
A Microprogrammed Operating System Kernel

Andrew James Herbert

St. John's College

UNIVEi' ITY
ll9RARY

CAMS IDGE

A dissertation submitted for the degree of Doctor Of Philosophy in

the University Of Cambridge, November 1978 .

. Except where otherwise stated in the text, this dissertation is

the result of my own work and is not the outcome of any work done

in collaboration.

Copyright@ A. J. Herbert. 1978

)

Thesis Summary

"A Microprogrammed Operating System Kernel"

Andrew James Herbert

St . John's College

The subject of the thesis is the design and implementation of an
operating system kernel for the Cambridge Capability Computer (CAP).
The kernel of an operating sys t em is its most primitive level of facilities
and forms the foundation stone a round which t he rest of the system is
structured.

• • 1

· / The particular emphasis of the CAP kerne l is concerned with protection j
the control of access to informa tion. 'l'he kernel uses the notion of
capabilities to provide a flexible and controlled mechanism for the sharing
of information within a computer system . The protect.ion mechanisms include
provision for the efficient control o f access to memory as wel l as f acilities
for handling abstract resources like files and virtual peripherals. 'l'he
kernel allows the introduction of new types of resources in addition to the
basic set of hardware resource~; to permit user extension of the. system_
Attention is given to the problem of recall of privllecre or revocation in
capability systems and the kernel includes operations for both permanent and
temporary revocation of particular access rights to information i n a selective
manner.

In the past many of these functions have only been fo und in kernels
implemented in user-level software which arc frequently cumbersome and
inefficient. An examination is made of why this should be and·how efficiency
and simplicity can be gained by a microprogrammed implementation. The thesis
draws on the experience of a number of soft.ware kernels to discover the various
design decisions that have to be made and the techniques that may be used to
implement a successful kernel~

The feasibility of the design arrived at by considering these issues
is demonstratec1 by describinq its implementation on the Cambridge Capability
Computer in terms of the primitives provided and the internal organisation
of th,~ proposed kernel. In an evaluation, the kernel is examined in the light
of tl,e a nalysi s of other kernels to po i nt o ut its strength s and we aknesses
and to gain insights into the utility of the de;;ign as a practical operating
syst~m kernel .

PREFACE

I am indebted to my supervisor, Dr Roger Needham, for his

encouragement of my research and also to other members of the CAP

Project , especially Dr Andrew Birrell , Dr Robin Walker and Martyn

Johnson, for their helpful advice and constructive criticisms

during 'all of the stages of my work.

The Computer Laboratory Of The University Of Cambridge, headed

by Professor M. V. Wilkes, furnished many facilities, including use

of the CAP computer and , in conjunction with St. John's College

Cambridge, provided funds enabling me to visit the United States

Of America in my final year which proved to be a valuable and

stimulating experience.

The CAP Project as a whole and my own work in particular were

supported by the Science Research Council during the period that

the research was carried out.

Finally I wish to acknowledge my debt to my wife Jane, both

for her support and forbearance while I was engaged in research

and more recently for her help in typ~ng this thesis.

CONTENTS.

'·

CHAPTER PAGE

1. Introduction•.... •............. ~ 1

2. Kernel Design Principles•.•...•...• 14

3. Capabilities And Naming•...•... ~ •.. 21

4. Capabilities And Addressing•.•....... 31

5. Type-Extension Mechanisms .•..••.. ;•... 44

6. Revocation Mechanisms•.. 53

7. Processes And Protection Domains ...•....... 62

8 . The CAP Computer•...••...•... 73

9. A Kernel For The CAP Computer•......... 84

10. Type-Extension And Revocation Operations ... 97

11. Domain And Process Structure ~ .. 106

12. Organisation Of The Kernel Microprogram ... 12i

13. Review And Evaluation•..... 134

References · •....... 140

CHAPTER ONE.

INTRODUCTION,

1. 1. Overview.

The subject of this thesis is the design and implementation of

a micrpprogrammed operating system kernel. The kernel of an

operating system is the most primitive level of the system and

forms the · foundation of the rest of its structure and so it is

important that the kernel is well-designed and efficient if the

entire system is to be successful~

An operating system can be considered as a mapping between

rudimentary hardware resources and · the advanced facilities of an .

ab~tract machine. The duties of a kernel include the provision of

mechanisms for performing this mapping and also making abstract

resources such as files and virtual memory available to users

through some addressing and access control schemes. The

cost-effectiveness of an operating system can be judged by

weighing the benefits of an elegant abstract machine, such as ease

of use, against its cost, both in terms of devel6pment and the

machine cycles consumed in its operation. The effectiveness of an

entire system will be greatly impaired by any weaknesses or

inefficiencies in · the kernel and this is the motivation for

investigating the structure and organisation of opera ting sys tern

kernels.

The major _ concerns of a kernel are protection (the control of

access to information by · programs running within a computer

system) , multiprogramming, I/O control and fault handling. This

thesis is primarily concerned with the ' protection aspects of

kernel design and the influence of protection on the other kernel

functions. A protection architecture which permits flexible and

controlled sharing of information by all programs, including those

that make up the operating system will be descr~bed in the latter

part of this thesis.

Many operating system kernels have been implemented in

software r ather than microprogram. Normally they execute in a

-1-

highly privileged special state or supervisor mode in which powers

are available that allow the contents of processor descriptor

registers, and so on, to be modified. The close relationship

between the kernel and the underlying hardware means that it is

usual to find that the kernel has been written as a large

monolithic assembly code program because of the difficulties of

writing compilers to generate compact 'fast code that interfaces in

a straightforward fashion. with the hardware primitives used. In

consequence, such kernels are difficult to verify and debug, even

if great care .is taken to ensure that code is written and tested

in a well-structured and organised way.

In general, a software kernel preserves a lot of information

about the state of the hardware so that it may decide what action

to take in response to a kernel call by a program. It is

therefore necessary for the kernel to carry out all operations

that involve modifying hardware protection registers and the like;

even quite trivial functions have to be directed through

kernel so that changes to the state of the hardware can

the

be

recorded. This wifl involve the cohsiderable overhead

establishing kernel calls, which might include preserving

restoring the state of executing processes, and checking

arguments presented against tables of privileges before

of

and

the

any

function can be carried out. There is al so a temptation; if an

operating system service does little else beyond a series of

kernel calls, to build it into the kernel and this further

compounds the problem .. Much of the clumsiness of a software

kernel comes from a lack of intimacy with the hardware of the

underlying machine that carries out the operations programmed in

the kernel and this leads us to consider the use of a

microprogrammed kernel because of the closer association between

microprogram and the basic hardware.

Microprogramming

organising computer

is a

hardware

long

[Wilkes

established technique

51]. Microprogramming

for

has

many properties that aid the development of machines which include

complex operations in their instruction r epertoire. A

microprogrammable machine consists of a simple, fast microprogram

processor with rudimentary logical, control and arithmetic

-2-

I

. !

facilities that executes microinstructions held in a microprogram
m~mory. The microprogram emulates user instructions by activating
other parts of the inachine in the correct sequence and arranging
for the passage of data through the machine's registers. If the
user machine is to be reasonably fast, the microprogram must be
fetched from microstore and executed at high speed. In the past,
when the cost of very fast memory was high, microprogram memories
were very small, but now with falling hardware costs owing to
large scale integration (LSI) technology, quite substantial
memories of sufficient speed can be obtained for a reasonable
price. This enables critical components of the software of a
system to be put into microprogram to reap benefits in the areas
of high level facilities and efficiency; for example, the GEC 4000
range of computers [GEC 72] have a microprogrammed nucleus that is
responsible for the control of multiprogramming, synchronisation
and inter-process communication.

There are other advantages apart from efficiency to be gained
from microprogramming. A microprogrammed operating sys tern kernel
has a much greater degree of intimacy with hardware addressing and
protection functions, interrupt handling and so on than a special
state supervisor for a conventional machine. This makes it easier
for the kernel to provide a powerful machine to users without the
expense · of kernel calls in software, because the microprogram is
better placed to carry out access checking · and argument
verification cheaply as part of the normal hardware instruction
decoding and addressing operations. Kernel functions can be
encoded as a single instruction at the user level which means that
interfaces tend to be simple in terms of a few arguments in
registers and kernel calls are uniform with the hardware
instruction and addressing fo~mats. On the other hand, in a
software kernel it is easy to make interfaces very complex and
confusing for users.

It is an unfortunate f act of life that microprograms are on
the whole harder to write and less easy to understand than
assembly code programs. This is because microinstructions specify
the operation of basic hardware components rather than the higher
level logical functions expressed by machine instructions .

-3-

Furthermore, debugging is not straightforward as it requires use

of the raw hardware for hands-on access which is wasteful of

computer resources, whereas software _systems can be tested

concurrently on a time-shared system with other programs and can

be written in high level languages. There is often insufficient

room in microstore to include both a development microprogram and

a debugging system, so that~ lot of testing has to be carried out

with just the aid of register display lights and control switches.

To some extent -these difficulties can be avoided by the use of a

microprogram processor simulator, although it must be ensured that

the simulation faithfully duplicates the hardware because

microprogrammers are fond of taking advantage of hardware

peculiarities and side-effects to save on instructions or time.

If oddities are not carefully duplicated in the simulation, there

is a strong likelihood that a microprogram will behave wrongly on

the real machin~.

Even in these days of large semiconductor memories,

microprogram memories are usually of modest size, often only a few

t -housand bytes, which greatly restricts the amount that can be

included in a microprogrammed kernel, whereas a software kernel

may be · many hundreds of thousands of bytes long . On the other

hand, if there is microprogram memory space available, it is

tempting to put more and more into the kernel on the grounds of

efficiency, with the result that the kernel becomes cumbersome,

unwieldy and much harder to debug fully and test. The key to

microprogramming operating system kernels is the correct

identifica tio_n of those primiti ves that rightly belong in the

kernel and those that should be left to software .

Microprogrammed machines may not be as fast as those built in

hard-wired logic because of the overheads of fetching and decoding

microi_nstructions. This is the penalty paid for the abili ty to

implement highly complex functions and to change the nature of the

machine by modifying it s microprogram. Some speed can be

recovered by providing functions such as user instruction

decoding, address translation a nd pro tection

hardware and leaving the microprogram to handle

things, at a loss of some flexibi lity in

- 4-

che cks in raw

more difficult

the range of

architectures that can be presented at the user level.

1.2. A Wider View of Protection.

The bulk of this thesis is concerned with mechanisms for

protection [Lampson 71, Jones 73, Graham 68, Saltzer and Schroeder

75], which can be defined as the control of access to information

by executing programs. Protection is just one facet of the

overall issue 6f computer security [Ware 67, Anderson 73, Branstad

13, Hoffman 73]. In· recent times, computers have been used more

and more as repositories · for large volumes of information of a

confidential or proprietory nature, shared by a large community ot
users who are unwilling to trust one another not to steal or

access private data.

retaining information

The social

within a

and legal implications

computer have generated

of

a

requirement for the formulation of policies governing the security

of computer systems [U.S. Department of Health, Education and

Welfare 73] and to implement such policies there is is a need for

a technological framework within which it is possible to discuss

and judge the security of a computer system.

~spects of security include hardware reliability, secure

communication between terminals and computers, authentication of

access to machines and the physical security of the computing

system hardware and ancilliary equipment such as magnetic tapes

and discs. These external issues of security can be characterised

by the property that it is not possible to achieve total security

in any of them; instead the measures taken to enhance security can

be judged only in terms of the cost-effectiveness of reaching som~

level of quantified optimism about the degree of security

attained . The notion of the work factor involved in breaching the

security measures is often used as an indication of the amount of

effort that must be expended to defeat security, and in many cases

to discourage deliberate attack it is sufficient to ensure that

the cost of the work done exceeds the value of · the information

that is illegally obtained. A sys tern is only as strong as its

weakest component and if the security of the system is undermined

at any point all other aspects of it including protection, are put

at risk .

-5-

If an artificial view of the real world in which external

security can be guaranteed completely is adopted, it is possible to
d escribe protection mechanisms which enable positive and absolute

statements · to be made about the ·security of information within a

computer system in terms of which programs may access information

and change it. This approach is useful despite its divergence

from reality because, if protection pan be established within a

computer system, it is only necessary to concentrate upon the .

external aspects of security, safe in the knowledge that the

system cannot be subverted from within. The protection state of a

computer system can be represented by an access matrix [Lampson

71] whose columns correspond to items of information and whose

rows refer to programs as shown below:

program I item
. A B C D

a R R RW

b R R

C RW -

d IRW RW R

Program a has R (read) access to items A,B,D and also W ~write)

access for D, but is unable to access item Cat all . Indeed, item

C can only be accessed by program d. Obviously, in a real life

system, an access matrix is vast, with entries for many items of

information and programs. In the design of a protection system it

is necessary to look for some suitable representation of the

information in the matrix. There are two main approaches: (i)

access control list systems such as MULTICS [Organick 72] in which

each item has associated with it an access c9ntrol list that

encodes the information in a column of the matrix , stating which

programs are allowed access to the item, and (ii) caQabilit'l

systems [D ennis and Van Horn 66, Lampson 69 and Needham 72] where

each program is given a set of tickets stating which privileges

are possessed by the program in r espect of each item; that is to

say, a program's set of capabilities is an encoding of a row in

th e access matrix.

It is fairly straightforward to arrange that information

beionging to one program cannot be accessed by another, but in

-6-

general it should be possible to allow information to be shared by

programs with possibly differing degrees of privilege; for

example , in the access matrix above, the item A is shared by

programs a, b, c, d with read access, but only d has the ability

to write to it. In a closed community, programs and data might be

shared with no restrictions, in a spirit of free co6peration, but

· if the computer is shared by a general public with competing

interests, users will not trust one another and the sharing of

information will take on the nature of commercial bargaining in

whic h each party to a transaction is suspicious of the others.

Schroeder calls this mutual suspicion [Schroeder 72]. A

protection mechanism must be able to support controlled sharing in

this sort of environment. For example, it should be possible for

one user to allow another to have use of a program performing some

service, while at the same time not allowing him read access to

the binary code of the program, so that it may not be stolen or

misused.

The level of trust between users will change with time and the

owner of a p~ivilege may subsequently wish to restririt use of it,

perhaps because a user has defaulted on the payment of a rental.

The action of recalling a privilege is known as revocation.

Revocation may be temporary, and privileges might subsequently be

restored when circumstances change . Sometimes it is only desired

to recall a particular privilege while leaving other privileges

for the object undisturbed, and this is known as partial

r evocation.

To summafise, protection is just one aspect of computer syst~m

security and protection mechanisms must be able to support a

variety of protection policies that reflect the relationships

between users of a system and the informaiion it retains.

1.3. A Framework for Discussion.

For this discussion, it is convenient to regard an operating

system as an abstract machine that defines operations which can be

carried out on a set of abstract objects such as files, I/O

streams and virtual memory. The operating system is responsible

for the mapping between basic hardware resources and the the set

-7-

of objects. Each object has an attribute known as its ~ which

specifies the set of operations that can be meaningfully applied

to it. ,

There are many types of object. Processes are the most

important from the point of view of protection because a process

is the unit of execution and represents the locus of execution of

a virtual processor through a procedure or sequence of code. The
' sta te of a process is held in a process base or state vector.

Processes can synchronise and exchange information ~ith one

another by use of an inter-process communication sys tern. At any

time a process will have a set of privileges describing the

information to which the process is allowed access.

Only capability-based sys terns are considered in this thesis.

A privilege is represented by a capability that specifies both an

object and an access code describing the privileges the capability

confers. A capability is not an object; it is a ticket of

permission that cannot be forged or corrupted. Capabilities are .

stored in memory marked in some way

ordinary data and it is not possible

to distinguish thBm from

for arbitrary programs to

mark items in memory; otherwise, it would be possible for· users

to manufacture bogus capabilities. Processes can share access to

a common object by having copies of a capability for the object,

each containing identical information about the substance of the

object, al though the access codes might differ if the various

processes have unequal rights of access. A process can share its

privileges with others by distributing copies of capabilities and

if one of these capabilities is subsequently revoked, all copies

derived from it must also be revoked.

The set of privileges owned by a process at a given time form

a protection domain . The privileges of the process can be altered

either by transferring capabilities in or out . of the curr ent

domain, or by switching to another domain . In capability systems,

dom ains consist of a set of capabilities that form an environment ,

one . component of which is the code associated with the domain.

Execution is switched between domains by use of . a domain call

primitive which has a domain capabilitv, specifying the

environment ~f the called domain, as its argument. After a domain

-8-

call, execution continues with the privileges of the called domain

made available and those of the calling domain made inaccessible.

Control is always transferred to a predetermined starting address

in th e procedure of the new domain so that the domain's privileges

cannot be misused by jumping into its code at some random point.

The process may call other domains for which . there are

capabilities in the current domain's environment. When execution

in the domain has finished, a domain return operation is performed

whic h resumes control in the original calling domain immediately

. after the point at which it was left, with the privileges of the

cal led domain disabled and those of the caller restored. The

domain call mechanism is very similar to the notion . of a

subroutine in a high level language and the similarity extends to

inter-domain communication by a parameter mechanism which permits

capabilities to be transmitted between protection domains.

An important property of a domain architecture based on

capabilities is that it is non-hierarchical and can be used to

model situations of mutual suspicion because the capabilities of

different protection domains can be disjoint. This means that the

only privileges that can be acquired by a called domain from its

caller are those passed as arguments in the domain call.

Similarlyi a calling domain has no influence on the priv ileges of

the called domain and can only gain capabilities that are returned

as · results.

So far, domains have been characterised passively as

repositories for capabilities and code in which a process can

execute. However, it is often useful to consider a domain in a

more active sense as the exerciser of the privileges bound into it

. whenever a process executes within the domain and the term

'domain' will be used for either interpretation provided that any

ambigu_ity can be resolved by the con text of its use.

The memory of a domain will be assumed to consist of a number

of segments [Dennis 65] each of which consists of contiguous

addressable items . To be able to protect smal l data structures

e ff ect ively, a protection mechanism must be capable of protecting

many small segments only a few words in length as well as larger

ones. It is also necessary to be able to generate capabilities

-9-

for only some portion of a segment and this can be achieved by

hol ding refinement information in a capability for a segment to

sel ect some sub-segment of the total segment referenced by the

capabili ty.

1.4. Extensibility

In the design and construction of large software systems there

is need for a suitable design methodology to describe the

r elationships between all of the components of the system so that

its complexity can be reduced to manageable proportions. Perhaps

the most promising scheme is that of layering in which the system

is constructed as . a base level or kernel surrounded in an onion

skin like manner by a series of extension layers. Each layer

enriches its environment by adding to the features provided by the

inner layers to produce an enhanced environment for higher layers.

The CAL-TSS operating system was designed as a sequence of

protected layers and the technique proved successful in aiding the

construction of the system [Lampson 76].

The primary rule of the methodology is that knowledge about

higher layers must not be built into lower layers. This is so

that, in conjunction with the obvious precaution · of protecting

lower layers against interference from higher layers, there will

be a · structure in which modifications to, and malfunctions of,

higher layers cannot affect the correct functioning of lower

layers in the system .

From a top- down point of view the construction of a layered

design Cc;ln be seen as the successive decomposition of a complex

system into simpler functions until eventually, in the kernel,

they can be directly mapped onto hardware operations. On the

other hand, a bot tom-up view shows each ' level of extension as

transforming some pre - existing system into a more complete

environment by addin,g useful new features and f acilities . This

latter view is the mos t appropriate in the case of extensions

written by users t o tailor the system to suit their requirements,

al though to a considerable degree the exact distinction between

systems programs and user programs becomes blurred in a layered

system .

-10-

In the object oriented approach, extensions are viewed as

d efining new types of object · and providing the operations that

manipu l ate them . Each layer in the sys tern can be thought of as

prov iding a new abstract machine whose operations are constructed

out of the operations of the abstract machines running in inferior

layers. The objects provided by extension layers are described as

ex tended ob i ects and they 1:lre represented in terms of objects
' a dministered by lower layers. In general, representations are

concealed from the users of ~xtended objects who see these objects

as atomic items. The manipulation of extended objects in terms of

modifications to their representations is the duty of software

r unning in the level providing the extension. An obvious

constraint is that the. layer providing the abstraction of a hew

extended object must not be able to subvert the layers providing

t he types of object it uses to implement its own types.

In an opera ting sys tern kernel, the sort of abstract objects

expected are files, directories, I/O streams and so on. The base

l e vel protection mechanisms of the kernel mus t be capable of

extension to provide access control and naming functions for these

ob j ects in a manner uniform with that used for ·with hardware

r esources . The features of a kernel for coping with extended

objects are known as tyQe-extension features.

1.5. Scope of the Thesis,

The work described in this thesis follows up work on the CAP

project which led to the building of a microprogrammable processor

f or i nvestigating a powerfu l and eff icient memo r y protection

a r chitecture based on capabilities [Needham 77 , Needham and Walker

77]. The CAP projec t successfully demonst r ated t he u sefulness of

capability- based protection in the construction and debugging o f

an oper at i ng system . The protection mechanisms of the CAP machine

wer e all mic r oprog r ammed , which greatly cont ri b uted to the i r

simplic i ty and effi c ienc y.

By con centrat i ng pur e l y upon memory pro t ection, th e CAP

microprog r a m la c ke d some of th e mo r e a dv a nced f ea t u r es o f so ftware

kernels such as HYDRA for C. mmp [Wulf et al. 7 4] and CAL-TSS

[Sturgis 73, Lampso n and Sturgis 76] in the a rea of typ e-extension

-11 -

and revocation of access . The aim of the research leading to this

thesis was to ·investigate the possibility of providing a kernel in

micro program which was comparable with the software kernels , but

retained the effectiveness the CAP memory

architecture, e$pecially with respect to efficiency.

protection

It was also

decided to investigate some other addressing and naming strategies

in the new kernel both because they aided the introduction of new

f a c ili ~ies and al so to compar"e the various mechanisms used in

pro t ection systems . The work involved designing a kernel and

impl ementing it in microprogram for the CAP machine as a

substitute for the memory protection microcode.

The CAP has a modest amount of microprogram memory (4K of

six teen bit words) which has to hold code for emulating basic

instructions and organising I/O in addition to protection

mechanisms, so the range of -facilities tha. t can be considered is

f airly limited , although not too severely. The CAP processor

includes hardware for instru6tion decoding , virtual address

t ranslation and · carrying out ac.cess checks , which helps both to

r educe microprogram length and to increase efficiency.

This thesis falls into two parts: the first seven c;iapters

deal with the design of protection kernels and the remaining six

chapters describe the implementation of a kernel for the CAP

machine , whose design evolved from a consideration of the issues

discussed in the first part. This latter part is entirely

original work, whereas the first part compares and analyses work

by others which is acknowledged appropriately) n the text.

Chapter Two is devoted to a description of the design aims and

guiding principles involved in kernel design. Chapter Three deals

wi th the ways in which capabilities can be associated with

obj ec ts, a nd Chapter Four exp lore s t he r el ationsh i ps be tween

ca pa bil i t ies a nd add r essing mechani s ms . Chapters Five and Six

dea l wi th typ e - exte n s i o n and r e vocat i on and in Cha p te r Seven the r e

is a discussion abo ~t pr otect i o n domai n s and proces ses .

Part Two starts at Chapter Eight in which there is a detailed

desc r iption of the CAP har dware which provides the basis fo r

Chapters Nine to Eleven that describe the following aspects of a

-12:-

kernel for CAP: basic mechanisms, type-extension and revocation

scheme and a process and protection domain architecture. Chapter

Twelve gives a detailed description of the internal organisation

of the kernel microcode. The final thirteenth chapter reviews and

evaluates the kernel and looks towards future research.

-13-

CHAPTER TWO.

KERNEL DESIGN PRINCIPLES.

2.1. Protection Mechanism Design.

From their experience with the construction of protection

systems, many people have proposed guidelines for the design and

cons truction of successful sys terns and these are en um era ted by

Sal tzer and Schroeder [75] in their paper on protection. In the

following paragraphs these principles will be examined to see how

they influence the design of a protection kernel and, in the next

section, particular attention will be paid to their implications

for a microprogrammed kernel. Many of the design principles may

may be described as common sense and they are applicable to all

asp ects of system design, not just to protection.

It is universally acknowledged that a simple small design is

better than one which is large and complex because it is much

easier to check the correctness of its implementation { by simple

line-by-line inspection of its code, for example) and also because

it is likely to be more efficient. If the number of functions

carried out by a mechanism is small, it is a simple task to

exhaustively test all of its operations to verify their accuracy.

An economy of mechanism has benefits for the users of the sys tern

too, as the amount of information they have to learn will be

small, and this increases the likelihood that they will understand

. th e mechanisms and use them effectively . To the system designer

thi s principle suggests that he ought to consider carefully the

pr imitives he is going to supply and ruthlessly remove any

f acilities which are redundant or unlikely to be used. An analogy

may be drawn from the language Algol68 [Van Wijngaarden et al . 76}

whose basic constructs are designed to be i orthogonal' in the

s ense that to achieve a particular effect it is obvious which

construct is appropriate. It is cl ear that the benefits of a

compact design must be traded against any l oss in the number of

functions provided by of the system or inefficiency caused by the

lack of an important operation .

-14-

·--

•
In a protection sys tern it is important to arrange that the

defau lt relationship between programs and information is that of
•no access permitted' until an appropriate privilege has been duly

checked. This is true of capability systems because every access

to an object must be accompanied ·by a capability that is inspected

before the access can proceed. The explicitness of privilege in

this sort of arrangement makes it easy to find out which objects a

program can access by looking at its stock of capabilities.

Furthermore, if the default state is to refuse access, any error

in a program has less chance of causing harm by spoiling

information to which it has no right of access.

In Chapter One it was noted that the degree of privilege
po ssessed by a program will change with time and it is therefore

not sufficient to per form access checks statically or just once

only on the first access to an object, because subsequently the

execution of a program running in parallel may cause an access

code to be modified by revocation of a capability. This implies

that there must be complete mediation, which is to say that every

access to an object must be verified independently of whether · or
not the access has succeeded in the past. This imposes a
system-wide view of protection independent of considerations of

th e structure and constitution of objects and provides the
motivation for designing protection mechanisms as a low level

component of a system. However, the implementer of a kernel does

not have the full benefit of protection machinery and has to rely

on .weak hardware support for protection. For . this reason, a

kernel should contain as little as possible in the way of

facilitie s beyond basic protection primitives so that as much of

th e system as possible is built upon the protection mechanism as

its foundation to obtain a greater level of ruggedness. By

contrast, in software kernels like HYDRA and CAL-TSS it is common

to find that the kernel is a substantial operating system in its

own ri ght and makes little use of its own protection services.

The designer of a kernel should aim to implement the basics of his

protection machinery as a simple , small core which is then used by

every other component of the kernel to access objects so that the

kernel does not have private (a.nd therefore suspect) protection ,

-15-

;

naming and addressing schemes. Access control must persist at all
stages in the life of a system from initialisation through normal
running to shutdown. For example, it should not be possible for a
user to tamper with the information that is to be loaded at the
next system start up . while the system is running, otherwise he
could modify the system to pass him privileges illegally the next
time it is reloaded.

A protection system that relies on the concealment of a secret
or password to ensure the non-subvertibility of its mechanisms
should be treated with suspicion because the security of the
system will not be assessable in absolute terms. Passwords belong
to the external realms of authorisation of access and it is only
possible for a protection mechanism to prevent unacceptable access
to secrets; it is not safe to assume that secrets can neither be
guessed nor deduced from the observation of external events.
Reliance should not be placed on the concealment of system code as
a protection mechanism either, because if the protection system is
fr ee of secret algorithms, it can be reviewed independently by

sceptical users without fear of abuse. This builds up the trust
held in the system by its users and if the protection mechanism is
audited independently by several people, the ptobability of
out standing errors remaining within it is decreased.

The ruggedness of a protection mechanism is greatly increased
if it requires the presence of two 'keys' to open a 'lock' because
no single mishap can lead to a breach of security. The major
example of the separation of privilege in protection schemes is
that of type i:nanagers which are programs responsible for looking
after all objects or resources of a particular type. A type
manager usually has privileges relating to the class of objects as
a whole, such as being able to create objects in the class or to
alter - their representation, whereas the privileges to use
particular members of the clais are distributed amongst the users
of the system . The only time at which a particular object can be

modified is when two keys in the form of a privilege for a
particular object and a privilege for the class of objects to
which it belongs are brought together when the user r esponsible
for the object passes a privilege for it to the type manager.

-16-

Possibly the most important design principle is that of
minimum privilege, or as it is known in security conscious
evironments, "the need to know", which is to say that a program
should only have access to the information strictly necessary to

c arry out its function. In a capability system, this means that a
protection domain should contain just those capabilities essential
to completing its task and that a complex series of operations
should be divided out amongst a set of domains, each element of
which . performs a simple, well-defined job and has exactly the

privileges required to carry it out. Putting firewalls into a
system in this way limits the propagation of damage after an error
because only the few objects accessible to the erring domain can
be harmed. It is also easier to locate errors because any failure
can be directly accounted to the domains that have access to the
i nformation damaged by the error. A common practice is to
a ssociate a protection domain with each distinct data structure or
abstraction so that a domain is rather like a module of the sort
proposed by Parnas [72). This organisation has the advantage that
all of the operations for an abstraction are located in one place

a nd it is easy to get

consistency of internal

service provided by the

because it carries around

interlocks right and to ensure the

tables. However, for each particular

module, its domain is over-privileged

privileges for all of the services of
t he module. To some extent, this over-privilege can be overcome
by use of the separation of privilege described earlier or by the
u se of templates, as found in HYDRA [Jones 7 3], that modify the
privileges of a domain according to the access codes of capability
argument~ presented to it. A major -0onsequence of minimum
privilege for the designer of a protection mechanism is that it
must be capable of efficiently supporting .the interaction of many
small , independent domains and this demands that the cost of a

domain call operation be small.

Small protection domains tend to contain very simple data
s tructures and in consequence it must be possible to protect very
simple objects and segments just a few words in length . The
notion of .the ' grain ' of a system is used to indicate to wha t
d,e g r ee it i s r easonab l e to distinguish between items of data and

-1 7-

,.. -
prot ect them individually. In general terms compared to most
software kernels, the CAP memory protection system has a very fine
grain of protection and this greatly contributes towards the
rugg edness of the operating system built upon it [N~~dham 77].

Jones [13] proposes a yardstick known as a suitability factor,
whic h indicates how closely a protection mechanism will allow the
principle of minimum privilege to be attained. For every domain
in the system, Jones defines an accuracy measure which is the
rat io of the number of privileges exercised by a domain to the
tota l number of privileges it owns. Cl early in the state of
mini mum privilege, this ratio will be one and will fall away to
zero as the degree of over-privilege rises. The suitability
fac tor of the entire system is defined as the average accuracy
measure across the system and Jones shows that for a capability
sys tem with a non-hierarchical domain structure, it is possible to
app roach very close to the ideal value. This has also been
demonstrated in an analysis of the CAP system [Cook 78].

Most conventional computer systems have very weak protection
mechanisms and in consequence, users have little experience of
taking full advantage of a well-protected

r eason, it is essential that protection

sys tern. So,

mechanisms

fer this

should be
straightforward so that it is easier for users to remember
protection techniques and how to employ them. To a great extent,
this principle can be met by keeping to a simple, corilpac t design
in which all of the basic primitives are distinct and easy to

understand. The psychological acceptability of a
system depends upon users being

fu nctioni of - protection machinery

requirements.

readily able to

to suit their

protection

employ the

particular

A cornerstone of the HYDRA project has , been. the separation of
policy" from mechanism [Levin et al 75] . For example, a process
scheduler in an operating system may be driven by interrupts alone
or may allocate fixed duration time-slices, and there are many
different ways of organising priority queues in response to
d ifferent modes of operation. Ideally, these policy matters
should be parameterised so that common kernel primitives can serve
all possibilities. This is an important design principle because ,

-18-

·I

;.

in the lifetime of a system, it is likely to be put to a variety
of uses that may not have been apparent at the time that the
kernel was designed and it is clearly undesirable to have to
modify the kernel for every new application of the system.

Separating policy from mechanism also holds advantages if it is
required that the system should be able to provide two . different
serv ices · simultaneously, such as a transaction-based information
retri eval system and a general purpose time-sharing system,
because the same mechanism can be used for both services which may
have different sets of policy parameters.

2. 2. Microprogrammed Kernel Design.

It has been a long standing principle throughout the life of
th e CAP project that the set of facilities provided by the

microprogram should be a self-contained whole that does not rely
on the integrity of the software built upon it, rather than a

microprogrammed extension of systems software. This is so that
th e verification of the basic protection machinery can be

accomplished simply by

con siderations relating

inspecting

to other

the microcode

software . It is

free of

likely

any

that
th ere will be awkward and complex interfaces between microprogram
and software · if the kernel is split between them because of the

diffi culty of keeping state information in step between the two
levels. On those occasions when the microprogram is unable to
cope, for example on a virtual memory fault, the only acceptable
means of communication to the software is by raising an interrupt
and the microprogram must not make any' assumptj_ons about whether
or not the software will handle the condition correctly. Whenever
th e software wishes to negotiate with the microprogram, it must
present its arguments in a form which the . microprogram can check
against appropriate capabilities before going ahead. Thus for
example it would be inadmissible for the microprogram to accept an

ab solute address or to manipulate an object in the absence of a
suitable capability.

The need for simplicity in a microprogrammed kernel is much
greater than in a software kernel because of the lack of space for
l ong sequences of code and the untidy nature of microinstructions
and their side-effects. A lot can be gained by sharing as much

common code as possible in the kernel between its primitives, for

example, to evaluate capabilities, modify representations of

objec ts and carry out access checks. The advantage or this is

that it is only necessary to verify the correctness cif a
part icular function once and also there is a saving of program
cod e. Naturally, this must be balanced against the overheads of

mic roprogram subroutine calls and any inefficiencies introduced by
calling routines that handle general cases rather than using
possibly shorter code to handle particular simple cases. This can
often be circumvented by careful design of kernel subroutine entry

points and parameters .

To avoid confusion in software or accidentally permitting
breaches of security, the microprogram must check all of the
arguments of a kernel operation before it goes on to modify any
data structures so that a protection violation cannot occur during
th e execution of the primitive and leave things in an inconsistent
s tate. This means that kernel functions must be restartable and
on a restart all arguments must be checked from scratch , because

an excursion into software caused by an interrupt is liable to
r esult in the modification of the state of the machine.

Complete mediation is possible by ensuring that
microprogram always uses virtual addresses to access

the

data
st ructures through the addressing and protection mechanism and not

by remembering evaluated absolute addresses, so that an error in
the microprogram or a bad argument causing the kernel to make an
i llegal access will be duly trapped and reported as an access
violation . This inc r eases the r uggedness of the ker nel and

gr eatly aids debugging at the cost of an increased overhead in
a ccessing information owing to the prot~ction checks. If the
microprogram has some device for optimising efficiency by
r e t aining evaluated capab il ities and representations of objects ,
it must detect when such an optimisation is no longer valid ,
perha ps because a ca pa b i l i ty has bee n ov e rwri t ten i n sto r e . I t i s

in t he a r ea o f t he s e optimis ati on s tha t there ar e most like ly to
be mistakes that will allow unau tho ri sed a ccess t o privil eges.

-20 -

...........

CHAPTER THREE .

CAPABILITIES AND NAMING.

3. 1. Names and Objects.

In Section 1. 3 the essential contents of a capability were
sa id to consist of an access code .describing the privileges
conferred by the capability and information to identify uniquely
the object which the capability protects . In an early capability
scheme due to Fabry [68], the informatio n simply consisted of the
r epresentation of the object ; for e x ample, a segment capability
contained the absolute base of the segmen~ and its size. This is
r ather unsatisfact6ry because information about the structure of
ob jects is not centralised and leads to difficulties if the
r epresentation of an object needs to be modified . A typical
e xample occurs in virtual memory management : a segment can be
r elocated in store by altering its absolute base address and it is
e ssential that all capabilities for the segment refer to its new
position . To do so in Fabry's design involves searching through
a ll of the capabilities in the system to locate those to modify .
This tedious task is easily avoided by holding the representation
d ata in some central tables and retaining a pointer into the
t ables within a capability . This pointer is known as the name of
t he object.

If the naming mechanism only accepts names ·tha t ·are · embedded
in capabilities, names can be kept free from forgery or
corruption . · The n ame o f a n obj ec t s e rves t o i denti f y it uniquely
from all o th e r objects known to the system . As names are f ound in
c apabilities , the issues of nami ng and p r otection a r e ver y closely
r elated ; in pa r ticular, n aming mechanisms have a considerable
infl ue n ce upo n t he n a ture of the prot e ction system tha t can be
buil t around th em .

Na mi n g sc hemes ma y b e d ivided i nto two c ategories : nested and
_gl o ba l [Laue r 7 4]. In a nested naming scheme the name of an
objec t is only mea ningful within one node of a hierarchical tree
of name spaces . In each name space there is a table giving

-21-

information about all the objects which exist within it and an
ob ject is defined in terms of selecting objects in an immediately

sup erior name space in the tree, apart from at the top level where
representational information is found. Thus, the entries in a

particular table will contain names belonging to its higher name
space. The bit pattern of a name has a different significance in

every name space and it is necessary to translate names if they
ar e passed between name spaces.

A global naming system is characterised by having a central
tab le of object representations and names which are pointers into

th e table and have the same significance everywhere. rt is
usually the case that each object has a name different for all

time from every other name, known as its uni9ue identifier.
Un iqueness implies that there is a single entry in the table for

every object and that modifying this entry will affect all
capabilities for the object throughout the system.

3, 2. Nested Naming Schemes,

The major example of a protection architecture based on a
nested naming scheme is the CAP system [Needham and Walker 77).
The system supports a hierarchical tree of processes and each node
of the process tree acts as a coordinator to the processes

immediately descending from it. These processes in turn are

so responsible for coordinating their sub-processes · and

typical process hierarchy is illustrated in · Figure 3. 2-1.

on. A

There
i s a name space associated with each process and capabilities
wit hin a process contain short (sixteen bit) names that point into
a table of obje~ts available to the process, known as the Process
Re source List (PRL) which · contains information about the
r epresentation of the process's objects. for segments, the PRL at
th e top level, known as the Master Resource List (MRL), holds
ab solute base addresses and sizes. A segment entry in a PRL l ower
down the process hierarchy contains the ad.dress of a capability
for the segment in the immediately superior address space. These
da ta structures are illustrated in Figure 3.2-2. There is a
mechanism by which segment capabilities can contain refinement

dat a so that a junior process can have access to sub-segments of
segments at higher levels with the same or reduced access .

-22-

. 1

I

Level 0
(Master Coordinator)

Level 1

Level 2

Level 3

Figure 3.2-1 CAP Hierarchical Process Structure

MRL

Level 0
----,--,--~-r~-----1.,,,. .. _______ ..,.....,

Capability
Tables

Level 1

Capability
Tables

Level 2 t -l .

PRL

PRL

L-.--- ---

/
/

........
........

.......
.......

.......
.

h

Figure 3.2-2 CAP Capability Evalua tion

/

Segment

..... _____ _

D

D

MRL

Level 0
.--,---,---•:t===:::::=:1(

Capability
Tables

l-1 • I

Level 1

Capability
Tables

Level 2

Capability
Tables

PRL

PRL

t -
- r

/
/

' ' ' ' ' '

Figure 3,2-2 CAP Capability Evaluation

' '

Segment

'-------

D

D

Ev aluating a capability involves ascending through a hierarchy of
name spaces, following indirections from capabilities to PRLs, to

capabil ities in higher name ipaces until an MSL entry is reached.
At this point, the position of the segment in memory can be

det ermined and data within it may be accessed.

The rationale of the CAP scheme is that a coordinator should
hav e complete control over the processes it schedules [Needham and

Wilkes 74] and for thii reason . the privileges of a sub~process are
a subset of those of its coordinator. In fact the only privileges
that really belong to a coordinator are those that relate to the

scheduling of processes. As it stands the CAP system suffers from
a confusion between the control of . time and the control of
privilege which may be directly attributed to the fact that PRL
entries define the representation of objects by addressing
capabilities at the next level, rather than by pointing directly
to a superior PRL. The - reason for the capabilities of a CAP
process leading to capabilities in the address space of its
coordinator process is because CAP processes have no existence
until they are actually running. A process is started by
presenting to the microprogram a data segment of the coordinator

that is to become the PRL of the new process and there is no
static way of deciding which segments in the machine are potential

PRLs or not. This means that the only possible place at which the
priv ileges of a process can be gathered together is within the
cootdinator process from which the apparatus of the new process is
t aken.

The CAP ~rchitecture will support an indefinite depth of

nesting, subject to hardware constraints , althougt in
various considerations lead to the ado~tion of just

Master Coordinator and one level of sub-processes in

operating system .·

practice,

a single

the CAP

Moving capabilities around within a process is straightforward
in CAP: a ll of the protection domains in a process belong to the

same process-wide name space so it is sufficient just to copy the
bit pattern of a capability whenever it is moved and CAP provides
microprogrammed instructions for this purpose. If a capability is
to be transmitted between processes having a common coordinator ,

-23-

the transfer involves establishing a PRL entry in the receiving

process identical t~ the PRL entry in the sending process and then

copying the source capability to its destination slot with the

name field translated to point at the new PRL entry in the

receiver. Moving capabilities between processes that do not share

a common coordinator is more involved: firstly a node in the

process tree that embraces the name spaces of the communicating

processes must be located; then the capability to send must be

evaluated as far as this common node and finally, the capability

must be allocated space in all of the intervening name spaces in

the tree down to the receiver. There is no microprogram support

provided for these operations so they must be performed by

software. The complication of inter-process communication between

different levels of the hierarchy has lead the CAP operating

system to only permit messages containing capabilities to be

despatched between sub-processes of the Master Coordinator. As

message passing is implemented by software and involves the

translation of names between name spaces it is considerably slower

than the microprogrammed orders that may be used to communicate

between domains within a process [Cook 78].

The CAP inter-process message sys tern will only per form the

transfer of segment capabilities with the result that it is not

possible to send capabilities for objects containing names, such

as protection domains. A CAP protection domain · is known as a

protected procedure and it is defined by an ENTER capability

(named after the ENTER instruction which is used to change

protection domains) that points to a PRL entry that in turn points
-

at up to three other PRL entries for capability tables holding the

capabilities that form the protected procedure. Figure 3. 2-3.

shows the structure of a ENTER capability,. To transfer an ENTER

capability between processes it would be necessary to make new

copies of these •tables so that all of the capabilities within them

can be edited to index the correct offsets in the destination PRL

when the procedure is transferred and space has to be allocated in

thi s PRL for all of the segments accessible from the procedure.

If the protected procedure included capabilities for other

protected procedures, these too would have to be unravelled. Even

if it were possible to pass prote c ted procedures between

-24-

ability Cap
Tab
Poi

le :
nters

PRL

v t
h

--
-- ..

. . .h I I j I \ \
/ I I I \ \

/ I I ·- \
/ I \

/ I I
I I \ / l

/· I I I \
I I I \ / I

/ I I I \

i i
I I

.•

I

I

Capability tables for a protected procedure

ENTER capability

Figure 3.2- 3 A CAP ENTE~ Capability

\
\

\

..

\
\

\
. . \

~ ..

processes, there are other problems conc~rned with parallel
execution in a single protection domain which will be discussed
fur ther in Chapter Seven .

In conclusion, the advantages of a nested naming scheme mainly
· ari se from the efficiency of name look- up by simple indirection
and compactness of short names , together with the simplicity of
th e object tables found in each name space . In return, there are
problems concerned with passing names between name spaces and
managing objects whose representations are distributed around the
system in the several name space tables.

3.3 . Global Naming Schemes With Forever-Unique Names.

All of the naming problems mentioned above may be avoided by
th e use of global names which are independent of domain and
process architectures, so there is no difficulty in passing a
capability around by copying its bit pat tern. The HYDRA sys tern
[Wulf et al. 74) uses global naming and ensures that names are
unique in space and time by deriving them from a fast clock that
will never stop during the entire lifetime of the system. Every
object ever known by HYDRA is given a unique name which remains
associated with the object, even after it has been · deleted .. To
co pe with the number of objects that will exist during the
system's life, unique identifiers are long (sixty- four bits), as
opposed to the smaller sixteen bit name field of CAP capabilities.
As well as being vast, the HYDRA name space is also sparse because
of gaps owing to objects that have been deleted, and the intervals
in which the clock runs but no new names are generated. For this
r eason , associating names with entries in the central table must
be done by hashing. The entire hash table is too massive to
re tain in primary memory and it is paged from a fixed head disc .
A small hash table in memory, the Active Global Symbol Table holds

map etitries describing obj ects that have been used recently and a
low priority pr ocess slo wly scans the tab le and arranges that it
only con t a ins information corresponding to objects that are in
curre nt use. If an ent ry for an ob j ect is not found in the active
tabl e , an entry mus t be found for it from the Passive Global
Symbol Table on disc . The process of hashing in the active table
is quite slow even compared to the time taken to traverse the

-25-

I

naming hierarchy in the CAP system and if an object is not in the
active table, the time taken to find it is considerably longer
bec ause of real-time delays while the disc is accessed. Thus,
al though the mechanisms of HYDRA are conceptually simpler than
tho se of CAP they are much more expensive in terms of time and
compu tation.

A major advantage of a unique identifier scheme is that it is
possible to preserve capabilities directly in a filing system. In
a nested scheme this is not possible as a capability may be
subsequently retrieved in a name space different from that in
whi ch the name it contains is valid. In the CAP system, filed
obj ects are given a unique System Internal Name and when a
capability is filed, its name field is translated from a local
name to a System Internal Name [Needham and Birrell 77]. For this
rea son capability segments are not filed, as to do so would
r equire the translation of all of the names in the capabilities
within the segment. CAP capabilities are . preserved in filing
system directories and it is the responsibility of the directory
manager program to perform translatLons between local and System
Internal Names. With HYDRA this is not necessary, as the unique
identifier in a capability is always valid and has the same
meaning throughout the system at all times. However, the
integrity of the unique naming scheme depends upon the object
t able being kept scrupulously up-to-date and consistent; it must
be retained without corruption over a sys tern break and the table
management software must guarantee that the table is never left in
an ill-defined state. The same remarks apply to the internal nami
t able in CAP, but that table only has to be updated · whenever a
capability is preserved in the filing system and the overhead of
keeping this table up-to-date on disc is less severe than in
HYDRA , where the table is modified more frequently in response to
operations on all objects and not just those in the filing system.

The advantages that a global naming system has over a nested
naming scheme for · transferring capabilities between domains and
process es is a strong influenc e on the level of type-extension
features found in a protection sys tern. In most type-extension
schemes, abstract objects are represented by a data structure that

-26-

contains information about the lower. level components of the

obj ect which is frequently in the form of capabilities. In a

ne sted naming system the problems faced in moving these structures
around are similar to those provoked by trying to pass ENTER

capabilities in CAP. If a type-extension mechanism is to be
useful, it must: be possible to protect a large number of objects

of varying levels of complexity which can be transmitted easily

between protection - domains and processes. For these reasons,

tho se protection architectures that wish to support abstract
obj ects are normally based on global naming schemes, so that

capabilities and names may be passed around in a free and flexible

manner. Furthermore, if a filing sys tern is to allow protected

objects to be preserved, the expense of translating run-time names
to filing system names within the representation of objects may

prove too great and unique identifiers are most commonly used as

global names to avoid this overhead.

3.4. Other Global Naming Mechanisms.

It is possible to have global naming schemes that do not rely

on forever-unique identifiers. A system considered by Watson [78]
uses global names that are only unique for a run of the system,
that is, whenever the operating system or machine is stopped and

subsequently restarted, identifiers are issued afresh from their
origin. This approach relies on the observation that most

computer systems are halted at frequent intervals for routine

maintenance, lack of work or because of hardware malfunction.

Usually these events are separated by days or weeks rather than

years, so the identifiers in Watson's scheme need not be as long

as those in a forever-unique scheme, with the advantage that

capabilities are smaller and less wo~k is required to hash names.

Hashing is still the only method applicable for organising the

global object table because, even in a few days, its size would

become immense if measures were not taken to keep it compact .

In this scheme it is not possible to place capabilities in a

filing system without translating names int6 some internal unique

form because preserved names will become invalid whenever the

system restarts. On the other hand, it is no longer necessary to

go to great lengths to keep the table intact over a system break

-27-

'-.

l

since the names it contains are volatile. As the table will no
longer require backing up on disc, it can be looked after by
microprogram because most table operations like identifier look•up
wil l not need the advanced facilities (such as paging from disc)
us ed by the HYDRA global symbol table machinery. Some software
might still be required to locate and remove garbage from the
table and perform other high level operations, but otherwise it
would not be unreasonable to expect the microprogram to provide
primitives for evaluating capabilities, distributing them, simple
typ e-extension (including object creation and deletion) and so on.
Un ique identifier look up by hashing, however , can lead to a waste
of machine cycles when collisions occur in the hash table and a
s earch must be continued. In particular, looking for an entry for
an object that has been deleted may occupy the kernel for a long
time, causing a degradation of efficiency.

The Plessey System 250 [England 74) circumvents the cost of
hashing short term names by arranging that names in capabilities
directly index a global name table which is called the System
Capability Table (SCT) as shown in Figure 3. 4-1 . The Pl essey
sys tern only provides memory protection and does not support any
f orm of extended objects, so all object~ in the SCT are segments .
Th e operating system for the _Plessey machine detects and recovers
CU\y slots in the SCT that are occupied by segments that are no
l onger accessible . from active capabilities so that they may be
given to segments that are created subsequently . Names in the
Pl essey system are still global, but they are only unique in the

' .. s ense that at any time a name is only associated with a single
s egment , although at another time the name might refer to a
different segment if the original has been destroyed. Finding
free slots in the SCT requires the use of~ garbage collector that
periodically scans all of the capabilities that are active in the
system to determine which SCT slots are not referenced. The
fre quency a t whi ch the garbage collector runs and the size of the
SCT must both be ca refully tun ed to avoid wasting space in the
tabl e and also to prevent the system locking up if the SCT is
full. Names in the Plessey sys tern are just sixteen bits long ,
which greatly contributes towards having short capabilities and

n,
the prj,(cipal advantage of this scheme over Watson's proposal is

-28-

- I

' I

i

i ,

\

j

' \
' ' \

'

Process -Capability
Table

Shared segment

' ' ' \
\

\
System Capability Table

.....

j k

·I
--r

j

Process Capability
Table

Processes

Figure 3;4-1 Plessey System/250 Naming Scheme

I

I

1.1

I

t hat proceeding from names to table entries only involves

following a simple indirection and avoids the expense and

complication of hashing.

The essential point to notice about the architectures proposed

b y Watson and Plessey is that, unlike the active global symbol

t able of HYDRA, the tables in memory are not caches for a larger

data structure owned by the kernel. It might be the case that a

higher 'level unique name table (such as the CAP System Internal

Name table) exists, but the primitive naming and protection

mechanisms know nothing about it and the management of
'

forever-unique names is not a kernel function. The main advantage

of adopting this view is that the global name table need only be

of moderate size and resident in memory so that kernel naming and

protection mechanisms can be implemented in simple and efficient

code. The price paid for this facility is the need for

translation between filing system names and run time names. In

HYDRA the active global symbol table is purely a cache for the

passive symbol table kept on disc and it is the duty of the HYDRA

kernel to maintain both data structures, whi eh is one reason why

the HYDRA kernel is slow and unwieldy and has to be implemented in

software rather than microprogram.

A compromise suggested by Lampson and Sturgis [76) to gain the

benefits of short name$ whilst retaining a forever-unique name

system is to make capabilities hold both a short run-time name and

a long forever-unique name. Operations on the global name table

in memory are carried out using short names to address slots

within it and · a quick check is made to ensure that a unique name

held in the slot matches the unique name held in the capability

being exercised. If the unique names do match, the operation is

allowed to proceed, otherwise a trap is generated and the

operating system can use the unique name to find or construct an

entry in the table for the object, and the short name field of the

faulty capabili_ty is then made to be the offset of the new slot .

In essence , a short name i s a ' hint' to the position of an entry

f or an object in the map . With this sort of ·organisation the map

can functi o n a s a ca che for a unique nam e t a ble that is ke pt on

bac king s tor e wi t ho u t invol ving the kerne l i n di s c ope r a ti ons .

-2 9-

I
I
.I

The kernel uses short names as poin.ters and this · avoids the
expense of hashing · and leaves the management of forever-unique
names to higher level components of the system. While this ,
t echnique may seem to offer an ideal compromise between short
names and unique names, there are many pitfalls to avoid.
Capabilities are very long because of the need to hold both short
and long names, and space must be found in the central object
table entries for long names as for well as details of
representations. It is necessary to provide code to manage both
the small resident map and the larger permanent structure which
have different naming conventions, and the interactions between
the tables and the algorithms for managing them must be carefully
considered to avoid problems of inconsistency, over-complication
and loss of efficiency.

In general terms, all of the different management strategies
for global name tables represent a compromise between the usage of
space and time, so it is unreasonable to expect any single
mechanism to be ideal. Instead it is necessary to consider the
desired behaviour of a system and to adopt the techniques most
suited to it.

- 30 -

I
I

1:1

'I

CHAPTER FOUR.·

CAPABILITIES AND ADDRESSING.

4.1. Capability Structure and Organisation.

The natural place at which to start considering capabilities
and addressing is with the nature and substance- of capabilities
themselves: a capability is evaluated from the contents of a data
structure in memory which serves to define both the object
protected by the capability, the privileges the capability
confers, and in some systems (CAL-TSS for example), information
about the type of the protected object. It is useful to be able
to refer to the data structures themselves as capabilities
although , in the strictest sense, it is the result of evaluating
the data structures that yields capabilities. In this thesis, the
term 'capability' is used with both meanings provided that it is
possible to resolve any ambiguity from the context.

Because they contain names, capabilities must not be either
forged or corrupted if protection is to be guaranteed. It is
therefore necessary to have some method for distinguishing
capabilities from ordinary data so that they can be recognised and
only authorised capability operations carried out upon them .
There are two common techniques for performing this
discrimination : firstly, each item of information in memory may
be tagged with a bit saying whether or not the item is a
capability, and secondly, memory may be partitioned into disjoint
capability and - data regions .

Tagging has been successfully employed by the Burroughs B5000
computer system and its descendants [Burroughs 61] and has been
ex tensivel y i n vestigated by Feustel [73] . The protected i te ms in
t hese systems are ' descriptors ' rather than capabilities , but t he
diffe r ences between t hem are of no immediate concern except fo r
one poi nt : desc r ipto r s t ypically tend to be smaller tha n
capabilities as they contain les s info rm a ti on. The i mpac t o f t h i s
becomes apparent in the light of curr e nt tr e nd s t o r educe the s ize
of addr e s s abl e ite ms in memory . In the past, machines with items

-31-

of thirty-two, forty-eight and even sixty bit items were common,
but nowadays the eight bit character, or byte, is becoming
universal and proposals have been made for bit-addressable
memories. In such addressing organisations a large object such as
a capability is implem~nted as a contiguoui sequence of locations
of memory usually addressed by the offset of the first element in
the frame. If tagging is to be used, it would seem that at first
sight two tag, bits .are required, with the significance 'first item
of a capability' and 'subsequent i tern of a capability'
respectively, so that it may be ensured . that capabilities are
correctly manipulated, but clearly the overhead of associating two
extra bits with a small item of, say, eight bits is wasteful and
expensive.

A simple

capabilities

multiple of

way of avoiding the expense is to insist that·
can only be stored starting at addresses that are a
the length of a capability and that capability

addresses must locate one of the predetermined capability frames;
this only requires a single tag bit but complicates software
because of the need to align capabilities which sacrifices many of
the advantages of being able to access small items. A full
discussion of tagging hardware for a capability machine can be
found in Redel 1 [74] together with some proposals for a scheme
which is economic in terms of the number of tag bits, yet permits
items to be arbitrarily laid out in store.

The generality of being able to mix capabilities and data
freely in a tagged memory regime poses some system problems: some
part of the protection system must be responsible for creating new
capabilities and destroying unwanted ones and to do so it must be
possible to write arbitrary bit patterns in , capabilities, although
the use of this privilege must be protected to ensure the
integrity of the rest of the protection machinery. This operation
conflicts with the setting of a capability's tag bit and some
escape mechanism must be provided to overide tags which, in most
tagged machines, is available only in a special or privileged
state that allows fil!.Y. capability to be modified . This latter
privilege is more sweeping than that which is actually required
and it is not possible to limit selectively the capabilities which

- 32 -

may be affected.

A further problem arises from the observation that an
operating system is obliged to know the location of capabilities
and other protection data struqtures; for example, it may be
necessary to scan all · the capabilities belonging to a protection
domain to find lost objects, or to detect garbage in internal
tables. If capabilities are fre~ly distributed throughout a
domain's memory (as tagging would allow), the scan would have to
include every item in memory that could possibly contain a
capability. In any system, and even more so in one that has a
large backing store, this task would be exceptionally expensive in
both 'processor time and virtual memory traffic.

The difficulties encountered in a tagged architecture may be
avoided by partitioning capabilities and data. In a partitioned
system the access code of a capability for a segment will belong
to one of two categories: capability type access or data type
access. To perform data operations such as addition or · shifting
on items in a segment, it is necessary to present a capability
bearing the appropriate data type access code such as .r:.~ad, write
or execut~ and for a capability operation, a capability pre3enting
a capability type code such as read-capability or write-caoability
must be used. Thus the interpretation of the contents of a
segment depends upon the capability used to gain access to it and
it is usual to refer to a segment for which capability access is
held as a capability segment; otherwise, if the access is of data
type, it is referred to as a data segment. In this scheme, the
part of the operating system concerned with altering the contents
of capabilities would have a capability giving data access to
segments that are elsewhere accessed with capability access and
because the ability to modify a particular capability is itself
contro_lled by a capability, it is possible to control the
privilege.

The software for managing capabilities in a partitioned
architecture does not have to scan the entire memory of the system
to find all capabilities , instead it is only necessary to conside r
capability segments , that is , those f or which there is a
capability wi t h a ca pab i l ity t ype access code i n ex i sten ce . It

-33-

may be expected that there will be far few:er of these segments
than data segments.

The disadvantage of partitioning is that a certain amount of
generality is lost: it is not possible to have data structures
represented by segments that contain a mixture of capabilities and
data and there are occasions when the lack of this feature is a
nuisance. Consider, for example, a directory or catalogue for a
filing system: the directory cannot be implemented as a segment
containing both capabilities for the objects filed within it
together with data representing file names and access control
information, whereas in a tagged machine the directory could
easily be made from a single segment. In a partitioned
architecture it would have to be implemented as two segments, one
for data and one for capabilities, which is inefficient as it·
requires two transfers to bring all of the directory into store~
The HYDRA system [Cohen and Jefferson 74] employs partitioning but
tries to recapture

holding both data

generality by providing 'universal'

and capabilities, that are formed

objects,

from two
segments, one of which holds the data part of the object and one
for its capabilities. The implementation of the object as two
segments is concealed from the user, but it is not possible to
interleave capabilities and data arbitrarily inside the object as
the two sorts of information are addressed in different ways; By
careful allocation of disc space it can be arranged that the two
segments of a universal object are adjacent on disc and can be
brought into store in a single transfer. The CAP and Plessey 250
sys terns al so partition capabilities and data but neither has any
facility for mtxed type segments .

An important consequence of adopting a partitioned
architecture is that, unless ordinary orders recognise ·capability
and data type access codes , they cannot be used to move
capabilities around between capability segments which means that a
special suite of capability orders must be provided .

-34-

4.2. Capabilities and Virtual Address Translation.

In a segmented addressing architecture, an address contains
two fields, one of which selec_ts a descriptor for one of the
segments in a virtual address space and the other indexes a
particular item within the segment. Capabilities can be usefully
employed as descriptors because they are protected fr0m forgery or
corruption and can be passed between address spaces to permit
sharing, without the need to resort to complex linkage tables such
as those found in MULTICS [Organick 72]. Capability segments can
take the place of descriptor tables and each capability within the
tables will define a segment associated with some virtual
addresses. Two address spaces sharing ac6ess to some object will
have similar capabilities for it in their (descriptor) capability
segments. A capability used as a descriptor provides a bridge
between virtual address spaces and the naming machinery because art
address nominates a capability which in turn, provided there are
no access violations, yields the name of an object which is the
key for obtaining its representation .

There are two ways of using capability descriptors: explicitly
by loading them into capability registers o r implicitly by making
the virtual address translation mechanism evaluate descriptor
capabilities ~utomatically .

The Plessey System 250 [England 74] is a capability register
machine in which all of the capabilities avai lable to a protection
domain (or package in System 250 nomenclature) are held in a
single capabi l ity segment , the Central Capability Segment , whic h
is local to a process . The capabilities in this table hold names
that point at entries i n the global system capability table and
acc ess codes . The Sys t em 250 processor makes avai l able to use r s
ei g h t ca pab i l ity r eg i s ters whi ch hold evaluated (segmen t)
capab ili ti es in t hr ee fields : abso lute _ base add r ess , s iz e and
a c cess code . The data s truc tures of th e System 250 are shown
d iagrammat ically i n Fi gure 4. 2-1. Ca pab ilities a re loaded
e x plic i tl y in the reg i s ter s by ins truc ti ons of the form .' load
c a pab ili t y r eg ister r with ca pability i' which causes the i - th
capability in the central capa bility segment to be evaluated and
th e n to be made available in the r-th ca pability r egister,

-35-

~--

Ii
I

I

CRO

CR7

System Capability Table

ABSOLUTE
ADDRESS

Central Capability Segment

ABSOLUTE
ADDRESS

Capability Registers

I
I
I
r

. ,

SIZE

SCT
. INDEX

I
I
I
I
I

ACCESS
CODE

Figure 4.2-1 Plessey System/250 Capability Evaluation

I

SIZE

ACCESS
CODE

overwriting the previous contents of the register. Addresses in •
this system take the form of a duplet <capability register number,
offset in segment>. Whenever execution crosses a protection
domain boundary, all of the capability registers must be flushed
out as their contents will not be valid in the new domain and the
contents of the registers are preserved on a stack so that the old
environment may be restored when the called domain is left.

HYDRA likewise specifies objects by their offset in a central
table. Associated with each protection domain is a capability
segment known as the Local Name Space (LNS) and capabilities may
be moved in and out of the LNS by kernel primitives which take LNS
offsets as arguments. Objects in HYDRA can contain capabilities
within their representation and the addressing mechanism permits
these capabilities to be addressed by a path name which specifies
a route starting at the LNS through the capability parts of a
series of objects leading to the target capability. Each
component of the path name consists of an offset into the
capability segment of the last object reached. A typi0al path
from a LNS through several objects is shown in Figure 4.2-2. The
LNS is a normal HYDRA object; the capability part describes the
privileges of a protection domain and the data part ·holds sys tern
ind accounting data such as the number of capabilities present and
so on .. The ability to follow a path and pluck capabilities out of
objects is controlled by an complex set of access codes [Cohen and
Jefferson 75] . In HYDRA, a segment of memory is addressed by
indexing a capability for the segment into the LNS and then

_causing the kernel to evaluate the capability and configure a
nominated relocation register of the underlying hardware
accordingly so that memory can be addressed through it.

Explicit capability register machines are unsatisfactory for a
number of reasons. The most apparent is that programmers have to
concern themselves with the allocation and priming of capability
r egisters and this act ivity is not confined to system programmers ;
it must be carried out at all levels. Register allocation can be
left under the control of a high level language compiler, although
in doing so it is difficult to avoid introducing machine dependent
features into the language . This can be a great disadvantage if

-36-

I 1

HYDRA objects

I
I
I
I

I

~k

I
I
I .

I

-• ----->m

I
f

I
i

C-List Data Part

LNS

I

~i

//
I
I
I
I

PATH (i , (j , (k, (. m))))

. Figur~ 4.2-~ HYDRA Addressing Strµcture

·--._

the language is portable such as BCPL [Richards 69] or Algol68C
[Bourne et al. 74], where all machines share the same compiler but
have their own intermediate code translators. Introducing
protection facilities in the translator is not easy as much of the
information needed to decide the contents of capability registers
is only available in the compiler.

If the working set of capabilities needed by an executing
program exceeds the number of registers available, many machine
cycles will be wasted in repeatedly loading and unloading
capabilities. This loss can be diminished by increasing the
number of registers available at the expense of more state
information to preserve over a process or domain switch. Another
danger is that a register may be left containing a capability when
it is no longer required and subsequently, because of if
programming error, the register may be exercised by accident or
may be thought to refer to another object. This sort of thing can
lead to very obscure program failures.

If a change is made to system tables, such as the SCT and
Central Capability Tables of the Plessey system, any registers
previously loaded from the tables must be flushed out and
evaluated from scratch, as the data on which they rely might have
changed. By the simple expedient of holding table offsets in
capability registers it is possible to reduce the flush to only
those capabilities dependent on the changed data.) Additionally,
if the change was in the global name table, it is necessary to
flush out capabilities not only in the currently running process
but also any preserved in process bases and other state
information.

Many of these problems can be avoided by arranging for the
addressing mechanism to select automatically and to evaluate a
capability to det ermine an object's representation. In the
Plessey system this would correspond to making addresses. of the
form <offset in SCT, offset in segment> rather than <capability
register, offset in segment>. If every reference to an object ,
especially if it were a segment, caused a capability to be
evaluated, the overheads of the mechanism would be immense but
they could be avoided if evaluated capabilities are retained in

-31-

'-.

I

1:

'
some form of capability cache. For example, in the case of the
modified Plessey system , it would be possible to provide a bank of
capability registers each preceded by a tag ~hich is used to hold
the central capability segment table slot of the capability from
which t h e register is loaded as is shown in Figure ~ . 2-3. When an
address is presented to the cache , an associative search can be
made for a registe r whose tag matches the SCT offset of the
address. If a match occurs, the selected register can be used to
bontrol access to store, otherwise a free register in the bank can
be loaded and the store access re-tried . The function of the
associative capability cache is similar in operation to the
current page registers found in machines with paging hardware
[Denning 70]. The management of the cache can be carried out by
software running in a privileged state which permits changes to
the contents of the registers or, as is the · case in the CAP
computer, by micropvogram.

An associative cache is more expensive than directly
addressable registers in terms of hardware, although the falling
costs of integrated circuits is reducing the price of associative
memory. In return for the investment, the advantages or slaving
capabilities are of great benefit : no longer is it ne c essary for
programmers to become involved in capability register loading and
dumping and the protection mechanism becomes an integral part of
addressing which offers simplicity for naive users of the sys tern
who are only required to understand the add r essing architecture of
the machine and not necessarily its protection mechanisms as well.
This latter feature is also useful in the area of high level
languages as the objects accessible to a program can be mapp ed
into a languag·e ' s v iew of the ad d r ess space in which it r uns ,
rather than forcibly hav ing to bol t on kno wledge of capabilit y
mechanisms . Whilst there is no longer the problem of leav ing
unwant-ed capabilities l ying around i n registers or misleading
r egiste r s and accidental:l.y permitting protection violations , the
di f ficulty s t ill exi s t s a t a higher level in that · t he proformae
t ha t an operating system uses to set up capabilit y tables pri or t o
running a program must agree with the addresses used by the
pr og r a m. This ca n be skirted around to a fair extent by all owing
compilers to construct the proforma e, as is th e cas e with the CAP

-38-

;.

I
.1

.rl TAG ABSOLUTE SIZE ACCESS
ADDRESS CODE

I I I I I
I I I I I
I I I - I I I I I I I I I I I I I I I I I

.... ..

I I I I
I I I I I
I I I I I
l I I I I

I I
I I I I I
I I I I I

. I

4

CAPABILITY CACHE REGISTERS . .

SCT SEGMENT
OFFSET OFFSET

\ /
\ I .. -

-

Figure 4.2-3 A Capability Cache

I

Algol68C compiler [Birrell 7 8]. It is,
for ~rograms to become confused if

of course still possible
they compute an address

wrongly; however if the address space is vast, there is a good
chance that misleading addresses will turn out to be invalid , more
so than if an address is a small integer or register number.

If the associative selection mechanisms of the capability
cache are sufficiently powerful, it is possible to arrange that
capabilities are left in the cache over a domain call so that on
returning from the domain they may be made accessible again
without having to construct them afresh. It is a necessary
requirement that capabilities held over in this way are only
accessible in the domain to which they belong. The cache of the
CAP computer is driven like this and the retention of capabilities
during protected procedure calls leads to a considerable saving of
machine cycles [Cook 78]. Similarly with the need to flush out
capabilities in a register machine, it must be possible to clear
capabilities out of the . cache if the data structures from which
they are evaluated have been altered . As each regi.ster in the
cache proposed above is keyed by the address of the capability it
is derived from, any change · to a capability can be accomplished by
flushing out any entry whose tag matches the index of the modified
capability. Changes in the global name table can cause the entire
cache to be flushed or, by providing a field in each register
giving the table offset of the object it protects, a selective
clearing can be made.

4.3. Structured Addressing Architecture:L_

Having just a single capability tab le in a domain is not
entirely satisfactory as it is not possible to share those parts
of the domain that are common to other instances of it elsewhere
in the system . An example of the usefulness of such a feature is
provided by filing system directories in the CAP filing system : a
directory consists of a . segment describing the contents of the
directory embedded wi th in an instance of a dirictory manager
protected procedure and every incarnation of the procedure · can
usefully share capabilities for segments of pure code, libraries
and read-only data structures. The workspace of a directory
manager is local to a process and can be shared between all

-39-

I
'. I

II
111

Ii
I

;.

instances of the directory manager within a process because
control will only be · in one of the managers at any time. Some
data structures, such as directory segments, are local to each
instance of the directory manager and cannot be shared. If the
capabilities of a protection domain can be divided _ up into these
various classes and shared there is considerable scope for saving
space as is illustrated in Figure 4.3-1. Furthermore, by
splitting the table into a number of capability segments, it is
possible to protect some of the capabilities belonging to a domain
from being overwritten by placing them in a segment for which only
read capability access is held. In HYDRA, where a · process's
capability table, the LNS, is a single table, there is a complex
set of access controls provided to prevent individual capabilities
within it being overwritten by accident. The ability to partition
the layout of the capabilities belonging to a protection domain
helps to prevent addressing the wrong capability by accident as,
particularly if a domain is small, the capability address space
will be sparse and arbitrary addresses produced by programs are
likely to reference slots that are not in use and will cause a
protection violation.

The CAP computer has an elegant addressing and capability
architecture which serves to illustrate some of thes·e points and
is depicted diagrammatically in Figure 4. 3-2. For the current
~urpose it is sufficient to assume that evaluated capabilities are
efficiently cached in a large bank of capability registers. {The
hardware for supporting the cache is described fully in Chapter
Eight). As outlined in Section 3.2, the Process Resource List of
every pr6cess contains an entry for every object available to the
pro~ess and .the address space of a protected procedure is defined
by up to three capability tables (i.e. capability segments), the
entries in which select a subset of the ob,J ects in the PRL. As
contr~l is passed between protected procedures, different sets of
capability tables become. enabled and so the selection of objects
available changes. A distinguished entry in the PRL describes the
process base which, as well as state information, also holds
sixteen pointers to PRL slots that define the currentl y e nab led
capability tables of the process . A pointer may be null , in whic h
case the cor r espond ing ca pabilit y t able is disabled. The f ourth ,

-40 -

;. ~.

Process "X"
Directory ".rmn"

-~

Process "X"
Directory ".mvw"

~ w
Process 11Y ''

Directory

A: Program Code and Global Privile~es.
B: Local Process Workspace and Privileges.
C: Local Directory Data Structures.

Figure 4.3-1 Shared Capability Tables

·~.
~ I

I
I. ,,

I '

PRL

Process
Base

I
I
I
I

i
t

..... .,
I

Table
Number

(4)

\ .
\

\
\

\

tx

. \ 4 ..
. ~ .

\ \ 4 ~ ·

\ \ \
\ \ ,

\ \

\ \

\ \
\ \.

I \ .. :,.--

I ...
"I

~ --
Capability

0
I

l
Capability

. Index
(8)

Table ..

o
\

\
Segment
Offset

(16)

\
\

\
\
\
\
\

f
rl I

1

Figure 4.3-2 CAP Process Addressing Scheme

\
\

\
\

\
\

\
\

.

Virtual Ad

Addressed
Segment

dress

I

'Ii

fifth and sixth capability table pointers are changed whenever a
protected procedure is entered and the new values indicate the
capability tables defining the address space of the called
procedure. The second and third capability tables are used for
argument passing between protection domains and the remainder
provide a set of a tables that are globally available to all
procedures executing in the process. Each of the capability
tables may hold upto 256 capabilities, although in practice only a
small number of capabilities are kept in a few tables and most of
the address space remains unused. An address consists of three
fields: a capability table number, a capability index and a
segment offset. The first two fields taken together are known as
a capability specifier. The capability tab le number nominates,
via one of the pointers in the process base, the capability table
containing the addressed capability and the capability index
chooses the capability from within the table. The segment offset
field is used to address words within a segment if the capability
is store type, but ENTER capabilities and other non-store type
objects are addressed by the capability specifier alone.

As was described in Section 3.2, PRLs contain the addresses of
capabilities in the :immediately superior address space and they
are in the form of a capability table number and capability index
pair.

Because of the changes of virtual address spaces arising
during process and protected procedure switching in the CAP
system, care has to be taken not to pass addresses between address
spaces because they are not valid in any other context than the
space in which _ they are defined. In particular it · must not be
possible for any part of the system to be duped into giving away
privileges in an unauthorised fashion by a misleading address
passed as an argument. This restriction on the propagation of
addresses has not been found · to be a great nuisance with the CAP
~ystem because any reference to an object duri~g a protected
procedure call is always accomplished by using a capability rather
than an address and addresses are relegated to the simple task of
identifying capabilities in the current procedure . The one
diffi culty that can arise is with multi-segment data st r uctur e s

- 41 -

'-.

I:,

that contain inter-segment addresses because, if a capability for
a particular component of the structure is moved to a different

address, all of the addresses for it in the remaining segments
must be edited appropriately.

4.4. Capability-Based Addressing.

Fabry

their

[7 41 shows that

relationship to

In an important paper,

function of capabilities and

descriptors can be used to

con text-free addressing. His

provide

approach

a very

relies

the naming

addressing

elegant form of

on capabilities

being readily identifiable .in both memory and processor registers.

A machine operation which expe6ts a register to contain a

reference to an object will complain if the register does not
contain a capability; on the other hand if it does, the machine

will evaluate the capability to acquire the name within it and

hence the representation of the object to be accessed. On entry

to a domain, a processor register is loaded with a capability for

the domain descriptor so that by addressing with this capability

it is possible to access the other capabiiities in the domain. It
is important to note that unlike capability register machines, it

is not necessary to consider in advance the allocation of

capabilities to capability registers; instead corresponding to

loading an address as data from memory into a register in a

conventional machine, there is the action of picking up a

capability. Thus the distinction between capabilities and data

serves two purposes: firstly, to prevent a capability from being

corrupted or forged and secondly to indicate to the addressing

machinery that an item can be used as a valid address.

The scheme has th e advantage that there are no problems

concerned with shared addresses between domains and processes

because the capabilities- provide a global address space and do

away with the need for virtual address translation . It is sti 11

possible to carry out the relocation of segments in virtual memory

by modifying the con tents of the global object table so that the

scheme retains the power of a conventional virtual addressing

scheme . Unfortunately, to implement this very pure scheme , it is

necessary to use tagging to mark capabilities because it is

unreasonable to expect data structures that contain a mixture of

-42-

1

111

·, ~- ,Ii
1·~

11

1

I

I

I

I

I

capabilities and data to be partitioned into separate data and
capability regions. As was pointed out earlier this can lead to a

number of difficulties in an operating system.

-43-

CHAPTER FIVE.

TYPE-EXTENSION MECHANISMS,

5.1. Objects, Representations and ·Types,

In an object orientated system, the concept of extensibility
as the introduction of further levels of abstraction corresponds
to the provision of new objects beyond those provided by the
hardware or kernel. These new objects must be protected by
restricting the operations to which they may be subject in the
same way that the kernel controls access to basic hardware objects
such as processes and segments. Mechanisms are required for
naming and describing abstract objects in addition to basic
objects.

An important consequence of the layering methodology is that
the kernel has no knowledge of its surrounding layers; indeed, if
the dynamic creation of new types of objects is permitted: the
kernel cannot have any built-in data about the range of objects
that may exist. However, it would be unreasonable to have to
implement parallel copies of the kernel protection machinery in
every layer, both because of the implementation difficulty of
ensuring that one layer cannot subvert another and the nuisance to
users who have to cope with a multiplicity of mechanisms for
manipulating objects. The functions of the kernel concerned with
naming and protection, such as creating capabilities, copying them
and performing access checks, can and should be available in every
layer. This means that the kernel must be able to employ its
capability mechanisms for objects which it is not able to
interpret directly.

A -particular layer in a hierarchical system builds upon the
facilities afforded by lower layers and any new object that is
introduced must be constructed from lower level objects which will
form its representation . Objects made in this way are described
as extended objects and the layers that implement them carry out
ope r ations upon them by manipulating their representations .
Obviously t his right must be denied to the users of extended

- 44 -

11

;.

objects, otherwise they could undermine the layer implementing an
object. It is therefore necessary for the abstraction mechanism
to provide

object from

responsible

should only

others.

some means of concealing the

its users, yet at the same time

for an object to get inside it.
be able to unpick the objects

representation of an

permitting the layer

Furthermore, a layer

it implements and no

Objects can be partitioned into types; a type is an
equivalence class of objects of identical structure, with the same
operations defined for every member of the class. Every object
has associated with it a type code which identifies the class to
which it belongs. Typed objects are similar to 'classes' in
Simula [Dahl and Hoare 72] or 'clusters' in CLU [Liskov 76]. The
part of a system that implements a pa~ticular type is known as th~
type manager for that type. The term typed ob i ect is often used
as a synonym for extended object and a collection of typed objects
together with their manager is sometimes known as a protected
sub-system. The primary motivation for an extensible system is to
enable users to tailor its basic facilities to suit their
requirements by the construction of protected sub-systems for
additional types of objects beyond those already provided.

5.2. The Use of Protection Domains as Extended Objects.

The CAP [Needham and Walker 77] and Pless~y System 250
[England 7 4] have a simple way of protecting the representations
of extended objects that requires no additional machinery outside
of memory protection, which is to embed extended objects within
protection domains. The security of the representation of an
object shielded by a protection domain is guaranteed if users are
only given the right to call the domain so that they cannot tamper
with the contents of its environment. Operations upon an extended
object are carried out by calling it, with an entry code to
identify the service required and the code executing within the
domain uses the privileges available to it to modify the
representation of the object accordingly . It is easy to see that
this scheme is extensible because the
describing objects whose representations

protection

are also

domains

extended
objects, will contain domain capabilities for their components.

-45-

;.

A protection domain that is used in this fashion to stand for
a protected object can be viewed as an instance of a type manager
with the identity of a particular object bound to it. Thus, for
objects of a given type there will be distinct copies of the
domain responsible for the type containing different
representation capabilities. However, this does not imply that
there will be multiple copies of code of the type manager and its
data structures as they can be shared by virtue of the normal
capability mechanisms.

The control of access to the extended object, as opposed to
its representation,. is carried out by building into the domain
information about the operations that it is willing to carry out.
If, as is the case with th~ Plessey System 250 and early versions
of the CAP, access information is built into the data structures
of a protection domain, there is a lack of uniformity with the
kernel access control primitives. In particular, when users
interrogate the access code of an extended object, they will only
be toid about privileges relating to the object as a domain and
access codes for objects can only be obtained by calling the
domains implementing them with an entry code which signifiea "what
is your access code?". To make a capability for an extended
object that has weaker privileges, it is necessary to create a new
copy of its domain containing a reduced access code.

More recent versions of the CAP system hold access codes for
extended objects within domain capabilities and when a domain is

.. called, the access code contained in the capability that was used
to address it is loaded into a register so that it can be
inspected by the program executing inside the domain . This
artifice has the advantag~ of homogeneity with the primitive
mechanisms for querying access states and mak~ng reduced privilege
copies of capabilities, but it is only possible because CAP has no
intrinsic access codes associated with domain capabilities.

A domain capability does not convey any information to the
kernel about the type of object it protects; to the kernel type
checking mechanisms, an extended object will always be · simply a
domain. For the benefit of users, a type code can be embedded in

-46-

!I

I

;.

\

the capability for an extended object, if there is room, or as an
alternative, a type code can be built into the data structure of a
domain in the same way that was suggested for access codes. To "
prevent bogus domains from masquerading as bona-fide extended
objects, type codes must be well protected. If they are part of a
domain capability there is obviously no protection problem, but
the lack of space for holding the bits of a type code will reduce
the si~e of the type code space and this in turn will affect the
extensibility of the system. To prevent forgery, type codes kept
inside a domain must be held as special type capabilities that can
be inspected by · the kernel. The lack of consistency of these
devices with the type conventions of the kernel makes them less
than perfect.

The freedom with which capabilities for extended objects can
be passed between processes depends upon the willingness of the
system to support independent domains that can be called by any
process and implicitly includes provision for several processes to
be executing concurrently in a single domain. This can be very
difficult to arrange, as each process running in a domain must be
given its own workspace so that it cannot interfere with any other
processes that are present. Most protection systems do not permit
multi-threaded protection domains (this point will be : returned to
in Chapter Seven) , instead, every process is given a copy of a
shared domain with the process's workspace bound into it.

There is a further restriction on protected procedures in the
CAP system which greatly impairs their utility as extended
objects. It was indicated in Section 3.2 that it is not
reasonable to expect the CAP inter - process message system to
construct copies of a protection domain dynamically because of the
work involved and thus it is difficult to pass extended objects
betwe~n processes. In the CAP system, an extended object is sent
to another process in the form of its filing system name that can
be used to retrieve a filed prescription which specifies how to
create a copy of the domain. The overheads of this jury . rig
mechanism are rather high and the frequent use of it is not to be
r ecommended .

- 47-

;.

I,

I

A further point of interest arises from the observation that
type managers typically retain a lot of information about the
process in which they run for
statistics and charging. If a

the · p~rposes of collecting
domain is unattached to a

particular process, it cannot make use of local memory within a
process to hold this sort of information . In the CAP system and
others (MULTICS , CAL-TSS) considerable use is made of this Algal
own like storage . for accounting and housekeeping purposes. It is
not clear to what extent it is strictly necessary, as it would be
perfectly possible for an independent domain to keep, within its
own space, a record for each process that calls it.

A less important restriction owing to the use Of domains as
extended objects is that it is not possible to carry out other
than monadic

object. For

FILE COPY or

operations,. because a domain stands for a single
example, services like CLOSE ALL FILES or FILE TO

even CREATE A FILE cannot be implemented unless they
are posed as operations upon a single object , which will seem
artificial to users. The CAP operating s ystem frequentl y splits
the functions of a type manager into two parts to circumvent the
pro hi bi tion on multiple operands. For example, in the CAP I/O
stream system there is a protected procedure, the I/O Controller,
which creates new streams and keeps a record of which streams are
attached to devices and so on. Users see a stream as a Stream
Protected Procedure holding the · representation of the stream,
either as a message channel to a device or a segment in the f iling
system, with operations such as OPEN, CLOSE and TRANSMIT BUFFER
that affect the contents of the stream .

5. 3. Sealed Capa.bili t y Type Ex tension.

To overcome the difficulties associated with using domains as
protected objects it is necessary look · for some mea n s o f
constructing a capability for an ex tended ob j ect tha t i s
recognised as such by the kernel and can be passed around freely
while , at t h e same time , i t must be possible for a dul y a u t h orised
t ype man ager t o use the extended . capability t o get at the
r epres e ntation of an object. In his thesi s , Re de ll [74] s urv e ys a
numb e r of proposals for describing extended objects. He shows

-48-

ii

'

TYPE

ACCESS
CODE

' ' ' A sealed '

Extended Object (Interpreted as a box of sealed capabilities)

' '

'

" ' ' ' '
"TYPE'

' '

Component capabilities
describing representation
of the extended object

' '

' ' extended object '\. ' ACCESS \. ' ' ' '
CODE' '

' ' ' '

'

' '

'

'

Figure 5.3-1 Capability Sealing

' '

'

' '

' '

'

"

' '

I
I

I

11

> f I

that the most reasonable' mechanism is that based on 'sealed'
capabilities, in which a capability for an extended object can be
viewed as a box with capabilities for the objects from which it is
made sealed inside [Lampson 69] . The front of the box is labelled
wi th the type and access code of the extended object and its
contents are concealed from users, although a type manager can be
given the privilege to acquire the capabilities held within it .
Type-extension is portrayed by the act of nesting boxes within
boxes as illustrated in figure 5. 3-1.

HYDRA is a practical example of a sys tern that has a sealed
capability type-extension mechanism and its
are outlined in Jones' thesis [Jones 73].

essential principles

As was described in
Chapter Three, HYDRA has a global table with an entry for every
object which is marked with the object's type . An entry for an
extended object additionally contains a pointer to a capability
segment that holds capabilities for its components or constituent
rights. The environment described by these capabilities is never
used for executing instructions, in contrast to the environment of
a protection domain used as a protected
purely a repository for capabilities .

object ; instead is

When an object is c r eated , it is not sufficient just to issue
a name by allocating space in the global symbol table, in addition
the environment for its components must be set up and initialised .
For this purpose , there are two kernel primitives called LOAD and
STORE : LOAD permits a capability to be copied out of the
environment of an object and · put in the current domain, provided
that the object was addressed with a capability possessing load
access ; STORE, in conjunction with the sto re a ccess code , is used
for the c on v e r se o pe ration of copy i ng a capabi l ity fro m the
current domain into the env ironment of an object. Both load and
store are gener i c access codes t hat are defined fo r all types o f
extended objects , and the interpretation of other access codes in
a capabili ty depends upon the type of the object it protects .

User s o f protected ob j ects are not gran ted th e po t e n t load a nd
sto r e privi leges and t he y see a n object as a single atomic who le.
Type manager s may use the process o f ampli f i cat ion t o a c quire
the ir priv i leges f or an objec t. Amplifi cat i on is controlled by a

-49 -

·----. .

Ii

template in the form of a triplet <type, required code, amplified
code> which is used as follows: if the type of a capability for an
extended object matches 'type' and the capability possesses at
least 'required code' in its access code, a new capability for the
object is created holding 'amplified code' in its access code. By
the use of amplification, it is only possible to increase the
degree of access permitted to the extended object, usually to
include LOAD and STORE, and the access codes of the capabilities
sealed within the object remain unaltered from the values they had
when they were last stored. Otherwise, if this was not the case,
it would be possible to use amplification to acquire illegally new
privileges in capabilities by the sealing mechanism. Templates
are protected by storing them in capability segments and treating
them as prototype capabilities.

The HYDRA scheme outlined above ideally fits into the cri~eria
for type-extension supported by the kernel because the
amplification mechanism does not rely upon any knowledge "'of the
representation of extended objects and the kernel is only involved
to the extent of matching type codes in the global symbol table
entries and templates. HYDRA actually has a far more extensive
set of access codes for amplification, that permit different sorts
of restricted access to the components of an objec·t than the
simple load and store privileges [Cohen and Jefferson 751,
although the same principles hold in their use.

5.4. Types as Objects.

The integrity of the type-extension primitives based on
capability sealing rely on the authenticity o f type codes, which,
_like names, shou-ld be unique and insubvertible . In an extensible
system it must be possible to cope with a potentially large number
of types. If the set of type codes is limited in size, there are
likely to be s~vere resource control problems~ The management of
types can be made a kernel . function by encoding type . codes as
names for type objects and thereby provide both protection and a
suitably large type code space.

A t ype object is used to stand for the entire class of objects of its type and the pr ivileges in a type object capability refer

-50-

I
I ,

L f I

to the class as a whole; for example, the implicit type object
capability found in an amplific~tion template controls the ability
to manipulate the representation of a class of objects and it is
possible · to propose other access codes, such as create which

. permits the size of the class to be increased.

Just as objects of the same type form an equivalence class,
type objects also form a class. It is possible define a 'master '
type which stands both for itself and for all other type objects
and . is used to control the creation and proliferation of types.
In this way, there is a hierarchy of objects as shown in figure
5.4-1. The 'master' type object is the property of the kernel and
describes the class of types, each member of which denotes in turn
a distinct class of objects.

There is another hierarchy in a layered system corresponding
to the partial ordering of types imposed by the increasing levels
of abstraction. The hierarchy is not a tree like that of objects

' and types, instead it is a directed graph containing no cycles.
Figure 5.4-2. (based upon Redell [74]) shows a selection of basic \

and extended objects and the relationships between them. The
extended types 'text file', 'sorted file' and 'linked list' are
represented as ' segments' and a 'document' can be any of these
types. The arc joining 'documents' to 'segments' reflects a
possible implementation of a long document as a segment of
capabilities for smaller documents.

5.5. A Simplified Scheme.

Redell proposes a simpler variant of the HYDRA mechanism which
retains the same power over the control of objects and types. In
his scheme, an object may only be represented by a single
capability - objects with many components can be represented by a
segment of capabilities for their constituents and this
capability is held in the global object table entry for the
extended object so that the kernel does not have to administer a
pool of storage for variable length representation capability
lists.

As in HYDRA, types are represented by type objects for which
there are two recognised access codes: seal and unseal. Extended

-51-

type
name

obj~ct
name

'type'

'type'

'segment' 'directory'

'directory' 'directory'

'rdhw' 'adb'

4 ' I Figure 5. -1 · The Hier archy Of Object and Type Names

I
I

linked-list

I
I
\
\

I
I

document

sorted-file

\
\

segment

Figure 5.4-2 A Hierarchy Of Abstraction

text-file

objects are created by the SEAL kernel primitive which takes two ,
arguments, a capability for a type object with seal access and a
capability for the representation of the object. The kernel
acquires a global object table slot for the new object and sets
the type field to be the name of the type object and its contents
to be a copy of th~ representation c~pability. The result of the
entire operation is a capability for the newly constructed
extended object as shown in Figure 5. 5-1. The sealed capability
is not visible to the user, who sees the extended object as a
wholesome entity. The owner of a capability with unseal access
for a type object can interrogate the representation of any member
of the class using the kernel UNSEAL primitive which delivers a
copy of the representation capability sealed within an object as
its result.

This mechanism has the advantages of simplicity, flexibility
and, as will be seen in the next chapter, considerable unity with
a powerful revocation scheme. What the scheme lacks is any
facilities for creating basic hardware objects that have a data
rather than a capability representation. For these objects there
is a common requirement to modify their representations; for
example, to relocate a segment in store by altering an absolute
address in its map entry. Thus for these reasons it is necessary
to augment the basic set of orders provided in Redell's scheme to
arrive at a full suite of operations for both basic and extended
objects.

- 52 -

·--

;.

I

I

I

I

I
:f

I

Type Object For Type 'alpha' Object Of Type 'thing'

TYPE 'type' 'thing'
-·

- -~

REPR •.

. 4 ~ j'

-

Capa bilities _ alpha beta . I
- -

0
..

alpha

New Object

I

beta
-

~

-

111

New Capability- delta

Figure 5.5- 1 Redell's SEAL Operation

CHAPTER SIX.
,

REVOCATION MECHANISMS,

6. 1. A Review.

In a capability-based system, one user can allow another to

have access to an object by passing him a copy of a capability for

it and in the interests of his own security, the original owner

might well pass a capability with weaker privileges than his own.

If the act of sharing corresponds to renting use of the object

temporarily rather than to mutual cooperation, the level of trust

the owner of the object has for the client is likely to . be

reviewed, especially if the latter neglects to pay a rental fee or

some such thing. In these circumstances, the owner will wish to

recall the privileges that he gave the client earlier, al though

perhaps only until the client redeems himself by making a suitable

payment. To handle this sort of situation, there is a the need

for revocation of access that takes immediate effect. Note

that revocation may only be temporary and need not necessarily

cause the loss of all privileges for an object, but only a subset

of them.

The situations ot~tlined above demonstrate that revocation is

closely bound up with the notion of ownership.

under stood that the owner of an object is the

It is generally

user or funding

agency which the system charges for storing and manipulating it.

Some systems only permit an object to be owned by a single user or
principal, although in real life there are much more complex

patterns of ownership; for example, a database jointly owned by a

group of cooperating users. Ownership need not be static and can

itself be considered as a privilege that can be shared. Some

everyday analogues of passing on the right of ownership are

sub-letting and bill collectio.n. In the former, the user of an

object passes on a copy of his capability to another user, who may

use revocation to restrict the privileges available to a set of'

sub-users independently of the original owner, who in turn can

restrict the activities of all the users. The second example,

bill collection, corresponds to a user passing the right of'

-53-

Ill

I
'I

II

control over an object to an agency that revokes access for users
who default on their debts and, naturally, the original owner of
the obj~ct will wish to reserve the right to withdraw the agency's
revocation privileges when he has done with their services.

The notion of ownership provides a means for describing the
use. of revocation~ but it does not provide a mechanism for
carrying it out. An important property of capability systems is
that a privilege can be passed between domains or processes quite
freely and when the owner of an object revokes acce~s to it, the
kernel is obliged to stop all programs executing until the access
code in every capability for the revoked object matches the
object's changed status. Obviously it would be madness to scan
exhaustively every capability in the system to be sure of finding
those to check; nor is it reasonable to consider implementing a
scheme of pointers from parent capabilities to their descendants
because, as a capability can be copied many times, vast amounts of
memory would be needed to hold all the pointers. The need · to
locate and modify many distributed copies of a capability is the
fundamental problem of revocation and, the solution lies in the
formulation of revocation as an operation involving the mapping
between capabilities and objects.

For the time being, it is instructive to . turn to· some of the
systems implications of immediate revocation. The first
observation is that any service, and especially the operating
sys tern, must be prepared to find that a capability it has been
passed as an argument might suddenly become impotent because an

·· asynchronous process has carried out a revocation operation. If
the service was in the middle of a critical section, there . is a
high probability that the revoked object would be left in an
inconsistent state . The standard remedy against this effect is to
ensure that a program accesses its arguments once only to take a
copy of them for use as data in its computations and any update
operation on a data structure must be done atomically so that
revocation cannot prevent it from completing .

Revocation poses some particular problems in systems that
support protected objects . Uniformity requires that it should be
possible to revoke capabilities fo r ex tended as well as bas i c

-54-

11

II

jl

I

I

objects. Furthermore, it should be possible to incorporate
revocable capabilities into the representations of objects, which
means that the revocation machinery must be able to monitor these
capabilities as well as those in protection domains, otherwise a
user can shield a capability from revocation by disguising it as
an extended object.

There are some circumstances in which it may be desirable to
delay the effects of revocation; for example , consider a
capability for a protection domain: if revoking the capability is
defined to withdraw immediately the right of execution within it,
the system is obliged to identify all of the processes running in
the domain and force them to exit straight away . Furthermore , the
domain has no opportunity to tidy up or recover from the
interruption of its duties and may well be left in an irregular
condition. This point can be addressed by defining the sequence
of instructions executed between a domain call and exit to be
atomic with respect to the domain making the call, which will mean ·
that revoking a domain capability will prevent any further call to
it being made, but any call that is in progress is allowed to
finish.

Within the context of an operating system there are two main
uses of revocation: the first is the reflection of revocation
operations in a filing system by the immediate revocation of
access to versions of filing system objects that are active in the
machine , and the second is to prevent malicious domains from
retaining copies of capabilities that they were passed as
arguments and from interfering later on with the objects that the
capabilities protect. The rationale of immediate revocation in
r esponse to filing system operations stems from systems like
MULTICS [Organick 72] that have one level filing systems in which
segme~ts are swapped between main memory and the filing system,
whereas two level sys terns copy segments . out of the file sys tern
into an autonomous virtual memory swapping regime. In a one level
system , r evoking access in the file system automatically includes
r evocation of active objects because of the intimacy · Of the
swapping and filing systems, wherea s in a two level system, ther e
is a considerable amount of work to be done to find the active

- 55-

copies of a filing system object. This can be avoided by
declaring · that revocation only affects subsequent filing system
accesses to objects and leaves any currently active versions of a
revoked object alone. This latter approach to revocation has the
advantage that it need not involve the kernel .and can be carried
out entirely at the level of the filing system.

Unfortunately the second use of r evocation, the control of
capabilities passed as parameters to a domain, does require the
intervention of the kernel because of its association with the
domain call mechanism. The problem to be solved is one of
confinement [Lampson 73], in that it is required to control the,
proliferation of any capabilities that are passed to a domain, in
particular to ensure that it neither retains an argument
capability in its own storage nor covertly hides it away in some
other domain. It is not reasonable to rely on the use of generic
access codes that prevent a capability from being copied as this
hinders a domain that legally passes its arguments on to other
domains in the course of its actions.

Domain call parameter revocation is less disastrous from the
systems point of view than its immediate filing system counterpart
because it only takes place on domain exit, and does not interfere
with the program running within the domain .

Even with the use of revocation, it is not generally possible
to prevent a domain from remembering information that it is passed
and leaking it elsewhere. Revocation can only be used to confine
the proliferation of privileges; it is no use at all as .a
mechanism for preventing the flow of information and data. It is
necessary to Jook

[Denning et al 7 4,

towards the analysis of information flow the. Fenton 7 4] to evaluate l possibili ty of a data
leakage from a protection domain.

6.2. Revocation in Capability-Based Systems .

It might seem that the simplest way to allow .one domain to
revoke privileges that it has passed to another domain is for the
f ormer to have complete control over the capabilities of the
latter. This assumes that the domain which is given a revocable
capability has complete faith that its controlling domain will not

-56-

I.
I I

I
I

II I
I

;. l • •

take advantages of its privileges and interfere with any other
capabilities, apart from those which are to be revoked.
Coordinators in the CAP system have a relationship of this sort
with respect to their sub-processes and they can revoke a
capability in a junior process by modifying the capability for the
revocable object in the Coordinatdr's address space . Notice that,
because of the nested address spaces in CAP , this mechanism
revokes access in any copies of the capability in all the
sub-processes of the Coordinator, so that a sub-prOcess cannot
cheat by hiding a revocable capability in any of its brother
processes. If CAP had a global naming scheme instead, the
Coordinator could still use its position in the process hierarchy
to get inside the processes it controls to carry out revocation,
but the task would then be much harder as it would need to scan
every capability within the controlled process, which might have
taken many copies of the target capability . Furthermore , the
controlled process would have to be confined so that it may not
transmit a revocable capability to a process over which the
Coordinator had no powers .

An alternative mechanism, is to encapsulate a revocable
capability in a domain that monitors all access to it. Mutual
suspicion is now handled successfully because the shielding domain
has no control over the domain which calls it, but the scheme is
faced by a number of difficulties not very dissimilar to those
encountered with the use of protection domains for typed objects.
There is the problem of type recognition ; to the base level, a
revocable capabil i ty for any sort of object always appears to be
of the type 'domain' , al though the confusion can be avoided by
u sing t he au xili a r y type marks that were suggested in Sedtion 5 . 2 .
More important , there is a loss of efficiency caused by the time
taken by the domain to check and interpret every service it is
asked - to do , and in the case of kernel - defined objects such as
segments th e l osses ar e imm ense .

If copies of a revocable capabil i ty are given out to a numbe r
of di f f e r ent use r s , it i s necessary to consider ho w a caretaker
domain distinguishes between them. A simpl e ap proac h is t o pas s
to each us e r a separate copy of the dom a in with his acc es s sta tus

-57-

' ,

I ' I

I

I

'

bound into it, otherwise the domain must recognise each of its
callers and check their corresponding access codes, which is a
direct copy of the kernel protection facilities and a wasteful
duplication of machinery.

The two schemes outlined above are the only two revocation
strategies available for users of the CAP system, the designers of
which felt that revocation was undesirable as a matter of policy
and were not willing to add any additional machinery to handle it.
Redell's thesis [74] investigates many of the possible paths that
may be fol .lowed if further mechanisms are introduced into the
kernel specifically

describes fall into
dependent capabilities.

to

two

handle revocation.

classes: revoker

The systems

capabilities

he

and

Revoker capabilities [Neumann et al 7 4] are capabilities for
the mapping between a capability and the object it names. A
revoker capability can be used to alter the mapping and vary the
accesses conveyed by capabilities that map onto objects through it
as illustrated in Figure 6. 2-1. In effect, the mapping between a
capability and an object is itself treated as an object which
suggests as an implementation that a revoker capability will map
onto a revoker object whose representation
for another object. The main difference

describes the mapping

between this and the
gate-keeper domain scheme is that the revoker capability does not
describe an active object which guards all access to the revocable
object, instead it is a contrivance for interfering with the
mapping between names in capabilities and entries in object
tables. A corollary of this is that the privilege of revocation
can itself be made revocable by controlling the mapping between
revoker capabilities and revokers .

The dependent capability scheme is rather different; there are
. no special revoker capabilities, but instead it is arranged that
all copies of a capability are . dependent on the original so that
when the holder of a capability revokes access, all of the copies
dependent upon it are similarly affected, which is to say that
capabilities somehow depend on the so urce fr om which they were
derived . In this approach there i s a dist inct i on bet ween
transmitting a plain co py of a capability and a r e vocable one .

-58-

. 11,
_. ~ I

Revoker Object Ordinary Object

. I
'revoker' 'thing'

\ I;

__~~
I

ii
1,

,I
11

11

.I
I

I

' I'

\
1, Revocable Mapping II

,I

I I
I
I

! ·Revoker Capability for

- - 11

capability ~ 'thing' object \ . ------·

'

Figure 6. 2- 1 Revoker Capabilities

I

... I
11

This distinction establishes a tree of dependencies between copies
of a capability which is structured as follows:

a) The initial capability occupies the root node .
b) A non-revocable copy of a capability occupies the same

node as the capability from which it was derived .
c) A revocable copy of a capability occupies a new successor

node descended f r om the node of the original capability .
A diagrammatic representation of a typical tree is shown in Figure
6.2-2 . All of the capabilities in an individual node of the tree
always contain the same privileges , since any change to one of
them affects all of its companions equally because they are all
dependent on the capability from which they are descended . If a
revocation alters a privilege at some level in the tree then
privileges are affected in the levels descending from it. The
main point to notice about the tree is that it demonstrates that
with the two different copying primitives, dependent capabilities
pose no constraints on the use of revocation because the tree
describes a general hiera r chy of control.

Dependent capabilities have a great deal to recommend them .
They avoid the need for special capabilities authorising
revocation and also escape f r om treating the capabi.lity t o object
mapping as an object which is not straightforward to implement ,
although it does not mean that revocation itself cannot be made
revocable . The main complaint against dependent capabilities i s
that an early decision is required to dete r mine whether or not a
capability should be revocable because, once a non-revocable copy
is given away , all control over it is lost forever .
is reasonable to suggest that any level of trust

However , it

apart from
absolute confidcince is liable to ch ange an d s hou l d be mir r o r ed by
the use of revocable capabilities at all times .

6.3. A Sealed Capabil i ty Implementation ,

I n t he las t chapter, the use of seal i ng to conceal the
r epresenta t ion of

opaq u e s eal ing and

sealing in which

modifi e d . Re dell

an ob j ect was desc r ibed ; Redell calls t his
it i s al so poss i ble to consider transparent

a sealed object can be r ead, but cannot be
describes a mechanism based on a mi xture of

these t wo types of sealing to implement a de pend e nt capability

-59-

------. ..J

/1 __ -;...... _ _,f
' ~~ f ·----------J

\ 1 .,.------,..----1

> Revocable copy

-- -~ Non-revocable copy

I',_, ___ --I

f ,,1
'>I I ---------.J \

,') ... f ____ ...J,

'">I .__ ___ ____. I

'>[.,_. _____ __.

Figure 6.2-2 A Hierarchy Of Dependent Capabilities

I
I
. ~

)[, I

revocation scheme. He introduces a new sort of slot, called a
revoker, in the global object table which resembles an extended
object, except that its type is recognised by the kernel.
Capabilities for revocable objects are illustrated in Figure
6. 3-1. A revoker contains a capability together with an access.
mask and every field in a revoker, with the exception of the bits
of the access mask that are off , is transparent ~ If, in the
course of the evaluation of a capability, a revoker is
encountered, the transparent capability sealed within it leads on
to another table global object table entry which might also be a
revoker until eventually either a basic or an extended object is
found, which is taken to be the object the original capability
denotes. The opaque parts of the access masks, that is the bits
that are off, cut out accesses that are not to be permitted an~_
this selective filtering action is used to capture the action of
revocation .

Redell introduces a kernel primitive, REVOKE, which takes two
arguments: a capability and an access mask. If the name in the
capability points immediately at a revoker, the kernel modifies
the access mask of the revoker to be the intersection of the
access mask sealed in the revoker and the access mask argument ,
otherwise it signals a fault. Whenever any capability pointing at
the revoker is subsequently evaluated, the privileges it conveys
will be tempered by the new access mask so that if , for example ,
every bit in the mask was off , the effect would be one of total
revocation of privilege . Thus , the main difference between
dependent capabilities and revoker capabilities is that revocable
dependent capabiliti~s may be used to access the revocable ob j ect ,
but revoker cap~bilities may not .

It may be noted that Redell ' s scheme in this form only allows
access to be r educed ; there is no mechanism for temporary
r evocat i o n and it wi ll be s ho wn in th e de s i gn of the CAP k erne l
(Sect i on 10 .4) tha t i t is onl y nece s sary to make a fe w changes in
o r der t o r emov e this r estri ct i on .

So f a r, th e mec hani s m developed permits capabilities that can
be r e v o ked to be es tablish e d by sealing in the pr esence of a
revoker type object ; some additional mec hani s m i s r e quired so

- 60 -
I

I

. 'i ., ,·

A & B can revoke one anothers access, but
cannot effect C

C can revoke both A & B's access

D is unaffected by any revocation -,

'revoker'

rl mask
Objects

D -
~~

'revoker'

mask C

C -
j. ''

A B

Figure 6.3-1 Redell's Revocation Scheme

'thing' ; ')

',

. '

A •

D

Capabilities

,.

.-

. - -

\ .

).

11 1

t\

:I

I
1'!

I

:11

that it is possible

power of revocation

to copy revocable capabilities, leaving the

with the owner of the revocable object,

without allowing the privilege to others. For example, it might
be required to pass copies of a revocable capability to several

people without wishing to allow any one of sub-users to affect
the powers of the others. On the other hand the owner of the

object will wish to be able to deny access to the object to all of
the sub-users. This is accomplished by an additional type of
extended object called a locker which is totally transparent to
the capability evaluation process. The only purpose of a locker

is to prevent the REVOKE operation from being able to succeed,
because the type of first table entry leading from a locked

capability will be a locker and not a revoker. Thus, only the
holder of a revocable capability can exercise REVOKE, although the

its effect will be noticed by every capability that denotes a
chain passing through the revoker controlled by the revoked
capability. An example of this sort of sealing is shown in figure
6 . 3-2. The UNSEAL operation is not allowed fo, ,evokers and

lockers because it is not a acceptable function.

In Redell's design, REVOKE is the only operation available for
reducing access to objects because his capabilities do not contain
access codes and therefore it is riot possible to carry out any

form of access code refinement as is carried out in the CAP
system. A capability on its own denotes full privileges for- an

object and the access masks in any revokers intervening in the
path between a capability and its root object table entry are the

~only means available for reducing access.

- 61 -

I

-- 'I -----/~

. 1

A cannot revoke B, C or D

C can revoke access for both A & B

'revoker'

mask
' \

/

D

'locker'

C

C

A B

Figur e 6.3..:2 i The U~e Of Lo~kers

~--

'thing'

f.

D I I

II.

11
1

I 'II

I

; .II
11 I
Ii'

. ~r· . Jo, I

;

CHAPTER SEVEN.

PROCESSES AND PROTECTION DOMAINS.

7.1 ~ Protection Domains.

A capability for a protection domai n leads to an object whose
representation holds information about the state of the domain and
its capabilities in the form of a segm,ent known as the domain
descriptor. Because nothing is ever done by a domain in
isolation, but always . by a process executing within it, there is a
relationship between domains and processes, which is called
'environment-binding ' by Jones [73]. In the most general terms,
domains and processes can be considered separately and processes
allowed potentially complete freedom in their association with
protection domains. This means that a process can move through
many domains in the course of its execution and, on the other
hand, allows many processes to execute concurrently
domain. Most systems impose restrictions on

in a

this

single

total
flexibility to reduce the amount of machinery needed for
inter-domain and inter-process communication.

One simplification is to make a process into a single
protection domain so that the inter-process communication
facilities can also be used for inter-domain calls; this means
that a task, which in the general scheme would have been a process
with several protection domains, has to be implemented as a
multiple set of processes, only one of which will be active at any
one time. This is a clumsy use of parallelism and can be rather
ineff ic i ent if- i nter-process communicat i on is slow. In a
traditional computer architecture , this is the only domain
structure which exists and process switching is a slow and
lumbe ~some task carried out by software . This discourages the use
of small doma ins f or r easo n s of i nef f ic i ency and leads on t o
contra ventions o f th e pri nciple of minimum pri v~lege because
pr ocesses (i . e . domains) wi ll t yp ica l ly be l a r ge a nd encompass
man y acti vi ties . · I t is pos s i b l e t o c ircumv ent these problems by
maki ng th e cos t o f a pro c e s s change s mall and by building a simple
int er-process communi ca tion sys t em which has the parameter passing

-62-

I

:11

I 11[

111111

1

1'

11

I

I

[I 11

II
II
1 1

capabil'i ties and the speed that is expected of a domain call
mechanism.

The main reason for wanting no more than one process executing
in a domain at any one time is because of the likelihood of
addressing conflicts between parallel
[Lampson 69]. There are a number of
execution in a domain can be prevented,

invocations of a domain
ways in which multiple

of which the simplest is
to make an entire domain into a critic al section,
Hoare monitor [Hoare 7 4]. However; it may wel 1
introduces unnecessary serialisation for domains

not unlike a

be that this

that are not
critical regions. There is also a further problem concerned with
the degree of parallelism associated with monitors: in general
there are two forms of monitor cal 1 [Lauer and Needham 7 8]: one
that diverts a process into a monitor directly and another that
divides a process into two parallel forks, dynamically creating
new workspace for both forks, only one of which enters the
monitor. In a capability based protection system, a process has
to carry a considerable amount of state information around
describing its current set of capabilities and. so on, which would
make the cost of a forking monitor call ~rohibitive because of the
expense involved in duplicating the protection structure of a
process as well as its workspace.

Addressing conflicts in a domain that admits several processes
at once can be avoided by one of two techniques, the first of
which is to provide a stack- like implementation of dynamic
workspace in each process, so that on calling a shared domain, a
process can acquire its own local workspace and be free from
interference from other processes executing in the same domain.
The second technique is really a modification of this in that,
instead of setting up the workspace dynamically , each process is
given -its own private copy of the domain with the process's local
workspace built into it and rel ies on the normal capability
sharing mechanisms to avoid the wastefulness of duplicate copies
of pure code and data . Protected procedures in CAP are shared
between processes in this way .

-63-

;.

7,2. Inter-Domain Communication.

When a process moves from one domain to another, it needs to
be able to pass capabilities as well as data parameters. It would
not be reasonable for domains to pass arguments by puttirig them in
shared segments because of the amount of memory that would be
wasted setting up a buffer for every pair of communicating
domains. Domain call mechanisms normally transmit privileges
between domains by copying capabilities out of one domain into
another: for example, in the CAP system [Needham and Walker 77],
a pirticular capability table, number three, known as the
N-capability table, becomes the number two, or A-capability, table
in the called protected procedure after executing an ENTER
instruction and capability parameters can be passed to the called
procedure by copying them to the N-capability table prior to the-..
call. This mechanism is illustrated in figure 7.2-1. When
control returns to the calling protected procedure, the
A-capability table of the called procedure reverts to its previous
state as the N-capability table of the caller and result

-capabilities can be taken out of it. · The switching of the
capability tables is carried out by manipulating those pointers in
the process base that describe the current set of capability
tables and effectively amounts to copying the capabilities for the
capability tables in and out of the domain descriptors of the
protected procedures. In advance of calling a procedure, an
N-capability table can be allocated dynamically from a stack by
the MAKEIND instruction and then capability arguments can be
copied into it. The stack, called the C-stack, is controlled by
the microprogram and also holds linkage information for use by the
RETURN instruction which will cause control to resume in the
calling domain immediately after the ENTER instruction that
invoked the domain call .

The HYDRA kernel has a · more complex domain
[Cohen and Jefferson 75] although the principles
similar to CAP. The main additional feature

cal 1 mechanism

are essentially

is the use of
parameter templates, similar in form to the type-extension
templates described in Section 5. 3, to carry out argument
checking. The domain call primitive compares each argument passed

-64-

,1

I I
- .I

Before ENTER C-stack Frames

A L N

)

fAfter ENTER

----~-------------i---I t
1 I

' I A' T f I I ,., N'
I I
I I

-- - I ___ ----- ---L--I
I
I
·I
I
I
I
I
I
I
I
I

!Arter RETURN

' ----
A , L N .•

, .
Figure 7. 2-1 Action Of ENTER and RETURN

~

..........

to a domain against a set of parameter templates in the domain
object and signals a fault · if an argument capability does not
match the type of the corresponding template, or if its access
code is weaker than the 'required access' field in the template .
Provided that an argument capability is consistent with the
matching template during a domain call, the domain is given a copy
of the argument with the 'amplified access' field of the template
included in its access code. The last facility is used
extensively by type managers to acquire load and store privileges
for extended objects.

7.3~ The Use of Protected Domain~.

There are four principal applications of protected procedures
in the CAP system [Needham and Walker 77]: gate-keeping,
protected objects, trivial services and operating system
intervention. It is useful to look briefly at this spectrum with
the aim · of indicating how much the efficient domain machinery of
the CAP system contributes to the success of the CAP operating
system.

The first application includes domains guarding the use of
other system facilities, such as the Enter Coordinator Procedure
(ECPROC) which provides an interface to the Master Coordinator and
per forms validation checks on Coordinator calls. ECPROC is in a
much better position to look at capabilities during a Coordinator
call than the Coordinator itself, because it runs in the same name
space as the process making the call, whereas the Coordinator

_ would have to interpret sub-process addresses and duplicate the
naming mechanisms of the microprogram in software. There is also
a · gain in eff1ciency because arguments are verified within a
process and this reduces the amount of time spent with interrupts
disabled and cuts down on the number of con.text switches between
proceises and the Coordinator.

The CAP sys tern embeds sys tern data
procedures that implement all of the

structures into protected
operations allowed to be

carried out upon the data which, as was stated in section 2. l,
helps to achieve both minimum privilege and accountability . For
example, the data structures of th e inter-process message system

-65-

·-............ .,'

I
I

1

11

II

II

are guarded by ECPROC because the interactions between the message
system and multi-programming require access to Coordinator data
structures. This data must be protected from being corrupted by
ordinary programs and also it is necessary to prevent users from
tampering with the contents of messages .

In Section 5. 2 the use of protection domains as protected
objects was investigated and it was noted that, for CAP, this was
the only way of implementing extended types. Even if the CAP had
a more powerful protected object mechanism, protection domains
will still be needed for use as type managers . This use of
domains is rather l ike the protection of data structures described
above , because a type manager encapsulates the privileges for
get ting into the structure of protected objects and performing
operations upon them.

A somewhat surprising use of protected procedures peculiar to
the CAP system , and directly attributable to the cheapness of the
ENTER and RETURN orders, is the implementation of trivial services
as protected procedures. CAP has a general purpose prog ram called
PARMS which takes a character string representation of a command
line and will decode and command parameter strings f rom it . All
protected procedures invoked by the CAP Command Program are given
capabilities for PARMS , together with the command line that caused
the procedure to be loaded and the procedure can cal 1 PARMS to ·
decode its command par ameters .

simply so tha t the inter face

PARMS is a protected procedure

to it is well - defined and.
straightforward in terms 6f the ENTER/RETURN and capability
passing primitives .

Casting serYices of this sort as procedures is ver y useful i n
systems that support a multiplicity of languages because it avoids
the need for one language s ystem to have to know how to make
subroutine calls in another , which would be the case if say PARMS ,
wr i t ten in Algol68C, was called by a BCPL or a FORTRAN program as
a subroutine . I nstead , it is only necessary fo r each language to
provide a mec ha nis m· f or ca l ling protected procedur es and pass i ng
a r g ument s , t o make it possible to use service utilities written in
any oth e r l a ngua g e . From the point of view of both documentation
and implementation, it is useful to have the common base level of

- 66-

111

the hardware primitives "for describing interfaces in terms of
domain calls with simple numeric and capability parameters,
independently of language considerations.

After a fault or trap, a process has often to be involuntarily
forced into the operating system so that the event can be
processed. In order to preserve the principle that the operating
system should have as little access to user capabilities as
possible, CAP makes the entry to the opera ting sys tern take the
form of simulating the effect of an ENTER at the point of the
fault into a special protected procedure that inspects the trap
and decides what is to be done. The procedure, called FAULTPROC,
can then call other protected procedures to recover from the
fault. For exam_ple, after a virtual memory trap ECPROC will call
the store management system to load a segment into store and
RETURN to the procedure from which it was forcibly called so that
normal execution can resume.

In an evaluation of the CAP system, Needham [77] shows how the
exploitation of protected procedures by the CAP opera ting system
falls in line with the desiderata appearing in Chapter Two, and
the conclusion that can be drawn is that the effectiveness of the
CAP operating system is founded on the use of small _ independent
protection domains. These domains exploit a very efficient domain
call mechanism in which a domain call takes a time comparable to
about one hundred ordirtary instructions [Cook 78]. Software
kernels like HYDRA, in which the time taken to switch between
domains is measured in the equivalent of thousands of basi~
instructions, cannot match this performance and the operating
systems built around them suffer accordingly.

The cost of domain calls can be cut down by making the
parameter passing mechanisms as straightforward as possible. Much
of the cost of a domain call in HYDRA comes from the parameter
template machinery for checking arguments because it has to be
sufficiently general to match most user requirements and naturally
the price of this complexity is a high overhead. Simple
transactions normally only involve a few trivial arguments and it
is likely that user-written code within a domain, using knowledge
of the nature of expected arguments can do a more efficient job of

-67-

,[I

I 1,

I 1

I

I

I
I

I

l'I

I

parameter verification.

A lesson to be learned from the implementation of the CAP
ENTER/RETURN orders is that the domain call operation itself
should carry the smallest overhead possible when establishing a
new protection domain and should leave tasks like evaluating the
capabilities in the new domain and setting up its capability

tables undone, until they are referenced by the code running in
the domain. Furthermore, effic.iency will be increased if it is
possibl.e to preserve as much as possible of the state of the
calling domain, so that on return to it there is no need to

re-evaluate the capabilities that were current at the time of the
call.

7.4. Unified Communication Systems.

Inter-domain communication is based on a procedure call model.
Inter-process communication, on the other hand, is more complex
because it is bound up with the synchronisation of parallel
processes. For the purposes of discussion, a simple sys tern with
processes communicating by messages using the primitive operations
SEND, RECEIVE, REPLY and WAIT and domains using CALL and RETURN
will be considered. Users of the system need to know in advance
whether or not a particular module is either a parallel process or
a domain in the current process so that they can use the
appropriate communication functions. This can lead to great
inconvenience if at some later stage it is decided to convert a
module from a process to a domain or vice-v ersa to suit a change
in hardware or software configuration. In the CAP sys tern the

general structure of system modules is very simple as shown below:

initialisation;
DO# for every call#

OD

CASE get arguments; entry code
IN

service 1,
service 2,

service n
ESAC; .
return results

If . the service is provided by a protected procedure , the arguments
are passed in the course of the CALL operation and the answer is
delivered by RETURN ; whereas , if a message interface is used, the

-68-

I

I

~ I
''-I

1111

111 i

1111
I'

111

I

11.

11

I 1

module will execute WAIT and hold up until a message despatched by
SEND in another process arrives, so that the arguments in it can
be picked up by RECEIVE and processed before the results are returned by using REPLY.

\
CAP disguises the implementation of modules in the operating sys tern from users by concealing them in gate-keeping protected

procedures that check arguments and then communicate with system
modules either by domain calls or messages, depending on the type
of the module. The use of a gate-keeper reduces the efficiency of
the concealed module by adding to the overheads of transactions
with it, but on the other · hand, if a sys tern module is to be
reconfigured , it is only necessary to edit and recompile the
gate-keeper and users do not have to alter their programs.

If there was a single set of communication primitives that
could be · used for both varieties of modules, there would be no
need to recompile anything at all, instead it would be sufficient
just to switch the type of the modu l e appropriately between
'process' and ' domain '. There would be an increase in et'ficiency
as gate-keeper domains could be disposed of, and in addition,
users would only have to know about a single communication
mechanism rather than two .

In a simulator for investigating the effects of hardware and
software configuration on system performance, Stroustrup [77)
supports three types of modules: processes , procedures and
monitors with two communication primitives, ACTIVATE and GET
ARGUMENTS . ACTIVATE takes two arguments, the identity of a module
to run and the name of an argument block which i~ used for passing
arguments and results . The operand of GET ARGUMENTS is a notional
communication channel which can take the two values 'request' and
'reply'. These are a set of minimal facilities that can be
expanded to allow for more ambitious communicition protocols . As
an example, the following ~rocedural cal.l can be implemented

results := CALL (module, arguments)
as the sequence

ACTIVATE (module , arguments);
result GET ARGUMENTS (reply)

If the module woken up by ACTIVATE is of the type ' process' or

-69 -

. ll
11

11

I I
I ,

).

'monitor' as opposed to 'procedure', it can be run in parallel to
the calling module and GET ARGUMENTS functions as a
synchronisation primitive to ensure the desired ordering of
events.

It is clear that in this unified scheme a module can be
written without knowledge of how it, or the modules it calls, are
configured, and changing the type of a module does not require its
recompilation which provides a potent degree of flexibility.
However, despite the utility of the mechanism for experimenting
with the effects of reconfiguring systems, it is rather too
fundamental to be included in a practical implementation and
attention must be directed to see how similar freedom can be
included into a mechanism that is reasonable for incorporation
into an operating system kernel.

Earlier it was stated that it is not reasonable to implement
protection domains as monitors and thus it is necessary to turn to
message-based communication systems. Watson [78], in his
alternative protectiori system for CAP, has a non-hierarchical
module structure which allows a module to be either a domain or a
process. The unit of communication is a fixed size argument block
issued from a central resident table. The ENTER instruction takes
a capability for a module and an argument block as its operands
and att~hes the argument block to a queue of incoming messages
for the called module. This module will be marked as either a
process or a domain: in the first case, the calling module is
allowed to continue execution after the ENTER instruction, while
in the second case, the calling module is held up until its
argument block is processed by the called module . Upon receipt of
an argument block, a module is activated and the head message is
taken off its incoming queue and made available so that arguments
can be extracted from it . When an activation has been processed,
a module can execute the RETURN instruction which ~ill return the
current argument block to to a queue of returned messages in its
originator where it can be picked up by the RESULTS order. A
module is deactivated if it tries to execute RESULTS when its
returned messages queue is empty and will be awoken when a results
message a rr i ves . Aft e r th e use o f RE TURN, t he i ncoming message

- 70 -

queue of a module is inspected and if there is more work to do,
the module will stay active, otherwise it will be held up until a
new message turns up.

The microprogram implementing Watson's scheme carries out
simple scheduling operations between modules as they execute the
various message primitives, and it will select which processes to
run on the basis of priorities held in proc~ss bases after
process-type calls. More complex scheduling decisions are left to
a software coordinator.

Argument blocks are concealed from users; they are the private
property of the microprogram. The capabilities they contain
become available as a current capability table after use of the
RESULTS operation, and the data arguments are loaded into
registers. The remaining information in an argument block such as
return links and status bits is private to the microprogram.

Watson's scheme achieves the objective of unifying
inter-process and inter-domain communication but it suffers from a
number of drawbacks. Firstly, a module is only allowed to be in
receipt of a single message at a time so that it is not possible
for a module to multiplex calls as might be required by a disc
driver that schedules disc accesses to minimise head movements.

Modules communicate directly with other modules and there is
no notion of a message channel which would permit a utility to be
served by several parallel modules, or for message paths to be
dynamically switched between processes . Furthermore, since
messages are routed to the same queue, it is not possible for a
module to associate priorities to different sources of calls; for
example, the CAP real store manager has a high priority channel
for virtual memory fault handling and a low priority channel for
user services, such as demands to modify the length of a se9Men e:

A fundamental difficulty is created by having a single
resident table of argument blocks because of the po~sibility that
the limited stock of blocks may be overdrawn with disastrous
consequences for the operating system .

Despite these objections, Watson's scheme has the advantage of

-71-

f I

''

;. n

efficiency and simplicity because of its microprogrammed
implementation and it demonstrates that it is possible to provide
a basic set of primitives that encompass many of the properties of
the fundamental scheme described by Stroustrup. In terms of
microinstructions, the part of Watson's microprogram concerned
with inter-module communication consumes a similar amount of space
to the protected procedure and hierarchical process ca11 ·

· facilities of the original CAP system. The cost of an ENTER in
Watson's scheme is much less than a message transaction in the CAP
operating system and is comparable to the cost of an ENTER in the
earlier CAP system in terms of machine cycles taken.

-72 -

;.

CHAPTER EIGHT.

THE CAP COMPUTER.

8.1. The Hardware.

The hardware of the CAP computer was designed and built in the
. Computer Laboratory at Cambridge. For severar years prior to
commissioning the machine, there had been a project to design and
implement a capability-based memory protection system and by 1973
the project had arrived at an architecture [Walker 7 3] that was
considered worthy of turning into a machine so that the design
could be evaluated in terms of real-life computing. To facilitate
experimentation and possible changes in design, it was decided to
to make the machine microprogrammable and to equip it with a
substantial microprogram memory. Many of the features of the
machine reflect the original architecture, though, fortunately for
the work described in this thesis, the hardware is sufficiently
general to permit investigation of alternative protection systems.

The configuration of the CAP machine and its related hardware
is shown in figure 8. 1-1. The two intimately connected
peripherals are under direct microprogram control; the tape
reader is used to bootstrap new microprograms from paper tape into
microstore and the teletype is used purely for fault reporting and
diagnostic purposes. All other peripherals are connected to a CTL
Modular One Computer which acts as a front-end for CAP and is
connected to it by a fast link. Either machine may send
interrupts along the link and CAP has the ability to transfer data
in and out of · the Modular One's local memory . There is a
permanently resident executive and link program in the Modular One
which provides CAP with access to its peripherals and it is left
to the CAP microprogram to map this interface onto the I/O
architecture that is to be presented at the user level. The
Modular One can function independently to carry out peripheral
tests and its own housekeeping; similarly, CAP is free to run in
the absence of .the Modular One although it may only use the
intimate devices for I/0.

-73-

1'
'ii

i

· II

ii
j

Philips Store (128K) Plessey Stores (64K)

Intimate
Tape Reader

Tape Reader
& Punch

Store Bus

Slave
Stores

CAP Processor .

Hardware Link

Line Printer

Modular
One

Fixed
Disc

Exchangeable
Disc

Figure 8.1-1 CAP Hardware Configuration

Mod-1
Store
(16K)

Intimate
Teletype

Peripherals

4 VDUs

The main memory of CAP is provided by two interleaved 32K

Plessey two microsecond, thirty-two bit core stores and 512K bytes

of Philips core which also has an cycle time of two microseconds .

The CAP has a thirty-two bit word length and the time taken to

access and merge four bytes serially from the Philips store to

make a word is ten microseconds. The rather dismal speed of the

stores is compensated for by three slave (or cache) memories that
have been observed to be very effective in operation [Cook 78].

-Within the CAP processor there is an autonomous floating-point

arithmetic unit which has a sixty-four bit mantissa and an eight

bit exponent working register. The unit has its own internal
---microprogram and processor to carry out addition, subtraction,

multiplication, division and type conversion operations fo~

fixed-point and floating-point numbers. The CAP microprogram can

transmit arguments and pick up results from the unit.

The CAP supports a fixed format for ordinary instructions and
has hardware to assist in function decoding. The instruction

layouts are shown in figure 8. 1-2. F is an eight bit function

code, Ba, Bm and Bn are all four bit fields that select one of

sixteen general registers (80 to B 15). Register 80 always reads

zero and B 15 is the program counter. N is a sixteen bit offset.

In Type I instructions, Ba is an operand register. The contents

of the register selected by the Bm field and the value of the N
field (sign extended to thirty-two bits) are added to generate

either a thirty-two bit address or literal data depending on the

specification of the particular instruction. Type II orders are

used to present three operands held in the registers nominated by

Ba , Bm and Bn.

8.2. The Microprogrammer's Machine .

The structure of the microprogram processor is shown in figure
8. 2-1. The microprogram memory holds 4K sixteen bit words, the

top sixty-four words of whi ch contain a hard -wired bootstrap

routine, while the remaind e r may be dynamically loaded with

microcode and data . The V- store provides the microprogram wit h
access to the registers and control signals of other parts of the

processor, such as the sto r e logic and the floating point unit .

- 74-

. TYPE-I

F Ba Bm N

31 . 21! .23 20 19 16 15 0

TYPE-II

F Ba Bm Bn

I
31 24 23 20 19 16 15 . 4 3 0

Figure 8.1-2 CAP Instruction Formats

FR

FMR

FM

Floating Point
Unit ·

Cap~bility 1

Unit

Working Registers

AO BO

A1 B1

I
I
I

I
I

I I
I I
t I
I I
I I

A15 B15

(32) (32)

F Ba

(8) (4)

'

P (32)

(4)

Store Logic

Arithmetic
and

Logic
Unit

D Register (32)

1
I
I
I
f
I

255

·v-store

AR

(32)

Microprogram
Memory (4K)

(16)

- - - - - - - - - - - - - - - - - -- - - - - - - -- - -- ------ - - (2)

- --------- - ---------- -- (16)

0 1 255

Figure 8.2-1 CAP Microprogrammer's Machine

11

11

I I

It appears to the programmer as a bank of 256 registers. Some
V-stores representing control signals have the property that the
microprogram processor is held up until the function associated
with the V-store is carried out. For example, writing to V 17
prints the character in bottom eight bits of the D register on the
intimate teletype and reading V1 advances the intimate tape reader
so that a character can be latched into the D register. Other
V-stores trigger events that are to take place aiynchronously with
the execution of microprogram instructions.

The sixteen general B registers available at the user level
are also addressable from the microprogram and in addition there
are a further sixteen registers { AO-A 15) that are private to the
microprogram. The D register is the central data highway of the
machine; the Arithmetic and Logic Unit (ALU) deposits the result
of a computation in D before routing it elsewhere. There is an
interface between the ALU and the floating point unit and data
sent between the units passes along this route. The microprogram
controls the operation of the floating point unit by depositing
data into the accumulator and, to a lesser extent, through the
V-store.

The ALU is driven by a 50ns clock. A microinstruction takes
between three and seven clock beats to complete, provided that
there are no waits for external events. The microinstruction set
resembles the order code of a simple old-fashioned machine;
microinstructions are short (sixteen bits) and heavily encoded.
This style of microprogram instruction set is often referred to as
being 'vertical' in contrast to a 'horizontal' instruction set,
where instructions are much longer and each bit of an instruction
controls an individual function. The CAP microprogram instruction
set is better illustrated by an example rather than by enumeration
of the complete set of micro orders~ The notation used is that of
the standard microprogram assembler and the fragment of code is
the part of the microprogram that decodes instructions, known as
stage one.

- 75 -

I I .
' I

I

,. : n f

B15+1->I . FETCH
STORE->FR AR
BM+AR->P.FETCH
STORE->D,AO

AD->STORE:RESTART
AD->STORE:RESTART

II start fetch, increment B15 II instruction to FR,AR II modification - start fetch I I read data (only for R or RW FMR) II instruction from FM intervenes II return from FM for W type II return from FM for RW type
The first instruction causes register B15 to be incremented after
sending its contents to P, the store address regi.ster, then the
store access register, PAR, is set to be execute access and the
store logic is started. The next instruction (2) completes the
store cycle and routes the user instruction fetched from store,
via the D register, to registers FR and AR. (AR is set to be the
least significant sixteen bits of the instruction, sign extended
to thirty-two bits). Instruction (3) carries out the standard
addrE;lss modification: the contents of the B register selected by
the Bm field of register FR are added to AR and sent to register P
via D. The function code field of FR is used to index a bank of
256 registers (FMR) that hold access requests which ar~ routed to
PAR during this microinstruction. The access requests held in PAR
may be 'read', 'write', 'read and write' , or 'none', depending on
whether or not data is fetched from or updated in main memory by

-t;he user instruction. The none code indicates that the modified
address is being used literally and no store ace ess is required.
Instruction (4) is only obeyed if the FMR value is 'read' or 'read
and write' and causes data to be loaded from store into registers
D and AO . The next instruction (5) is rather special; it is held
in the function memory (FM), a 256 word microprogram memory, which
is indexed by the function field of FR . The order executed from
FM will either complete the user instruction or else it will jump
to the microstore · address of further micro orders for more complex
user instructions. For example, the order BBPS (B register
incremented by contents of store) can be completed by:

BA+AD->B:RESTART II ba:=ba+word from store
To implement JNEQ (jump if B register=O) a jump is placed in the
functfon memory:

JMP JN.EQ II b15: = n,if ba=O
which transfers control to the following orders:

JN.EQ, BA OR NIL->D:CSKIP II skip next micro instruction if Ba=O :RESTART II start next user instruction BM+AR - >D II reconstruct literal address B15=D:RESTART II set program counter to jump address
The RESTART option indicates that the instruction has been

-76-

\,

I

I I

. ,q
>

finished off successfully and stage one decoding may begin for the
next user instruction. If the intervening FM instruction in stage
one does not jump out or restart either instruction (6) or (7) is
executed depending on whether the currently selected FMR register
has the value 'write' or 'read and write'. These final
instructions enable orders that update store to be completed. For
example, the order SSPB (add B register to store) has in its FM
slot the instruction:

BA+AD->D // D:=store + Ba
which computes the new value in register D and returns to
instruction (6) to write the result to the store location whose
address was computed by instruction (3).

There are several other operations and instruction types apart
from those illustrated above, · which include various shifts, byte
masking, reading and writing microstore, accessing the V-store,
logical operations, subroutine and unconditional jumps.

The essential difference between microprogramming and assembly
code programming is that in microcode, it is left to the
programmer to ensure that he gets hardware interlocks correct.
For instance, in the CAP it is possible to halt the processor by
reading the store data lines if the store address lines have not
been set previously .

There are a number of faults primarily associated with
addressing violations and arithmetic overflow in the floating
point unit, which are trapped by the hardware and if one of these
exceptions occurs, microprogram control is immediately switched to
a specific location of microstore . It is left to the
microprogrammer to provide code starting at · that location to
investigate the nature of the fault and to take appropriate
action. External interrupts, for example those from the Modular
One, are only noticed whenever a return is made to stage one. If
an interrupt is signalled at stage tine , control is diverted to an
interrupt routine starting at a fixed address in microstore and
the interrupt routine can determine the type of interrupt by
reading registers in the V- sto r e .

The microprogram instruction set has a number of weaknesses

-77-

I

, I

I

I I
f 1

\ ,1

I
II

that are a nuisance to the microprogrammer and · waste precious
instructions in the cramped microprogram store. By far the
greatest difficulty is caused by the subroutine jump and return
mechanism which has only two registers available for holding
return links, because in general, two levels of subroutine are
insufficient in a complex microprogram and experience suggests
that four link registers would probably be better.

It is not possible to perform every operation on all
registers, nor is it possible to route results back to all
registers because many instructions are defined only to utilise a
subset of the available registers. In general, the D register is
the primary working register; the A registers are less useful in
terms of the operations that can affect them and the ease with
which they are accessed. As a result, the microprogrammer
frequently has to waste instructions loading values into D to
perform a calculation upon them and then copying the I'esult to
another register. This fault is directly attributable to the
compactness of the microinstruction format which does not have
enough space to encode all of the possible register combinations.
A further consequence of this arises in bonnection with an option
which permits the next instruction to be skipped over if register
D has a certain value after the current order. Un fortunately,
each microinstruction supporting the option only generates a
single condition and it is frequently necessary to write a further
instruction to test a condition different from that available
after a computation. A better mechanism would be to allow
conditional skipping on a condition that may be specified within
an instruction, for example, from the set {=O,>O,<O}.

The difference between the thirty-two bit word length of the
machine and the sixteen bit word length of the microprogram memory
causes difficulty if copies of thirty-two bii words are to be kept
in microstore . LOAD DOUBLE WORD and STORE DOUBLE WORD
microinstructions would be v ery useful. If there were more
registers ther~ would be less need to use microstore as a
repository for data .

There are , however , several benefits to be gained by having a
simple and compact microprogram instruction set . It is much

-78-

I

I I

).: f

easier to write code than would be the case in a highly parallel
horizontally microprogrammed machine and this is helpful from the
point of view of debugging microcode, making modifications to it
and also for program verification. The last point is crucial: the
state of the art of program v~rification is such that, for
microcode at least, it is necessary to rely on visual checking
alone. Therefore it is an advantage to have a microprogram which
is easy to read and follow. In return, of course, there is not
the same scope for carrying out several operations in parallel in
a vertical microcode and efficiency will be lost because of
unnecessary serialisation.

8.3. Accessing Main Memory.

In this section the hardware in the CAP system that is
responsible for virtual address translation and memory protection
will be outlined. The store logic operates in a number of
different modes which may be selected by setting flip-flops in the
V-store. In all cases an address is taken from the P register
together with an access code from register PAR.

The simplest addressing mode is called absolute m.Qde.. The
least significant twenty bits of P a YOO treated as an absolute
address and are passed directly to the store address lines. The
access code in PAR is used to determine whether a reading or a
writing store cycle is to be generated. After setting register P,
the microprogram will read or write to the store data lines to
complete the store transfer. The slave store mechanisms are
interposed between the addressing logic and the physicral memory so
that, at the level of addressing, the slave is transparent to the
microprogram.

The other addressing modes are used to carry out address
translations and access checks and for this purpose there is a
capability unit, the organisation of which is shown in figure
8. 3-1. The unit divides into two parts : a bank of sixteen
registers known as the tag memory (TGM) and sixty- four capability
registers. The latter divide into six sub-registers known as the
tag, base, limit, access , count and spare registers. The TGM and
tag r egisters are concerned with address translation and will be

-79-

I . TAG

0 . (8) (6)

1

TGM

OB
I I ·1
I I
I I

~ I

'
I

I I ' I I ' ' ' I
I , I ' I

' I I I I I .,
I
I I I

I I I 15D I ' I
I I
I I
I I

I I
I match I I

I I
I I

631 I

Register P

- ~
(4) .(8) (16)

Virtual Address

I
I
I
I
I
I
I

I

BASE SIZE ACCESS COUNT SPARE

· (20)

match

I
. . I

I
I
I
I
I
I

I
I
I
I
I
I

(16)

Register PAR

D
(8)

' I
I
I

I
I
I

·. I

I
I

I
I
I
I
I
I
I
I

I

(7) (7)

-

I
I

' I
I
I
I
I
I
I
I
I

. .

I
I
r
I
I
I
I

I
I
I
I
I
I
I

I
I
I

' I
I
I
I
I

I

(7)

- -

Figure 8.3-1 Capability Unit Organisation

I
I
I
I
I
I
I
I

I

I j,

I :I

' j,

I II

i' 1i:

I i'11

I I

described later. The count and spare registers take no part in
addressing or access control and are used by the micro programmer
for housekeeping purposes that will be the subject of a later
chapter. The remaining registers function similarly to segment
descriptor registers that are found in other machines.

In last mode, a particular capability register may be selected
by writing to a V-store location. When an address is written to
P, only the least significant sixteen bits are used. They are
compared to the limit field of the selected capability register
and. if the address exceeds the limit field, an error is trapped
and control is diverted to location eighteen in the microstore.
Similarly, a check is made to see that all of the bits set in PAR
(the access request) are al so set in the access field of the
capability register. An access violation also causes a trap to ·
location eighteen. Provided that the access and limit checks are
successful, the sixteen bit address in P is added to the twenty
bit absolute base address in the base field of the selected
capability register to . calculate an absolute address which is sent
to the store address lines. Last mode · is used extensively to
address data structures whose entries in the unit have been loaded
by one of the two remaining addressing modes so that address
relocation can be carried out automatically and also to prevent
the microprogram from carrying out an illegal access to the data.

Direct mode enables capability registers to be selected by a
field in addresses. As with last mode, the least significant .
sixteen bits of register P form a segment offset which, together
with the access request in PAR, are compared with the contents of
the selected caRability registe r . The selection is determined by
the six bits preceding the segment offset in P. Using direct
mode, it is possible to build a capability register system that
resembles the Plessey System 250.

The final addressing mode, normal mode, is the most involved
as it carries out virtual address translation in addition to
access checking .

and l aid out thus :

A CAP virtual address is thirty-two bits long

- 80 -

. I

;.

I I I I
I ,--------,--------,--------------,-----------------------------, 1 table .

1xxxxxxxx
1 capability I segment

1 1 number 1xxXXXXXX I index I offset I ,--------,--------,--------------,-----------------------------, 31 28 27 24 23 16 15 0

As before, a store cycle is started bt writing an address to P and
an access request to PAR. The fqur bit capability table number
indexes the TGM to yield a six bit tag. An associative search is
then made through the capability unit looking for a register which

-• has a fourteen bit tag field matching the concatenation of the six
bit tag from the TGM and the capability index part of the address.
If a register is selected, the remainder of the address is
interpreted similarly to the last and direct modes of addressing.
Otherwise a trap to microstore location seventeen is generated to
indicate that a match was not made.

The capability registers are divided into banks of four
registers. The searching algorithm proceeds by selecting a bank
and then performs an associative match on the registers within the
bank. If there is no match, the search moves on to the next bank

,cyclically,

looked at.

until all of the registers the unit have been
Thus

capabilities are

start searching.

The intricate

there is a high premium on ensuring that the
loaded near the . point at which the unit will

structure of the unit allows capabilities to
remain within the unit even when they are no longer addressable
because of a protection domain or process change. This is useful
if domains are small and are called frequently, as it avoids the
overhead of flushing out and reloading the unit on every domain
entry and exit. The details of the organisation of capabilities
within the unit - and the way that the TGM and tag registers are
used is discussed in more detail in Chapter Twelve. For the time
being, it is sufficient to say that for each capability segment in
a protection domain, the TGM holds a key which is in the tag
register of every capability loaded from the segment into the
capability unit. If a protection domain change occurs, new keys
are put into the TGM, so that previously accessible capabilities
will not match until the original keys are restored after
returning from the called domain .

-81-

;.

II

1[11

::1

1111

l 1

It is up to the microprogram to handle faults and exceptions

reported by the capability unit. Furthermore, it is also the

responsibility of the microprogram to allocate slots for newly

evaluated capabilities and to arrange that any operations carried

out on capabilities in store are reflected . by changes to the

contenb:. of the capability unit . The microprogram is able to

interrogate and modify the contents and state of the unit by

depositing information i .n the accumulator and to a lesser degree

by accessing parts of the V-store.

It is the use of the capability unit as a cache for store

capabilities that contributes most to the effectiveness of the CAP

memory protection system: once a capability has been evaluated,

address translation and access checks are carried out with only a

minimal overhead and the unit is sufficiently large that

capabilities are re-evaluated infrequently. The cost of a large

cache has been traded against the time that would be wasted

loading and unloading the unit if it held fewer capabilities and

suffered from 'capability thrashing'.

8.4. Microprogramming Aids.

There is a standard microprogram assembler for the CAP

machine. The assembler is not very rich in facilities and has a

number of idiosyncracies. Despite this, the CAP kernel was
written for this assembler so that code for emulating user

instructions, performing I/O and so on, could be borrowed from the

existing microprogram . The assembler was originally written for

an IBM System/370 but at the time that the kernel was being

developed , the CAP operating system became available and the

assembler was moved across to it. At this stage, I modified the

assembler so that it put microprograms onto disc in a format that

can be loaded into CAP microstore by a sim·ple bootstrap pr?gram .

This step greatly increased the rate at which new versions of the

kernel could be assembled and tested, as in the past it was

necessary to conduct an assembly on the IBM machine and then to

punch out binaries on paper tape for loading via the CAP intimate
tape reader.

-82-
I

I

I
). J. I

1

The kernel was debugged using just the raw hardware. CAP is
well equipped with LED displays of registers and control signals,
and there is a well-endowed control panel with facilities for
obeying single shot instructions, setting a break point and
obeying instructions set up on the . hand keys. There is also a
postmortem program which will tabulate the values of all of the
microprogram registers (including the V-store) on the line
printer.

Working in this way . it is surprisingly easy to test large
tracts of microprogram in a short time . The main difficulty is in
persuading other users of the machine to desist so that hands-on
access could be gained. Fortunately, during the period in which
the kernel was written, this was not too great a problem.

-83 -

I
: , I

'

CHAPTER NINE.

A KERNEL FOR THE CAP COMPUTER.

9.1. Preliminaries and Notation.

In this and the following chapters the design of a kernel for

the CAP computer and its implementation will be documented. The

discussion will distinguish between the earlier memory protection

sys tern and the kernel by referring to them as CAP-I and CAP-III

respectively. The rationale for the decisions leading to the

architecture about to be described can be found in the first

section of the thesis.

The instruction format, addressing conventions and word lengtn

of the new system is identical to that of CAP-I for two reasons :

firstly, so that utility programs like compilers can run unchanged

on either system and secondly because CAP-III uses the same hard

wired logic for instruction decoding and virtual address

translation as CAP-I for reasons of efficiency. The microprogram

for the basic instructions and organising I/O across the link to

the Modular One computer within CAP-III is more or less an exact

copy of its counterpart in CAP~I . The remainder of the

microprogram is concerned with protection, which is very different

in the two systems, although many of the kernel iristructions have

direct analogues in the memory protection system. The

implementation of this part of the kernel was carried out from

scratch through a number of iterations to the current

specification.

The standard microprogrammed instruction set for the CAP

machine is both conventional and extensive; it includes integer

and logical operations between B-registers· and store, conditional

jumps, subroutine entry and exit, byte addressing , byte packing

and unpacking, multiple register to store dump and reload, fixed

and floating point arithmetic, block move and clear, Algol 6 8

CASE, modification of next instruction, integer and floating point

conversions, test-and-count and exchange regi ste r with store

functions . The full set is documented in Herbert [78]. In the

-84-

following · chapters, a standard notation is used for describing

instructions thus:

dxx digit xx of a binary number (dO is the least significant

digit)

F function code identified by d31-24 of the current order.

Ba B register identified by d23-20 of the current order.

ba The contents of Ba.

Bm B register identified by d19-16 of the current order.

bm The contents of Bm.

Bn B register identified by d3-0 of the current order.

bn the contents of Bn.

N The signed integer formed by d15-0 of the current order.

n The value bm+N.

[x] The contents of the store location whose virtual address

is x.

s The value [n].

Used to introduce a hexadecimal number.

It is always assumed in the description of an ins-cruction that

any reference to reading store implies that a protection check is

made every time store is accessed. Thus a protection viola~ion is

signalled if insufficient access rights are held or if an address

is invalid · or beyond the end of a segment or capability table.

The kernel indicates these exceptions, along with other faults, as

an interrupt to the software which contains a code indicating the

nature of the fault. The program counter (register B 15) of the

current process at the time of the fault is set back so that if

execution in the process is resumed, the failing order will be

retried . The kernel always arranges that a process and all of the

protection apparatus is left in a consistent state after a fau l t

so that the integrity of the system will remain guaranteed.

Furthermore, the kernel places no reliance ' on any data structures

kept in main memory so that if a program , either by accident or

malice , interferes with an intimate part of the protection

apparatus , the kernel cannot be induced to give away privileges or

behave in an unreasonable manner .

- 85 -

11

9.2. Naming.

It was decided to employ a global naming system for the kernel

because global names are conceptually easier to understand and

they are more suited to extended object manipulation. Another aim

was · to gain experience in the use of global names and to compare

global naming schemes with the nested naming schemes. A

forever~unique global naming scheme was obviously not suitable for

microprogram implementation because of the large amount of code

required to administer an object table that is kept partially on

disc. Instead, a scheme that uses short names and a modestly

sized resident table for just the set of currently-active objects

is employed. As a consequence, active capabilities cannot be kept

in the filing system and it is necessary to have operating system

support for translating capabilities from the filing system into-

the run-time capabilities manipulated by the kernel. Experience

with the CAP-I operating system System Internal Name mechanism

(Chapter Three) suggests that the necessary translations can be

performed at a cost that is at worst comparable to, but probably

less than, the expense of organising passive and active object

tables in a forever-unique scheme.

In CAP-III the descriptions of all currently active objects

are found in a resident table consisting of four word slots known

as the map. The maximum size of the map is 65535 words (i.e.

16383 slots) al though in practice, its size is expected to be in

the order of four to eight thousand slots. An attempt to access a

slot that is out of the bounds of a map will result in a fault.

In general, the kernel will only talrn names from_ capabilities . or

entries in the map.

An object is said to be 'active' if there is at least one

capability for it in a capability segment . . To help detect objects

that are no longer referenced, the kernel keeps a reference count

for each entry in the map, . and it is incremented whenever the

kernel sets up a capability or map slot pointing to it and is

decremented whenever the kernel deletes such a pointer. As will

be shown in Section 9 . 8 , reference counts alone cannot detect all

free slots in the map and it is necessary for the software to

include a garbage collector which can function asynchronously

- 86-

· II

.)

i
I I

without holding up the remainder of the system .

The kernel maintains a pool of map slots that are currently

free and takes a slot out of the pool whenever a new object is set

up. The pool is organised as a list and information about it can

be obtained by the FREEQ instruction:

FREEQ no arguments.

ba(d31.-16) := head slot of free list.
ba(d15-0) := length of free list.

If the pool is empty when a new slot is required, a fault is

generated and the failing instruction can be retried once some

space has been recovered in the map.

The layout of a capability is shown diagrammatically in Figure

9.2-1. A capability is two words long and consists of four

sixteen bit fields. The name field will nominate the map slot

containing the description of the object protected by the

capabilities. In fact only fourteen bits are required to address

all of the slots in a map -0f maximu~ size and a sixteen bit field

is only used for convenience in the kernel microprogram. The

interpretation of the access code field depends upon the type of

the object named in the capability, with the exception of bit

fifteen, the revoke bit which is a generic code as·sociated with

revocation (Section 10. 4) • The use of the base and size

refinement fields will be dealt with in Section 9.3.

There is one name that is treated specially; it has the value

65535 and implies that the capability is null, that is to say, the

capability is not bound to an object . This capability is useful

for overwri ti_ng capabilities that are no longer required to

prevent them from being used any further. The kernel will signal

a fault if any at tempt is made to evaluate a null capability but

it is perfectly permissable to move such capabilities around with

the capability transfer instructions.

The format of a map slot is shown in figure 9. 2-2 . The type

field (sixteen bits) identifies the class of objects to which the

particular obje6t belongs . Some types (segment , process , message

channel, message and type-object) are recognis ed and supported by

the kernel; other types are defined by software and are t he

-87-

. !
1.

.......... ,,

I
REVOKE access bit (d15)

Word 1 NAME
ACCESS

CODE

~ - -

I

. 1

Word 2
BASE SIZE

REFINEMENT REFINEMENT

31 16 15 0

Figure 9.2-1 Capability Format

;.

Word 1

'Word 2

Word 3

Word 4

31 30 28 27

TYPE

(NAME)

. J

Count Marker Bit

16 15

I
' ' I
I

' I
' I

-1.

REPRESENTATION
WORDS

REFERENCE COUNT

Figure 9.2-2 Map Slot Format

0

TAG

).

currency of the operating system.

The tag field (sixteen bits) is not interpreted by the kernel

and can be used by software as a label for the slot and is ·---i

initialised when it is set up. One potential use of these tags is

so that the software for translating filing system names to map

slot numbers cari record a key in a .map slot that can be used to

locate information about the corresponding object in its

translation tables.

the

The representation words in

substance of an object and

a map entry are used to describe

may either be a capability or

simple binary data. In the latter case, the name field of the

representation will have the value 65535, which imposes the minor

restriction that it is not possible to have extended objects with

null capabilities as their representation. This restriction is

enforced by all of the kernel type-extension facilities.

The use of the twenty-eight bit reference count ~nd the

reference count marker bit is deferred until Section 9.8.

In the rest of this description it will be convenient to refer

to the type of an object as an attribute of the capabilities for

it al though type codes are only held in map entries. Thus, the

term 'segment capability' means a capability that names a map slot

defining a segment-type object. It is also useful to let the term

'object' denote the map slot holding information about the

representation of an object. When talking about 'objects' , it

will be clear from the context whether the actual object itself or

the map entry that describes it is intended.

9. 3 . Segments ;

The unit of memory protection is the segment which is a

contiguous set of words in store of an arbitrary length up to a

maximum of 65535 words . The · access codes defined for segments a~e

read- and · write-capability , · and read, write and execute data .

Segment type map entries are basic objects, which is to say that

they have a data type representation as shown in figure 9.3-1 .

The

location

twenty

of th e

bit absolute base field defines t he starting

seg ment in physical memory and ther e fore, the

-88-

I

I

Word 1

Word 2

u
t

Word 3 f

Word 4

r
m

31 30 29 27

'SEGMENT' TAG

65535 SIZE

ABSOLUTE ADDRESS

REFERENCE COUNT

20 19 16 15 0

Figure 9. 3-1 Segment Map Entry Format

maximum memory address that can be accommodated is 1024K words,
which is in fact a hardware limit imposed by the addressing logic.

The sixteen bit size field defines the length of the segment
in words, although individual capabilities may select just a small
portion of the whole. Capability segments are aligned so that
capabilities occupy adjacent pairs of words starting from the base
of the segment and most instructions reference capabilities by an
index such that the first word of the capability will be found at
the word in the segment whose offset is twice the index.

The 'outform' status bit can be used for organising virtual
memory swapping. The kernel signals a fault if the evaluation of
a segment capability yields a map entry in which t~is bit is set.
When the bit is on, the opera ting system may utilise the other
fields of the entry to hold information about disc addresses and
so on; at all other times, the absolute base and size fields are
interpreted normally.

The other two status bits, 'dirty' and 'used' , r'eco~d
information about the types of access made to a segment. The
'used' bit is set to one if it is read as zero when the capability
for a segment is evaluated. The 'dirty' bit is set if it is read
as zero when the capability for a segment is evaiua ted in the
course of a store demand that includes 'write data' or 'write
capability' access. The software can reset these bits and monitor
them from time to time to discover which segments are accessed
frequently and which ones have been modified.

Sub-segmentation is performed by the base and size refinement
fields of segl)'lent capabilities as illustrated in figure 9.3-2.

· The base refinement field must be less than or equal to the size
of the absolute segment and the sub-segment begins at the absolute
address formed by adding the absolute address of the segment to
the base refinement of the capability . The size of the
sub-segment is the smaller of the size refinement field of the
capability and the remaining length of the absolute segment beyond
the base of the sub-segment. The refinement mechanism provides a
means for selecting small portions of larger structures and this
i s par t icularly useful in the manufacture of a r gument capabil i ties

- 89 -

, _ ·- ,_ l
•,.I

;.

..
r

--

Segment Map Entry

segment tag

65535 size

X · ·address

:x ·,

name access

ba~e' size'

Capability

Refinement calculation:

IF base' >
THEN error
ELSE address

size

'

\
\
\

.....

\
·\

size

'

\

'

\

'

\
\

' '

\

' \

size

of sub-segment
of sub-segment

\
\
\

·- address . -

· Sub .. Segment

+ base'; . - min (size', size . - base')

Figure 9.3-2 Segment Refinement

I

;.

during inter-process communication.

Jn capabilities for objects other than segments, the

refinement fields are not significant and have no effect on the

process of capability evaluation.

9.4. Addressing.

The fact that capabilities and data are partitioned rules out

the possibility of using Fabry's capability-based addressing

scheme for CAP-III. Instead, the addressing architecture of CAP-I

is adopted with the important restriction that there is only one

domain per process. The CAP-III kernel has an efficient

inter-process communication facility and the analogue of a CAP-I

process consisting of several domains in CAP-III is a team of

processes with shared capabilities for common objects. This means

that the problems that can arise when CAP-I protected procedures

pass addresses around or share multi-segment data structures do

not cause concern, but the difficulties of addressing clashes

remain for inter-process communication. However, • t
l. u is much

better practice to transfer capabilities rather than addresses,

and the CAP-III message system is suited to this.

The root of a process's address space is its domain

descriptor, which is a capability segment local to the process.

The first sixteen slots in this segment define a set of capability

tables which are capability segments. If one of the slots in the

domain descriptor is a null capability, the corresponding table is

deemed to be absent. Each table may contain up to 256 addressable

capabilities and the complete set of all of the capabilities in

the tables forms the process's domain of protection.

of a thirty-two bit virtual address is shown below:

The format

1--------1--------1--------------;-----------------------------1 I table , XXXXXXXX I capability , · segment I
1number ,xxxxxxxx 1 index I offset 1 ,--------,--------,--------------,-----------------------------, 31 28 27 24 23 . 16 15 0

The table number selects one of the sixteen capability tables and

the capability index then nominates a particular capability from

within the table. These two fields of an address taken together

are known as a capabilitv specifier. The offset part of an

-90-

., >,

address only applies to segment capabilities and indexes an

individual word in the segment defined by the capability selected

by the capability specifier part of the address.

The virtual address translation mechanism will fault the

evaluation of a capability if it is unable to read the domain

descriptor or capability table with read-capability access, if any

of the address fields index beyond the end of the appropriate

segment, if the capability for a capability table in the domain

descriptor is null, or if any of the capabilities for the various

capability segments turn out to be for types of objects other than

segments.

The structure of a CAP-III address space and an example of

address translation is shown in figure 9.4-1. It should be noted

that both capability segments and data segments have the same type

('segment') and · thus the interpretation of a segment capability

depends on the access code within the capability. It is perfectly

permissible for the software to have a data-type capability and a

capab-ili ty-type. capability for the same segment in order that sctne

part of the operating system can create or modify capabilities

within the segment. In particular, the software responsible for

translating between permanent and active names will need this

privilege in order to

for already active

create additional

objects. The

instances of capabilities

kernel caches evaluated

capabilities for kernel-defined objects in the hardware capability

unit and if the software overwrites a capability using the

contrivance described above, it is necessary to ensure that the

kernel notices the modified value of a capability. For this

purpose, there . is the following instruction :

FLUSH n (d31 -16) capability specifier .

Any entry for the capability . specified by n(d31-16)

in the hardware capability unit is disabled, to force the

re-evaluation of the capability from the updated segment

if it is used again .

This facility is only intended for use by opera ting sys terns

software but it is perfectly in order for other programs to use it

as the instr uction causes no harm , except to force a spurious

- 9 1-

Domain Descriptor

~--~--~------- - ---~

___ _____ _
0 1

...... .

Capability Table

\
\
. \

Addressed Capability

Virtual .
Address

---.--

,- - --
' ' ' '

l
I
I

I
I
I

Segment Offset (for segment type objects)

Capability Index

Capability Table Number

Figure 9 . 4-1 CAP-III Addressing Structure

I

...)

re-evaluation of the nominated capability.

9.5. Information Orders.

There are three instructions for obtaining information about
capabilities and objects:

OBJINF

SEGINF

n (d31-16) capability specifier.

ba(d31-16) := tag field of object n(d31-16).
ba(d15-0) := access code of capability n(d31-16).

n (d31-16) segment capability specifier.

ba(d31-16) := length in words of segment n.
· ba(d15-0) := access code of segment capability n.

CSEGINF n (d31-28) capability table number .

ba(d31-16) := length in words of capability table n.
ba(dl5-0) : = access code for capability table n.

In these and other orders, arguments are interpreted as
addresses which select capabilities which in turn lead to the
description of particular objects. Thus, 'object n' denotes the
object defined by the capability at address n. If the object
located in this manner is inappropriate to the function of the

instruction, such as SEGINF on a non-segment capability, a fault
is signalled.

9.6. Capability Transfer.

It is useful to be able to move capabilities between
capability tables in the current process. The capability transfer

suite of orders are concerned purely with capabilities and do not
affect the objects protected by them . Transfers are carried out
by making a copy of the source capability and then overwriting the
previous contents of the destination capability slot . It must be
possible to read the source and destination capability tables and

to write to the destination table with capability-type access.
The capability transfer orders are specified thus:

MOVECAP b a (d3 1 -16)
n (d3 1-16)

source capability s~ecifier.
destination capability specifier.

The capability is copied , without modification f r om
source to destination . The pr evious capabilit y at the

destination capabilit y slot is lost and an y ent ry i n the
ha r dware capab ili t y unit for it is flush ed out so that

- 92 -

' -.

;.

,....

....

REFINE

the capability will be re-evaluated to pick up its new
value .

ba [d3 1-16)
ba d15-0)
n d31-16)

source capability specifier.
access mask.
destination capability specifier.

In addition for segment source capabilities:

b(a+1)(d31-16) base refinement.
b(a+1)(d15-0) size refinement.

For segment capabilities, the source segment is

inspected to ensure that the base refinement does not

exceed the current size of the sub-segment nominated by
the source capability. The access of the copy . is the

logical 'and' of the access code in the source capability
and the access mask. For non-segment source
capabilities, the second word of the capability is copi~d

unaltered; otherwise the base of the copy is the sum of

the base of the source capability plus the base

refinement, and the size of the copy is the size
refine~ent or the remaining size of the source capability

after base modification, whichever is the smaller. For
capability segments, it is only permitted to have an even
base refinement otherwise capabilities could be

misaligned in store. the previous capability at the

destination · slot is lost and any entry for it in the
hardware capability unit is flushed out.

MOVECAPA ba(d31~16)
n (d3 1-16)
n (d1 5-0)

source capabilitv s~ecifier.
destination capaoil1ty segment soecifier.
destination capability segment offset.

The capability specifier part of n selects a

capability for a capability segment. Provided that the
destination offset is even, (to avoid alignment problems)

the source capability is copied without modification to

the two words starting at offset in the destination
segment. This order is used to transfer capabilities
from the capability tables of an address space into

general capability segments.

- 93 -

··f

!

I

I

I'

I,

I
I

I

9.7. The P-store and Peripheral Devices.

Device transfers are initiated either by block transfer or by

single character transfer instructions depending upon the nature

of the device being driven. One argument of the I/O orders is

always a device specifier that consists · of a sixteen bit

capability specifier and a seven bit device number. Before

starting a transfer, the I/O orders evaluate the capability

nominated by the device specifier to see if it names a segment of

memory whose absolute span embraces a word of store, the absolute

address of which is given by the device number. Thus, permission

to use a device is con trolled by the possession of a capability

for a word of store associated with the device. The device

numbers are in the range nought to thirty-one so that the first

thirty-two words of store are tied down for device control and are

known collectively as the P-store.

Reading or writing to the P-store has no external effect on

devices themselves; the mechanism is purely a contrivance for

compatibility between CAP-I and CAP-III and takes advantage of the

efficiency of the memory protection arrangements to provide a

convenient and fast access check on the use of peripherals. It

would be perfectly acceptable to introduce 'device' objects known

to the kernel, with device numbers built into them, as a mechanism

more in the spirit of the CAP-III kernel design.

Al 1 buffering of peripheral transfers is carried out by the

Modular One front-end computer and the kernel can transfer a

buffer across the link at a comparable rate bo the CAP store

cycle speed. For this reason, . transfers are carried out in a

single burst during which no otber activity occurs. This greatly

simplifies the internal organisation of the kernel and means that,

during a block transfer, it is only nec ,essary to evaluate the

capability for the CAP buffer at the start of the transfer and ,

because no other program may .execute during a transfer, there is

no possibility that the buffer will be swapped out or the

capability for it being otherwise invalidated. If CAP had devices

that use asynchronous channels directly attached to it, the kernel

would have to lock down buffer capabilities in the hardware

capability unit and fault any attempt to destroy or modify them .

-94-

;.

The kernel does possess this facility although it is used -for a
different purpose and it will be described in Section 11.3.

9.8. Reference Counts.

Whenever the kernel creates an object by allocating a slot in
the map, its reference count is set to one. If a capability for
an object is copied, its reference count is incremented and if the
kernel overwrites a capability, t~e latter's count is decremented.
In this way, by testing the value of its reference count, the
kernel can detect whether or not any references exist to a map
slot.

The kernel will automatically return to the free list any map
slot whose reterence count falls to zero when it is decremented so
that the map is kept free of useless entries. If the liberated
slot is an extended object, the kernel goes on to decrement the
count of the capability which is sealed in its representation and
so on, potentially releasing a long chain of slots. It is the
responsibility of the operating system to flush out the contents
of any capability segment that is no longer active, because
clearing out all of the capabilities in a segment could be a
deeply recursive and · time consuming activity for the kernel to
perform.

Unfortunately, reference counts are not sufficient to detect
every sort of garbage. In particular cyclic structures can arise;
for example, an extended object represented by a capability
segment that in turn contains a capability for the extended object
is a simple looped structure 9 and one can donstruct more
complicated ones. Cyclic structures that are inactive will remain
in the map . because the loops that they contain will prevent
reference counts from falling to zero.

To solve this problem, there is a need for a map garbage
collector. Since the · garbage collector will be system wide, it
must run asynchronously to avoid holding up the machine while the
map is scanned. In the CAP-I system where each process ha,s a
private,

Resource

synchronous

List, the

software garbage collector for its Process
occurrence of a garbage collection has a

not ice~ble effect on the speed of execution of a pr6cess and

-95-

i
I

therefore, if the CAP-III garbage collector was synchronous, the

effect would be greatly magnified across the system as a whole,

with a disastrous result on response times and throughput .

The main difficulty with an asynchronous garbage collector is

that the map and active capability segments are changing as the

garbage collector r uns. To cope with this, the kernel sets the

reference count marker bit in a ·map entry whenever it increments a

reference count, creates a new map entry or puts a slot on the

free list. A simple garbage col1ector can proceed as follows:

a) Scan the map unsetting all of the reference count marker
bits.

b) Use the FREE~ order to determine the free list and set all
of the marker bits for slots in the list .

c) Scan the map and all active capability segments marking
slots in the map for which there is a valid capability. __

d) All slots whose marker bits are unset can be returned to
the free list because they are no longer active.

e) Go back to a) and repeat indefinitely.

This garbage collector will detect any slots that were

inactive at the start of its scan, and any that become inactive

thereafter will be found in subsequent cycles. The size of the

map and the frequency with which the garbage collector runs are

parameters that must be adjusted in the light of experience in

order to obtain the optimum sys tern performance with the minimum

overheads. The algorithm given above is based on the CAP-I filing

syst~m garbage collector [Birrell and Needham 78].

-96-

if I

I
I

I

CHAPTER TEN.

TYPE-EXTENSION AND REVOCATION OPERATIONS.

10.1. Sealing and Types,

The type-extension mechanisms of the CAP-III kernel are based

on the facilities proposed by Redell [74], with a number of

additions. In the last chapter, two forms of map entry were

described, corresponding respectively to basic and extended

objects. The representation of basic objects consists simply of

binary data, the interpretation of which depends upon the type of

the object. Ex tended objects on the other hand, have a single

capability as their representation and objects that are made up of

several components can be manufactured by sealing a capability

segment that holds capabilities for all of the constituent

objects. This scheme has the advantage over the universal objects

of HYDRA that all objects have fixed size entries in the map and

the problems of handling small bundles of capabilities can be left

to the operating system, rather than being the responsibility of

the kernel.

The kernel supports three basic primitives with . variants for

basic and extended objects: SEAL is used to create new objects ,

UNSEAL to interrogate the representation of an object and ALTER to

modify r~presentatio~s. To use one of these primitives it is

necessary to quote a capability for a type object that bears the

appropriate access code from the set seal, unseal and _alter. Type

objects are basic objects whose type . is recognised by the kernel.

Th e representation of a type object includes a sixteen bit type

mark that is found in the type field of all objects belonging to

the class nominated by the type object. Operations upon type

obj ect·s are controlled by a type object whose type mark is 'type'.

During the process of sealing, a type object acts as a proforma

for set ting up a new object, by informing the kernel of th e type

mark that is to be placed in the type field of the object's map

entry. In the other two operations, UNSEAL and ALTER, a type

object is used rather like a key to unlock a protected object and

the key will only fit if the type mark of the type object is

-97-

I
I

. !

·,

;t

identical to the type field of the object in question.

object map entry is shown in figure 10.1-1.

A type

The principal difference between type objects in the CAP-III

kernel and Redell' s scheme is that Redell places the name of a

type object in the type field of protected objects, as opposed to

the arbitrary type codes employed , by the kernel. Redell' s

approach is conceptually more simple and unifies the management of

types with all names, but in the CAP-III kernel, where names

contribute towards reference counts, it is difficult to free slots

automatically in the map if the scan of a chain of extended type

map entries has to be altered from a linear progression to a tree

walk that includes pointers to type objects. It would be

unreasonable to ignore the contribution of type fields to the

refer~nce count of a type object, because if the count of the typ~

object did reach zero, all of the objects of that type would be

left pointing at an invalid map entry. In the CAP-III system, the

management of type names must be carried out by the operating

system type-object manager, rather than by the kernel unique name

mechanisms.

In the case of extended objects, there · is no restriction on

the type of capability that is sealed in the presence any

particular type object. In this way it is possible for an

extended object to have different forms of representation and it

is up to the type managers of objects with multiple

representations to take steps to cope with the range of

capabilities that might be extracted by the UNSEAL operation.

The kernel will fault any attempt to unseal data from an

extended object or a capability from a basic object, although

ALTER will permit the representation of an object to be switched

between the two forms. In the next two sections, the variants of

SEAL, UNSEAL and REVOKE will be enumerated for data sealing and

capability sealing respectively.

- 98 -

•

Word 1 'TYPE' TAG

Word 2 65535 TYPE MARK

Word 3

,

Word 4 REFERENCE COUNT

31 30 _ . 28 27 16 15 0

Figure 10.1 - 1 A Type Object Map Entry

;.

10.2. Basic Objects and Data Sealing.

SEALD (seal data)
ba(d31-16)
'ba(d15-0)
L bro] , [bro+ 1]
bn(d31-16)

type object capability specifier.
tag for new object.
representation data.
destination capability speciiier.

The type object capability is checked for seal access

and then a map slot slot is detached from the map free

chain and initialised as follows (using the terminology

of Section 9. 2): the type field is set to be the type

mark of the type object, the tag field is set to be

ba(d15-0), the representation words are set to be [bro],

[bm+1] with the top sixteen bits of [bro] forced to be all

ones, the reference count is set to one an~ the reference

count marker bit is set. Finally, a capability pointing

to the newl~ created slot with all the access bits except

d15 (the revoke access bit) set, is written to the

destination slot. The previous capability in this · slot

is lost and any entry for it in the hardware capability

unit is flushed out. This instruction is illustrated by

Figure 10.2-1.

UNSEALD (unseal data)
ba(d31-16) type object capability specifier.
bm(d31-16) basic object capability specifier.

ALTERD

[bn], [bn+1] destination buffer. ·

The type object capability is checked for unseal

access, the type mark of the type object is checked to

match the type field of the basic object and then the two .

words of data forming the representation of the object

are copied to the two words of store [bn], [bn+ 1]. This

instruction is illustrated by Figure 10.2-2.

(alter data)
ba (d31-16)
bm (931-16)
[bnJ, [bn+1]

type object capability specifier.
source object capability specifier.
new representation data.

The type object capability is checked for alter

access, the type mark of the type object is checked to

match the type field of the source object and the two
\

words of representation in the map entry for the object

are overwritten by the contents of the two words of store

[bn], [bn+1] with the top sixteen bits of [bn] forced to

be all ones . If the previous representation of the

- 99 -

•

I

;

,

Type Object

'type'

65535 type mark

data to seal

Type object capability

New object 'type mark' tag
/

/
/ 65535 /

11) 1

111 1 ••••••• 11

New capab ility

0 0

Figure 10. 2-1 Action Of The SEALD I nstruction

/

/
/

/

/
I

/
/

/

I
/

I

\

'
l

I

I

I

I

I
I

I
I

!
I

j I

Type object Object to unseal

. 'type mark' -
'type'

65535 type mark 65535
~ ..

~

unseaJ,

- .. . Type object capability Capability for object to

/

/
/

unseal

/

-/

/

65535 /
1-------+-------t,4- / Unsealed data

Figure 10.2-2 Action Of The UNSEALD Instruction

/
/

/

/

'
-~.

\
\ f.

\

I

I
I

'
' I

l

I

I
I

- . . I

;.

source object was a capability,

the capability is decremented

the reference count of

and processed in the

standard manner. Finally, any capability in the hardware

capability unit derived from the object which has just

been modified is flushed out so that it will be

subsequently re-evaluated to take account of the new

representation.

Figure 10.2-3.

This instruction is illustrated by

As an example of the use of the data sealing instruction

suite, consider the management of segment objects. When a . new

segment is created by SEALD, the segment type manager will

initialise . the data represention of the segment to hold the

absolute location and size of the segment and set the usage bits

to zero. If subsequently it is required to swap in a segment that

is on backing store, the segment manager can scan every segment

object with UNSEALD to read the usage bits for use in calculating

the cost of swapping out currently in-store segments to make room

for the one to be ~rought in. The ALTERD order can then be used

to reset the status bits in segment objects once they have been

inspected and al so to switch on the out form bit in any segment

that is to be swapped out. ALTERD may be used to change the

representation data of a segment that is repositioned in store by

the simple expedient of modifying its absolute address field.

These uses of ALTERD justify the extensive scan and flush of the

hardware capability unit after exercising the order, as clearly

the system has to guarantee that all capabilities for the segments

that have been tampered with are freshly evaluated to avoid the

risks of accessing the wrong region of memory.

It should be noted that neither data sealing nor the ALTER

operation is present in Redell's design and they were invented for

the CAP-III kernel to unify and enhance the range of operations

that can be carried out on all objects, whether basic or extended.

The capability sealing operations described in the next section

(with the exception of ALTERC) are much closer to Redell's orders .

-100-

;.

Type object

'type'

type mark

alter

Type object capability

8

I
1
I
I
I
I
I
I
I
~
I
I
I

' I

' I
+

,I

.1
t
I
I
I

'
'

--I

I

Object to alter

'type mark'

65535 .

\
...

I
I
I
I

·X

- -

Capability for object to
alter

New data representation

Figure 10 .2-3 Action Of The ALTERD Instruction

;.

10.3. Capability Sealing and Extended Objects.

Unlike capabilities in Redell ' s system, the capabilities

supported by the CAP-III kernel contain access code information

and , in the case of segment capabilities , refinement data . When a

capability is sealed it is necess~ry to include all of this data

in the r epresentation of the extended object , otherwise the

process of unsealing would not know how to set up the fields in

any capabilities that are extracted from extended objects.

capability suite of type extension orders is listed below:

The

SEALC (seal capability) . .
ba!d31-16) type object capability specifier.

UNSEALC

ba d15- 0) tag for new object.
bm d31-16) representation capability specifier.
bn d31-16) destination capability specifier . .

The type object is checked to hold seal access and
,

then a slot is taken off the chain of free map entries

and initialised as follows: the type field is set to be

the type mark of the type object, the tag field is set to

be ba(d15-0) , the representat i on is set to be a copy of

the capability speci f ied by bm (which must not b e null),

the reference count is set to one and the reference count

marker bit is set. Finally, a capability pointing to the

newl y created slot , with all of the a cces s bits except

d15 set , is written to the destination capability slot .

The previous capability in this slot is lost and any

entry for it in the hardware capability unit i s flushed

o ut . As a side- effect of this order , the reference count

of the object named by the representation capability will

be incremented by one . It is not possible to seal a null

capability .

10 . 3 - 1 .

This instruction is illustrated by Figure

(u~seal 9apability)
ba{d13-1 bi type object capabiliby specifier .
bm(d31 - 16 extended object capability specifier.
bn(d31 -1 6 destination capability specifier .

The type object capability is checked fo r unseal

access and t he type mar k of t he type object mus t mat ch

the type fi eld of the ex tended object . A copy of the

capa bility representation o f the extended object is made

in the destination ca pability s l ot. The previous

- 101 -

-- I

11

).

•

Type object Object to seal

'type' .

type mar k
. ~ ,. p -

-
-h X 2

-

.__ access_

,

0
I

- Capability for I
object to seal I

I

Type object capability

I

' I

'type mark' tag I
/

/ .___
access

/
New object

~ - .,

-

1~
1 -

- 11 •••••••• 1

New capability

0 0

Figure 10.3-1 Action Of The SEALC Instruction

capability in this slot is lost and any entry for it in

the hardware capability unit is flushed out. As a

side-effect of this instruction, the reference count of ,

the map slot pointed to by the sealed capability will be

incremented by _one. It is not possible to seal a null

capability. This ins trtiction is illustrated by Figure

10.3-2.

ALTERC (alter capability)
ba(d31-16~ type object capability specifier.
bm(d31-16 source object capability specifier.
bn(d31-16 destination capability specifier.

The type object is checked for alter access and the

type mark of the type object is checked to be identical

to the type field of the source object. The two words of

representation information in the map slot for the source

object are overwritten by a copy of the capability

specified by bn(d31-16) which must not be null. This has

the side effect of incrementing the reference count of

the map slot pointed to by the new representation

capability. If the previous representation of the object

was al so a capability, the reference count of the slot

that it pointed to is decremented and processed in the

standard manner. Finally, any capability in the hardware

capability unit that was derived from the modified object

is flushed out, so that it will be subsequently

re-evaluated to pick up the new representation.

instruction is illustrated by Figure 10.3-3.

10.4. Revocation .

This

The kernel revocation mechanism like the type-extension

scheme, is closely modell~d on Redell's work. There is a special

sort of map slot, called a revoker, that does not stand for an

object in its own right, which is used- to control access to

objects. Revoker map entries are r ecognised by the kernel and the

layout of one is shown in figure 10.4-1.

If, in the course of evaluating a capability, the name field

points to a revoker map slot, the kernel will modify the computed

access code to be the intersection of the access mask in the

revoker and the access bits in the capabil i ty before going on to

-102-

,.....

--

. ,.

-

....

I
I
I .. I - •
I
I
I

,X

Type object

'type'

type mark

~

-------- ~
~

unseal

Type obj~ct capability

Unsealed capability

2

Sealed object

..

Object to unseal

'type mark' I

""'

1--------1~-----t-
. -access

'· ..

I

'

I I
!

...... - ... ~~-----~----~ ~' I

access

Capability for object ~o
unseal

/
.. /

-4 - --

I
I

/

\

' I
I

: I'
I

, 11

I I
I

' !1'
I
I

I

I

I

Figure 10.3-2 Action Of The UNSEALC Instruction

;. t

Type object

'type'

type mark

alter

·/

/

Type object capabilitJ/

New capability
representation

I
I ,
I
\

/

I

I

I

I
I
I

' ' I
I

I

/
/ , ·

/
-/

... -.... -

Object to alter

'type mark'

.

~

x-

Capability for object to
alter

Figure 10.3-3 Action Of The ALTERC Instruction

Word 1 'REVOKER'

Word 2 NAME

Word 3

Word 4 REFERENCE COUNT

31 30 28 27 16 15

Figure 10.4-1 Revoker Map Entry Format

TAG

MASK

0

·-----

;.

I ,
I

..

the map slot nominated by the name field of the revoker. If this

slot too is a revoker, the process of access masking is repeated

until a non-revoker map slot is reached. The final slot is the

one that stands for the object protected by the original

capability. Where, previously, the name of a capability has been

taken to point at ln object, what was actually meant was that the

name pointed at a (possibly null) chain of revokers ending with

the object in question. Thus, in most cases, any intervening

revokers between a capability and an object are transparent to the

user, apart from the modification of access codes, so that for

example, OBJINF when applied to a capability that points at a

chain of revokers will report, not the access code in the

capability, but the computed access code together with the tag

field of the root object.

Map slot reference count management is done a little

differently; whenever a name, be it in a capability or a map slot,

is copied or deleted, it is the reference count of the first

object in the chain pointed at by the name that is affected, so

that revoker map .slots will be treated uniformly with those that

denote objects from the point of view of automatic deletion.

The access mask of a revoker can be changed by the REVOKE

instruction. REVOKE must be applied to a capability, which has a

name that immediately points at a revoker and the revoke access

bit (d15) that is generic to all capabilities must also be set in

its access code. The function of the revoke bit is analogous to

the use of lockers in Redell's system in that the presence of the

revoke bit conveys the privilege of being able to exercise

revocation . If it is desired to copy a revocable capability as a

parameter without passing on the · right of revocation, a copy of

the capability should be made using the access code masking

facilities of the REFINE order to cancel the revoke access bit.

Redell makes objects revocable by sealing them in revokers and

then returning a capability that points at the revoker , but in the

CAP - III system , · sealing a capability involves pr eser ving all of

t he fields of the capability and that would l eave no space in a

r e v oke r map entr y fo r an access mask . At one stage i n the kernel

desi gn whole cap a bilities were s eal e d and th e revoke op e ration was

-1 03 -

I

~~- 11
I

'I

;.

defined only to reduce the access code of the sealed capability.

This was unsatisfactory as ideally it should be possible to

support temporary as well as permanent revocation. Users cannot

be allowed to increase the access code of a sealed capability,

otherwise they could easily gain extra privileges in their

capabilities. To solve this problem the mechanism was revised so

that the act of making a revoker does not seal the original

capability. Instead a revoker was arranged to be interposed

between the capability and the first object that it pointed to.

With this organisation it is safe to allow users to increase

access in a revoker's access mask because the privileges that they

can gain are constrained by the access code in the capab~lity that

has been made revocable. Revoker sealing is carried out by the

SEALC instruction which behaves in a different way for revoker

type-objects from the way it behaves with other type-objects. The

specification of the two instructions concerned with revocation

follows:

SEALC (capability sealing - revokers only)
ba(d31-16) revoker type-object capability specifier.
ba(d15-0) tag for revoker map slot.
bm(d31-16) source capability specifier.
bn(d31-16) destination capability specifier.

The revoker type-object capability is checked for

seal access and a slot is taken from the chain of free

map entries and initialised as follows: the type field

is set to be 'revoker', the tag field . is set to be

ba(d15-0), the most significant sixteen bits of the first

representation word are set to be a copy of the name

field of the capability, the least significant sixteen

bits (the access mask). are set to be all binary ones, the

second word of representation is not used, the reference

count is set to one and the reference count marker bit is

switched on. Finally, a version· of the source

capability, with d15 (the revoke access bit) of its

access code forced to be one, is moved to the destination

capability slot. The previous capability ~n this slot is

lost and any entry for it in the hardware capability unit

is flushed out . A side-effect of this order is to

increment the reference count of the map slot pointed to

by the name field of the source capability . It is not

-1 04 -

;

I
I

I I

REVOKE

possible to seal a null capability. This instruction is

illustrated by Figure 10 . 4-2.

n (d31-16)
n (d15-0)

revocable capability specifier '.
new access mask.

The access code of the revocable capability

checked to contain the revoke access bit and a check

also made that the capability points directly at

revoker map slot. The new access mask specified

n(d15-0) is written in the revoker map slot and

is

is

a

by

any

capabilities in the hardware capability unit that were

derived from a chain of map slots including the modified

slot are flushed out so that they will be computed afresh

to take account of the hew access mask.

The SEALD , UNSEALD , ALTERD , UNSEALC and ALTERC instructions

· all signal a fault if an attempt is made to use them in the

presence of the revoker type object .

-105-

).

I

I
I

Type object

'type'

'revoke r'

--

Type object capabil
(for type 'revoker'

New revoker

ity
).

----,,.

-

.

- --- .

.__

'revoker' tag

mask

-------------~ -------
1~ 1

1 access

base
.

size

Object to become revocable

I
I
I
I

1)
2

-·

access

base size

Capability for object
to become revocable

New capability for
revocable object

F~gure 10.4-2 Action Of Th~ SEALC Instruction For Revokers

;.

CHAPTER ELEVEN.

DOMAIN AND PROCESS STRUCTURE,

11. 1. Preliminaries,

The CAP-III kernel attempts to

inter-domain communication by making

unify inter-process and

each protection domain a

separate process in conjunction with a message system that is

equivalent, in both speed and power, to the domain call machinery

of the CAP-I memory protection system. There is no within-process

communication facility which means that the analogue · of a CAP-I

process with many protected procedures will be a cooperating group

of processes in CAP-III and it may be hoped that the greater

potential parallelism of - the CAP-III arrangements will have

beneficial effects in the area of efficiency. The message system

is designed to handle procedure call like communication in a

simple and direct fashion, while at the same time providing

support for more . complicated protocols. The global naming scheme

employed by CAP-III makes it possible for all varieties of objects

to be sent as the contents of messages without any need for

translating names or duplicating data structures. There are no

problems concerned with parallel execution within a single domain

because each process can control its

to accept and either handle just

messages, at a time.

own activations by choosing

a single message, or many

The advantages of a non-hierarchical domain structure within

CAP-I processes suggests that in CAP-III it would be most suitable

to have a non-hierarchic process structure and that all processes

should be equal in status. However, the CAP-III kernel needs to

be able to notify an operating system about faults, interrupts and
-

scheduling requests. For this purpose one process, known as the

Interrupt Process, is distinguished from all others. The kernel

will cause this process

operating system about

to run whenever it wishe_s to inform the

some event and it is also the initial

process to be run by the kernel when the sys tern is loaded. The

remaining processes in the system are treated equally by the

kernel , although the operating system can elect to set up a

- 106 -

I
-I

I

). .

dynamic hierarchy of control by making the scheduling of some

processes the responsibility of others; these coordinator

processes will notify the Interrupt Process of their intentions to

get them carried out.

11.2. Data Structures.

A process is represented in the map by a process object which

contains a capability for the domain descriptor of the process.

The first sixteen slots in this capability segment are for the

capability tables of the process and there are two further slots

that define other parts of a process's apparatus as described in

the previous chapter. The seventeenth slot defines the process

base which is a data segment. These data structures are

illustrated in Figure 11.2-1. Like the domain descriptor, the

process base is private to the process. Part of it is a dump area

to hold the contents of the processor registers whenever control

leaves the process. There is a time-slice word that contains a

negative count and this is incremented at regular intervals while

the process is running. Whenever the count reaches zero an

interrupt is generated to signify that the process has exhausted

its ration of time. Another word holds a wake up waiting flag

that is used to prevent a program from accidentally ignoring some

event, such as the arrival of a message or a peripheral interrupt .

The flag is set whenever the kernel wishes to notify a process

about an event and discovers that the process is already active.

A process is prevented from waiting when the flag is · set, and any

attempt by the process to hold up results in an immediate

resumption so it can then poll message channels and peripherals to

discover the · exact nature of the wake up. The condition of a

process is held in a state word in the process base and this can

take one of two values ' active ' or 'h eld up'. An active process

is one that is free to run whenever the processor is available and

a held up process is one that is awaiting an event . The priority

word in the process base holds a numeric value that is used when

the kernel has to choose between processes that are free to run;

in such a case the numerically highest priority will take

precedence.

-107-

· I I
.1 '

I

I I

; :

Process object

Capabilities for
Capability tables

I
I

I

-------~~

•·process'

~
I ,.

Domain descriptor

- - - - - --------

0
-;_;::,,-------------------. ... ----

se Process Ba

~-~~---------------

Register dump area

0

Figure 11.2-1 Process Data Structures

,

t
i
m
e

s
1
i
C

e

19

Process base capability

16

w
a
k
e

u
p

20

, .

Message pool
capability

"7 '
"' ..

p s
r t
i a
0 t
r u
i s
t
y

21 22

;.

The messages that can be sent between processes take the form

of capability segments, known as message blocks, which are

allocated from larger segments known as message pools and are

shown diagrammatically in Figure 11.2-2. The eighteenth slot in a

process's domain descriptor con ta ins a capability for the pool

from which the process's message blocks are to be issued. A

message pool can be local to a single process or common to a group

of processes and there is no need for message pools to be resident

in memory, as the kernel treats the message system segments

uniformly with ordinary segments. This allows us to escape from

the resource control problems of Watson's system with its single,

central, resident pool. CAP-III message pools can be part of

virtual
1
memory and swapped or extended at will. The first two

capabilities in a message pool are head and tail pointers to a

chain of inactive message blocks within the pool. These pointers,

in common with others in the message syste~ data structures, take

the form of refined capabilities for sub-segments of message pools

so that the kernel reference count mechanisms will lock down any

· apparatus belonging to an active message transaction.

pointer is indicated by a null capability.

The null

Message blocks are of fixed length and can hold five

capability arguments . There is no provision for data arguments as

such, but of course it is possible to pass a capability for an

area of store that embraces some data parameters . There is a link

capability which is used to hold a pointer to the next message

block in a chain, such as the free chain in a message pool or a

queue of messages waiting on a message channel. A message block

holds information about the size of the pool from which it was

allocated and its offset within the pool, so that it is possible

for the kernel to undo the refinement data in a message block

capability when it wishes to gain access to the pool to return a

dead message to the pool's free list. This may take place in a

process different from the one which constructed the block in the

course of a non-reply type transaction or during fault processing.

A message block may be labelled with a .1.sill. when it is created and

this tag can then be used by processes that multiplex messages to

correctly identify replies to them. To facilitate replying to

-1 08-

Message Pool O

Message
Block

2

3

0

1

2

3

4

5

14

15

I

·. 11 11 •••••••••• • • • • • •. • ·-• • • • • • • • • • • • •• • •.• • • ••• • • •

pool size I pool offset

message block tag

Figure 11. 2- 2 A Message Pool and Message Block

"
I

head pointer

J
') 1····"

tail pointer

> link capability

•

t
J

I
: capability
1 arguments
I area
I
I

·,

teply capability

I
I
I
I

'

· ,

I .

I

messages, a capability for a message channel , known as the reply

channel, can be incorporated into a message block so that the

recipient of the message can return it without requiring a.

pre - existing channel to the sender. A non - reply type message will

have a null capability instead of a channel capabili t y i n this

field. Users only see message blocks as capabilities for message

objects and they are not given access to the con tents of a block

except ,through the kernel operations to load and unload argument

capabilities .

Message blocks as such are never given directly to processes.

Instead they · a r e always encapsulated in message objects which are

extended objects (whose type 'message' is recognised by the

kernel) and have a segment capability for a message block as their

representation. This is done so that the kernel can cause a

process to relinquish access to a message block by updating the

con tents of a message object no matter however the process has

duplicated and distributed capabilities for it.

Messages are. sent along message channels which are describ e d

by channel objects that have a capability segment as their

representation and a channel is shown in Figure 11.2-3. The first

two capabilities in the segment act as head and tail pointers for

the queue of messages despatched on the channel that have yet to

be received. If there are no

will be . null . The remaining,

outstanding messages

third capability in

the pointers

the channel

segment is a capability fo r a process object defining the process

to be woken up whenever a message arrives on the channel. Th e

refinement field of this capability is utilised to hold a count of

the number of _ messages que ued upon the channe l . Th ere are two

access codes , send and recei v e associated wit h message channe l s

that are used to control the transmission and reception of

messages on the channel r espectively .

A mor e general scheme would be to introduce ' mail box es ' i nto

whi c h an y pr ocess could de posit messages a n d can be served by a

n umbe r of pr ocesses . Ho wev er this would require the ke r nel t o

kee p trac k of all th e process es wa iting on a ch a nn e l and then to

wak e them all up when a mes sage arrives . Thi s i s a complic a ted

-1 09 -

Channel
object

r
I

I

I
\

· ~

Channel
segment 0

2

3

4

5

'channel'

. ..

~- -

~

I

message count ·

31 16 15

Figure 11.2-3 Message Channel Format

.

.

0

Lad
I
)
~ tail

pointer

pointer

process pointer

, I
I

task that it would be difficult to do efficiently in microprogram.

Instead, a slightly simpler approach has been chosen, in which

only one process can be attached to a channel at any one time.

There is complete freedom in the number of channels by which a

process can send and receive messages.

A process can obtain a message object ready for use by

application of the MAKEBLOK order which takes a block off the

process's message pool free chain. It is possible to specify the

tag of the message block and also to set up the reply capability

to be either a channel capability or null. The result of this

operation is a capability for a message object encapsulating the
message block.

Capability arguments are put into a message by the PUTARG

instruction and can be extracted by GETARG which are rather

similar in function to the MOVECAP instruction for shipping

capabilities between capability tables.

When a message block is finished with, the KILLBLOK
instruction can be used to overwrite any capabilities in the block

with null capabilities and then to return the block to the pool

from which it originated . The destruction of the capabilities

within the block prevents dead messages from wastefully keeping

slots tied down in the map. Once a message has been killed, it is

necessary to prevent the message object from being used to ac~ess

the message block any more, and this is done by replacing the

capability for the message block in the message object with a data

type representation that will cause any attempt to extract a

capability from the message object to fai 1 ~ The invalidation of

the message ob'j ect in this way wil 1 cause any occurences of the

message block in the hardware capability unit to be lost. This

contrivance is used in several places in the message system

whenever it is desired that a process should lose access to a

message. The

listed below:

instructions concerned with message blocks are

MAKEBLOK ba~ d31-0)
bm d31-16)
bn d31-16)

message block tag.
reply channel or null capability specifier .
destination capability specifier . ·

If the reply capability is not null, it must possess

-110-

I

I
1

li

II

""

:;,

1111 1
111 ,

I•

Ill :I
.11

·1

the send access code . The head and tail pointers of the

current process's message pool are inspected to see if

there is a free message block available. If there is

not, a fault is signalled and the instruction terminates,

otherwise the head block on the free chain is detached

and ini tia.lised as follows: the size and pool offset

fields are set up to describe the current message pool,

the tag field is set to be ba(d31-0) and the reply

capability is copied to the reply capability slot in the

block. A message object is set up in the map with a

capability for the message block as its representation

and a capability for this object is copied to the

destination capability slot. The previous capability in

this slot is lost and any previous entry for it in the

hardware capability unit is flushed out.

KILLBLOK n (d31-16) message object capability specifier.

PUTARG

GETARG

If there is an unused reply capability in the

message, . a fault is signalled and the instruction

terminates. Otherwise the pool size and offset fields

within the block are used to reconstruct a capability for

the message pool from which the block was allocated and

then the block is attached to the free chain in the pool .

All of the capabilities in the message block are set to

be null and the message object is then invalidated to

ensure that the message object cannot be used again and

any entries for it in the hardware capability unit are

flushed out.

ba argument number .
bm(d31-16) message object capability specifier .

The argument number must be in the range O to 4

inclusive . The capability specified by bn is copied to

the (ba) - th argument capability slot in the message

block .

ba
bm(d31 - 16)
bn C ct31 - 16)

a r gument number .
message object capability specifier .
dest i nation capability specifier .

The ar gumen t numbe r mus t be in t h e r a n ge O t o 4

inclusiv e . Th e (ba) - th a r g ument capab i li ty i n the

-111 -

11

I

message object is copied to the destination capability

slot. The previous capability in this slot is lost and

any entry for it in the hardware capability unit is

flushed out.

11.3. The Interrupt Process,

The kernel transfers control to the Interrupt Process whenever

an interrupt or fault occurs. If a fault arises when the

Interrupt Process itself is running, the kernel will print some

diagnostic information on the CAP intimate teletype and resign.

The major implication of this is the restriction that the

Interrupt Process must be resident, as it must not be subject to

any virtual memory faults. Interrupts are held off by the kernel

when the Interrupt Process is running but they will automaticall~

lead to a resumption of the process if it tries to transfer
control elsewhere.

The Interrupt Process can start up other processes by using

the WAKEUP order which takes a capability for a process object as

its argument. To succeed, the corresponding process must be

marked as active in its process base, otherwise control will

temain in the Interrupt Process and a characteristic code will be

delivered by WAKEUP. To start up the process, th·e kernel will

preserve the processor registers in the Interrupt Process's

process base and reload them from the process base of the target

process. Then the capabilities of the Interrupt Process will be

made inaccessible and control can be switched to the new process.
When control is subsequently redirected back to the Interrupt

Process, in response to an external interrupt or some other event,
a register specified by the WAKEUP instruction will be set · to a

characteristic code which can then be interpreted to discover what

has happened.

The Interrupt Process can determine which device caused an

external interrupt by using the WAIT 1 instruction which will

return the number of the device with the longest outstanding

interrupt. The Modular One front-end computer will maintain a

queue of interrupts and it may take several applications of' the
WAI T 1 operation to clear the entire queue. The invalid device

- .11 2-

· 1·1 ,. .

number zero is returned if the queue of waiting interrupts is

exhausted.

If the Interrupt Process has no useful work to perform because

all processes are held up awaiting some event, by obeying the WAIT

0 instruction it . can request to be suspended until an external

interrupt arrives. It is normal practice to follow a WAIT Oby a

WAIT 1 to determine where the interrupt came from.

The wake up waiting flag of the Interrupt Process is used to

prevent the process from losing interrupts that occu~ while it is

running. ThEl flag is . set whenever an interrupt arrives while the

process is active and the flag can only be cleared by use of WAIT

1. If the process tries to obey either WAKEUP or WAIT O when the

flag is set, the process will resume immediately and must attempt

to clear the condition.

It is essential to the kernel interrupt handling mechanisms

that the process base and domain descriptor of both the currently

active process and the Interrupt Process are not flushed out of

the · hardware capability unit otherwise it will be impossible to

dump and restore processor registers. A fault wil 1 be signalled

if either the REVOKE or the ALTER operations attempt to modify a

capability that would in turn lead to the removal of the critical

capabilities from the unit.

The specification of the Interrupt Process orders is given

below. In ordinary processes the WAKEUP order is defined to be a

null operation.

WAKEUP n (d31-16) capability specifier for a process object.

~f the Interrupt Process wake up waiting flag is set

then:

ba : = ffeOOOffff

and execution continues in the Interrupt Process .

Otherwise if the process base of the nominated process is

marked as being held up then:

ba(d31-16) := ffaOOO
ba(d15-0) := tag field of process object

and execution continues in the Interrupt Process. If, on

the other hand, the process was marked as active, the

-113-

~--

).I

WAIT

processor

Process's

registers are

process base

dumped into

and restored

the

from

Interrupt

the target

process's process base. When control eventually returns

to the Interrupt Process, ba will be set as follows:

ba(d15-0) := tag field of currently running process.

ba(d31-28) := interrupt code thus:

#0 - current process has become held up
#1 to #9 - unused
:fla - see above
:fib - unused
#c - time-slice exhausted
#d device busy hold up (d27-16 is a device number)
#e - external interrupt
#f fault (d27-16 is the fault code).

n (dO)

n = 0

wait code.

If the wake up waiting flag of the Interrupt_

Process is set, execution continues normally;

otherwise, the Interrupt Process is suspended until

an external interrupt arrives.

n = 1

ba := number of head device in Modular One interrupt

queue (0 if queue is empty).

1 1 • 4 • Sc h ed u 1 i n g .

The kernel carries out some simple scheduling operations

during message transactions by manipulating the priority and

status words in process bases. When one process transmits a

message to another, the kernel first inspects the state of the

destination process. If it is active, the kernel will set its

wake up waiting flag to indicate the presence of more work to do;

otherwise, if ttie process was previously held up, its state word

is set to be 'active'. In the latter case, the kernel will then

go on to compare the priorities of the two processes involved and

if the priority of the destination process is the greater of the

two, control is switched to that process.

A process may request to be held up until some event occurs ,

such · as the arrival of an interrupt or a message. In this case,

the kernel first checks that the process's wake up waiting flag is

not set and then marks the state word of the process base with the

value 'active' before r eturning to the Interrupt Process with the

- 114-

I

ij
1 ':

interrupt code #0. The automatic 'binary' scheduling carried out

by the kernel means that the process that is running when the

Interrupt Process is eventually re-entered after a WAKEUP may not

necessarily be the process that was originally started off. This

is the reason for including process object tags in interrupt codes

so that the Interrupt Process can id~ntify the current process. A

process that has been marked as being held up will only . become

active again due to the arrival or an event or by · a message of the

modification of the state word in its process base by explicit

software action.

Processes are forcibly held up if they attempt a transfer on a

peripheral device that is busy . In these circumstances, the

program counter of the process is set back so that when the

process is resumed, probably in response to an external interrupt~

the failing order will be retried. To resume such a process the

operating system must set the state word of its process base to

the value 'active 1 • Peripher~l t~ansfers carried out by the

Interrupt Process are treated specially in that the kernel will

hold up the Interupt Process if it attempts to access a busy

device until an external interrupt arrives.

A process may elect to be held up immediately after

transmitting a message and this results in the process being

marked held up, provided that its wake up waiting flag is not set.

If tne priority of the destination process is greater than or

equal to the priority of the sending process, the kernel transfers

control to the former; otherwise, if the destination process

priority is lower, the kernel will enter the Interrupt Process

with the interruI?t code ffO because there may be more deserving

processes of an intermediate priority that can be run .

Thus it may be seen that the kernel is responsible for simple

scheduling decisions involving two processes and a software

process coordinator need only be invoked when a comprehensive

general reschedule is required. This intervention of the kernel

in the scheduling of processes greatly contributes to the

effectiveness of the CAP - III message system .

-1 15 -

11.5. The Message System.

The SEND instruction is used to despatch messages and takes

two arguments: a channel capability specifier and a message

capability specifier. The channel capability must hold the send

access code, and the message object . must have a message block as

its representation. The message is chained onto the t .ail of the

queue of the messages attached to the channel, and then the

message object named by the message capability has its

representation invalidated to prevent further access to the

message in the sending process. The kernel will · then schedule

between the current process and the destination process according

to the rules outlined above .

A process may find out how many messages are waiting on a

message channel by use of the MESSAGES instruction which has the

specifier of a channel object as its argument and returns the

message count in the channel segment as its result.

A message may be received by use of the RECEIVE instruction

which has a channel capability specifier and a destination

capability slot as its arguments. The channel capability must

hold the receive access code. If there are no messages queued

upon the channel, the current process's program counter is set

back and the process is held up until the arrival of an event

signal when the channel will be inspected again. This affords a

mechanism for making a process wait for a message on a single

channel. If it is required to poll a group of channels, the

MESSAGES operation should be used first of all to see if there is

a message on one of the group of channels before a RECEIVE order

is obeyed . If there is a message on the channel, RECEIVE will

construct a new message object whose representation is the head

message block queued on the channel and it w~ll copy a capability

for this object to the destination capability slot. The tag of

the message block is also made available so that replies can be

distinguished. The head message segment will be stripped off the

channel queue and the channel message count will be decremented.

The newly made message ob j ect is suitable for interrogation by

GETARG to extract argument capabilities and then result

-11 6-

""

capabilities can be loaded into the message with PUTARG. It is

also possible to retransmit the message to another process with

the SEND order, in which case the retransmitting process will lose

all further rights of access to the message. This facility is of

use to processes that act as gate-keepers for other processes. It

should be noted that when the final recipient of a message replies

to it, the reply returns directly to the originating process of

the message and no action is required of the process that took

part in forwarding the message.

If a process runs out of things to do and wishes to await the

arrival of a message it can execute the WAIT order which will

cause it to be held up, subject

waiting flag. When a process is

to the value of its wake up

woken up aft er a WAIT it may

inspect its - incoming message channels with the MESSAGES order to

decide upon which channel the message arrived. If the process is

only interested in a single channel, it may wait upon it alone by

using the RECEIVE order.

The remaining primitive in the message system suite is called

REPLY which has a message capability as its argucient. REPLY will

extract the reply channel capability from the message and, if it

is null, the mesgage will be disposed of identically to the way in

which KILLBLOK behaves; so that the effect of replying to a

non-reply type message is to throw the message away. If, on the

other hand, the reply capability is valid, REPLY is equivalent to

SEND with the reply channel as its argument together with the

additional feature of overwriting the reply capability in the

message segment with a null capability. This is so that the reply

channel capa~ili ty cannot be exercised again . The reply

capability in a message can be considered to be an analogy of a

'reply-paid envelope'.

There are two instructions called SENDW and REPLYW, that are

the waiting variants of SEND and REPLY respectively. They are

functionally equivalent to the conjunction of a . SEND or REPLY

order and the WAIT order . These two orders are used to indicate

that a process has no more useful work to do after transmitting a

message .

- 117-

' I _. I

The normal cycle of events for two processes communicating in

a procedure call like fashion, analogously to inter-domain calls

in other systems, is for the calling process to manufacture a

message using the MAKEBLOK order , load · it with argument

capabilities using PUTARG and then transmit it along a message

channel to the target process. The sending process will use the

SENDW instruction so that it goes to sleep until some event , such

as a reply to this message, occurs . The called process will be

woken up and the RECEIVE order can be used to pick up the newly

arrived mes sage . Arguments in the message can be extracted with

GETARG and then, aft er processing be the message , result

capabilities can l oaded into the message with the PUTARG order

before returning it with the REPLYW instruction . This latter

order will also put the called process back into the waiting state

until the arrival of a further message, whereupon the cycle can be

continued. The return of the message block will re-awaken the

sending process which can pick up the message with RECEIVE and

extract the results with GETARG before disposing of the message

wi th KILLBLOK.

By using other combinations of the message orders it is

possible fo r a process t o han dle r eque sts upon several channels

concurrently and to construct non - reply type messages or pass

received messages on to other processes in support of more complex

communication protocols. In these cases, the tag field in message

objects provides a simple mechanism t o enable a process to

recognise replies that arrive in an order different from that in

which the original messages were sent out .

11. 6 . Specification Of The Message System .

WAIT ba(d27 - 16) information code .

If t he wake up waiting flag of the current pr ocess is

s e t , c lea r it and c ontinue ex ecution. Ot h e rwi se ;

preserv e t he s t ate of the process in its process base and

trans f e r con tro l to the Interr upt Process set ti ng the

i nterr up t i nform~tio n code as f ollows :

d 3 1-28 : ltO
d27 -1 6 : ba (d27-16)
d16-0 : t ag of ma p entry for c urrent process .

-118-

SEND

SENDW

REPLY

REPLYW

RECEIVE

ba(d31-16)
n < d31-16)

message object capability specifier.
channel capability specifier .

The channel capability is checked for send access .

The message block specified by the message capability is

chained onto the queue of messages on the channel .

Adding the message onto the channel queue has the effect

of incrementing the channel message count . The process

associated · with the channel is then woken up and a

schedule between the sending process and the target

process takes place .

ba (d31-16)
n (d31-16)

message object capability specifier.
channel capability specifier.

This order is similar in effect to SEND except,

provided that its wait up waiting flag is unset, the

current process is held up.

n (d31 -16) messa~e object capability specifier.

If the reply capability in the message block

specified by the message capability is a null capability,

the effect of this order is identical to KILLBLOK.
Otherwise the reply channel capability is extracted from

the message block and replaced by a null capability

whereafter the order behaves similarly to SEND with the

reply channel as its channel argument.

n (d31 -16) message object capability specifier.

This order is similar in effect to REPLY, except,

provided that its wake up waiting flag is unset, the

current process is unset.

bm(d31-16)
bn (d31-16)

message channel capability specifier.
destination capability specifier .

The channel capability is checked for the receive

access code. If there are no messages queued upon the

message channel, the program counter of the current

process is stepped back and the process is held up and an

enforced entry is made to the Interrupt Process.

Otherwise the leading message block is taken off the

message queue and a capability for a message object

defining it is moved to the destination capability slot.

Th e message block tag of the received message is loaded

-119-

in Ba(d31-0) . This results in a decrement of the channel

message count. The previous capability in the

destination capability slot is lost and any entry for it

in the hardware capability unit is flushed out. Finally

register Ba is set to be the value of the tag field of

the message block.

MESSAGES n (d31-16) message ch~nnel capability specifier.

ba(d31-0) := the count of the number of messages waiting
upon the message channel.

-120-

CHAPTER TWELVE.

ORGANISATION OF THE KERNEL MICROPROGRAM.

12.1. Initialisation.

The kernel is loaded into microstore from disc by a bootstrap

microprogram that is input by the intimate paper tape reader. The

bootstrap, known as DISCBOOT, also clears the stores and loads the

initial system code ready for running. Before control is

transferred to the kernel, DISCBOOT will reset the state of the

processor and clear any error indicators to put the machine into a

tidy, standard initial condition. The communication link with the

Modular One computer is restarted to prevent any incompleted

operations from the last run interfering with the freshly loaded

system.

The DISCBOOT utility is shared by all CAP microprograms, so it

~sup to the kernel to set up its own starting environment. It is

passed a number of parameters, extracted by the bootstrap from the

user system memory image on disc and these are used to tell the

kernel the absolute location of the map and the map offset of the

process object for the initial process. The kernel · can then set

up in the capability unit those capabilities necessary to start

the user sys tern. The kernel initialisation consists of of about

250 microinstructions.

12.2. Basic Instruction Set.

Most basic user instructions are implemented entirely by the

stage one sequence and a single micro-order in the Function Memory

(Section 8.2), but the · more involved basic orders, particularly

these for floating point operations, require additional space in

microstore where they account for some 6 50 words. This part of

the CAP-III kernel is more or less identical to its counterpart in

the CAP-I microprogram so that the two basic instructions sets

will be compatible this is useful when the transfer of programs

between the two systems is concerned.

-121-

12.3. Peripheral Control.

The microprogram for interpreting peripheral instructions and

organising device transfers is also similar in both systems for

compatibility. This part of the microprogram is quite complex.

The CAP microprogram can read and write to the Modular One's

memory and can also accept interrupts across the link. To start a

transfer, the kernel will write a transfer request to the Modular

One's store to attract the attention of the other machine. The

link program in the Modular One· will then read the request,

allocate buffer space and, for an input transfer, start to accept

data from the appropriate device. When this stage is completed,

the Modular One will interrupt the CAP to signal that the transfer

is ready and the CAP can then carry out a fast store-to-store copy

to effect the transfer. To finish off, the CAP will indicate to

··· ·- the Modular One that the transfer has been done and the

Modular One will reclaim the buffer, which if it was for an output

transfer, will result in its being tr~nsmitted to the appropriate

peripheral device. Most of the code in the kernel 1/0 system is

concerned with ~dministering the protocol between the two machines

and optimising efficiency by slaving the parameters for the

current device in microstore to reduce the number of interactions

between the machines. The slaving persists until a device order

is encountered for a different device in which case the parameters

of the old device have to be flushed out and those of the new

device picked up. This part of the kernel is nearly 600 words

long.

12.4. Interrupt Handling.

External inte~rupts and internal processor parity errors cause

the microprogram to be diverted to an interrupt location in

microstore whenever control returns to stage one. Parity errors

are usually catastrophic and result in the kernel giving a

diagnostic print-out on the intimate teletype before resigning.

In the case of an external interrupt, the interrupt service

routine will i nspect the state of the system; if control is in a n

ordinary process , an entry is made directly to the Interrupt

Pr ocess by disabling the ha r dwa r e capability registers fo r the

current process and r e storing thos e of th e In terrupt Proc ess ,

-1 22 -

after dumping and restoring the processor registers from the

appropriate process bases. On the other hand, if the Interrupt

Process is already running, then its wake up waiting flag is set

unless it was in the dormant WAIT O state , in which case the it

resumes immediately.

An interrupt is generated every time a tweLve bit count of the

number of executed microinstructions overflows. If control is in

an ordinary process when this signal arrives, the time-slice word

in its process base is incremented by one and · if the resulting

value is zero, an enforced entry is made to the Interrupt Proc~ss

to signify that a time-slice is exhausted. In practicet one

thousand of these counts are equivalent to about one second of

real time although the exact relationship obviously depends on the

mix of instructions executed.

In the last chapter, there was a description of the behaviour

of the kernel in response to faults. In most cases the code to

signal faults is called if the kernel finds an unreasonable

argument or request, but some faults are reported in direct

response to microprogram traps gener~ted by protecti6n violations

and arithmetic overflows.

After a diagnostic print-out on the intimate teletype caused

by a fault in the kernel or a parity error, it is possible to

resume execution by typing the character 'C' (for continue) or to

jump to a fault entry point in the current process by typing the

character 'J'. The kernel can be stopped temporarily by typing an

'X-on' character, which will produce the standard diagnostics and

then the kernel can be resumed by typing the character 'C' as

before . This particular facility is useful for conducting

performance measurements · as part of the diagnostics include the

value of a counter that will record hardware statistics selected

by control switches on the processor. The microcode concerned

with processing interrupts

approximately 350 words .

and reporting

-123-

faults comes to -

I .

j I

I

I 1

I
1.

1 I,
I

J I

12.5. Use Of The Capability Unit.

The structure of the capability unit was outlined in Section

8. 3. Capability register O is always used to hold a descriptor

for the map, and it is set up from the parameters passed over by

DISC BOOT at initialisation time. Whenever the kernel wishes to

inspect or modify the contents of the map, it selects register 0

in last mode and uses relative offsets within the map to address

store so that any map pointers going outside the bounds of the map

will result in a protection violation . .

The most important field in each capability as held in the

capability unit, from the point of view of the following

discussion, is the tag field which consists of two sub-fields as

described earlier. One holds the number of the capability_

register for the capability table from which the register in

question was loaded, while the other normally gives the capability

offset of the loaded capability in its parent segment. For

example, a register for a capability table will have a tag that

contains the regist'er number of the domain descriptor containing

the capability and its table number, the latter being the offset

of the table capability in the domain descriptor.

A process is represented in the capability unit b~ a register

whose tag is derived differently: the parent register sub-field is

zero (pointing to the map register) and the offset sub-field is

the least significant eight bits of the map index of the process's

entry in the map. The full index is kept in the size field of the

register and, because process capability registers are only used

to fix a process's capabilities in the capability unit, the access

field is zeroed to prevent any access to store through the

register. Thus, when the kernel switches context between

processes, it can scan the capability unit in normal mode with a

tag based on the hashed map index of the target process in order

to find the process ' s capability register. If a normal mode match

occurs, the kernel checks that the value of the size field of the

located register matches the map index of the process to be found .

If this check succeeds , the register is accepted, otherwise a free

register is found and allocated to the process . I t can be

ex pected that onl y a few sea r ches of the unit for processes wil l

-1 2 4-

I I
: I

fail because of one process present in the unit having the same

hash key as another that is found first by the normal mode search,

leading the kernel to think that the first process is absent from

the unit.

In the CAP-I memory protectioQ system, processes are held

differently in the unit: a process is represented by a capability

for the PRL of the process with a tag which matches the address of

the PRL segment in the process's coordinator's address space. In

the CAP- III kernel, this contriYance cannot be used because there

is no hierarchy of address spaces. However it must be possible to

pick up a process if it is already in the capability unit because

otherwise , the cost of evaluating the structure of a process is

high, and the wasteful reloading of capabilities would reduce the

efficiency of the message system by a considerable degree.

The process

registers which

contained within

capability register is the root

controls access to the domain

the process as shown in Figure

of a tree of

of protection

12.5-1. The

domain descriptor capability register is. a direct descendent of

the process register and has the tag <process register, O>; This

register is used to read capabilities for the process base and

capability tables. The former would be found in a register . with

the tag <domain descriptor register, 16> and the latter in

registers with tags <domain descriptor register, n> where 'n' is

the tab le

.capabilities

number

in a

in the range 0

capability table

to

are

15. The

tagged

individual

thus <table

register, capability index> as descendents of the tables from

which they are evaluated .

The TGM is set to hold the capability register numbers of the

entries in the unit for the capability tables of the currently

running process. In Section 8. 3 it was stated that the virtual

address translation mechanism will translate the capability

specifier of an address into the tag <contents of TGM indexed by

table number in address, capability index in adqress> before

scannin.g the capability unit, therefore only capabilities

belonging to the process whose tables are set up in the TGM will

be found and other capabilities in the unit remain inaccessible

until the TGM is reloaded .

-125-

0

~

q

T GM

PJ
I
I

IF • I r

•
I
I
I

[]
-

TAG

- 0 Ott -

- hash
~ . . name ou

.. .. 0 p •

16 q •

- 4 · ~ q '

1 r•

BASE SIZE ACCESS COUNT SPARE

0

RW 2

M_ap Capability Register -

process 0 1 name

Process Capability Register

Re we 2 DD - -

Domain Descriptor Capability
Register

RW 1 PB

Process Base Capability Register

RC 2

Capability Table 4 Capability
Register

RE 0

Capability Register For Capability
Specifier 4/1

-..

Figure 1?.5-1 Use Of The Capability Unit

I I

12.6. Reference Counts in The Capability Unit,

The tree structure of capabilities in the capability unit is

held in place by the use of reference counts kept in the count

field of capability registers and these counts record the number

of pointers, in tag fields and microprogram registers, to the

register in question. Thus the count of a register ,for an

ordinary capability will be zero and will contribute one towards

the count of the register for the table from which it was loaded.

That in turn adds one to the count of the register for its domain

descriptor and this keeps the count of the process capability

register at one.

When the kernel wishes to find a free register for allocation

to a new capability, it scans the unit, starting at the point at

which a normal mode search based on the tag of the new capability

would begin, looking for the first register with a zero count

which can then be cleared and set up with the value of the new

capability. The action of clearing the register includes

decrementing the count of the parent register which, if its count

falls to zero, may become a candidate for re-allocation later on.

The mechanics of the interrupt handling and enforced Interrupt

Process entry on faults and hold-ups requires tha·t the kernel

locks down the process base and domain descriptor of the Interrupt

Process and the current ordinary process (if there is one) so that

process registers can be dumped and restored during a context

switch. This is done by keeping the reference counts of these

objects one higher than the actual number of references · to them;

this will fix them in the capability unit. When a switch is made

between two ordinary processes, the kernel restores the reference

counts of the process being left so that its registers can be

reclaimed if necessary.

If a capability in store is overwritten , the kernel must also

invalidate its entry in the capability unit and this is done by

setting a value which has the significance of 'unset' in the

access field of the register corresponding to the capability so

that any attempt to address memory through it will fail with an

access violation. Furthermore, if the r egister has a non - zero

-126 -

··-

I

.. ~ .,.. I

count,

table,

say because it is a domain descriptor or a capability

all of the capabilities in the tr.ee descending from the

register must also be marked unset.

The kernel only keeps the following hardware types in the

capability unit:~ segments, messages and channels; a discourse on

organisation of the l~tter two types is deferred until later on.

12.7. The Reset Cycle,

It is now possible to describe the kernel 'reset cycle' which

loads a process and its capabilities into the capability unit.

Before switching to a new process, the kernel allocates a process

capability register, a domain descriptor register and a process

base register, but only the first of these is initialised and the

other two are left unset. During the context switch, the kernel

will attempt to address the process base of the target process in

last mode to load the processor's arithmetic registers, but this

will fail with an access violation because the process base

register is unset and it will result in an enforced trap to

microstore address eighteen which activates the protection

violation routine called TRAP18.

The TRAP18 code will inspect the failing register and discover

that it is unset and is a process base (this can be deduced from

the tag and from marker bits kept in the spare field). TRAP18

will then go to the reset cycle code for evaluating the process

base capability, which will attempt to read store using the domain

descriptor . register and suffer another TRAP18 call because this

register is also unset. The reset cycle code is then ent erect

again to set up the domain descriptor by reading the map entry

whose index is held in the process capability register. As the

map capability register is never unset, this reset cycle can

complete and once the domain descriptor has been loaded, the

context switch that fell foul of the unset capabilities can be

restarted.

Once again , TRAP 18 will be called because of the the process

base register which is still unset, but the reset cycle will be

able to read the domain descriptor this time, with the result that

the process base register will be set up and the context switch

-127 -

can be restarted once again.

Now the process base of the new process can be read

successfully and used to prime the arithmetic registers. The

final act of a context switch is to set all of the sixteen TGM

registers to zero; this makes the 9apabili ties of the previous

process inaccessible to the virtual address translation machinery .

However, for the time being, there are no capabilities

available for the new process and an attempt to obey an

instruction within it will cause a trap to location seventeen in

microstore to signify that a capability for the process's current

code segment was not found . The TRAP17 code found at this address

initially looks at the TGM register . indexed by the capability

table part of the failing address. If it is zero, the tab le has

not yet been set up and the kernel scans the capability unit with

a tag consisting of the domain descriptor register and the table

number to see if the table is present and if so, sets the TGM

register to point at it . If a register for the tab l e is not

already set up in the unit, the kernel will allocate a spare

register and mark it unset . The failing instruction in the new

process will be retried and if the capability is still not found

when the TGM is set up , the r e will be a s e cond c a ll of TRAP 17

which will result i n the allo c ation of a capability register for

the missing capability .

Once the allocation is complete , the kernel will suffer a

TRAP 18 call because the register is unset , and while trying to

read it from the parent capabil it y table, there will be another

TRAP18 as that register is also unset . These traps a r e resolved

by t wo r eset cycles in a manner analogous to the evaluation of the

process base capability described earlier.

The sequence of e v ents outlined above is the full r eset cycle

t ha t i s necess a r y i f al.l o f t he capabili t ies of a pr ocess a re

abse n t f rom the capab il ity uni t. In practice , much of a process ' s

appa r atu s wil l be f o und i n t h e unit and i n consequence , it may

onl y bi necessary to ca r ry out a fe w, simple , pa r tial r eset c ycles

be f o r e a process ca n sta rt running . As the pro c ess executes,

there are likely to be s e veral mor e TRAP17 and TRAP18 calls to

-128-

11

I

recover capabilities that have had their registers re-allocated

since the process last ran, or for capabilities that have not been

used before.

The reset cycle is written to restart user instructions either

after allocating or setting up a . single capability register

because it is a potentially recursive task to initialise a

capability register. The microprogram instruction set is not well

suited to this, so an iterative approach is adopted instead.

The segment reset cycle, which is triggered by the TRAP18

routines to set up a capability register, will read a capability

from the appropriate parent capability segment, using the parent

capability register in last mode and then index the map through

register Oto locate the segment's representation, taking account

of any intervening revokers to modify the access code. The access

code is checked to be either entirely data or entirely capability

type and is copied to the access field of the register. The base

and size fields are set up from the results of the refinement

calculation using data in both the capability and the map entry as

described in Section 9.3.

The kernel uses the spare field of a capability register to

contain marker bits that will be set if the register is used for a

domain descriptor, a process base, a message or a channel. By

inspecting these bits and the values of tag fields; it is possible

for the TRAP18 routine to decide what sort of capability register

has been violated and to set about loading it from the appropriate

- parent segment. There is another marker bit called ' active ' that

is used to flag the process bases and domain descriptors of the

Interrupt Process - and the currently running process (if there is

one). The kernel routine for unsetting a capability register will

complain if it is applied to a register marked 'active' and this

prevents locked down registers from being flushed by REVOKE or the

ALTER orders.

Each stage of a reset cycle involves at least five store

cycles; two to read a capability , three to r ead a map entry and

two extra store cycles for every revoker object that intervenes in

the path between the capability and the corresponding root object

-129-

I I

in the map . However, the size of the unit is such that a

capability will remain in existence for a reasonable period of

time before its register is reclaimed for a different capability. ~,

The kernel takes steps to avoid gratuitously throwing away useful

capabilities so that the cost of evaluating a capability is spread

out over many instructions by the slaving properties of the

capability unit.

12.8. Messages and Channels,

As well as the segments describing the structure of a process

and segments of data or program code, the kernel also keeps the

segments sealed within message and channel objects in the

capability unit. These latter objects are not set up in response

to reset cycle faults; instead, the message system code will do a

dummy normal mode scan of the capability unit to find a register

with a tag that matches the address of the channel or message in

question ahd will check to see if its access field is set. If the

access field is not ~et, the kern~l will evaluate the appropriate

capability for the channel or message object from which a segment

capability will be taken and used to set up the register. Only

when the register is set up does the message system try to access

data through it to avoid the need for the ordinary re::1et cycle

becoming involved with messages and channels .

The

register

register

message pool of a process is found in a

with the tag <domain descriptor register,

capability

17>. This

is only set up by explicit loading during the MAKEBLOK

order which · always checks for the eiistence of a correctly

configured register before addressing the message pool segment.

The objects used by the message system are cached in the

capability unit to optimise the performance of the inter-process

communication operations because it may be expected that some of a

process's capabilities for these objects will persist in the unit

between message transactions and will be readily at hand the next

time a message is to be processed.

-130-

: , I

, I '
!

I'
I !

I

I

j,
I

I

::,,,

1

1 1

j,

12.9 . Segment Usage Bits,

The previous description of the actions of TRAP18 was, in

fact, rather simplified by ignoring the control of the segment

usage bits to try to avoid obscurity . When a segment capability

is loaded into the capability unit, . the reset cycle inspects the

usage bits in the segment 1 s map entry. If the segment is marked

as both 'used' and ' dirty ', then it is set up normally; otherwise,

the calculated access code is copied to a location of microstore

associated with register to be updated and, if the segment is

neither 'used' nor 'dirty', the access field of the register is

set to 'no access '. If the object is marked 'used' but not

'dirty ', only the read type bits of the access code are set in the

access field . On an access violation, the TRAP18 routine inspects

the access field of the failing register and if it is unset , goes

directly to the reset cycle · to evaluate the capability. Otherwise

the faulted access request is compared to the full access code

held in the microstore record corresponding to the failing

register and if this code is less potent than the request , an

access violation fault is reported. In the case when the full

access code is suitable and the request is of read type , the

'used' status bit is set in the segment's map entry and the read

type access bits of the full code are moved to the ·capability

register access field . If the request was of write or

read-and-write type, both the 'used' and the 'dirty' bits are set

in the map entry and the full access code is moved to the access

field of the register in its entirety. After one of these pseudo

TRAP 18 entries , the cur rent instruction is restarted and , since an

access code has been loaded into the capability unit , the memory

c ycl e will s u cceed .

The bod y of mic r oprogram devoted to evaluating segment

capabilities , capab ility unit management and the segment reset

cyc l e is nearly 400 mic r oi nst ruc ti ons i n length.

12 .1 0 . Protec t ion Orde r s .

Ther e a r e a number o f util i t y r outines fo r use b y the

prot ec tion fun c tio n s of th e k e rne l, th e mos t im port a nt of which is

a r e s e t cycle for non-hardware objects which are not ke pt in the

-- 131-

I~ - .

I
I

capability unit. This reset cycle will take the address of a

capability and evaluate it to find the root object named by the

capability. The routines for reading and writing capabilities in

capability tables address the capability unit in last mode and

jump into the segment reset cycle code if the capability table is

not set up in the capability unit. When a capability is

over-written, the capability unit is searched in normal mod~ with

the address of the modified capability so that any machine

register can be cleared by marking its access code as unset.

Other utility rotitines deal with map slot reference counts and the

chain of free map entries.

The REVOKE order (Section 10.4) must unset any capabilities in

the capability unit that were derived from paths that go through a

modified revoker map slot. This is done by keeping a table which,

for each capability register, records the map slot number of the

entry from which the register was set up. The REVOKE instruction

will determine the root map slot of the path from the revocable

capability currently being exercised and will scan the table of

map slots, unsetting the access code for all of the registers for

which the table entry matches the root slot number. If one of the

registers that is unset has any descendents, then they are also

unset. The flush carried out by REVOKE may be more violent than

is strictly necessary; it will remove capabilities for the root

object that did not include the changed revoker in their

evaluation, as well as those that did. This could be avoided by

keeping an additional table to . record the length of the path

between the capability and the root object, but it is debateable

whether or not the saving on spurious capability evaluations would

be adequate compensation for the extra code required in the

microprogram. The routines for unsetting all instances of an

object in the capability unit is also used by the ALTERC and

ALTERD instructions together with the message system when it

cl ears message objects but in these cases, the slot to flush out

is the map slot that has been modified and not a slot. shielded by

a revoker.

Objects that are not hardware types are not kept in the

capability unit because its registers are unsuitable for

.,- 132 -

representing objects other than segments. In any case, it may be

reasonably assumed that there will be many more references to

segments than to non-hardware type objects sd that the overhead of

having to evaluate the latter every time should not prove too

demanding.

The distribution of code in the protection orders is as

follows : utility routines, 200 words; type-extension and

revocation, 250 words; capability transfer, 100 words; information

orders, 25 words; message sys tern and process switching, 1 OOO

words. There is remarkably little to comment about in the

implementation of the protection orders save that they conform to

the design rules that were laid down in Chapter Two concerning the

complete validation of arguments before modifying capabilities or

the map so that a call to the kernel with dubious parameters

cannot cause harm or confusion.

No accurate performance analysis analogous to Cook's work for

the memory protection system has yet been carried out for the

CAP-III kernel, but a number of ad hoe measurements made during

the testing phase of the kernel development suggest that

instructions like MOVECAP and SEAL, that carry out f~irly

straightforward operations on capabilities and map entries, take

between ten and fifty times as many machine cycles as basic

instructions, whereas for the message system, the ratio is nearer

several hundreds to one . Compared to the cost of an ENTER/RETURN

sequence in the memory protection system this figure is a little

disappointing, but on the other hand, it compares favourably with

the cost of message transactions in the older system that consume

many thousands of machine cycles . It is to be expected that the

benefits gained here will more than adequately compensate for the

disparity with the ENTER and RETURN operations.

-1 33 -

111

I! I

' ·

CHAPTER THIRTEEN.

REVIEW AND EVALUATION,

13.1, Some Attributes of the Kernel.

The primary motivation for the design and construction of the

CAP-III kernel was to reduce the overheads of a powerful

protection system by the use of microprogramming, and to a

considerable degree this has been successful. The functions of

the kernel are simple, which means that they are implemented by

concise and straightforward sequences of code. Coupled with the

hardware optimisations afforded by the hardware capability unit

and instruction decoding logic of the CAP, this leads to fast and

efficient operation. ' Most important, the memory protection

facilities, which might reasonably be expected to be the most

heavily used part of the kernel are very cheap, mainly because of

the slaving properties of the hardware capability unit. The

microprogramming of the inter-process communication system makes

it considerably faster than any software implemented scheme and

enables us to construct protection domains that can be ·mane very

short and simple-minded without fear of suffering unduly from the ·

overheads of frequent domain changes.

P~otection in the CAP-III kernel is fine-grained, which is to

say that it is possible to protect many items of differing

complexity, ranging from a segment that is

length up to filing system directories and

only a

other

few words in

such

structured,

select and

multi-component objects.

protect just part of

The ability to be

highly .

able to

to the an item is crucial

attainment of minimum privilege.

The slaving of capabilities in the hardware capability unit

allows a domain to have a working set of many capabilities. There

is less of a psychological limit on the number of capabilities

which it is reasonable to exercise than there would be in a system

with only a few explicitly addressed capability registers; this

encourages the full separation of the privileges of a domain.

-134 -

j,

The kernel is entirely self-contained and places no reliance

on the integrity of the software sys tern running on the machine,

which greatly contributes towards its ruggedness. The kernel

always addresses data structures, including the map and capability

segments, through the hardware capability unit so that any invalid

addresses supplied by · user·s or resulting from incorrect

calculations by the kernel will be trapped by the hardware

protection mechanisms. It has been noted earlier that the kernel

al ways tidies up after reporting a fault so that malfunctioning

programs cannot expose any loopholes in the protection sys tern.

The uniformity and simplicity of the protection mechanisms for

both primitive hardware objects and user defined protected objects

offers not only an economy of code inside the kernel but also

minimises the amount that has to be learned by users, who will be

more likely to exploit to the full mechanisms that they can easily

comprehend.

13.2. An Evaluation of the Kernel.

The global naming scheme of the kernel is conceptually more

simple than the nested address space structure of the memory

protection system of CAP-I and involves less memory being tied

down in protection data structures. In the memory protection

system, the route between a capability in a user process and the

representational information for the object it protects is eight

store cycles long: two each in a capability tab 1 e, the Process

Resource List, a coordinator capability table and the Maste.r

Resource List. In the CAP-III system, only five store cycles are

required : two in a capability table and three in the map . It is

reasonable to expect that the number of protected objects in the

CAP-III map will be close to the number of segments, protected

procedures and software capabilities in the CAP-I operating

system, .which means that the · resident memory requirements of the

map for the kernel will match those of the MRLs and PR Ls in the

older system.

Short names were adopted in the kernel because in the earlier

stages of design and implementation, it was found that hashing

long unique names was a costly operation both in terms of the code

-1 35-

. ii
I

required in the microprogram and the time taken to find objects in

the map. There were also difficulties in trying to provide

mechanisms for keeping the microprogram image of a global name

space in step with the permanent record on backing store. What

has been lost by the kernel is the ability to allow users to keep

capabilities in a filing system without translating names. It may

be noted that in the CAP-I system it is necessary to carry out

such a translation and the efficiency of the operating system has

not suffered noticeably, so, it may be hoped that the same will

apply to CAP-III. There are one or two complications involved in

filing active capabilities for extended objects because the

operating system will have to ensure that the structure of a filed

extended object is duplicated in the kernel . map · and its own data

structures. Given the simple organisation of objects and the

centralisation of information about them in the map it should be

straightfoward for the ioftware to cope with this problem.

It is much easier for the kernel to carry out automatic

garbage collection, because of the central collection of ... , ,
Q.J..~

information about objects in the single global map, than it is for

the memory protection system to garbage collect Process Resource

Lists. In CAP-I, each process has to have its own garbage

collector for the process's resource list, and as there are no

microprogram maintained reference counts, the garbage collectors

will be activated frequently with a corresponding degradation of

the amount of useful computation carried out. The CAP-III kernel

only requires that the system-wide software garbage collector runs

to flush out complex looped str~ctures (that it is safe to assume

will only arise occasionally) so that the garbage collector need

only scan the system at low frequency and this imposes very little

in the way of overheads. On the other hand , there is the expense

of maintaining reference counts, but as this , activity is carried

out by the kernel microprogram the cost should be small.

The partitioning approach for segregating capabilities from

data is forced upon the kernel mainly by the hardware of the CAP

machine, but there is also an interesting dependency between

tagged capabilities and forever-unique names that would make

tagging unsuitable for short unique naming schemes. In Section

-136-

4.1, it was noted that in a tagged architecture, it is impossible

to keep track of capabilities because they can be scattered

arbitrarily throughout memory. It is therefore necessary to

employ hashed , forever-unique names so that names will always be

valid, because the system cannot tell when the names are no longer

required. From this observation the applicability of Fabry's

capability-based addressing scheme must be restricted to

forever-unique name systems because of its need for tagged

capabilities.

The type-ex tension facilities of the kernel are very basic,

but they have the expressive power of more elaborate mechanisms

such as those found in HYDRA. The sealing and unsealing

operations provide the essential machinery for concealing the

representation of an object from its users, while at the same time

permitting a duly authorised type manager to ·get inside any

objects that it controls. Because of their simplicity, the kernel

primitives are very fast, but on the other hand, the checking

functions of the slower HYDRA amplification template scheme must

be carried out by the software of a type-manager. It is likely

that software can perform the verification of arguments as quickly

as a general purpose template system because the verification code

can be specific to the particular . interface in question and can

have knowledge of the expected arguments built in, rather than

having to be able to cope with all possible requirements.

The introduction of basic objects and data sealing to the

extended object and capability sealing mechanisms proposed by

Redell (74] has lead to a uniform set of operations for creating

objects, manipulating them and interrogating their

representations. This saves a lot of space in the kernel

microprogram because the type extension facilities can be used

internally by the kernel in the processing of hardware objects .

The revocation features of the kernel integrate well with the

type-extension scheme and the other protection operations.

Revocation can be temporary or partial, although by adopting a

dependent capability system , the ability to make the privilege of

revocation itself revocable has been sacrificed. It is unlikely

that this latter facility would be heavily used and caretaker

-137-

protection dom~ins can be used if the facility is required.

The unified process and protection domain structure is
successful mainly because of the versatile microprogrammed message

system which can be applied equally well to simple procedure-like

interfaces and to more complex ones involving processes thai

handle many messages at one time. There is little· problem of

resource control for message blocks in the CAP-III system because

it supports many message pools that need not be locked down in

memory, and the involvement of the kernel in the scheduling of

processes contributes towards the speed of message transactions by

cutting down on the number of times that the operating system

scheduler has to be invoked.

13.3. Relationship with the CAP-I Memory Protection System.

One of the original motivations for the research described in

this thesis was to extend the facilities of' the CAP-I memory

protection system and to investigate some alternative strategies

for implementing · protection mechanisms, so it is informative to

emphasise briefly the differences between the two systems.

Experience would suggest that using short term global names to
reference objects in a central resident table is at least as

efficient as the nested resource list approach and is conceptually
much simpler. However, global names do require a closer

microprogram involvement with garbage collection because space in

the . map is a scarce resource across the entire system, whereas

slots in a resource list are only drawn upon by a single process ,
so that garbage collection can be done by a program running

synchronously in the

system as a whole.

process without

Earlier in this

any drastic effect

chapter it was noted

evaluation in the

on the

that,

CAP-I because

kernel

of global naming, capability

requires fewer store cycles and so the overheads of

protection are correspondingly less expensive.

In the CAP-I system the type-extension and revocation

facilities of the CAP~III kernel can only be modelled by the use

of protection domains . Thus it might be expected that the

protection of abstract objects to be sharper . and more economical

· in CAP - III. Also, because the kernel has a uniform mechanism for

-138-

Ii I

I

.I

I

111

describing all types of objects and controlling access to them in
a system built around the kernel , there will be less requirement
for software to mimic the basic access control, type checking and
naming functions of the microprogram.

The total replacement of the hierarchical process and
non-hierarchical domain structure of CAP-I by a non-hierarchic
single-domain process architecture within a microprogrammed
message system greatly reduces the amount of operating system code
required to support multiprogramming and it provides a uniform set
of communication primitives for all modules of the system. It is
hoped that the lower cost of message transactions will increase
the speed of the system and that, despite the slight slowness of
the CAP-III message system compared to the CAP-I protected
procedure call machinery, users will have no qualms abou~
implementing complex tasks as a set of inter-communicating
processes in the new system, in the same way that they would use
protected procedures in the older design.

It is reasonable to claim that the kernel provides a complete,
powerful and efficient protection kernel around which it will be
possible to build sturdy and trustworthy operating systems.

-1 39-

REFERENCES.

Anderson 73
"Information Security in a Multi-User Computer Environment", Anderson J., Advances In Computers, Vol. 12,
Academic Press, New York, 1973, pp1-35.

Birrell 78
"Systems Programming In A High Level Languag_e",
A., Ph.D. Thesis, University of Cambridge 1978.

Birrell

Birrell and Needham 78
"An · Asynchronous Garbage Collector For The CAP
System", Birrell A. and Needham R., Opera ting
Review, Vol. 12, No. 2, Apr. 1978, pp31-3j.

Filing
Systems

Bourne et al. 74
"Alg.ol68C Reference Manual", Bourne S., Birrell A. and
Walker I., University of Cambridge, 1974.

Branstad 73
"Privacy and Protection In Opera ting Systems", Branstad
D., Computer, Vol. 6, Jan. 1973, pp43-49.

Burroughs 61 ·
"The Descrii:>tor -- a Definition Of The B5000 Information Processing System", Burroughs Corp., Detroit, · Michigan,
1961 •

Cohen and Jefferson 75

Cook 78

"Protection In The HYDRA Operating System", Cohen E. and
Jefferson D., Proceedings Fifth Symposium On Operating Systems Principles 1 Operating Systems Review, Vol. 9, No.
5, Nov. 7 5, pp 141 - 160.

"An Evaluation Of A Protection
Thesis, University of Cambridge,

System",
1978.

Cook D, Ph.D.

Denning 70
"Virtual Memory", Denning P. : ACM Computing Surveys, Vol.
2, No. 3, 1970, p135.

Denning et al. 74
"Selectively Confined
and Graham G. IRIA -
In Operating Systems ,

Dennis 65

Sub-systems" Denning D., Denning P.
Internationai Workshop on Protection
1974, pp 55-62 .

"Segmentation And The Design Of Multiprogrammed Computer
Systems", Dennis J. , Jo urn al of the ACM, Vo 1. 12, No. 4,
Oct. 65, pp589-602.

Dennis and Van Horn 66
"Pro~ramming Semantics For Multiprogrammed Computations",
Dennis J. and Van Horn E.A Communications of the ACM, Vol.
9, No. 3, Mar. 1966, pp14j-155.

England 74
"Cagability Concept Mechanism And Structure In System 250 ', England D, IRIA International Workshop on
Protection In Operating Systems, 1974, pp 63- 82.

-14 0 -

Fabry 68
"Preliminary Description Of A Supervisor For A Machine
Oriented Around Capabilities" , !CR Quarterly Report, No .
18, !CR University of Chicago , Aug. 1974.

Fabry 74
"Capability-Based Addressing", Fabry R., Communications of
the ACM, Vol. 17, No. 7, Jul . 74 , pp403-412. .

Fenton 74
"Memoryless Sub-systems"~. Fenton J . , Computer Journal,
Vol. 17 , No. 2 , 1972, pp1LI3-147.

Feustel 73

GEC 72

"The Advantages Of a Tagged Computer Architecture",
Feustel E.

7
IEEE Transactions on Computers 1 Vol. C-22, No.

7, Jul. 19 3, pp644-656.

11 4080 Computer Technical Description " , GEC Computers Ltd.,
England. 1972

Graham 68
"Protection In An Information Processing Utility" , Graham
R., Communications of the ACM, Vol. 11, May 1968,
pp365-369.

Herbert 78
"CAP Hardware Manual" Ed . Herbert A.,
Laboratory , University or' Cambridge , 1978 .

Computer

Hoare 74 .
"Monitors : An Operating System Structuring Construct",
Hoare C.A Communications of the ACM, Vol. 17, No. 10, Oct.
74, pp54;i-557 .

Hoffman 73

Jones 73

"Security and Privacy In Computer Systems",,_ Hoffman L.,
Ed . , Melville Publishing Co ., Los Angeles, 1;173 .

"Pr6tection In Programmed Systems" Jones A. ~ Ph . D. Thesis,
Depa r tment of Computer Scie nce, ~arnegie - Mellon
Universi t y , 1973 .

Lampson 69
"Dynamic Protection Structures" , Lampson B. ,. FJCC AFIPS
Conference Pr oceedings , Vol . 35 , 1969 , pp27-3o.

Lampson 71
"P r otection " , Lampson B. Proceedings Fifth
Symposium On Information Sciences And Systems,
University 1971 pp437-443 . (Reiwinted in
Systems Review , iol . 8 , No . 1 , Jan 74 , pp18-24) .

Princeton
Princeton
Operating

Lampson 73

Lampson

"A Note On The Co nfi nement Problem", Lampson B.,
Communications of t he ACM , Vol. 16 , No . 10 , Oct . 1973 ,
pp613 - 6 15 .

and Stur~is 76
"Reflec t io n s On An Op e r a ting System
and Sturgis H., Communications of the
Ma y 1976, pp2 5 1-265 .

...14 1-

Design" La mpson B.
ACM, Voi. 19 , No. 5,

. /

Lauer

Lauer

Levin

74
"Protection
H., !RIA
Operating

And Hierarchical Addressing Structures", Lauer
International Workshop on Pr-0tection In Systems, 1974, pp137-148.

and Needham 78
"On The Duality Of Operating System Structures", Lauer H.
and Needham R., Proceedings of the Second International Symposium On Operating Systems, Oct. 1978.

et al. 75
"Policy/Mechanism Separation In HYDRA", Levin R., Cohen E., Corwin W., Pollack F. and Wulf W.t Fifth Symposium On Operating Systems Principles, Operating Systems Review, Vol. 9, No. 5, Nov. 75, pp132-140.

Liskov 76
"An Introduction To
Structures Group Memo
Science, MIT, Cambridge,

CLU II,
1 36,

Mass.,

Liskov B., Computation
Laboratory for Computer
1976.

Needham 72
"Protection Systems And Protection Implementations", Need ham R., FJCC AFIPS Conference Proceedings, Vol. 41,
Part I, 1972, pp571-578.

Needham 77
"The CAP Project - An Interim Evaluation", Needham R., Proceedings Sixth Symposium On Operating Systems Principles~ Operating Systems Review, Vol. 11, No. 5, Nov. 77, pp17-2.:'..

Needham and Birrell 77
"The CAP Filing System", N~edham R. and Birrell A.,
Proceedings Sixth Symp~sium _On Oper,tinffi ~ystems Principles t. Opera ting Sysvt::IDS Review, Vol. . 1, .. o. ? , Nov. 77, pp 11-L.

Needham and Walker 77
"The Cambridge CAP Computer And Its Protectj_on System"., Needham R. and Walker R., Proceedings Sixth Symposium On Operating Systems Principles 1 . Operating Systems Review, Vol. 11, No. 5, Nov. 77, pp1-11.

Needham and Wilkes 74
"Domains Of Protection And The Management Of Processes 11 , Needham R. and Wilkes M., Computer ,Journal, Vol. 17, No. 2, May 197 4, pp 117-120.

Neumann et al.
"On The Design Of A Provably Secure Operating System", Neumann P., Fabry R., Levitt K., Robinson L. and Wensley J., !RIA - International Workshop On Protection In Operating Systems, 1974, pp161-176. .

Organick 72

Parnas

"The MULTICS System: An Evaluation Of Its Structure", Organick E. , MIT Press, Cambridge, Mass., 1972.

72
"On The Cri t era
Modules" .t Parnas
No • 12 , ve c • 7 2 ,

To Be Used In Decomposing Systems Into
D • .J Communications of the ACM , Vol . 15 ,
pp1053-1058.

- 142-

Redell 74
"Naming And Protection In Extensible Operating Systems",
Redell D., Ph.D . Thesis, University Of California~
Berkeleyi 197 4. (Also available as •MIT Project MA~
Technica Report TR-140).

Richards 69

Saltzer

"BCPL A Tool For Compiler
Programming"~ Richards M., AFIPS
Vol . 33, 196~, pp 557-566 .

Writing And Systems
Conference Proceedings,

and Schroeder 75
" The Proctection Of Information In Computer
Saltzer J, and Schroeder M.~ Proceedings of the
69, No. 9, Sep. 1975, pp127o-1308.

Systems",
IEEE, Vol.

Schroeder 72
"Cooperation Of Mutually Suspicious Subsystems In A
Computer Utility", Schroeder M., Ph.D . Thesis, MIT 1.
Cambridge 7 Mass., 1972 . (also available as . MIT Projecl,
MAC Technical Report TR-104).

Stroustrup 77
"On Unifyins Module Interfaces", Stroustrup B.b Operating
Systems Review , Vol. 12 , No. 1, Jan. 78, pp90 - 9v .

Sturgis 73
"A Postmortem For A Time-Sharing System", Sturgis H.,
Ph . D. Thesis, University of California, Berkeley, 1973.
(Also available as Xerox Palo Al to Research Center
Technical Report CSL74 - 1) . ·

U. S . Department Of
"Records ,

Health, Education and Weifare 73
Computers And The Rights Of Citizens", U.S .

· Department
Cambridge,

Of Health i., Education and Welfare , MIT Pres s ,
Mass . , 1 97 .J .

Van Wijngaarden et al . 76
Language Algol68" ,
B . , P e ck .T .• ~ Kost e r
L. and FisKer R.,

"Revised Report On The Algorithmic
Editeq by Van Wijng~arden A., Mailloux
C., Sintzoff M. , Linsey C. , Meer tens
Springer Verlag, Berlin, 1975, p9 .

Wal ker 73

War e 67

"The Structure Of A Well-Protected Computer a , Walker R. ,
Ph . D. Thesis University of Cambridge 1973 .

11 Securi ty. And Privacy In Com8uter Systems 7' , SJCC
Conference Proceedings , Vol . 3 , 1967 , pp287 - 203 .

AFIPS

Watson 78 .
197 8.

Wilke s

Ph . D. Thesis,
p reparation) .

Uni ver s i t y of Cambridge , (In

5 1
" The Best Wa y To Desi g n
Wilkes M., Ma nchest e r
Jul. 195 1, pp 16-1 8 .

Art Automatic Calculating Ma chine" ,
Un i v e r sity Inaugural . Conference ,

Wul f e t . al . 74
" HYDRA: The Kernel Of A. Multi Processor Op er~ting Sy~tem " ,
Wul f W. ~ Cohe n E . , Corwin W., J o nes A. , Le v i n R., Pierson
C. and .t'ollack F., Communicatio ns of the ACM, Vol. 17, No ·.
6 , Jun . 74 , pp337 -34 5 .

- 143 -

