follow a WAIT O by a

WAIT 1 to determine where the interrupt came from.

The wake up waiting flag of the Interrupt Process is used to
prevent the process from losing interrupts that occur while it is
running. The flag is set whenever an interrupt arrives while the
process is active and the flag can only be cleared by use of WAIT
1. If the process tries to obey either WAKEUP or WAIT 0 when the
flag is set, the process will resume immediately and must attempt

to clear the condition.

It is essential to the kernel interrupt handling mechanisms
that the process base and domain descriptor of both the currently
active process and the Interrupt Process are not flushed out of

the hardware capability unit otherwise it will be impossible to

~ dump and restore processor registers. A fault will be signalled

if either the REVOKE or the ALTER operations attempt to modify a
capability that would in turn lead to the removal of the eritical

capabilities from the unit.

The specification of the Interrupt Process orders 1is given
below. In ordinary processes the WAKEUP order is defined to be a

null operation.

WAKEUP n (d31-16) capability specifier for a process object.
‘If the Interrupt Process wake up waiting flag is set
then: |
ba := #e000ffff ‘
and execution continues in the Interrupt Process.
Otherwise if the process base of the nominated process is
marked as being held up then:

ba2d31—16) #a000 .
ba(d15-0) := tag field of process object

and execution continues in the Interrupt Process. If, on

the other hand, the process was marked as active, the
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processor vregisters are dumped into the Interrupt
Process's process base and restored from the target
process's process base. When control eventually returns
to the Interrupt Process, ba will be set as follows:
ba(di15-0) := tag field of currently running process.
ba(d31-28) := interrupt code thus:

#0 - current process has become held up

#1 to #9 - unused

#a - see above
#b - unused

#c - time-slice exhausted
#d - device busy hold up (d27-16 is a device number)
#e - external interrupt
#f - fault (d27-16 is the fault code).
WAIT n (d0) wait code.
n =20

If the wake up waiting flag of the Interrupt

Process is set; execution. continues normally;
otherwise, the Interrupt Process 1is suspended until
an external interrupt arrives.

n=1
ba := number of head device in Modular One interrupt

queue (0 if queue is empty).

11.4. Scheduling.

The kernel carries out some simple scheduling operations

during message transactions by manipulating the priority and

status words in process bases. When one process transmits a

message to another, the kernel first inspects the state of the
destination process. If it is active, the kernel will set its
wake up waiting flag to indicate the presence of more work to do;
otherwise, if the process was previously held up, its state word
is set to be 'active'. In the latter case, the kernel will then
go on to compare the priorities of the two processes involved and
if the priority of the destination process is the greater of the

two, control is switched to that process.

A process may request to be held up until some event occurs,
such as the arrival of an interrupt or a message. In this case,
the kernel first checks that the process's wake up waiting flag is
not set and then marks the state word of the process base with the

value 'active' before returning to the Interrupt Process with the
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interrupt code #0. The automatic 'binary' scheduling carried out
by the kernel means that the process that is running when the
Interrupt Process is eventually re-entered after a WAKEUP may not
necessarily be the process that was originally started off. This
is the reason for including process object tags in interrupt codes
so that the Interrupt Process can identify the current process. A
process that has been marked as being held up will only become
active again due to the arrival or an event or by a message of the
modification of the state word in its process base by explicit

software action.

Processes are forcibly held up if they attempt a transfer on a
peripheral device that is busy. In these circumstances, the
program counter of the rocess 1is set back so that when the
process is resumed, probably in response to an external interrupt,
the failing order will be retried. To resume such a process the
operating system must set the state word of its process base to
the value ‘active'. Peripheral transfers carried out by the
Interrupt Process are treated specially in that the karnel will

hold up the Interupt Process if it attempts to access a busy

device until an external interrupt arrives.

A process may elect to be held up immediately after
transmitting a message and this results in the proéess being
marked held up, provided that its wake up walting flag is not set.
If the priority of the destination process is greater than or
equal to the priority of the sending process, the kernel transfers

control to the former; otherwise, if the destination process

=

priority is lower, the kernel wil enter the Interrupt Process
with the interrupt code #0 because there may be more deserving

processes of an intermediate priority that can be run.

~Thus it may be seen that the kernel is responsible for simple
schedﬁling decisions involving two processes and a software
process coordinator need only be invoked when a comprehensive
general reschedule is required. This intervention of the kernel

in the scheduling of processes greatly contributes to the

effectiveness of the CAP-III message system.




11.5. The Message System.

The SEND instruction is used to despatch messages and takes
two arguments: a channel capability specifier and a message
capability specifier. The channei capability must hold the send
access code, and the message object must have a message block as
its representation. The message is chained onto the tail of the
queue of the messages attached to the channel, and then the
message object named by the message capability  has its
representation invalidated to prevent further access to the
message in the sending process. The kernel will then ‘schedule
between the current process and the destination process according

to the rules outlined above.

A process may find out how many messages are waiting on a
message channel by use of the MESSAGES instruction which has the
specifier of a channel object as its argument and returns the

message count in the channel segment as its result.

A message may be received by use of the RECEIVE instruction
which has a channel capability specifier and a destination
capability slot as its arguments. The channel capability must
hold the receive access code. If there are no messages queued
upon the channel, the current process's program counter is set
back and the process is held up until the arrival of an event
signal when the channel will be inspected again. ' This affords a
mechanism f‘or‘ making a process wait for a message on a single
channel. If it is required té poll a group of channels, the
MESSAGES operation should be used first of all to see if there is
a message on one of the group of channels before a RECEIVE order
is obeyed. If there is a message on the channel, RECEIVE will
construct a new message object whose representation is the head
message block queued on the channel and it Will copy a capability
for tﬁis object to the destination capability slot. The tag of
the message block is also made available so that replies can be
distinguished. The head message segment will be stripped off the

channel queue and the channel message count will be decremented.

The newly made message object is suitable for interrogation by

GETARG to extract argument capabilities and then result
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capabilities can be loaded into the message with PUTARG. It is
also possible to retransmit the message to another process with
the SEND order, in which case the retransmitting process will lose
all further rights of access to the message. This facility is of
use to processes that act as gate-keepers for other processes. It
should be noted that when the final recipient of a message replies
to it, the reply returns directly to the originating process of
the message and no action is required of the process that took

part in forwarding the message.

If a process runs out of things to do and wishes to await the
arrival of a message it can execute the WAIT order which will
cause it to be held up, subject to the value of its wake up
waiting flag. When a process is woken up after a WAIT it may
inspect its- incoming message channels with the MESSAGES order to
decide upon which channel the message arrived. If the process is
only interested in a single dhannel, it may wait upon it alone by

using the RECEIVE order.

'S

The remaining primitive in the message system suite is called

(=

REPLY which has a message capability as its argument. REPLY will
extract the reply channel capability.from the message and, if it
is null, the message will be disposed of identically‘to the way in
which KILLBLOK behaves; so that the effect of replying to a
non-reply type message is to throw the message away. If;, on the
other hand, the reply capability is wvalid, REPLY is equivalent to
SEND with -the reply channel as its argument together with the
additional feature of overwriting the reply capability in the
message segment with a null capability. This is so that the reply
channel capability cannot be exercised again. The reply
capability in a message can be considered to be an analogy of a

'reply-paid envelope'.

There are two instructions called SENDW and REPLYW, that are
the waiting variants of SEND and REPLY respectively. They are
functionally equivalent to the conjunction of a SEND or REPLY
order and the WAIT order. These two orders are used to indicate
that a process has no more useful work to do after transmitting a

message.
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The normal cycle of events for two processes communicating in
a procedure call like fashion, analogously to inter-domain calls
in other systems, is for the calling process to manufacture a
message using the MAKEBLOK order, 1load it with argument
capabilities wusing PUTARG and then. transmit it along a message
channel to the target'process. The sending process will use the
SENDW instruction so that it goes to sleep until some event, such
as a reply to this message, occurs. The called process will be
woken up and the RECEIVE order can be used to pick up the newly
arrived message. Arguments in the message can be extracted with
GETARG and then, after processing be the message, result
capabilities can loaded into the message with the PUTARG order
before returning it with the REPLYW instruction. This 1latter
order will also put the called process back into the waiting state
until the arrival of a further message, whereupon the cycle can be
continued. The return of the message block will re-awaken the
sending process which can pick up the message with RECEIVE and
extract the results with GETARG before disposing of the message

with KILLBLOK.

By wusing other combinations of the message orders it 1is
possible for a process to handle requests upon several channels
concurrently and to construct non-reply type messages or pass
received messages on to other processes in support of more complex
communication protocols. In these cases, the tag field in message
objects provides a simple mechanism to enable a process to
recognise replies that arrive in an order different from that in

which the original messages were sent out.

11.6. Specification Of The Message Systemnm.

WAIT ba(d27-16) information code.

If the wake up waiting flag of the current process is
set, «cléar it and <continue execution. Otherwise,
preserve the state of the process in its process base and
transfer control to the Interrupt Process setting the

interrupt information code as follows:

d31-28: #0
d27-16: ba(d27-16)
d16-0 : tag of map entry for current process.
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SEND

SENDW

REPLY

REPLYW

RECEIVE

ba2d31-16§ message object capability specifier.
n (d31-16 channel capability specifier.

The channel capability is checked for send access.

The message block specified by the message capability is
chained onto the queue of messages on the channel.
Adding the message onto the channel queue has the effect
of incrementing the channel message count. The process
associated "with the channel is then woken up and a
schedule between the sending process and the target
process takes place.
ba(d31-16) . message object capability specifier.
n (d31-16) channel capability specifier.

This order is similar in effect to SEND except,
provided that its wait up waiting flag is unset, the

current process is held up.

n (d31-16) message object capability specifier.

If the reply capability in the message block
specified by the message capability is a null capability,
the effect of this order is didentical to KILLBLOK.
Otherwise the reply channel capability is extracted from
the message block and replaced by a null capability
whereafter the order behaves similarly to SEND with the

reply channel as its channel argument.

n (d31-16) message object capability specifier.

This order is similar in effect to REPLY, except,
provided that its wake up waiting flag is unset, the
current prccess is unset.
bm€d31-16; - message channel capability specifier.

d31-16 destination capability specifier.
The channel capability is checked for the receive
access code. If there are no messages queued upon the
message channel, the program counter of the current
process 1is stepped back and the process is held up and an
enforced entry is made to the Interrupt Process.
Otherwise the leading message block is téken off the
message queue and a capability for a message object
defining it is moved to the destination capability slot.

The message block tag of the received message is loaded

i




MESSAGES

in Ba(d31-0). This results in a decrement of the channel
message count. The previous capability in the
destination capability slot is lost and any ehtry for it
in the hardware capability unit is flushed out. Finally
register Ba is set to be the value of the tag field of

the message block.

n (d31-16) message channel capability specifier.

ba(d31-0) := the count of the number of messages waiting
upon the message channel.
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CHAPTER TWELVE.

ORGANISATIONVOF THE KERNEL MICROPROGRAM.

12.1. TInitialisation.

The kernel is loaded into microstore from disc by a bobtstrap

microprogram that is input by the intimate paper tape reader. The

bootstrap, known as DISCBOOT, also clears the stores and loads the
initial system code ready for runniﬁg. Before control is
transferred to the kernél, DISCBOOT will reset the state 6f the
processor and clear any error indicators to put the machine into a
tidy, standard initial condition. The communication link with the
Modular One computer is restarted to prevent any incompleted
operations from the last run interfering with the freshly loaded

system.

The DISCBOOT utility is shared by all CAP microprograms, so it

ot
I»-l-
[¢4]

is up to the kernel to set up its own starting environment. I
passed a number of parameters, extracted by the bootstrap from the
user system memory image on disc and these are used to tell the
kernel the absolute location of the map and the map offset of the
process object for the initial process. The kernel can then set
up in the capability unit those capabilities necessary to start
the user system. The kernel initialisation consists of of about

250 microinstructions. .

12.2, Basic Instruction Set.

Most basic user instructions are implemented entirely by the
stage one sequence and a single micro-order in the Function Memory
(Section 8.2), but the more involved basic orders, particularly
those for floating point operations, require additional space in
microstore where they account for some 650 words. This part of
the CAP-IIT kernel is more or less identical to its counterpart in
the CAP-I microprogram so that the two basic instructions sets
will be compatible this is useful when the transfer of programs

between the two systems is concerned.
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12.3. Peripheral Control.

The microprogram for interpreting peripheral instructions and

organising device transfers is also similar in both systems for
compatibility. This part of the microprogram is quite complex.
The CAP microprogram can read and write to the Modular One's
memory and can also accept interrupts across the link. To start a
transfer, the kernel will write a transfer request to the Modular
One's store to attract the attention of the other machine. The
link program in the Modular One” will then read the request,
allocate buffer space and, for an input transfer, start to accept
data from the appropriate device. When this stage is completed,
the Modular One will interrupt the CAP to signal that the transfer

is ready and the CAP car then carry out a fast store-to-store copy

to effect the transfer. To finish off, the CAP will indicate to

Nial the Modular One that the transfer has been done and the
Modular One will reclaim the buffer, which if it was for an output
transfer, will result in its being transmitted to the appropriate
peripheral device. Most of the code in the kernel I/0 system is
concerned with administering the prqtocol‘between the two machines
and optimising efficiency by slaving the parameters for . the
current device in microstore to reduce the number of interactions
between the machines. The slaving persists until a device order
is encountered for a different device in which case the parameters
~of the old device have to be flushed out and those of the new
device picked up. This part of the kernel is nearly 600 words

long.

12.4. Interrupt Handling.

External interrupts and internal processor parity errors cause
the microprogram to be diverted to an interrupt location in
microstore whenever control returns to stagewone. Parity errors
are uéually catastrophic and result in the kernel giving a
diagnostic print-out on the intimate teletype before resigning.
In the case of an external interrupt, the interrupt service
routine will inspect the state of the system; if control is in an
ordinary process, an entry is made directly to the Interrupt
Process by disabling the hardware capability registers for the

current process and restoring those of the Interrupt Process,
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after dumping and restoring. the processor registers from the
appropriate process bases. On the other hand, if the Interrupt
Process is already running, then its wake up waiting flag is set
uhless it was in the dormant WAIT O state, in which case the it

resumes immediately.

An interrupt is generated every time a twelve bit count of the
number of executed microinstructions overflows. if control is in
an ordinary process when this signal arrives, the time-slice word
in its process base 1is incremented by one and if the resulting
value is zero, an enforced entry is made to the Interrupt Process
to signify that a time-slice is exhausted. In practice, one
thousand of these counts are equivalent to about one second of
real time although the exact relationship obviously depends on the

mix of instructions executed.

In the last chapter, there was a description of the behaviour
of the kernel in response to faults. In most cases the code to
signal faults is called if the kernel finds an unreasonable
argument or request, but some faults are reported in direct
response to microprogram traps generated by protection violations

and arithmetic overflows.

_After a diagnostic print-out on the intimate teletype caused
by a fault in the kernel or a parity error, it is possible to
resume execution by typing the character 'C' (for continue) or to
Jjump to é fault entry point in the current process by typing the
character 'J'. The kernel can be stopped temporarily by typing an
X-on' character, which will produce fhe standard diagnostics and
then the kernel can be resumed by typing the character 'C' as
before. This particular facility is useful for conducting
performance measurements as part of the diagnostics include the
value of a counter that will record hardware statistics selected
by coﬁtrol switches on the processor. The microcode concerned
with processing interrupts and reporting faults comes to

approximately 350 words.
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12.5. Use Of The Capability Unit.

The structure of the capability unit was 6utlined in Section
8.3. Capability register 0 is always used to holdia descriptor
for the map, and it is set up from the parameters passed over by
DISCBOOT at initialisation time. Whenever the kernel wishes to
inspect or modify the contents of the map, it selects register O
in last mode and uses relative offsets within the map to address
store so that any map pointers going outside the bounds of the map

will result in a protection violation.

The most important field in each capability as held in the
capability wunit, from the point of view of the following

discussion, is the tag field which consists of two sub-fields as

described earlier. One holds the number of the capability

register for the capability table from which the register in
question was loaded, while the other normally gives the capability
offset of the 1loaded capability din its parent - segment. For

example, a register for a capability table will have a tag that

®

contains the register number of the domain descriptor containing
the capability and its table number, the latter being the offset

of the table capability in the domain descriptor.

A process is represented in the capability unit by a register
whose tag is derived differently: the parent register sub-field is
zero {pointing to the map register) and the offset sub-field is
the léast significant eight bits of the map index of the process's
entry in the map. The full index is kept'in the size field of the
register and, because process capability registers are only used
to fix a process's capabilities in the capability unit, the access
field is =zeroed to prevent any access to store through the
register. Thus, when the kernel switches context Dbetween
processes, it can scan the capability unit in normal mode with a
tag bésed on the hashed map index of the tafget process in order
to find the process's capability register. If a normal mode match
occurs, the kernel checks that the value of the size field of the
located register matches the map index of the process to be found.
If this check succeeds, the register is accepted, otherwise a free
register is found and allocated to the process. It can be

expected that only a few searches of the unit for processes will
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fail because of one process present in the unit having the same
hash key as another that is found first by the normal mode search,
leading the kernel to think that the first process is absent from

the unit.

In the CAP-I memory protection system, processes are held
differently in the.unit: a process is represented by a capability
for the PRL of the process with a tag which matches the address of
the PRL segment in the process's coordinator's address space. In
the CAP—III‘kernel; this contrivance cannot be used because tﬁere
is no hierarchy of address spaces. However it must be possible to

pick up a process if it is already in the capability unit because

otherwise, the cost of evaluating the structure of a process is

high, and the wasteful reloading of capabilities would reduce the

efficiency of the message system by a considerable degree.

The process capability register is the root of a tree of
registers which controls access to the domain of protection

contained within the process as shown in Figure 12.5-1. The

. domain desecriptor capability register is a direct descendent of

the process register and has the tag <process register, 0>. This
register is used to read capabilities for the process base and
capability tables. The former would be found in a register with
the tag <domain descriptor register, 16> and the ‘latter in
registers with tags <domain descriptor register, n> where 'n' is
the table. number in the range 0 to 15. The individual
capabilities in a capability table are tagged ‘thus <table
register, capability index> as descendents of the tables from

which they are evaluated.

The TGM is set to hold the capability register numbers of the
entries in the unit for the capability tables.of the currently
running process. In Section 8.3 it was stated that the virtual
address translation mechanism will transiate the capability
specifier of an address into the tag <contents of TGM indexed by
table number in address, capability index in address> before
scanning the capability unit, therefore only capabilities
belonging to the process whose tables are set up in the TGM will
be found and other capabilities in the unit remain inaccessible

until the TGM is reloaded.

-125-




TAG BASE . SIZE ACCESS COUNT SPARE

o+—»| o oe | RW 2

Map Capability,Register

0 process 0 1
name .

hash
P — % name [0 L

Process Capability Register

af 0 [p® RC WC 2| DD -
Domain Descriptor Capability
Register .
TaM 16 g RW 11 PB
Process Base Capability Register
B
] ! |
] i |
r&—1T—7 ! y qé RC 21 i
0 ¢ |
! ! Capability Table 4 Capability
. ' Register
i
| |
1 P RE. 0

Capability Register For Capability |
Specifier 4/1

Figure 12.5-1 Use Of The Capability'Unit ‘ 




12.6. Reference Counts in The Capability Unit.

The tree structure of capabilities in the capability unit is

held in place by the use of reference counts kept in the count
field of capability registers and these counts record the number
of pointers, in tag fields and microprogram registers, to the
register in question. Thus the .count of a register .for an
ordinary capability will be zero and will contribute one towards
the coﬁnt of the register for the table from which it was loaded.
That in turn adds one to the count of the register for its domain
descriptor and this keeps the count of the process capability

register at one.

When the kernel wishes to find a free register for allocation
to a new capability, it scans the unit, starting at the point at
which a normal mode search based on the tag of the new capability
would begin, looking for the first register with a =zero count
which can then be cleared and. set up with the value of the new
capability. The action of clearing the register includes
decrementing the count of the parent register which, if its count

falls to zero, may become a candidate for re-allocation later on.

The mechanics of the interrupt handling and enforced Interrupt
Process entry on faults and hold-ups requires that the kernel
locks down the process base and domain descriptor of the Interrupt
Process and the current ordinary process (if there is one) so that
process registers can be dumped and restored during a context
switch. This is done by keepihg the_reference counts of these
objects one higher than the actual number of referenceS'to them;
this will fix them in the capability unit. When a switch is made
between two ordinary processes, the kernel restores the reference
counts of the process being left so that its registers can be

reclaimed if necessary.

If a capability in store is overwritten, the kernel must also
invalidate its entry in the capability unit and this is done by
setting a value which has the significance of “unset' in the
access field of the register corresponding to the capability so
that any attempt to address memory through it will fail with an

access violation. Furthermore, if the register has a non-zero
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count, say because it is a domain descriptor or a capability
table, all of the capabilities in the tree descending from the

register must also be marked unset.

The kernel only keeps the following hardware types in the
capability unit:- segments, messages and channels; a discourse on

organisation of the latter two types is deferred until later on.

12.7. The Reset Cycle.

It is now possible to describe the kernel 'reset cyecle' which

loads a process and its capabilities into the capability unit.
Before switching to a new process, the kernel allocates a process
capability register, a domain descriptor register and a process
base register, but only the first of these is initialised and the
other two are left unset. During the context switch, the kernel
will attempt to address the process base of the target process in
last mode to load the processor's arithmetic registers, but this
will fail with an access violation because the process base
register is unset and it will result in an enforced trap to
microstore address eighteen which activates the protection

violation routine called TRAP18.

The TRAP18 code will inspect the failing register and discover
that it is unset and is a process base (this can be deduced from
the tag and from marker bits kept in the spare field). TRAP18
will then go to the reset cycle code for evaluating the process
base capability, which will attempt to read store using the domain
descriptor register and suffer another TRAP18 call because this
register is also unset. The reset cycle code is- then entered
again to set up the domain descriptor by reading the map entry
whose index is held in the process capability register. As the
map capability register is never unset, this reset cycle can
complete and once the domain descriptor hgs been 1loaded, the
contekt switech that fell foul of the unset capabilities can be

restarted.

Once again, TRAP18 will be called because of the the process
base register which is still unset, but the reset cycle will be
able to read the domain descriptor this time, with the result that

the process base register will be set up and the context switch
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can be restarted once again.

Now the process base of the new process can be read

successfully and used to prime the arithmetic registers. The

final act of a context switch is to set all of the sixteen TGM

registers to =zero; this makes the capabilities of the previous

process inaccessible to the virtual address translation machinery.

However, for the time being, there are no capabilities
available for the new procéss and an attempt to obey an
instruction within it will cause a trap to location seventeen in
microstore to signify that a capability for the process's current
code segment was not found. The TRAP17 code found at this address
initially looks at the TGM register. indexed by the capability
table part of the failing address. If it is zero, the table has
not yet been set up and the kernel scans the capability unit with
a tag consisting of the domain descriptor register and the table
number to see if the table is present and if so, sets the TGM

register to point at it. If a register for the table is not

]
3]

l_-l
[

already set up in the unit, the kernel wil ocate a Spare
register and mark it unset. The failing instruction in the new
process will be retried and if the capability is still not found
when the TGM is set up, there will be a second call of TRAP17
which will result in the aliocation of a capability reéister for

the missing capability.

Once the allocation is 'complete, the kernel will suffer‘ a
TRAP18 call because the register is unset, and while &trying to
read it from the parent capability table, there will be another
TRAP138 aé that register is also unset. These traps are resolved
by two reset cycies in a manner analogous to the evaluation of the

process base capability described earlier.

The sequence of events outlined above is the full reset ecycle
that is necessary if all of the capabilities of a process are
absent from the capability unit. In practice, much of a process's
apparatus will be found in the unit and in consequénce, it may
only be necessary to carry out a few, simple, partial reset cycles
before a process can start running. As the process executes,

there are 1likely to be several more TRAP17 and TRAP18 calls to
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recover capabilities that have had their registers re-allocated

since the process last ran, or for capabilities that have not been

used before.

The reset cycle is written to restart uéer instructions either
after allocating or setting up a. single capability register
because it 1is a potentially recursive task to initialise a
capability register. The microprogram instruction set is not well

suited to this, so an iterative approach is adopted instead.

The segment reset cycle, which is triggered by the TRAP18
routines to set up a capability register, will read a capability
from the appropriate parent capability segment, using the parent

capability register in last mode and then index the ﬁap through

register 0 to locate the segment's representation, taking account

of any intervening revokers to modify the access code. The access
code is checked to be either entirely data or entirely capability
type and is copied to the access field of the register. The base
and size fields are set up from the results of the refinement
calculation using data in both the capability and the map entry as

described in Section 9.3.

The kernel uses the spare field of a capability register to
contain marker bits that will be set if the register is used for a
domain descriptor, a process base, a message or a channel. By
inspecting these bits and the values of tag fields, it is possible
for the TRAP18 routine to decide what sort of capability register
has been violated and to set about loading it from the appropriate
parent segment. There is another marker bit called 'active' that
is used to flag the process bases and domain descriptors of the
Interrupt Process and the currently running process (if there is
one). The kernel routine for unsetting a capability register will
complain if it is applied to a register marked 'active' and this
prevents locked down registers from being flusﬁed by REVCKE or the
ALTER orders.

Each stage of a reset cycle involves at 1least five store
cycles; two to read a capability, three to read a map entry and
two extra store cycles for every revoker object that intervenes in

the path between the capability and the corresponding root object
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in the map. However, the size of the unit 1is such that a
capability will remain in existence for .a reasonable period of
time before ité register is reclaimed for a different capability.
The kernel takes steps to avoid gratuitously throwing away useful
capabilities so that the cost of evaluating a capability is spread
out over many instructions by the slaving properties of the

capability unit.’

12.8. Messages and Channels.

As well as the segments describing the structure of a process
and segments of data or program code, the kernel also keeps the
segments sealed within message and channel ©objects in the
capability unit. These latter objects are not sét up in response
to reset cycle faults; instead, the message system code will do a
dummy normal mode scan of the capability unit to find a register
with a tag that matches the address of the channel or message in

question and will check to see if its access field is set. If the

access field is not sSet, the kernel will evaluate the appropriate
capability for the channel or message object from which a segment
capability will be taken and used to set up the register. Only
when the register is set up does the message system try to access
data through it to avoid the need for the ordinary reset cycle

becoming involved with messages and channels.

The message pool of a process is found in a capability
register with the tag <domain descriptor register, 17>. This
register is only set up by explicit loading during the MAKEBLOK
order which -always checks for the existence of a correctly

configured register before addressing the message pool segment.

The objects used by the message system are cached in the
capability unit to optimise the performance of the inter-process
communication operations because it may be expected that some of a
process's capabilities for these objects will persist in the unit
between message transactions and will be readily at hand the next

time a message is to be processed.
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12.9., Segment Usage Bits.

The previous description of the actions of TRAP18 was, 1in
fact, rather simplified by ignoring the control of the segment
usage bits to try to avoid obscurity. When a segment capability
is loaded into the capability unit, the reset cycle inspects the
usage bits in the segment’s map entry. If the segment is marked
as both "used' and 'dirty', then it is set up normally; otherwise,
the calculated access codé is copied to a location of microstore
associated with register to be updated and, if the segment is
neither 'used' nor 'dirty', the access field of the register is
set to. 'no access'. If the object is marked ‘used' but not
'dirty', only the read type bits of the access code are set in.the
access field. On an access violation, the TRAP18 routine inspects
the access field of the failing register and if it is unset, goes
directly to the réset.cycle“to evaluate the capability. Otherwise
‘the faulted access request is compared to the full access code
held in the microstore record corresponding to the failing
register and if this code 1is 1less potent than the request, an
access violation fault is reported. In the case when the full
access code is suitable and the request is of read type,r the
'used' status bit is set in the segment's map entry and the read
type access bits of the full code are moved to the capability
register access field. If the request was o¢f write or
read-and-write type, both the ‘used' and the 'dirty' bits are set
in the map'entry and the full access code is moved to the access
field of the register in its entirety. After one of these pseudo
TRAP18 entries, the current instruction is restarted and, since an
access code has been loaded into the capability unit, the memory

cycle will succeed.

°

The body of microprogram devoted to evaluating segment
capabilities, capability unit management and the segment reset

- eycle is nearly 400 microinstructions in length.

12.10. Protection Orders.

There are a number of utility routines for use by the
protection functions of the kernel, the most important of which is

a reset cycle for non-hardware objects which are not kept in the
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capability unit. This reset cycle will take the address of a
capability and evaluate it to find the root object named by the
capability. The routines for reading and writing capabilities in
capability tables address the capability wunit in iast mode and
jump into the segment reset cycle code if the capability table is
not set .up in the capability unit. When a ‘capability is
over-written, the capability unit is searched in normal mode with
the address of the modified capability so that any machine
register can be cleared by marking its access code as unset.
Other utility routines deal with map slot reference counts and the

chain of free map entries.

The REVOKE order (Section 10.%) must unset any capabilities in
the capability unit that were derived from paths that go through a
modified revoker map slot. This is done by keeping a table which,
for each capability register, records the map slot number of the
entry from which the register was set up. The REVOKE instruction
will determine the root map slot of the path from the revocable
capability currently being.exercised and will scan the table of
map slots, unsetting the access code for all of the registers for
which the table entry matches the root slot number. If one of the
registers that is unset has any descendents, then they are also
unset. The flush carried out by REVOKE may be more violent than
is strictly necessary; it will remove capabilities for the root
object‘ that did not include the changed revoker in their
evaiuation,'as well as those that did. This could be avoided by
keeping an additional table to record the 1length of the path
between the capability and the root object, but it is debateable
whether or not the saving onvspurious capability evaluations would
be adequafe compensation for the extra code required in the
microprogram. The routines for unsetting all instances of an
object in the capability unit is also used by the ALTERC and
ALTERD_ instructions together with the messége system when it
clears message objects but in these cases, the slot to flush out

is the map slot that has been modified and not a slot shielded by

a revoker.

Objects that are not hardware types are not kept 1in the

capability unit because its registers are unsuitable for
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representing objects other than segments. In any case, it may be
reasonably assumed that there will be many more references to
segments than to non-hardware type objects so that the overhead of
having to evaluate the latter every time should not prove too

demanding.

The 'distribution of code in the protection orders is‘ as
follows: utility routines, 200 words; type-extension and
revocation, 250 words; capability transfer, 100 words; information
orders, 25 words; message system and process switching, 1000
words. There 1is remarkably 1little to  comment about in the
implementation of the protection orders save that they conform to
the design rules that were laid down in Chapter Two concerning the
complete validation of arguments before modifying capabilities or
the map so that a call to the kernel with dubious parameters

cannot cause harm or confusion.

No accurate performance analysis analogous to Cook's work for
the memory protection system has yet been carried out for the
CAP-III kernel, but a number of ad hoc measurements made during
the testing phase of the kernel <development suggest that
instructions 1like MOVECAP and SEAL, that carry out fairly
straightforward operations on capabilities and map entries, take
between ten and fifty times as many' machine cycleé as Dbasic
instructions, whereas for the message system, the ratio is nearer
several hundreds tQ one. Compared to the cost of an ENTER/RETURN
sequence in the memory protection system this figure is a 1little
disabpointing, but on the other hand, it compares favourably with
the cost of message transactions in the older system that consume
many thousands of machine cycles. It is to be expected that the
benefits gained here will more than adequately compensate for the

disparity with the ENTER and RETURN operations.
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CHAPTER THIRTEEN.

REVIEW AND EVALUATION,

13.1. Some Attributes of the Kernel..

The primary motivation for the design and construction of the
CAP-III kernel was to reduce the overheadsv of a  powerful
protection system by the usé of microprogramming, and to a
considerable degree this has been successful. The functions of
the kernel are simple, which means that they are implemented by
concise and straightforward sequences of code. Coupled with the
hardware bptimisations afforded by the hardware capability unit
and instruction decoding logic of the CAP, this leads to fast and
efficient operation.” Most important, the memory pr&tection
facilities, which might reasonably be expected to be the most
heavily used part of the kernel are very cheap, mainly because of
the slaving properties of the hardware capability unit. The
microprogramming of the inter-process communication system makes
it considerably faster than any software implemented scheme and
enables us to construct protection decmains that can be made very
short and simple-minded without fear of suffering unduly from the

overheads of frequent domain changes.

Protection in the CAP-III kernel is fine-grained, which is to
say that it is possible to protect many items of differing
complexity, ranging from a segment that is only a few'words in
length up to filing system directories and other such highly
structured, multi-component objects. The ability to be able to
select and profect just part of an item is crucial to the

attainment of minimum privilege.

The slaving of capabilities in the hardware capability unit
allows a domain to have a working set of many capabilities. There
is less of a psychological 1limit on the number of capabilities
which it is reasonable to exercise than there would be in a system
with only a few explicitly addressed capability registers; this

encourages the full separation of the privileges of a domain.
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The kernel is entirely self-contained and places no reliance
on the integrity of the software system running on the machine,
which greatly contributes towards its ruggedness. The kernel
always addresses data structures, including the map and capability
segments, through the hardware capability unit so that any invalid
addresses supplied by users or resulting from incorrect
calculations by the kernel -will be trapped by the hardware
protection mechanisms. It has been noted earlier that the kernel
always tidies up after reporting a fault so that malfunctioning

programs cannot expose any loopholes in the protection system.

The uniformity and simplicity of the protection mechanisms for
both primitive hardware objects and user defined protected objects
offers not only an economy of code inside the kernel but also
minimises the amount that has to be learned by users, who will be
more likely to exploit to the full mechanisms that they can easily

comprehend.

13.2. An Evaluation of the Kernel.

The global naming scheme of the kernel is conceptually more
simple than the nested address space structure of the memory
protection system of CAP-I and involves less memory being tied
down in protection data structures. In the memory ‘protection
system, the route between a capability in a user process and the
representational information for the object it protects is eight
store cycles long: two each in a capability table, the Process
Resource List, a coordinator capability table and the Master
Resource List. In the CAP-III systeh, only five store cycles are
required: two inAa capability table and three in the map. It is
reasonable to expect that the number of protected objects in the
CAP-III map will be close to the number of segments, protected
procedures and software capabilities in the CAP-I operating
system, which means that the resident memory requirements of the
map for the kernel will match those of the MRLs and PRLs in the

older systemn.

Short names were adopted in the kernel because in the earlier
stages of design and implementation, it was found that hashing

long unique names was a costly operation both in terms of the code
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required in the microprogram and the time taken to find objects in
the map. There were also difficulties in trying to provide
mechanisms for keeping the microprogram image of a global name
space in step with the permanent record on backing store. What
has been lost by the kernel is the ability to allow users to keep
capabilities in a filing system withdut translating names. It may
be noted that in the CAP-I system it is necessary to carry out
such a translation and the efficiency of the operating system has
not suffered noticeably, so, it may be hoped that the same will
apply to CAP-III. There are one or two complications involved in
filing active capabilities for extended objects because the
operating system will have to ensure that the structure of a filed
extended object is duplicated in the kernel map and its own data
structures. Given the simple organisation of objects and the
~centralisation of information about them in the map it should be

straightfoward for the software to cope with this problen.

It is much easier for the kernel to carry out automatic
garbage collection, because o¢of the central collection c¢f 21l
information about objects in the single global map, than it is fof
the memory protection system to garbage ccllect Process Resource
Lists. In CAP-I, each process has %o have its own garbage
collector for the process's resource list, and as there are no
microprogram maintained reference counts, the garbage collectors
will be activated frequently with a corresponding degradation of
the amount of useful ccmputation carried out. The CAP-III kernel
"only requires that the system-wide software garbage collector runs
to flush out complex looped structures (that it is safe to assume
will only arise occasionally) so that the garbage collector need
only scan the syétem at low frequency and this imposes very little
in the way of overheads. On the other hand, there is the expense
of maintaining reference counts, but as this)activity is carried

out by the kernel microprogram the cost should .be small.

The partitioning approach for segregating capabilities from
data is forced upon the kernel mainly by the hardwafe of the CAP
machine, but there is also an interesting dependency between
tagged capabilities and forever-unique names that would make

tagging unsuitable for short unique naming schemes. In Section

-136-




4.1, it was noted that in a tagged architecture, it is impossible
to keep track of capabilities because they can be scattered
arbitrarily throughout memory. It is therefore necessary to
employ hashed  forever-unique names so that names will always be
valid, because the system cannot tell when the names are no longer
required. From this observation the applicability of Fabry's
capability-based addressing scheme must be restricted to

forever-unique name systems because of 1its need for tagged

capabilities.

The type-extension facilities of the kernel are very basic,
but they have the expressive power of more elaborate mechanisms
such as those found in HYDRA. The sealing and uﬁsealing
operations provide the essential machinery for concealing the
representation of an object from its users, while at the same time
permitting a duly authorised type manager to -get inside any
objects that it controls. Because of their simplicity, the kernel
primitives are very fast, but on the other hand, the checking
functions of the slower HYDRA amplification template spheme must
be carried out by the software of a type-manager. It is 1likely
that software can perform the verification of arguments as quickly
as a general purpose template system because the verifiéation code
can be specific to the particular interface in question and can
have knowledge of the expected arguments built in, rather than

having to be able to cope with all possible requirements.

The introduction of basic objects and data sealing to the
extended object and capability sealing mechanisms proposed by
Redell [T74] has lead to a uniform set of operations for creatiﬁg
objects, . manipulating them and interrogating their
representations.i This saves a lot of space in the kernel
microprogram because the type extension facilities can be used
internally by the kernel in the processing of hardware objects.
The revocation features of the kernel inﬁegrate well with the
type-extension scheme and the other protection operations.
Revocation can be temporary or partial, although by adopting a
dependent capability system, the ability to make the privilege of
revocation itself revocable has been sacrificed. It is unlikely

that this latter facility would be heavily used and caretaker
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protection domains can be used if the facility is required.

The wunified process and protection domain structure is
successful mainly because of the versatile microprogrammed message
system which can be applied equally well to simple procedure—liké
interfaces and to more complex ones 1involving processes that
handle many messages at one time. There is 1little problem of
resource control for message blocks in the CAP-III system because
it supports many message pools that need not be locked down in
memory, and the involvement of the kernel in the scheduling of
processes contributes towards the speed of message transactions by
cutting down on the number of times that the operating system

scheduler has to be invoked.

13.3. Relationship with the CAP-I Memory Protection Svstem.

One of the original motivations for the research described in
this thesis was to extend the facilities of the CAP-I memory

protection system and to investigate some alternative strategiss

iy

for implementing protection mechanisms, so it is informative %o

emphasise briefly the differences between the two systems.

Experience would suggest that using short term global names to
reference objects in a central resident table is at least as
efficient as the nested resource list approach and is conceptually
much simpler. However, global names do require a closer
microprogram involvement with garbage collection because space in
the map is a scarce resource across the entire system, whereas
$lots in a resource list are only drawn upon by a single process,
so that garbage collection can be done by a progran running
synchronously in the process without any drastic effect on the
system as a whole. Earlier in this chapter it was noted that,
because of global naming, capability evaluation in the CAP-I
kernel requires fewer store cycles and so the overheads of

protection are correspondingly less expensive.

In the CAP-I system the type-extension and vrevocation
facilities of the CAP-III kernel can only be modelled by the use
of protection domains. Thus it might be expected that the
protection of abstract objects to be sharper and more economical

“in CAP-III. Also, because the kernel has a uniform mechanism for
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describing all types of objects and controlling access to them in
a system built around the kernel, there will be less requirement
for software to mimic the basic access control, type checking and

naming functions of the microprogram.

The total replacement of . the hierarchical process and
non-hierarchical domain structure of CAP-I by a non-hierarchic
single-domain process architecture within a microprogrammed
messagé system greatly reduces the_amount of operating system code
required to support multiprogramming and it provides a uniform set
of communication primitives for all modules of the system. It is
hoped that the lower cost of message transactions will increase
the speed of the system and that, despite the slight slowness of
the CAP-III message system compared to the FCAP—I protected

procedure call machinery, wusers will have no qualms about

implementing complex tasks as a set of inter-communicating
processes in the new system, in the same way that they would use

protected procedures in the older design.

It is reasonable to claim that the kernel provides a complete,
powerful and efficient protection kernel around which it will be

possible to build sturdy and trustworthy operating systems.
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