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Thesis Summary 

"A Microprogrammed Operating System Kernel" 

Andrew James Herbert 

St . John's College 

The subject of the thesis is the design and implementation of an 
operating system kernel for the Cambridge Capability Computer (CAP). 
The kernel of an operating sys t em is its most primitive level of facilities 
and forms the foundation stone a round which t he rest of the system is 
structured. 

• • 1 

· / The particular emphasis of the CAP kerne l is concerned with protection j 
the control of access to informa tion. 'l'he kernel uses the notion of 
capabilities to provide a flexible and controlled mechanism for the sharing 
of information within a computer system . The protect.ion mechanisms include 
provision for the efficient control o f access to memory as wel l as f acilities 
for handling abstract resources like files and virtual peripherals. 'l'he 
kernel allows the introduction of new types of resources in addition to the 
basic set of hardware resource~; to permit user extension of the. system_ 
Attention is given to the problem of recall of privllecre or revocation in 
capability systems and the kernel includes operations for both permanent and 
temporary revocation of particular access rights to information i n a selective 
manner. 

In the past many of these functions have only been fo und in kernels 
implemented in user-level software which arc frequently cumbersome and 
inefficient. An examination is made of why this should be and·how efficiency 
and simplicity can be gained by a microprogrammed implementation. The thesis 
draws on the experience of a number of soft.ware kernels to discover the various 
design decisions that have to be made and the techniques that may be used to 
implement a successful kernel~ 

The feasibility of the design arrived at by considering these issues 
is demonstratec1 by describinq its implementation on the Cambridge Capability 
Computer in terms of the primitives provided and the internal organisation 
of th,~ proposed kernel. In an evaluation, the kernel is examined in the light 
of tl,e a nalysi s of other kernels to po i nt o ut its strength s and we aknesses 
and to gain insights into the utility of the de;;ign as a practical operating 
syst~m kernel . 
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CHAPTER ONE. 

INTRODUCTION, 

1. 1. Overview. 

The subject of this thesis is the design and implementation of 

a micrpprogrammed operating system kernel. The kernel of an 

operating system is the most primitive level of the system and 

forms the · foundation of the rest of its structure and so it is 

important that the kernel is well-designed and efficient if the 

entire system is to be successful~ 

An operating system can be considered as a mapping between 

rudimentary hardware resources and · the advanced facilities of an . 

ab~tract machine. The duties of a kernel include the provision of 

mechanisms for performing this mapping and also making abstract 

resources such as files and virtual memory available to users 

through some addressing and access control schemes. The 

cost-effectiveness of an operating system can be judged by 

weighing the benefits of an elegant abstract machine, such as ease 

of use, against its cost, both in terms of devel6pment and the 

machine cycles consumed in its operation. The effectiveness of an 

entire system will be greatly impaired by any weaknesses or 

inefficiencies in · the kernel and this is the motivation for 

investigating the structure and organisation of opera ting sys tern 

kernels. 

The major _ concerns of a kernel are protection (the control of 

access to information by · programs running within a computer 

system) , multiprogramming, I/O control and fault handling. This 

thesis is primarily concerned with the ' protection aspects of 

kernel design and the influence of protection on the other kernel 

functions. A protection architecture which permits flexible and 

controlled sharing of information by all programs, including those 

that make up the operating system will be descr~bed in the latter 

part of this thesis. 

Many operating system kernels have been implemented in 

software r ather than microprogram. Normally they execute in a 
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highly privileged special state or supervisor mode in which powers 

are available that allow the contents of processor descriptor 

registers, and so on, to be modified. The close relationship 

between the kernel and the underlying hardware means that it is 

usual to find that the kernel has been written as a large 

monolithic assembly code program because of the difficulties of 

writing compilers to generate compact 'fast code that interfaces in 

a straightforward fashion. with the hardware primitives used. In 

consequence, such kernels are difficult to verify and debug, even 

if great care .is taken to ensure that code is written and tested 

in a well-structured and organised way. 

In general, a software kernel preserves a lot of information 

about the state of the hardware so that it may decide what action 

to take in response to a kernel call by a program. It is 

therefore necessary for the kernel to carry out all operations 

that involve modifying hardware protection registers and the like; 

even quite trivial functions have to be directed through 

kernel so that changes to the state of the hardware can 

the 

be 

recorded. This wifl involve the cohsiderable overhead 

establishing kernel calls, which might include preserving 

restoring the state of executing processes, and checking 

arguments presented against tables of privileges before 

of 

and 

the 

any 

function can be carried out. There is al so a temptation; if an 

operating system service does little else beyond a series of 

kernel calls, to build it into the kernel and this further 

compounds the problem .. Much of the clumsiness of a software 

kernel comes from a lack of intimacy with the hardware of the 

underlying machine that carries out the operations programmed in 

the kernel and this leads us to consider the use of a 

microprogrammed kernel because of the closer association between 

microprogram and the basic hardware. 

Microprogramming 

organising computer 

is a 

hardware 

long 

[Wilkes 

established technique 

51]. Microprogramming 

for 

has 

many properties that aid the development of machines which include 

complex operations in their instruction r epertoire. A 

microprogrammable machine consists of a simple, fast microprogram 

processor with rudimentary logical, control and arithmetic 
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facilities that executes microinstructions held in a microprogram 
m~mory. The microprogram emulates user instructions by activating 
other parts of the inachine in the correct sequence and arranging 
for the passage of data through the machine's registers. If the 
user machine is to be reasonably fast, the microprogram must be 
fetched from microstore and executed at high speed. In the past, 
when the cost of very fast memory was high, microprogram memories 
were very small, but now with falling hardware costs owing to 
large scale integration (LSI) technology, quite substantial 
memories of sufficient speed can be obtained for a reasonable 
price. This enables critical components of the software of a 
system to be put into microprogram to reap benefits in the areas 
of high level facilities and efficiency; for example, the GEC 4000 
range of computers [GEC 72] have a microprogrammed nucleus that is 
responsible for the control of multiprogramming, synchronisation 
and inter-process communication. 

There are other advantages apart from efficiency to be gained 
from microprogramming. A microprogrammed operating sys tern kernel 
has a much greater degree of intimacy with hardware addressing and 
protection functions, interrupt handling and so on than a special 
state supervisor for a conventional machine. This makes it easier 
for the kernel to provide a powerful machine to users without the 
expense · of kernel calls in software, because the microprogram is 
better placed to carry out access checking · and argument 
verification cheaply as part of the normal hardware instruction 
decoding and addressing operations. Kernel functions can be 
encoded as a single instruction at the user level which means that 
interfaces tend to be simple in terms of a few arguments in 
registers and kernel calls are uniform with the hardware 
instruction and addressing fo~mats. On the other hand, in a 
software kernel it is easy to make interfaces very complex and 
confusing for users. 

It is an unfortunate f act of life that microprograms are on 
the whole harder to write and less easy to understand than 
assembly code programs. This is because microinstructions specify 
the operation of basic hardware components rather than the higher 
level logical functions expressed by machine instructions . 
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Furthermore, debugging is not straightforward as it requires use 

of the raw hardware for hands-on access which is wasteful of 

computer resources, whereas software _systems can be tested 

concurrently on a time-shared system with other programs and can 

be written in high level languages. There is often insufficient 

room in microstore to include both a development microprogram and 

a debugging system, so that~ lot of testing has to be carried out 

with just the aid of register display lights and control switches. 

To some extent -these difficulties can be avoided by the use of a 

microprogram processor simulator, although it must be ensured that 

the simulation faithfully duplicates the hardware because 

microprogrammers are fond of taking advantage of hardware 

peculiarities and side-effects to save on instructions or time. 

If oddities are not carefully duplicated in the simulation, there 

is a strong likelihood that a microprogram will behave wrongly on 

the real machin~. 

Even in these days of large semiconductor memories, 

microprogram memories are usually of modest size, often only a few 

t -housand bytes, which greatly restricts the amount that can be 

included in a microprogrammed kernel, whereas a software kernel 

may be · many hundreds of thousands of bytes long . On the other 

hand, if there is microprogram memory space available, it is 

tempting to put more and more into the kernel on the grounds of 

efficiency, with the result that the kernel becomes cumbersome, 

unwieldy and much harder to debug fully and test. The key to 

microprogramming operating system kernels is the correct 

identifica tio_n of those primiti ves that rightly belong in the 

kernel and those that should be left to software . 

Microprogrammed machines may not be as fast as those built in 

hard-wired logic because of the overheads of fetching and decoding 

microi_nstructions. This is the penalty paid for the abili ty to 

implement highly complex functions and to change the nature of the 

machine by modifying it s microprogram. Some speed can be 

recovered by providing functions such as user instruction 

decoding, address translation a nd pro tection 

hardware and leaving the microprogram to handle 

things, at a loss of some flexibi lity in 
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architectures that can be presented at the user level. 

1.2. A Wider View of Protection. 

The bulk of this thesis is concerned with mechanisms for 

protection [Lampson 71, Jones 73, Graham 68, Saltzer and Schroeder 

75], which can be defined as the control of access to information 

by executing programs. Protection is just one facet of the 

overall issue 6f computer security [Ware 67, Anderson 73, Branstad 

13, Hoffman 73]. In· recent times, computers have been used more 

and more as repositories · for large volumes of information of a 

confidential or proprietory nature, shared by a large community ot 
users who are unwilling to trust one another not to steal or 

access private data. 

retaining information 

The social 

within a 

and legal implications 

computer have generated 

of 

a 

requirement for the formulation of policies governing the security 

of computer systems [U.S. Department of Health, Education and 

Welfare 73] and to implement such policies there is is a need for 

a technological framework within which it is possible to discuss 

and judge the security of a computer system. 

~spects of security include hardware reliability, secure 

communication between terminals and computers, authentication of 

access to machines and the physical security of the computing 

system hardware and ancilliary equipment such as magnetic tapes 

and discs. These external issues of security can be characterised 

by the property that it is not possible to achieve total security 

in any of them; instead the measures taken to enhance security can 

be judged only in terms of the cost-effectiveness of reaching som~ 

level of quantified optimism about the degree of security 

attained . The notion of the work factor involved in breaching the 

security measures is often used as an indication of the amount of 

effort that must be expended to defeat security, and in many cases 

to discourage deliberate attack it is sufficient to ensure that 

the cost of the work done exceeds the value of · the information 

that is illegally obtained. A sys tern is only as strong as its 

weakest component and if the security of the system is undermined 

at any point all other aspects of it including protection, are put 

at risk . 
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If an artificial view of the real world in which external 

security can be guaranteed completely is adopted, it is possible to 
d escribe protection mechanisms which enable positive and absolute 

statements · to be made about the ·security of information within a 

computer system in terms of which programs may access information 

and change it. This approach is useful despite its divergence 

from reality because, if protection pan be established within a 

computer system, it is only necessary to concentrate upon the . 

external aspects of security, safe in the knowledge that the 

system cannot be subverted from within. The protection state of a 

computer system can be represented by an access matrix [Lampson 

71] whose columns correspond to items of information and whose 

rows refer to programs as shown below: 

program I item 
. A B C D 

a R R RW 

b R R 

C RW -

d IRW RW R 

Program a has R (read) access to items A,B,D and also W ~write) 

access for D, but is unable to access item Cat all . Indeed, item 

C can only be accessed by program d. Obviously, in a real life 

system, an access matrix is vast, with entries for many items of 

information and programs. In the design of a protection system it 

is necessary to look for some suitable representation of the 

information in the matrix. There are two main approaches: ( i) 

access control list systems such as MULTICS [Organick 72] in which 

each item has associated with it an access c9ntrol list that 

encodes the information in a column of the matrix , stating which 

programs are allowed access to the item, and (ii) caQabilit'l 

systems [D ennis and Van Horn 66, Lampson 69 and Needham 72] where 

each program is given a set of tickets stating which privileges 

are possessed by the program in r espect of each item; that is to 

say, a program's set of capabilities is an encoding of a row in 

th e access matrix. 

It is fairly straightforward to arrange that information 

beionging to one program cannot be accessed by another, but in 

-6-



general it should be possible to allow information to be shared by 

programs with possibly differing degrees of privilege; for 

example , in the access matrix above, the item A is shared by 

programs a, b, c, d with read access, but only d has the ability 

to write to it. In a closed community, programs and data might be 

shared with no restrictions, in a spirit of free co6peration, but 

· if the computer is shared by a general public with competing 

interests, users will not trust one another and the sharing of 

information will take on the nature of commercial bargaining in 

whic h each party to a transaction is suspicious of the others. 

Schroeder calls this mutual suspicion [Schroeder 72]. A 

protection mechanism must be able to support controlled sharing in 

this sort of environment. For example, it should be possible for 

one user to allow another to have use of a program performing some 

service, while at the same time not allowing him read access to 

the binary code of the program, so that it may not be stolen or 

misused. 

The level of trust between users will change with time and the 

owner of a p~ivilege may subsequently wish to restririt use of it, 

perhaps because a user has defaulted on the payment of a rental. 

The action of recalling a privilege is known as revocation. 

Revocation may be temporary, and privileges might subsequently be 

restored when circumstances change . Sometimes it is only desired 

to recall a particular privilege while leaving other privileges 

for the object undisturbed, and this is known as partial 

r evocation. 

To summafise, protection is just one aspect of computer syst~m 

security and protection mechanisms must be able to support a 

variety of protection policies that reflect the relationships 

between users of a system and the informaiion it retains. 

1.3. A Framework for Discussion. 

For this discussion, it is convenient to regard an operating 

system as an abstract machine that defines operations which can be 

carried out on a set of abstract objects such as files, I/O 

streams and virtual memory. The operating system is responsible 

for the mapping between basic hardware resources and the the set 
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of objects. Each object has an attribute known as its ~ which 

specifies the set of operations that can be meaningfully applied 

to it. , 

There are many types of object. Processes are the most 

important from the point of view of protection because a process 

is the unit of execution and represents the locus of execution of 

a virtual processor through a procedure or sequence of code. The 
' sta te of a process is held in a process base or state vector. 

Processes can synchronise and exchange information ~ith one 

another by use of an inter-process communication sys tern. At any 

time a process will have a set of privileges describing the 

information to which the process is allowed access. 

Only capability-based sys terns are considered in this thesis. 

A privilege is represented by a capability that specifies both an 

object and an access code describing the privileges the capability 

confers. A capability is not an object; it is a ticket of 

permission that cannot be forged or corrupted. Capabilities are . 

stored in memory marked in some way 

ordinary data and it is not possible 

to distinguish thBm from 

for arbitrary programs to 

mark items in memory; otherwise, it would be possible for· users 

to manufacture bogus capabilities. Processes can share access to 

a common object by having copies of a capability for the object, 

each containing identical information about the substance of the 

object, al though the access codes might differ if the various 

processes have unequal rights of access. A process can share its 

privileges with others by distributing copies of capabilities and 

if one of these capabilities is subsequently revoked, all copies 

derived from it must also be revoked. 

The set of privileges owned by a process at a given time form 

a protection domain . The privileges of the process can be altered 

either by transferring capabilities in or out . of the curr ent 

domain, or by switching to another domain . In capability systems, 

dom ains consist of a set of capabilities that form an environment , 

one . component of which is the code associated with the domain. 

Execution is switched between domains by use of . a domain call 

primitive which has a domain capabilitv, specifying the 

environment ~f the called domain, as its argument. After a domain 
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call, execution continues with the privileges of the called domain 

made available and those of the calling domain made inaccessible. 

Control is always transferred to a predetermined starting address 

in th e procedure of the new domain so that the domain's privileges 

cannot be misused by jumping into its code at some random point. 

The process may call other domains for which . there are 

capabilities in the current domain's environment. When execution 

in the domain has finished, a domain return operation is performed 

whic h resumes control in the original calling domain immediately 

. after the point at which it was left, with the privileges of the 

cal led domain disabled and those of the caller restored. The 

domain call mechanism is very similar to the notion . of a 

subroutine in a high level language and the similarity extends to 

inter-domain communication by a parameter mechanism which permits 

capabilities to be transmitted between protection domains. 

An important property of a domain architecture based on 

capabilities is that it is non-hierarchical and can be used to 

model situations of mutual suspicion because the capabilities of 

different protection domains can be disjoint. This means that the 

only privileges that can be acquired by a called domain from its 

caller are those passed as arguments in the domain call. 

Similarlyi a calling domain has no influence on the priv ileges of 

the called domain and can only gain capabilities that are returned 

as · results. 

So far, domains have been characterised passively as 

repositories for capabilities and code in which a process can 

execute. However, it is often useful to consider a domain in a 

more active sense as the exerciser of the privileges bound into it 

. whenever a process executes within the domain and the term 

'domain' will be used for either interpretation provided that any 

ambigu_ity can be resolved by the con text of its use. 

The memory of a domain will be assumed to consist of a number 

of segments [Dennis 65] each of which consists of contiguous 

addressable items . To be able to protect smal l data structures 

e ff ect ively, a protection mechanism must be capable of protecting 

many small segments only a few words in length as well as larger 

ones. It is also necessary to be able to generate capabilities 
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for only some portion of a segment and this can be achieved by 

hol ding refinement information in a capability for a segment to 

sel ect some sub-segment of the total segment referenced by the 

capabili ty. 

1.4. Extensibility 

In the design and construction of large software systems there 

is need for a suitable design methodology to describe the 

r elationships between all of the components of the system so that 

its complexity can be reduced to manageable proportions. Perhaps 

the most promising scheme is that of layering in which the system 

is constructed as . a base level or kernel surrounded in an onion 

skin like manner by a series of extension layers. Each layer 

enriches its environment by adding to the features provided by the 

inner layers to produce an enhanced environment for higher layers. 

The CAL-TSS operating system was designed as a sequence of 

protected layers and the technique proved successful in aiding the 

construction of the system [Lampson 76]. 

The primary rule of the methodology is that knowledge about 

higher layers must not be built into lower layers. This is so 

that, in conjunction with the obvious precaution · of protecting 

lower layers against interference from higher layers, there will 

be a · structure in which modifications to, and malfunctions of, 

higher layers cannot affect the correct functioning of lower 

layers in the system . 

From a top- down point of view the construction of a layered 

design Cc;ln be seen as the successive decomposition of a complex 

system into simpler functions until eventually, in the kernel, 

they can be directly mapped onto hardware operations. On the 

other hand, a bot tom-up view shows each ' level of extension as 

transforming some pre - existing system into a more complete 

environment by addin,g useful new features and f acilities . This 

latter view is the mos t appropriate in the case of extensions 

written by users t o tailor the system to suit their requirements, 

al though to a considerable degree the exact distinction between 

systems programs and user programs becomes blurred in a layered 

system . 
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In the object oriented approach, extensions are viewed as 

d efining new types of object · and providing the operations that 

manipu l ate them . Each layer in the sys tern can be thought of as 

prov iding a new abstract machine whose operations are constructed 

out of the operations of the abstract machines running in inferior 

layers. The objects provided by extension layers are described as 

ex tended ob i ects and they 1:lre represented in terms of objects 
' a dministered by lower layers. In general, representations are 

concealed from the users of ~xtended objects who see these objects 

as atomic items. The manipulation of extended objects in terms of 

modifications to their representations is the duty of software 

r unning in the level providing the extension. An obvious 

constraint is that the. layer providing the abstraction of a hew 

extended object must not be able to subvert the layers providing 

t he types of object it uses to implement its own types. 

In an opera ting sys tern kernel, the sort of abstract objects 

expected are files, directories, I/O streams and so on. The base 

l e vel protection mechanisms of the kernel mus t be capable of 

extension to provide access control and naming functions for these 

ob j ects in a manner uniform with that used for ·with hardware 

r esources . The features of a kernel for coping with extended 

objects are known as tyQe-extension features. 

1.5. Scope of the Thesis, 

The work described in this thesis follows up work on the CAP 

project which led to the building of a microprogrammable processor 

f or i nvestigating a powerfu l and eff icient memo r y protection 

a r chitecture based on capabilities [Needham 77 , Needham and Walker 

77]. The CAP projec t successfully demonst r ated t he u sefulness of 

capability- based protection in the construction and debugging o f 

an oper at i ng system . The protection mechanisms of the CAP machine 

wer e all mic r oprog r ammed , which greatly cont ri b uted to the i r 

simplic i ty and effi c ienc y. 

By con centrat i ng pur e l y upon memory pro t ection, th e CAP 

microprog r a m la c ke d some of th e mo r e a dv a nced f ea t u r es o f so ftware 

kernels such as HYDRA for C. mmp [Wulf et al. 7 4] and CAL-TSS 

[Sturgis 73, Lampso n and Sturgis 76 ] in the a rea of typ e-extension 
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and revocation of access . The aim of the research leading to this 

thesis was to ·investigate the possibility of providing a kernel in 

micro program which was comparable with the software kernels , but 

retained the effectiveness the CAP memory 

architecture, e$pecially with respect to efficiency. 

protection 

It was also 

decided to investigate some other addressing and naming strategies 

in the new kernel both because they aided the introduction of new 

f a c ili ~ies and al so to compar"e the various mechanisms used in 

pro t ection systems . The work involved designing a kernel and 

impl ementing it in microprogram for the CAP machine as a 

substitute for the memory protection microcode. 

The CAP has a modest amount of microprogram memory (4K of 

six teen bit words) which has to hold code for emulating basic 

instructions and organising I/O in addition to protection 

mechanisms, so the range of -facilities tha. t can be considered is 

f airly limited , although not too severely. The CAP processor 

includes hardware for instru6tion decoding , virtual address 

t ranslation and · carrying out ac.cess checks , which helps both to 

r educe microprogram length and to increase efficiency. 

This thesis falls into two parts: the first seven c;iapters 

deal with the design of protection kernels and the remaining six 

chapters describe the implementation of a kernel for the CAP 

machine , whose design evolved from a consideration of the issues 

discussed in the first part. This latter part is entirely 

original work, whereas the first part compares and analyses work 

by others which is acknowledged appropriately ) n the text. 

Chapter Two is devoted to a description of the design aims and 

guiding principles involved in kernel design. Chapter Three deals 

wi th the ways in which capabilities can be associated with 

obj ec ts, a nd Chapter Four exp lore s t he r el ationsh i ps be tween 

ca pa bil i t ies a nd add r essing mechani s ms . Chapters Five and Six 

dea l wi th typ e - exte n s i o n and r e vocat i on and in Cha p te r Seven the r e 

is a discussion abo ~t pr otect i o n domai n s and proces ses . 

Part Two starts at Chapter Eight in which there is a detailed 

desc r iption of the CAP har dware which provides the basis fo r 

Chapters Nine to Eleven that describe the following aspects of a 
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kernel for CAP: basic mechanisms, type-extension and revocation 

scheme and a process and protection domain architecture. Chapter 

Twelve gives a detailed description of the internal organisation 

of the kernel microcode. The final thirteenth chapter reviews and 

evaluates the kernel and looks towards future research. 
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CHAPTER TWO. 

KERNEL DESIGN PRINCIPLES. 

2.1. Protection Mechanism Design. 

From their experience with the construction of protection 

systems, many people have proposed guidelines for the design and 

cons truction of successful sys terns and these are en um era ted by 

Sal tzer and Schroeder [ 75] in their paper on protection. In the 

following paragraphs these principles will be examined to see how 

they influence the design of a protection kernel and, in the next 

section, particular attention will be paid to their implications 

for a microprogrammed kernel. Many of the design principles may 

may be described as common sense and they are applicable to all 

asp ects of system design, not just to protection. 

It is universally acknowledged that a simple small design is 

better than one which is large and complex because it is much 

easier to check the correctness of its implementation { by simple 

line-by-line inspection of its code, for example) and also because 

it is likely to be more efficient. If the number of functions 

carried out by a mechanism is small, it is a simple task to 

exhaustively test all of its operations to verify their accuracy. 

An economy of mechanism has benefits for the users of the sys tern 

too, as the amount of information they have to learn will be 

small, and this increases the likelihood that they will understand 

. th e mechanisms and use them effectively . To the system designer 

thi s principle suggests that he ought to consider carefully the 

pr imitives he is going to supply and ruthlessly remove any 

f acilities which are redundant or unlikely to be used. An analogy 

may be drawn from the language Algol68 [Van Wijngaarden et al . 76} 

whose basic constructs are designed to be i orthogonal' in the 

s ense that to achieve a particular effect it is obvious which 

construct is appropriate. It is cl ear that the benefits of a 

compact design must be traded against any l oss in the number of 

functions provided by of the system or inefficiency caused by the 

lack of an important operation . 

-14-
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• 
In a protection sys tern it is important to arrange that the 

defau lt relationship between programs and information is that of 
•no access permitted' until an appropriate privilege has been duly 

checked. This is true of capability systems because every access 

to an object must be accompanied ·by a capability that is inspected 

before the access can proceed. The explicitness of privilege in 

this sort of arrangement makes it easy to find out which objects a 

program can access by looking at its stock of capabilities. 

Furthermore, if the default state is to refuse access, any error 

in a program has less chance of causing harm by spoiling 

information to which it has no right of access. 

In Chapter One it was noted that the degree of privilege 
po ssessed by a program will change with time and it is therefore 

not sufficient to per form access checks statically or just once 

only on the first access to an object, because subsequently the 

execution of a program running in parallel may cause an access 

code to be modified by revocation of a capability. This implies 

that there must be complete mediation, which is to say that every 

access to an object must be verified independently of whether · or 
not the access has succeeded in the past. This imposes a 
system-wide view of protection independent of considerations of 

th e structure and constitution of objects and provides the 
motivation for designing protection mechanisms as a low level 

component of a system. However, the implementer of a kernel does 

not have the full benefit of protection machinery and has to rely 

on .weak hardware support for protection. For . this reason, a 

kernel should contain as little as possible in the way of 

facilitie s beyond basic protection primitives so that as much of 

th e system as possible is built upon the protection mechanism as 

its foundation to obtain a greater level of ruggedness. By 

contrast, in software kernels like HYDRA and CAL-TSS it is common 

to find that the kernel is a substantial operating system in its 

own ri ght and makes little use of its own protection services. 

The designer of a kernel should aim to implement the basics of his 

protection machinery as a simple , small core which is then used by 

every other component of the kernel to access objects so that the 

kernel does not have private ( a.nd therefore suspect ) protection , 
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naming and addressing schemes. Access control must persist at all 
stages in the life of a system from initialisation through normal 
running to shutdown. For example, it should not be possible for a 
user to tamper with the information that is to be loaded at the 
next system start up . while the system is running, otherwise he 
could modify the system to pass him privileges illegally the next 
time it is reloaded. 

A protection system that relies on the concealment of a secret 
or password to ensure the non-subvertibility of its mechanisms 
should be treated with suspicion because the security of the 
system will not be assessable in absolute terms. Passwords belong 
to the external realms of authorisation of access and it is only 
possible for a protection mechanism to prevent unacceptable access 
to secrets; it is not safe to assume that secrets can neither be 
guessed nor deduced from the observation of external events. 
Reliance should not be placed on the concealment of system code as 
a protection mechanism either, because if the protection system is 
fr ee of secret algorithms, it can be reviewed independently by 

sceptical users without fear of abuse. This builds up the trust 
held in the system by its users and if the protection mechanism is 
audited independently by several people, the ptobability of 
out standing errors remaining within it is decreased. 

The ruggedness of a protection mechanism is greatly increased 
if it requires the presence of two 'keys' to open a 'lock' because 
no single mishap can lead to a breach of security. The major 
example of the separation of privilege in protection schemes is 
that of type i:nanagers which are programs responsible for looking 
after all objects or resources of a particular type. A type 
manager usually has privileges relating to the class of objects as 
a whole, such as being able to create objects in the class or to 
alter - their representation, whereas the privileges to use 
particular members of the clais are distributed amongst the users 
of the system . The only time at which a particular object can be 

modified is when two keys in the form of a privilege for a 
particular object and a privilege for the class of objects to 
which it belongs are brought together when the user r esponsible 
for the object passes a privilege for it to the type manager. 
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Possibly the most important design principle is that of 
minimum privilege, or as it is known in security conscious 
evironments, "the need to know", which is to say that a program 
should only have access to the information strictly necessary to 

c arry out its function. In a capability system, this means that a 
protection domain should contain just those capabilities essential 
to completing its task and that a complex series of operations 
should be divided out amongst a set of domains, each element of 
which . performs a simple, well-defined job and has exactly the 

privileges required to carry it out. Putting firewalls into a 
system in this way limits the propagation of damage after an error 
because only the few objects accessible to the erring domain can 
be harmed. It is also easier to locate errors because any failure 
can be directly accounted to the domains that have access to the
i nformation damaged by the error. A common practice is to 
a ssociate a protection domain with each distinct data structure or 
abstraction so that a domain is rather like a module of the sort 
proposed by Parnas [72). This organisation has the advantage that 
all of the operations for an abstraction are located in one place 

a nd it is easy to get 

consistency of internal 

service provided by the 

because it carries around 

interlocks right and to ensure the 

tables. However, for each particular 

module, its domain is over-privileged 

privileges for all of the services of 
t he module. To some extent, this over-privilege can be overcome 
by use of the separation of privilege described earlier or by the 
u se of templates, as found in HYDRA [Jones 7 3], that modify the 
privileges of a domain according to the access codes of capability 
argument~ presented to it. A major -0onsequence of minimum 
privilege for the designer of a protection mechanism is that it 
must be capable of efficiently supporting .the interaction of many 
small , independent domains and this demands that the cost of a 

domain call operation be small. 

Small protection domains tend to contain very simple data 
s tructures and in consequence it must be possible to protect very 
simple objects and segments just a few words in length . The 
notion of .the ' grain ' of a system is used to indicate to wha t 
d,e g r ee it i s r easonab l e to distinguish between items of data and 

-1 7-



,.. -
prot ect them individually. In general terms compared to most 
software kernels, the CAP memory protection system has a very fine 
grain of protection and this greatly contributes towards the 
rugg edness of the operating system built upon it [N~~dham 77]. 

Jones [13] proposes a yardstick known as a suitability factor, 
whic h indicates how closely a protection mechanism will allow the 
principle of minimum privilege to be attained. For every domain 
in the system, Jones defines an accuracy measure which is the 
rat io of the number of privileges exercised by a domain to the 
tota l number of privileges it owns. Cl early in the state of 
mini mum privilege, this ratio will be one and will fall away to 
zero as the degree of over-privilege rises. The suitability 
fac tor of the entire system is defined as the average accuracy 
measure across the system and Jones shows that for a capability 
sys tem with a non-hierarchical domain structure, it is possible to 
app roach very close to the ideal value. This has also been 
demonstrated in an analysis of the CAP system [Cook 78]. 

Most conventional computer systems have very weak protection 
mechanisms and in consequence, users have little experience of 
taking full advantage of a well-protected 

r eason, it is essential that protection 

sys tern. So, 

mechanisms 

fer this 

should be 
straightforward so that it is easier for users to remember 
protection techniques and how to employ them. To a great extent, 
this principle can be met by keeping to a simple, corilpac t design 
in which all of the basic primitives are distinct and easy to 

understand. The psychological acceptability of a 
system depends upon users being 

fu nctioni of - protection machinery 

requirements. 

readily able to 

to suit their 

protection 

employ the 

particular 

A cornerstone of the HYDRA project has , been. the separation of 
policy" from mechanism [Levin et al 75] . For example, a process 
scheduler in an operating system may be driven by interrupts alone 
or may allocate fixed duration time-slices, and there are many 
different ways of organising priority queues in response to 
d ifferent modes of operation. Ideally, these policy matters 
should be parameterised so that common kernel primitives can serve 
all possibilities. This is an important design principle because , 
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in the lifetime of a system, it is likely to be put to a variety 
of uses that may not have been apparent at the time that the 
kernel was designed and it is clearly undesirable to have to 
modify the kernel for every new application of the system. 

Separating policy from mechanism also holds advantages if it is 
required that the system should be able to provide two . different 
serv ices · simultaneously, such as a transaction-based information 
retri eval system and a general purpose time-sharing system, 
because the same mechanism can be used for both services which may 
have different sets of policy parameters. 

2. 2. Microprogrammed Kernel Design. 

It has been a long standing principle throughout the life of 
th e CAP project that the set of facilities provided by the 

microprogram should be a self-contained whole that does not rely 
on the integrity of the software built upon it, rather than a 

microprogrammed extension of systems software. This is so that 
th e verification of the basic protection machinery can be 

accomplished simply by 

con siderations relating 

inspecting 

to other 

the microcode 

software . It is 

free of 

likely 

any 

that 
th ere will be awkward and complex interfaces between microprogram 
and software · if the kernel is split between them because of the 

diffi culty of keeping state information in step between the two 
levels. On those occasions when the microprogram is unable to 
cope, for example on a virtual memory fault, the only acceptable 
means of communication to the software is by raising an interrupt 
and the microprogram must not make any' assumptj_ons about whether 
or not the software will handle the condition correctly. Whenever 
th e software wishes to negotiate with the microprogram, it must 
present its arguments in a form which the . microprogram can check 
against appropriate capabilities before going ahead. Thus for 
example it would be inadmissible for the microprogram to accept an 

ab solute address or to manipulate an object in the absence of a 
suitable capability. 

The need for simplicity in a microprogrammed kernel is much 
greater than in a software kernel because of the lack of space for 
l ong sequences of code and the untidy nature of microinstructions 
and their side-effects. A lot can be gained by sharing as much 



common code as possible in the kernel between its primitives, for 

example, to evaluate capabilities, modify representations of 

objec ts and carry out access checks. The advantage or this is 

that it is only necessary to verify the correctness cif a 
part icular function once and also there is a saving of program 
cod e. Naturally, this must be balanced against the overheads of 

mic roprogram subroutine calls and any inefficiencies introduced by 
calling routines that handle general cases rather than using 
possibly shorter code to handle particular simple cases. This can 
often be circumvented by careful design of kernel subroutine entry 

points and parameters . 

To avoid confusion in software or accidentally permitting 
breaches of security, the microprogram must check all of the 
arguments of a kernel operation before it goes on to modify any 
data structures so that a protection violation cannot occur during 
th e execution of the primitive and leave things in an inconsistent 
s tate. This means that kernel functions must be restartable and 
on a restart all arguments must be checked from scratch , because 

an excursion into software caused by an interrupt is liable to 
r esult in the modification of the state of the machine. 

Complete mediation is possible by ensuring that 
microprogram always uses virtual addresses to access 

the 

data 
st ructures through the addressing and protection mechanism and not 

by remembering evaluated absolute addresses, so that an error in 
the microprogram or a bad argument causing the kernel to make an 
i llegal access will be duly trapped and reported as an access 
violation . This inc r eases the r uggedness of the ker nel and 

gr eatly aids debugging at the cost of an increased overhead in 
a ccessing information owing to the prot~ction checks. If the 
microprogram has some device for optimising efficiency by 
r e t aining evaluated capab il ities and representations of objects , 
it must detect when such an optimisation is no longer valid , 
perha ps because a ca pa b i l i ty has bee n ov e rwri t ten i n sto r e . I t i s 

in t he a r ea o f t he s e optimis ati on s tha t there ar e most like ly to 
be mistakes that will allow unau tho ri sed a ccess t o privil eges. 
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CHAPTER THREE . 

CAPABILITIES AND NAMING. 

3. 1. Names and Objects. 

In Section 1. 3 the essential contents of a capability were 
sa id to consist of an access code .describing the privileges 
conferred by the capability and information to identify uniquely 
the object which the capability protects . In an early capability 
scheme due to Fabry [68], the informatio n simply consisted of the 
r epresentation of the object ; for e x ample, a segment capability 
contained the absolute base of the segmen~ and its size. This is 
r ather unsatisfact6ry because information about the structure of 
ob jects is not centralised and leads to difficulties if the 
r epresentation of an object needs to be modified . A typical 
e xample occurs in virtual memory management : a segment can be 
r elocated in store by altering its absolute base address and it is 
e ssential that all capabilities for the segment refer to its new 
position . To do so in Fabry's design involves searching through 
a ll of the capabilities in the system to locate those to modify . 
This tedious task is easily avoided by holding the representation 
d ata in some central tables and retaining a pointer into the 
t ables within a capability . This pointer is known as the name of 
t he object. 

If the naming mechanism only accepts names ·tha t ·are · embedded 
in capabilities, names can be kept free from forgery or 
corruption . · The n ame o f a n obj ec t s e rves t o i denti f y it uniquely 
from all o th e r objects known to the system . As names are f ound in 
c apabilities , the issues of nami ng and p r otection a r e ver y closely 
r elated ; in pa r ticular, n aming mechanisms have a considerable 
infl ue n ce upo n t he n a ture of the prot e ction system tha t can be 
buil t around th em . 

Na mi n g sc hemes ma y b e d ivided i nto two c ategories : nested and 
_gl o ba l [Laue r 7 4 ]. In a nested naming scheme the name of an 
objec t is only mea ningful within one node of a hierarchical tree 
of name spaces . In each name space there is a table giving 
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information about all the objects which exist within it and an 
ob ject is defined in terms of selecting objects in an immediately 

sup erior name space in the tree, apart from at the top level where 
representational information is found. Thus, the entries in a 

particular table will contain names belonging to its higher name 
space. The bit pattern of a name has a different significance in 

every name space and it is necessary to translate names if they 
ar e passed between name spaces. 

A global naming system is characterised by having a central 
tab le of object representations and names which are pointers into 

th e table and have the same significance everywhere. rt is 
usually the case that each object has a name different for all 

time from every other name, known as its uni9ue identifier. 
Un iqueness implies that there is a single entry in the table for

every object and that modifying this entry will affect all 
capabilities for the object throughout the system. 

3, 2. Nested Naming Schemes, 

The major example of a protection architecture based on a 
nested naming scheme is the CAP system [Needham and Walker 77). 
The system supports a hierarchical tree of processes and each node 
of the process tree acts as a coordinator to the processes 

immediately descending from it. These processes in turn are 

so responsible for coordinating their sub-processes · and 

typical process hierarchy is illustrated in · Figure 3. 2-1. 

on. A 

There 
i s a name space associated with each process and capabilities 
wit hin a process contain short (sixteen bit) names that point into 
a table of obje~ts available to the process, known as the Process 
Re source List (PRL) which · contains information about the 
r epresentation of the process's objects. for segments, the PRL at 
th e top level, known as the Master Resource List (MRL), holds 
ab solute base addresses and sizes. A segment entry in a PRL l ower 
down the process hierarchy contains the ad.dress of a capability 
for the segment in the immediately superior address space. These 
da ta structures are illustrated in Figure 3.2-2. There is a 
mechanism by which segment capabilities can contain refinement 

dat a so that a junior process can have access to sub-segments of 
segments at higher levels with the same or reduced access . 
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Ev aluating a capability involves ascending through a hierarchy of 
name spaces, following indirections from capabilities to PRLs, to 

capabil ities in higher name ipaces until an MSL entry is reached. 
At this point, the position of the segment in memory can be 

det ermined and data within it may be accessed. 

The rationale of the CAP scheme is that a coordinator should 
hav e complete control over the processes it schedules [Needham and 

Wilkes 74] and for thii reason . the privileges of a sub~process are 
a subset of those of its coordinator. In fact the only privileges 
that really belong to a coordinator are those that relate to the 

scheduling of processes. As it stands the CAP system suffers from 
a confusion between the control of . time and the control of 
privilege which may be directly attributed to the fact that PRL 
entries define the representation of objects by addressing 
capabilities at the next level, rather than by pointing directly 
to a superior PRL. The - reason for the capabilities of a CAP 
process leading to capabilities in the address space of its 
coordinator process is because CAP processes have no existence 
until they are actually running. A process is started by 
presenting to the microprogram a data segment of the coordinator 

that is to become the PRL of the new process and there is no 
static way of deciding which segments in the machine are potential 

PRLs or not. This means that the only possible place at which the 
priv ileges of a process can be gathered together is within the 
cootdinator process from which the apparatus of the new process is 
t aken. 

The CAP ~rchitecture will support an indefinite depth of 

nesting, subject to hardware constraints , althougt in 
various considerations lead to the ado~tion of just 

Master Coordinator and one level of sub-processes in 

operating system .· 

practice, 

a single 

the CAP 

Moving capabilities around within a process is straightforward 
in CAP: a ll of the protection domains in a process belong to the 

same process-wide name space so it is sufficient just to copy the 
bit pattern of a capability whenever it is moved and CAP provides 
microprogrammed instructions for this purpose. If a capability is 
to be transmitted between processes having a common coordinator , 
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the transfer involves establishing a PRL entry in the receiving 

process identical t~ the PRL entry in the sending process and then 

copying the source capability to its destination slot with the 

name field translated to point at the new PRL entry in the 

receiver. Moving capabilities between processes that do not share 

a common coordinator is more involved: firstly a node in the 

process tree that embraces the name spaces of the communicating 

processes must be located; then the capability to send must be 

evaluated as far as this common node and finally, the capability 

must be allocated space in all of the intervening name spaces in 

the tree down to the receiver. There is no microprogram support 

provided for these operations so they must be performed by 

software. The complication of inter-process communication between 

different levels of the hierarchy has lead the CAP operating 

system to only permit messages containing capabilities to be 

despatched between sub-processes of the Master Coordinator. As 

message passing is implemented by software and involves the 

translation of names between name spaces it is considerably slower 

than the microprogrammed orders that may be used to communicate 

between domains within a process [Cook 78]. 

The CAP inter-process message sys tern will only per form the 

transfer of segment capabilities with the result that it is not 

possible to send capabilities for objects containing names, such 

as protection domains. A CAP protection domain · is known as a 

protected procedure and it is defined by an ENTER capability 

(named after the ENTER instruction which is used to change 

protection domains) that points to a PRL entry that in turn points 
-

at up to three other PRL entries for capability tables holding the 

capabilities that form the protected procedure. Figure 3. 2-3. 

shows the structure of a ENTER capability,. To transfer an ENTER 

capability between processes it would be necessary to make new 

copies of these •tables so that all of the capabilities within them 

can be edited to index the correct offsets in the destination PRL 

when the procedure is transferred and space has to be allocated in 

thi s PRL for all of the segments accessible from the procedure. 

If the protected procedure included capabilities for other 

protected procedures, these too would have to be unravelled. Even 

if it were possible to pass prote c ted procedures between 
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processes, there are other problems conc~rned with parallel 
execution in a single protection domain which will be discussed 
fur ther in Chapter Seven . 

In conclusion, the advantages of a nested naming scheme mainly 
· ari se from the efficiency of name look- up by simple indirection 
and compactness of short names , together with the simplicity of 
th e object tables found in each name space . In return, there are 
problems concerned with passing names between name spaces and 
managing objects whose representations are distributed around the 
system in the several name space tables. 

3.3 . Global Naming Schemes With Forever-Unique Names. 

All of the naming problems mentioned above may be avoided by 
th e use of global names which are independent of domain and 
process architectures, so there is no difficulty in passing a 
capability around by copying its bit pat tern. The HYDRA sys tern 
[Wulf et al. 74) uses global naming and ensures that names are 
unique in space and time by deriving them from a fast clock that 
will never stop during the entire lifetime of the system. Every 
object ever known by HYDRA is given a unique name which remains 
associated with the object, even after it has been · deleted .. To 
co pe with the number of objects that will exist during the 
system's life, unique identifiers are long ( sixty- four bits), as 
opposed to the smaller sixteen bit name field of CAP capabilities. 
As well as being vast, the HYDRA name space is also sparse because 
of gaps owing to objects that have been deleted, and the intervals 
in which the clock runs but no new names are generated. For this 
r eason , associating names with entries in the central table must 
be done by hashing. The entire hash table is too massive to 
re tain in primary memory and it is paged from a fixed head disc . 
A small hash table in memory, the Active Global Symbol Table holds 

map etitries describing obj ects that have been used recently and a 
low priority pr ocess slo wly scans the tab le and arranges that it 
only con t a ins information corresponding to objects that are in 
curre nt use. If an ent ry for an ob j ect is not found in the active 
tabl e , an entry mus t be found for it from the Passive Global 
Symbol Table on disc . The process of hashing in the active table 
is quite slow even compared to the time taken to traverse the 
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naming hierarchy in the CAP system and if an object is not in the 
active table, the time taken to find it is considerably longer 
bec ause of real-time delays while the disc is accessed. Thus, 
al though the mechanisms of HYDRA are conceptually simpler than 
tho se of CAP they are much more expensive in terms of time and 
compu tation. 

A major advantage of a unique identifier scheme is that it is 
possible to preserve capabilities directly in a filing system. In 
a nested scheme this is not possible as a capability may be 
subsequently retrieved in a name space different from that in 
whi ch the name it contains is valid. In the CAP system, filed 
obj ects are given a unique System Internal Name and when a 
capability is filed, its name field is translated from a local 
name to a System Internal Name [Needham and Birrell 77]. For this 
rea son capability segments are not filed, as to do so would 
r equire the translation of all of the names in the capabilities 
within the segment. CAP capabilities are . preserved in filing 
system directories and it is the responsibility of the directory 
manager program to perform translatLons between local and System 
Internal Names. With HYDRA this is not necessary, as the unique 
identifier in a capability is always valid and has the same 
meaning throughout the system at all times. However, the 
integrity of the unique naming scheme depends upon the object 
t able being kept scrupulously up-to-date and consistent; it must 
be retained without corruption over a sys tern break and the table 
management software must guarantee that the table is never left in 
an ill-defined state. The same remarks apply to the internal nami 
t able in CAP, but that table only has to be updated · whenever a 
capability is preserved in the filing system and the overhead of 
keeping this table up-to-date on disc is less severe than in 
HYDRA , where the table is modified more frequently in response to 
operations on all objects and not just those in the filing system. 

The advantages that a global naming system has over a nested 
naming scheme for · transferring capabilities between domains and 
process es is a strong influenc e on the level of type-extension 
features found in a protection sys tern. In most type-extension 
schemes, abstract objects are represented by a data structure that 
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contains information about the lower. level components of the 

obj ect which is frequently in the form of capabilities. In a 

ne sted naming system the problems faced in moving these structures 
around are similar to those provoked by trying to pass ENTER 

capabilities in CAP. If a type-extension mechanism is to be 
useful, it must: be possible to protect a large number of objects 

of varying levels of complexity which can be transmitted easily 

between protection - domains and processes. For these reasons, 

tho se protection architectures that wish to support abstract 
obj ects are normally based on global naming schemes, so that 

capabilities and names may be passed around in a free and flexible 

manner. Furthermore, if a filing sys tern is to allow protected 

objects to be preserved, the expense of translating run-time names 
to filing system names within the representation of objects may 

prove too great and unique identifiers are most commonly used as 

global names to avoid this overhead. 

3.4. Other Global Naming Mechanisms. 

It is possible to have global naming schemes that do not rely 

on forever-unique identifiers. A system considered by Watson [78] 
uses global names that are only unique for a run of the system, 
that is, whenever the operating system or machine is stopped and 

subsequently restarted, identifiers are issued afresh from their 
origin. This approach relies on the observation that most 

computer systems are halted at frequent intervals for routine 

maintenance, lack of work or because of hardware malfunction. 

Usually these events are separated by days or weeks rather than 

years, so the identifiers in Watson's scheme need not be as long 

as those in a forever-unique scheme, with the advantage that 

capabilities are smaller and less wo~k is required to hash names. 

Hashing is still the only method applicable for organising the 

global object table because, even in a few days, its size would 

become immense if measures were not taken to keep it compact . 

In this scheme it is not possible to place capabilities in a 

filing system without translating names int6 some internal unique 

form because preserved names will become invalid whenever the 

system restarts. On the other hand, it is no longer necessary to 

go to great lengths to keep the table intact over a system break 
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since the names it contains are volatile. As the table will no 
longer require backing up on disc, it can be looked after by 
microprogram because most table operations like identifier look•up 
wil l not need the advanced facilities (such as paging from disc) 
us ed by the HYDRA global symbol table machinery. Some software 
might still be required to locate and remove garbage from the 
table and perform other high level operations, but otherwise it 
would not be unreasonable to expect the microprogram to provide 
primitives for evaluating capabilities, distributing them, simple 
typ e-extension (including object creation and deletion) and so on. 
Un ique identifier look up by hashing, however , can lead to a waste 
of machine cycles when collisions occur in the hash table and a 
s earch must be continued. In particular, looking for an entry for 
an object that has been deleted may occupy the kernel for a long 
time, causing a degradation of efficiency. 

The Plessey System 250 [England 74) circumvents the cost of 
hashing short term names by arranging that names in capabilities 
directly index a global name table which is called the System 
Capability Table (SCT) as shown in Figure 3. 4-1 . The Pl essey 
sys tern only provides memory protection and does not support any 
f orm of extended objects, so all object~ in the SCT are segments . 
Th e operating system for the _Plessey machine detects and recovers 
CU\y slots in the SCT that are occupied by segments that are no 
l onger accessible . from active capabilities so that they may be 
given to segments that are created subsequently . Names in the 
Pl essey system are still global, but they are only unique in the 

' .. s ense that at any time a name is only associated with a single 
s egment , although at another time the name might refer to a 
different segment if the original has been destroyed. Finding 
free slots in the SCT requires the use of~ garbage collector that 
periodically scans all of the capabilities that are active in the 
system to determine which SCT slots are not referenced. The 
fre quency a t whi ch the garbage collector runs and the size of the 
SCT must both be ca refully tun ed to avoid wasting space in the 
tabl e and also to prevent the system locking up if the SCT is 
full. Names in the Plessey sys tern are just sixteen bits long , 
which greatly contributes towards having short capabilities and 

n, 
the prj,(cipal advantage of this scheme over Watson's proposal is 
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t hat proceeding from names to table entries only involves 

following a simple indirection and avoids the expense and 

complication of hashing. 

The essential point to notice about the architectures proposed 

b y Watson and Plessey is that, unlike the active global symbol 

t able of HYDRA, the tables in memory are not caches for a larger 

data structure owned by the kernel. It might be the case that a 

higher 'level unique name table (such as the CAP System Internal 

Name table) exists, but the primitive naming and protection 

mechanisms know nothing about it and the management of 
' 

forever-unique names is not a kernel function. The main advantage 

of adopting this view is that the global name table need only be 

of moderate size and resident in memory so that kernel naming and 

protection mechanisms can be implemented in simple and efficient 

code. The price paid for this facility is the need for 

translation between filing system names and run time names. In 

HYDRA the active global symbol table is purely a cache for the 

passive symbol table kept on disc and it is the duty of the HYDRA 

kernel to maintain both data structures, whi eh is one reason why 

the HYDRA kernel is slow and unwieldy and has to be implemented in 

software rather than microprogram. 

A compromise suggested by Lampson and Sturgis [76) to gain the 

benefits of short name$ whilst retaining a forever-unique name 

system is to make capabilities hold both a short run-time name and 

a long forever-unique name. Operations on the global name table 

in memory are carried out using short names to address slots 

within it and · a quick check is made to ensure that a unique name 

held in the slot matches the unique name held in the capability 

being exercised. If the unique names do match, the operation is 

allowed to proceed, otherwise a trap is generated and the 

operating system can use the unique name to find or construct an 

entry in the table for the object, and the short name field of the 

faulty capabili_ty is then made to be the offset of the new slot . 

In essence , a short name i s a ' hint' to the position of an entry 

f or an object in the map . With this sort of ·organisation the map 

can functi o n a s a ca che for a unique nam e t a ble that is ke pt on 

bac king s tor e wi t ho u t invol ving the kerne l i n di s c ope r a ti ons . 
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The kernel uses short names as poin.ters and this · avoids the 
expense of hashing · and leaves the management of forever-unique 
names to higher level components of the system. While this , 
t echnique may seem to offer an ideal compromise between short 
names and unique names, there are many pitfalls to avoid. 
Capabilities are very long because of the need to hold both short 
and long names, and space must be found in the central object 
table entries for long names as for well as details of 
representations. It is necessary to provide code to manage both 
the small resident map and the larger permanent structure which 
have different naming conventions, and the interactions between 
the tables and the algorithms for managing them must be carefully 
considered to avoid problems of inconsistency, over-complication 
and loss of efficiency. 

In general terms, all of the different management strategies 
for global name tables represent a compromise between the usage of 
space and time, so it is unreasonable to expect any single 
mechanism to be ideal. Instead it is necessary to consider the 
desired behaviour of a system and to adopt the techniques most 
suited to it. 
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CHAPTER FOUR.· 

CAPABILITIES AND ADDRESSING. 

4.1. Capability Structure and Organisation. 

The natural place at which to start considering capabilities 
and addressing is with the nature and substance- of capabilities 
themselves: a capability is evaluated from the contents of a data 
structure in memory which serves to define both the object 
protected by the capability, the privileges the capability 
confers, and in some systems ( CAL-TSS for example), information 
about the type of the protected object. It is useful to be able 
to refer to the data structures themselves as capabilities 
although , in the strictest sense, it is the result of evaluating 
the data structures that yields capabilities. In this thesis, the 
term 'capability' is used with both meanings provided that it is 
possible to resolve any ambiguity from the context. 

Because they contain names, capabilities must not be either 
forged or corrupted if protection is to be guaranteed. It is 
therefore necessary to have some method for distinguishing 
capabilities from ordinary data so that they can be recognised and 
only authorised capability operations carried out upon them . 
There are two common techniques for performing this 
discrimination : firstly, each item of information in memory may 
be tagged with a bit saying whether or not the item is a 
capability, and secondly, memory may be partitioned into disjoint 
capability and - data regions . 

Tagging has been successfully employed by the Burroughs B5000 
computer system and its descendants [Burroughs 61] and has been 
ex tensivel y i n vestigated by Feustel [73] . The protected i te ms in 
t hese systems are ' descriptors ' rather than capabilities , but t he 
diffe r ences between t hem are of no immediate concern except fo r 
one poi nt : desc r ipto r s t ypically tend to be smaller tha n 
capabilities as they contain les s info rm a ti on. The i mpac t o f t h i s 
becomes apparent in the light of curr e nt tr e nd s t o r educe the s ize 
of addr e s s abl e ite ms in memory . In the past, machines with items 
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of thirty-two, forty-eight and even sixty bit items were common, 
but nowadays the eight bit character, or byte, is becoming 
universal and proposals have been made for bit-addressable 
memories. In such addressing organisations a large object such as 
a capability is implem~nted as a contiguoui sequence of locations 
of memory usually addressed by the offset of the first element in 
the frame. If tagging is to be used, it would seem that at first 
sight two tag, bits .are required, with the significance 'first item 
of a capability' and 'subsequent i tern of a capability' 
respectively, so that it may be ensured . that capabilities are 
correctly manipulated, but clearly the overhead of associating two 
extra bits with a small item of, say, eight bits is wasteful and 
expensive. 

A simple 

capabilities 

multiple of 

way of avoiding the expense is to insist that· 
can only be stored starting at addresses that are a 
the length of a capability and that capability 

addresses must locate one of the predetermined capability frames; 
this only requires a single tag bit but complicates software 
because of the need to align capabilities which sacrifices many of 
the advantages of being able to access small items. A full 
discussion of tagging hardware for a capability machine can be 
found in Redel 1 [ 74] together with some proposals for a scheme 
which is economic in terms of the number of tag bits, yet permits 
items to be arbitrarily laid out in store. 

The generality of being able to mix capabilities and data 
freely in a tagged memory regime poses some system problems: some 
part of the protection system must be responsible for creating new 
capabilities and destroying unwanted ones and to do so it must be 
possible to write arbitrary bit patterns in , capabilities, although 
the use of this privilege must be protected to ensure the 
integrity of the rest of the protection machinery. This operation 
conflicts with the setting of a capability's tag bit and some 
escape mechanism must be provided to overide tags which, in most 
tagged machines, is available only in a special or privileged 
state that allows fil!.Y. capability to be modified . This latter 
privilege is more sweeping than that which is actually required 
and it is not possible to limit selectively the capabilities which 
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may be affected. 

A further problem arises from the observation that an 
operating system is obliged to know the location of capabilities 
and other protection data struqtures; for example, it may be 
necessary to scan all · the capabilities belonging to a protection 
domain to find lost objects, or to detect garbage in internal 
tables. If capabilities are fre~ly distributed throughout a 
domain's memory (as tagging would allow), the scan would have to 
include every item in memory that could possibly contain a 
capability. In any system, and even more so in one that has a 
large backing store, this task would be exceptionally expensive in 
both 'processor time and virtual memory traffic. 

The difficulties encountered in a tagged architecture may be 
avoided by partitioning capabilities and data. In a partitioned 
system the access code of a capability for a segment will belong 
to one of two categories: capability type access or data type 
access. To perform data operations such as addition or · shifting 
on items in a segment, it is necessary to present a capability 
bearing the appropriate data type access code such as .r:.~ad, write 
or execut~ and for a capability operation, a capability pre3enting 
a capability type code such as read-capability or write-caoability 
must be used. Thus the interpretation of the contents of a 
segment depends upon the capability used to gain access to it and 
it is usual to refer to a segment for which capability access is 
held as a capability segment; otherwise, if the access is of data 
type, it is referred to as a data segment. In this scheme, the 
part of the operating system concerned with altering the contents 
of capabilities would have a capability giving data access to 
segments that are elsewhere accessed with capability access and 
because the ability to modify a particular capability is itself 
contro_lled by a capability, it is possible to control the 
privilege. 

The software for managing capabilities in a partitioned 
architecture does not have to scan the entire memory of the system 
to find all capabilities , instead it is only necessary to conside r 
capability segments , that is , those f or which there is a 
capability wi t h a ca pab i l ity t ype access code i n ex i sten ce . It 
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may be expected that there will be far few:er of these segments 
than data segments. 

The disadvantage of partitioning is that a certain amount of 
generality is lost: it is not possible to have data structures 
represented by segments that contain a mixture of capabilities and 
data and there are occasions when the lack of this feature is a 
nuisance. Consider, for example, a directory or catalogue for a 
filing system: the directory cannot be implemented as a segment 
containing both capabilities for the objects filed within it 
together with data representing file names and access control 
information, whereas in a tagged machine the directory could 
easily be made from a single segment. In a partitioned 
architecture it would have to be implemented as two segments, one 
for data and one for capabilities, which is inefficient as it· 
requires two transfers to bring all of the directory into store~ 
The HYDRA system [Cohen and Jefferson 74] employs partitioning but 
tries to recapture 

holding both data 

generality by providing 'universal' 

and capabilities, that are formed 

objects, 

from two 
segments, one of which holds the data part of the object and one 
for its capabilities. The implementation of the object as two 
segments is concealed from the user, but it is not possible to 
interleave capabilities and data arbitrarily inside the object as 
the two sorts of information are addressed in different ways; By 
careful allocation of disc space it can be arranged that the two 
segments of a universal object are adjacent on disc and can be 
brought into store in a single transfer. The CAP and Plessey 250 
sys terns al so partition capabilities and data but neither has any 
facility for mtxed type segments . 

An important consequence of adopting a partitioned 
architecture is that, unless ordinary orders recognise ·capability 
and data type access codes , they cannot be used to move 
capabilities around between capability segments which means that a 
special suite of capability orders must be provided . 
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4.2. Capabilities and Virtual Address Translation. 

In a segmented addressing architecture, an address contains 
two fields, one of which selec_ts a descriptor for one of the 
segments in a virtual address space and the other indexes a 
particular item within the segment. Capabilities can be usefully 
employed as descriptors because they are protected fr0m forgery or 
corruption and can be passed between address spaces to permit 
sharing, without the need to resort to complex linkage tables such 
as those found in MULTICS [Organick 72]. Capability segments can 
take the place of descriptor tables and each capability within the 
tables will define a segment associated with some virtual 
addresses. Two address spaces sharing ac6ess to some object will 
have similar capabilities for it in their (descriptor) capability 
segments. A capability used as a descriptor provides a bridge
between virtual address spaces and the naming machinery because art 
address nominates a capability which in turn, provided there are 
no access violations, yields the name of an object which is the 
key for obtaining its representation . 

There are two ways of using capability descriptors: explicitly 
by loading them into capability registers o r implicitly by making 
the virtual address translation mechanism evaluate descriptor 
capabilities ~utomatically . 

The Plessey System 250 [England 74] is a capability register 
machine in which all of the capabilities avai lable to a protection 
domain (or package in System 250 nomenclature) are held in a 
single capabi l ity segment , the Central Capability Segment , whic h 
is local to a process . The capabilities in this table hold names 
that point at entries i n the global system capability table and 
acc ess codes . The Sys t em 250 processor makes avai l able to use r s 
ei g h t ca pab i l ity r eg i s ters whi ch hold evaluated ( segmen t) 
capab ili ti es in t hr ee fields : abso lute _ base add r ess , s iz e and 
a c cess code . The data s truc tures of th e System 250 are shown 
d iagrammat ically i n Fi gure 4. 2-1. Ca pab ilities a re loaded 
e x plic i tl y in the reg i s ter s by ins truc ti ons of the form .' load 
c a pab ili t y r eg ister r with ca pability i' which causes the i - th 
capability in the central capa bility segment to be evaluated and 
th e n to be made available in the r-th ca pability r egister, 
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overwriting the previous contents of the register. Addresses in • 
this system take the form of a duplet <capability register number, 
offset in segment>. Whenever execution crosses a protection 
domain boundary, all of the capability registers must be flushed 
out as their contents will not be valid in the new domain and the 
contents of the registers are preserved on a stack so that the old 
environment may be restored when the called domain is left. 

HYDRA likewise specifies objects by their offset in a central 
table. Associated with each protection domain is a capability 
segment known as the Local Name Space (LNS) and capabilities may 
be moved in and out of the LNS by kernel primitives which take LNS 
offsets as arguments. Objects in HYDRA can contain capabilities 
within their representation and the addressing mechanism permits 
these capabilities to be addressed by a path name which specifies 
a route starting at the LNS through the capability parts of a 
series of objects leading to the target capability. Each 
component of the path name consists of an offset into the 
capability segment of the last object reached. A typi0al path 
from a LNS through several objects is shown in Figure 4.2-2. The 
LNS is a normal HYDRA object; the capability part describes the 
privileges of a protection domain and the data part ·holds sys tern 
ind accounting data such as the number of capabilities present and 
so on .. The ability to follow a path and pluck capabilities out of 
objects is controlled by an complex set of access codes [Cohen and 
Jefferson 75] . In HYDRA, a segment of memory is addressed by 
indexing a capability for the segment into the LNS and then 

_causing the kernel to evaluate the capability and configure a 
nominated relocation register of the underlying hardware 
accordingly so that memory can be addressed through it. 

Explicit capability register machines are unsatisfactory for a 
number of reasons. The most apparent is that programmers have to 
concern themselves with the allocation and priming of capability 
r egisters and this act ivity is not confined to system programmers ; 
it must be carried out at all levels. Register allocation can be 
left under the control of a high level language compiler, although 
in doing so it is difficult to avoid introducing machine dependent 
features into the language . This can be a great disadvantage if 
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the language is portable such as BCPL [Richards 69] or Algol68C 
[Bourne et al. 74], where all machines share the same compiler but 
have their own intermediate code translators. Introducing 
protection facilities in the translator is not easy as much of the 
information needed to decide the contents of capability registers 
is only available in the compiler. 

If the working set of capabilities needed by an executing 
program exceeds the number of registers available, many machine 
cycles will be wasted in repeatedly loading and unloading 
capabilities. This loss can be diminished by increasing the 
number of registers available at the expense of more state 
information to preserve over a process or domain switch. Another 
danger is that a register may be left containing a capability when 
it is no longer required and subsequently, because of if 
programming error, the register may be exercised by accident or 
may be thought to refer to another object. This sort of thing can 
lead to very obscure program failures. 

If a change is made to system tables, such as the SCT and 
Central Capability Tables of the Plessey system, any registers 
previously loaded from the tables must be flushed out and 
evaluated from scratch, as the data on which they rely might have 
changed. By the simple expedient of holding table offsets in 
capability registers it is possible to reduce the flush to only 
those capabilities dependent on the changed data. ) Additionally, 
if the change was in the global name table, it is necessary to 
flush out capabilities not only in the currently running process 
but also any preserved in process bases and other state 
information. 

Many of these problems can be avoided by arranging for the 
addressing mechanism to select automatically and to evaluate a 
capability to det ermine an object's representation. In the 
Plessey system this would correspond to making addresses. of the 
form <offset in SCT, offset in segment> rather than <capability 
register, offset in segment>. If every reference to an object , 
especially if it were a segment, caused a capability to be 
evaluated, the overheads of the mechanism would be immense but 
they could be avoided if evaluated capabilities are retained in 
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' 
some form of capability cache. For example, in the case of the 
modified Plessey system , it would be possible to provide a bank of 
capability registers each preceded by a tag ~hich is used to hold 
the central capability segment table slot of the capability from 
which t h e register is loaded as is shown in Figure ~ . 2-3. When an 
address is presented to the cache , an associative search can be 
made for a registe r whose tag matches the SCT offset of the 
address. If a match occurs, the selected register can be used to 
bontrol access to store, otherwise a free register in the bank can 
be loaded and the store access re-tried . The function of the 
associative capability cache is similar in operation to the 
current page registers found in machines with paging hardware 
[Denning 70]. The management of the cache can be carried out by 
software running in a privileged state which permits changes to 
the contents of the registers or, as is the · case in the CAP 
computer, by micropvogram. 

An associative cache is more expensive than directly 
addressable registers in terms of hardware, although the falling 
costs of integrated circuits is reducing the price of associative 
memory. In return for the investment, the advantages or slaving 
capabilities are of great benefit : no longer is it ne c essary for 
programmers to become involved in capability register loading and 
dumping and the protection mechanism becomes an integral part of 
addressing which offers simplicity for naive users of the sys tern 
who are only required to understand the add r essing architecture of 
the machine and not necessarily its protection mechanisms as well. 
This latter feature is also useful in the area of high level 
languages as the objects accessible to a program can be mapp ed 
into a languag·e ' s v iew of the ad d r ess space in which it r uns , 
rather than forcibly hav ing to bol t on kno wledge of capabilit y 
mechanisms . Whilst there is no longer the problem of leav ing 
unwant-ed capabilities l ying around i n registers or misleading 
r egiste r s and accidental:l.y permitting protection violations , the 
di f ficulty s t ill exi s t s a t a higher level in that · t he proformae 
t ha t an operating system uses to set up capabilit y tables pri or t o 
running a program must agree with the addresses used by the 
pr og r a m. This ca n be skirted around to a fair extent by all owing 
compilers to construct the proforma e, as is th e cas e with the CAP 
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Algol68C compiler [Birrell 7 8]. It is, 
for ~rograms to become confused if 

of course still possible 
they compute an address 

wrongly; however if the address space is vast, there is a good 
chance that misleading addresses will turn out to be invalid , more 
so than if an address is a small integer or register number. 

If the associative selection mechanisms of the capability 
cache are sufficiently powerful, it is possible to arrange that 
capabilities are left in the cache over a domain call so that on 
returning from the domain they may be made accessible again 
without having to construct them afresh. It is a necessary 
requirement that capabilities held over in this way are only 
accessible in the domain to which they belong. The cache of the 
CAP computer is driven like this and the retention of capabilities 
during protected procedure calls leads to a considerable saving of 
machine cycles [ Cook 78]. Similarly with the need to flush out 
capabilities in a register machine, it must be possible to clear 
capabilities out of the . cache if the data structures from which 
they are evaluated have been altered . As each regi.ster in the 
cache proposed above is keyed by the address of the capability it 
is derived from, any change · to a capability can be accomplished by 
flushing out any entry whose tag matches the index of the modified 
capability. Changes in the global name table can cause the entire 
cache to be flushed or, by providing a field in each register 
giving the table offset of the object it protects, a selective 
clearing can be made. 

4.3. Structured Addressing Architecture:L_ 

Having just a single capability tab le in a domain is not 
entirely satisfactory as it is not possible to share those parts 
of the domain that are common to other instances of it elsewhere 
in the system . An example of the usefulness of such a feature is 
provided by filing system directories in the CAP filing system : a 
directory consists of a . segment describing the contents of the 
directory embedded wi th in an instance of a dirictory manager 
protected procedure and every incarnation of the procedure · can 
usefully share capabilities for segments of pure code, libraries 
and read-only data structures. The workspace of a directory 
manager is local to a process and can be shared between all 
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instances of the directory manager within a process because 
control will only be · in one of the managers at any time. Some 
data structures, such as directory segments, are local to each 
instance of the directory manager and cannot be shared. If the 
capabilities of a protection domain can be divided _ up into these 
various classes and shared there is considerable scope for saving 
space as is illustrated in Figure 4.3-1. Furthermore, by 
splitting the table into a number of capability segments, it is 
possible to protect some of the capabilities belonging to a domain 
from being overwritten by placing them in a segment for which only 
read capability access is held. In HYDRA, where a · process's 
capability table, the LNS, is a single table, there is a complex 
set of access controls provided to prevent individual capabilities 
within it being overwritten by accident. The ability to partition 
the layout of the capabilities belonging to a protection domain 
helps to prevent addressing the wrong capability by accident as, 
particularly if a domain is small, the capability address space 
will be sparse and arbitrary addresses produced by programs are 
likely to reference slots that are not in use and will cause a 
protection violation. 

The CAP computer has an elegant addressing and capability 
architecture which serves to illustrate some of thes·e points and 
is depicted diagrammatically in Figure 4. 3-2. For the current 
~urpose it is sufficient to assume that evaluated capabilities are 
efficiently cached in a large bank of capability registers. {The 
hardware for supporting the cache is described fully in Chapter 
Eight). As outlined in Section 3.2, the Process Resource List of 
every pr6cess contains an entry for every object available to the 
pro~ess and .the address space of a protected procedure is defined 
by up to three capability tables (i.e. capability segments), the 
entries in which select a subset of the ob,J ects in the PRL. As 
contr~l is passed between protected procedures, different sets of 
capability tables become. enabled and so the selection of objects 
available changes. A distinguished entry in the PRL describes the 
process base which, as well as state information, also holds 
sixteen pointers to PRL slots that define the currentl y e nab led 
capability tables of the process . A pointer may be null , in whic h 
case the cor r espond ing ca pabilit y t able is disabled. The f ourth , 
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fifth and sixth capability table pointers are changed whenever a 
protected procedure is entered and the new values indicate the 
capability tables defining the address space of the called 
procedure. The second and third capability tables are used for 
argument passing between protection domains and the remainder 
provide a set of a tables that are globally available to all 
procedures executing in the process. Each of the capability 
tables may hold upto 256 capabilities, although in practice only a 
small number of capabilities are kept in a few tables and most of 
the address space remains unused. An address consists of three 
fields: a capability table number, a capability index and a 
segment offset. The first two fields taken together are known as 
a capability specifier. The capability tab le number nominates, 
via one of the pointers in the process base, the capability table 
containing the addressed capability and the capability index 
chooses the capability from within the table. The segment offset 
field is used to address words within a segment if the capability 
is store type, but ENTER capabilities and other non-store type 
objects are addressed by the capability specifier alone. 

As was described in Section 3.2, PRLs contain the addresses of 
capabilities in the :immediately superior address space and they 
are in the form of a capability table number and capability index 
pair. 

Because of the changes of virtual address spaces arising 
during process and protected procedure switching in the CAP 
system, care has to be taken not to pass addresses between address 
spaces because they are not valid in any other context than the 
space in which _ they are defined. In particular it · must not be 
possible for any part of the system to be duped into giving away 
privileges in an unauthorised fashion by a misleading address 
passed as an argument. This restriction on the propagation of 
addresses has not been found · to be a great nuisance with the CAP 
~ystem because any reference to an object duri~g a protected 
procedure call is always accomplished by using a capability rather 
than an address and addresses are relegated to the simple task of 
identifying capabilities in the current procedure . The one 
diffi culty that can arise is with multi-segment data st r uctur e s 
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that contain inter-segment addresses because, if a capability for 
a particular component of the structure is moved to a different 

address, all of the addresses for it in the remaining segments 
must be edited appropriately. 

4.4. Capability-Based Addressing. 

Fabry 

their 

[ 7 41 shows that 

relationship to 

In an important paper, 

function of capabilities and 

descriptors can be used to 

con text-free addressing. His 

provide 

approach 

a very 

relies 

the naming 

addressing 

elegant form of 

on capabilities 

being readily identifiable .in both memory and processor registers. 

A machine operation which expe6ts a register to contain a 

reference to an object will complain if the register does not 
contain a capability; on the other hand if it does, the machine 

will evaluate the capability to acquire the name within it and 

hence the representation of the object to be accessed. On entry 

to a domain, a processor register is loaded with a capability for 

the domain descriptor so that by addressing with this capability 

it is possible to access the other capabiiities in the domain. It 
is important to note that unlike capability register machines, it 

is not necessary to consider in advance the allocation of 

capabilities to capability registers; instead corresponding to 

loading an address as data from memory into a register in a 

conventional machine, there is the action of picking up a 

capability. Thus the distinction between capabilities and data 

serves two purposes: firstly, to prevent a capability from being 

corrupted or forged and secondly to indicate to the addressing 

machinery that an item can be used as a valid address. 

The scheme has th e advantage that there are no problems 

concerned with shared addresses between domains and processes 

because the capabilities- provide a global address space and do 

away with the need for virtual address translation . It is sti 11 

possible to carry out the relocation of segments in virtual memory 

by modifying the con tents of the global object table so that the 

scheme retains the power of a conventional virtual addressing 

scheme . Unfortunately, to implement this very pure scheme , it is 

necessary to use tagging to mark capabilities because it is 

unreasonable to expect data structures that contain a mixture of 
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capabilities and data to be partitioned into separate data and 
capability regions. As was pointed out earlier this can lead to a 

number of difficulties in an operating system. 
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CHAPTER FIVE. 

TYPE-EXTENSION MECHANISMS, 

5.1. Objects, Representations and ·Types, 

In an object orientated system, the concept of extensibility 
as the introduction of further levels of abstraction corresponds 
to the provision of new objects beyond those provided by the 
hardware or kernel. These new objects must be protected by 
restricting the operations to which they may be subject in the 
same way that the kernel controls access to basic hardware objects 
such as processes and segments. Mechanisms are required for 
naming and describing abstract objects in addition to basic 
objects. 

An important consequence of the layering methodology is that 
the kernel has no knowledge of its surrounding layers; indeed, if 
the dynamic creation of new types of objects is permitted: the 
kernel cannot have any built-in data about the range of objects 
that may exist. However, it would be unreasonable to have to 
implement parallel copies of the kernel protection machinery in 
every layer, both because of the implementation difficulty of 
ensuring that one layer cannot subvert another and the nuisance to 
users who have to cope with a multiplicity of mechanisms for 
manipulating objects. The functions of the kernel concerned with 
naming and protection, such as creating capabilities, copying them 
and performing access checks, can and should be available in every 
layer. This means that the kernel must be able to employ its 
capability mechanisms for objects which it is not able to 
interpret directly. 

A -particular layer in a hierarchical system builds upon the 
facilities afforded by lower layers and any new object that is 
introduced must be constructed from lower level objects which will 
form its representation . Objects made in this way are described 
as extended objects and the layers that implement them carry out 
ope r ations upon them by manipulating their representations . 
Obviously t his right must be denied to the users of extended 
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objects, otherwise they could undermine the layer implementing an 
object. It is therefore necessary for the abstraction mechanism 
to provide 

object from 

responsible 

should only 

others. 

some means of concealing the 

its users, yet at the same time 

for an object to get inside it. 
be able to unpick the objects 

representation of an 

permitting the layer 

Furthermore, a layer 

it implements and no 

Objects can be partitioned into types; a type is an 
equivalence class of objects of identical structure, with the same 
operations defined for every member of the class. Every object 
has associated with it a type code which identifies the class to 
which it belongs. Typed objects are similar to 'classes' in 
Simula [Dahl and Hoare 72] or 'clusters' in CLU [Liskov 76]. The 
part of a system that implements a pa~ticular type is known as th~ 
type manager for that type. The term typed ob i ect is often used 
as a synonym for extended object and a collection of typed objects 
together with their manager is sometimes known as a protected 
sub-system. The primary motivation for an extensible system is to 
enable users to tailor its basic facilities to suit their 
requirements by the construction of protected sub-systems for 
additional types of objects beyond those already provided. 

5.2. The Use of Protection Domains as Extended Objects. 

The CAP [Needham and Walker 77] and Pless~y System 250 
[England 7 4] have a simple way of protecting the representations 
of extended objects that requires no additional machinery outside 
of memory protection, which is to embed extended objects within 
protection domains. The security of the representation of an 
object shielded by a protection domain is guaranteed if users are 
only given the right to call the domain so that they cannot tamper 
with the contents of its environment. Operations upon an extended 
object are carried out by calling it, with an entry code to 
identify the service required and the code executing within the 
domain uses the privileges available to it to modify the 
representation of the object accordingly . It is easy to see that 
this scheme is extensible because the 
describing objects whose representations 

protection 

are also 

domains 

extended 
objects, will contain domain capabilities for their components. 
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A protection domain that is used in this fashion to stand for 
a protected object can be viewed as an instance of a type manager 
with the identity of a particular object bound to it. Thus, for 
objects of a given type there will be distinct copies of the 
domain responsible for the type containing different 
representation capabilities. However, this does not imply that 
there will be multiple copies of code of the type manager and its 
data structures as they can be shared by virtue of the normal 
capability mechanisms. 

The control of access to the extended object, as opposed to 
its representation,. is carried out by building into the domain 
information about the operations that it is willing to carry out. 
If, as is the case with th~ Plessey System 250 and early versions 
of the CAP, access information is built into the data structures 
of a protection domain, there is a lack of uniformity with the 
kernel access control primitives. In particular, when users 
interrogate the access code of an extended object, they will only 
be toid about privileges relating to the object as a domain and 
access codes for objects can only be obtained by calling the 
domains implementing them with an entry code which signifiea "what 
is your access code?". To make a capability for an extended 
object that has weaker privileges, it is necessary to create a new 
copy of its domain containing a reduced access code. 

More recent versions of the CAP system hold access codes for 
extended objects within domain capabilities and when a domain is 

.. called, the access code contained in the capability that was used 
to address it is loaded into a register so that it can be 
inspected by the program executing inside the domain . This 
artifice has the advantag~ of homogeneity with the primitive 
mechanisms for querying access states and mak~ng reduced privilege 
copies of capabilities, but it is only possible because CAP has no 
intrinsic access codes associated with domain capabilities. 

A domain capability does not convey any information to the 
kernel about the type of object it protects; to the kernel type 
checking mechanisms, an extended object will always be · simply a 
domain. For the benefit of users, a type code can be embedded in 
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the capability for an extended object, if there is room, or as an 
alternative, a type code can be built into the data structure of a 
domain in the same way that was suggested for access codes. To " 
prevent bogus domains from masquerading as bona-fide extended 
objects, type codes must be well protected. If they are part of a 
domain capability there is obviously no protection problem, but 
the lack of space for holding the bits of a type code will reduce 
the si~e of the type code space and this in turn will affect the 
extensibility of the system. To prevent forgery, type codes kept 
inside a domain must be held as special type capabilities that can 
be inspected by · the kernel. The lack of consistency of these 
devices with the type conventions of the kernel makes them less 
than perfect. 

The freedom with which capabilities for extended objects can 
be passed between processes depends upon the willingness of the 
system to support independent domains that can be called by any 
process and implicitly includes provision for several processes to 
be executing concurrently in a single domain. This can be very 
difficult to arrange, as each process running in a domain must be 
given its own workspace so that it cannot interfere with any other 
processes that are present. Most protection systems do not permit 
multi-threaded protection domains (this point will be : returned to 
in Chapter Seven) , instead, every process is given a copy of a 
shared domain with the process's workspace bound into it. 

There is a further restriction on protected procedures in the 
CAP system which greatly impairs their utility as extended 
objects. It was indicated in Section 3.2 that it is not 
reasonable to expect the CAP inter - process message system to 
construct copies of a protection domain dynamically because of the 
work involved and thus it is difficult to pass extended objects 
betwe~n processes. In the CAP system, an extended object is sent 
to another process in the form of its filing system name that can 
be used to retrieve a filed prescription which specifies how to 
create a copy of the domain. The overheads of this jury . rig 
mechanism are rather high and the frequent use of it is not to be 
r ecommended . 
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A further point of interest arises from the observation that 
type managers typically retain a lot of information about the 
process in which they run for 
statistics and charging. If a 

the · p~rposes of collecting 
domain is unattached to a 

particular process, it cannot make use of local memory within a 
process to hold this sort of information . In the CAP system and 
others (MULTICS , CAL-TSS ) considerable use is made of this Algal 
own like storage . for accounting and housekeeping purposes. It is 
not clear to what extent it is strictly necessary, as it would be 
perfectly possible for an independent domain to keep, within its 
own space, a record for each process that calls it. 

A less important restriction owing to the use Of domains as 
extended objects is that it is not possible to carry out other 
than monadic 

object. For 

FILE COPY or 

operations,. because a domain stands for a single 
example, services like CLOSE ALL FILES or FILE TO 

even CREATE A FILE cannot be implemented unless they 
are posed as operations upon a single object , which will seem 
artificial to users. The CAP operating s ystem frequentl y splits 
the functions of a type manager into two parts to circumvent the 
pro hi bi tion on multiple operands. For example, in the CAP I/O 
stream system there is a protected procedure, the I/O Controller, 
which creates new streams and keeps a record of which streams are 
attached to devices and so on. Users see a stream as a Stream 
Protected Procedure holding the · representation of the stream, 
either as a message channel to a device or a segment in the f iling 
system, with operations such as OPEN, CLOSE and TRANSMIT BUFFER 
that affect the contents of the stream . 

5. 3. Sealed Capa.bili t y Type Ex tension. 

To overcome the difficulties associated with using domains as 
protected objects it is necessary look · for some mea n s o f 
constructing a capability for an ex tended ob j ect tha t i s 
recognised as such by the kernel and can be passed around freely 
while , at t h e same time , i t must be possible for a dul y a u t h orised 
t ype man ager t o use the extended . capability t o get at the 
r epres e ntation of an object. In his thesi s , Re de ll [74] s urv e ys a 
numb e r of proposals for describing extended objects. He shows 
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that the most reasonable' mechanism is that based on 'sealed' 
capabilities, in which a capability for an extended object can be 
viewed as a box with capabilities for the objects from which it is 
made sealed inside [Lampson 69] . The front of the box is labelled 
wi th the type and access code of the extended object and its 
contents are concealed from users, although a type manager can be 
given the privilege to acquire the capabilities held within it . 
Type-extension is portrayed by the act of nesting boxes within 
boxes as illustrated in figure 5. 3-1. 

HYDRA is a practical example of a sys tern that has a sealed 
capability type-extension mechanism and its 
are outlined in Jones' thesis [Jones 73]. 

essential principles 

As was described in 
Chapter Three, HYDRA has a global table with an entry for every 
object which is marked with the object's type . An entry for an 
extended object additionally contains a pointer to a capability 
segment that holds capabilities for its components or constituent 
rights. The environment described by these capabilities is never 
used for executing instructions, in contrast to the environment of 
a protection domain used as a protected 
purely a repository for capabilities . 

object ; instead is 

When an object is c r eated , it is not sufficient just to issue 
a name by allocating space in the global symbol table, in addition 
the environment for its components must be set up and initialised . 
For this purpose , there are two kernel primitives called LOAD and 
STORE : LOAD permits a capability to be copied out of the 
environment of an object and · put in the current domain, provided 
that the object was addressed with a capability possessing load 
access ; STORE, in conjunction with the sto re a ccess code , is used 
for the c on v e r se o pe ration of copy i ng a capabi l ity fro m the 
current domain into the env ironment of an object. Both load and 
store are gener i c access codes t hat are defined fo r all types o f 
extended objects , and the interpretation of other access codes in 
a capabili ty depends upon the type of the object it protects . 

User s o f protected ob j ects are not gran ted th e po t e n t load a nd 
sto r e privi leges and t he y see a n object as a single atomic who le. 
Type manager s may use the process o f ampli f i cat ion t o a c quire 
the ir priv i leges f or an objec t. Amplifi cat i on is controlled by a 
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template in the form of a triplet <type, required code, amplified 
code> which is used as follows: if the type of a capability for an 
extended object matches 'type' and the capability possesses at 
least 'required code' in its access code, a new capability for the 
object is created holding 'amplified code' in its access code. By 
the use of amplification, it is only possible to increase the 
degree of access permitted to the extended object, usually to 
include LOAD and STORE, and the access codes of the capabilities 
sealed within the object remain unaltered from the values they had 
when they were last stored. Otherwise, if this was not the case, 
it would be possible to use amplification to acquire illegally new 
privileges in capabilities by the sealing mechanism. Templates 
are protected by storing them in capability segments and treating 
them as prototype capabilities. 

The HYDRA scheme outlined above ideally fits into the cri~eria 
for type-extension supported by the kernel because the 
amplification mechanism does not rely upon any knowledge "'of the 
representation of extended objects and the kernel is only involved 
to the extent of matching type codes in the global symbol table 
entries and templates. HYDRA actually has a far more extensive 
set of access codes for amplification, that permit different sorts 
of restricted access to the components of an objec·t than the 
simple load and store privileges [Cohen and Jefferson 751, 
although the same principles hold in their use. 

5.4. Types as Objects. 

The integrity of the type-extension primitives based on 
capability sealing rely on the authenticity o f type codes, which, 
_like names, shou-ld be unique and insubvertible . In an extensible 
system it must be possible to cope with a potentially large number 
of types. If the set of type codes is limited in size, there are 
likely to be s~vere resource control problems~ The management of 
types can be made a kernel . function by encoding type . codes as 
names for type objects and thereby provide both protection and a 
suitably large type code space. 

A t ype object is used to stand for the entire class of objects of its type and the pr ivileges in a type object capability refer 
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to the class as a whole; for example, the implicit type object 
capability found in an amplific~tion template controls the ability 
to manipulate the representation of a class of objects and it is 
possible · to propose other access codes, such as create which 

. permits the size of the class to be increased. 

Just as objects of the same type form an equivalence class, 
type objects also form a class. It is possible define a 'master ' 
type which stands both for itself and for all other type objects 
and . is used to control the creation and proliferation of types. 
In this way, there is a hierarchy of objects as shown in figure 
5.4-1. The 'master' type object is the property of the kernel and 
describes the class of types, each member of which denotes in turn 
a distinct class of objects. 

There is another hierarchy in a layered system corresponding 
to the partial ordering of types imposed by the increasing levels 
of abstraction. The hierarchy is not a tree like that of objects 

' and types, instead it is a directed graph containing no cycles. 
Figure 5.4-2. (based upon Redell [74]) shows a selection of basic \ 

and extended objects and the relationships between them. The 
extended types 'text file', 'sorted file' and 'linked list' are 
represented as ' segments' and a 'document' can be any of these 
types. The arc joining 'documents' to 'segments' reflects a 
possible implementation of a long document as a segment of 
capabilities for smaller documents. 

5.5. A Simplified Scheme. 

Redell proposes a simpler variant of the HYDRA mechanism which 
retains the same power over the control of objects and types. In 
his scheme, an object may only be represented by a single 
capability - objects with many components can be represented by a 
segment of capabilities for their constituents and this 
capability is held in the global object table entry for the 
extended object so that the kernel does not have to administer a 
pool of storage for variable length representation capability 
lists. 

As in HYDRA, types are represented by type objects for which 
there are two recognised access codes: seal and unseal. Extended 
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objects are created by the SEAL kernel primitive which takes two , 
arguments, a capability for a type object with seal access and a 
capability for the representation of the object. The kernel 
acquires a global object table slot for the new object and sets 
the type field to be the name of the type object and its contents 
to be a copy of th~ representation c~pability. The result of the 
entire operation is a capability for the newly constructed 
extended object as shown in Figure 5. 5-1. The sealed capability 
is not visible to the user, who sees the extended object as a 
wholesome entity. The owner of a capability with unseal access 
for a type object can interrogate the representation of any member 
of the class using the kernel UNSEAL primitive which delivers a 
copy of the representation capability sealed within an object as 
its result. 

This mechanism has the advantages of simplicity, flexibility 
and, as will be seen in the next chapter, considerable unity with 
a powerful revocation scheme. What the scheme lacks is any 
facilities for creating basic hardware objects that have a data 
rather than a capability representation. For these objects there 
is a common requirement to modify their representations; for 
example, to relocate a segment in store by altering an absolute 
address in its map entry. Thus for these reasons it is necessary 
to augment the basic set of orders provided in Redell's scheme to 
arrive at a full suite of operations for both basic and extended 
objects. 
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CHAPTER SIX. 
, 

REVOCATION MECHANISMS, 

6. 1. A Review. 

In a capability-based system, one user can allow another to 

have access to an object by passing him a copy of a capability for 

it and in the interests of his own security, the original owner 

might well pass a capability with weaker privileges than his own. 

If the act of sharing corresponds to renting use of the object 

temporarily rather than to mutual cooperation, the level of trust 

the owner of the object has for the client is likely to . be 

reviewed, especially if the latter neglects to pay a rental fee or 

some such thing. In these circumstances, the owner will wish to 

recall the privileges that he gave the client earlier, al though 

perhaps only until the client redeems himself by making a suitable 

payment. To handle this sort of situation, there is a the need 

for revocation of access that takes immediate effect. Note 

that revocation may only be temporary and need not necessarily 

cause the loss of all privileges for an object, but only a subset 

of them. 

The situations ot~tlined above demonstrate that revocation is 

closely bound up with the notion of ownership. 

under stood that the owner of an object is the 

It is generally 

user or funding 

agency which the system charges for storing and manipulating it. 

Some systems only permit an object to be owned by a single user or 
principal, although in real life there are much more complex 

patterns of ownership; for example, a database jointly owned by a 

group of cooperating users. Ownership need not be static and can 

itself be considered as a privilege that can be shared. Some 

everyday analogues of passing on the right of ownership are 

sub-letting and bill collectio.n. In the former, the user of an 

object passes on a copy of his capability to another user, who may 

use revocation to restrict the privileges available to a set of' 

sub-users independently of the original owner, who in turn can 

restrict the activities of all the users. The second example, 

bill collection, corresponds to a user passing the right of' 
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control over an object to an agency that revokes access for users 
who default on their debts and, naturally, the original owner of 
the obj~ct will wish to reserve the right to withdraw the agency's 
revocation privileges when he has done with their services. 

The notion of ownership provides a means for describing the 
use. of revocation~ but it does not provide a mechanism for 
carrying it out. An important property of capability systems is 
that a privilege can be passed between domains or processes quite 
freely and when the owner of an object revokes acce~s to it, the 
kernel is obliged to stop all programs executing until the access 
code in every capability for the revoked object matches the 
object's changed status. Obviously it would be madness to scan 
exhaustively every capability in the system to be sure of finding 
those to check; nor is it reasonable to consider implementing a 
scheme of pointers from parent capabilities to their descendants 
because, as a capability can be copied many times, vast amounts of 
memory would be needed to hold all the pointers. The need · to 
locate and modify many distributed copies of a capability is the 
fundamental problem of revocation and, the solution lies in the 
formulation of revocation as an operation involving the mapping 
between capabilities and objects. 

For the time being, it is instructive to . turn to· some of the 
systems implications of immediate revocation. The first 
observation is that any service, and especially the operating 
sys tern, must be prepared to find that a capability it has been 
passed as an argument might suddenly become impotent because an 

·· asynchronous process has carried out a revocation operation. If 
the service was in the middle of a critical section, there . is a 
high probability that the revoked object would be left in an 
inconsistent state . The standard remedy against this effect is to 
ensure that a program accesses its arguments once only to take a 
copy of them for use as data in its computations and any update 
operation on a data structure must be done atomically so that 
revocation cannot prevent it from completing . 

Revocation poses some particular problems in systems that 
support protected objects . Uniformity requires that it should be 
possible to revoke capabilities fo r ex tended as well as bas i c 
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objects. Furthermore, it should be possible to incorporate 
revocable capabilities into the representations of objects, which 
means that the revocation machinery must be able to monitor these 
capabilities as well as those in protection domains, otherwise a 
user can shield a capability from revocation by disguising it as 
an extended object. 

There are some circumstances in which it may be desirable to 
delay the effects of revocation; for example , consider a 
capability for a protection domain: if revoking the capability is 
defined to withdraw immediately the right of execution within it, 
the system is obliged to identify all of the processes running in 
the domain and force them to exit straight away . Furthermore , the 
domain has no opportunity to tidy up or recover from the 
interruption of its duties and may well be left in an irregular 
condition. This point can be addressed by defining the sequence 
of instructions executed between a domain call and exit to be 
atomic with respect to the domain making the call, which will mean · 
that revoking a domain capability will prevent any further call to 
it being made, but any call that is in progress is allowed to 
finish. 

Within the context of an operating system there are two main 
uses of revocation: the first is the reflection of revocation 
operations in a filing system by the immediate revocation of 
access to versions of filing system objects that are active in the 
machine , and the second is to prevent malicious domains from 
retaining copies of capabilities that they were passed as 
arguments and from interfering later on with the objects that the 
capabilities protect. The rationale of immediate revocation in 
r esponse to filing system operations stems from systems like 
MULTICS [Organick 72] that have one level filing systems in which 
segme~ts are swapped between main memory and the filing system, 
whereas two level sys terns copy segments . out of the file sys tern 
into an autonomous virtual memory swapping regime. In a one level 
system , r evoking access in the file system automatically includes 
r evocation of active objects because of the intimacy · Of the 
swapping and filing systems, wherea s in a two level system, ther e 
is a considerable amount of work to be done to find the active 

- 55-



copies of a filing system object. This can be avoided by 
declaring · that revocation only affects subsequent filing system 
accesses to objects and leaves any currently active versions of a 
revoked object alone. This latter approach to revocation has the 
advantage that it need not involve the kernel .and can be carried 
out entirely at the level of the filing system. 

Unfortunately the second use of r evocation, the control of 
capabilities passed as parameters to a domain, does require the 
intervention of the kernel because of its association with the 
domain call mechanism. The problem to be solved is one of 
confinement [Lampson 73], in that it is required to control the, 
proliferation of any capabilities that are passed to a domain, in 
particular to ensure that it neither retains an argument 
capability in its own storage nor covertly hides it away in some 
other domain. It is not reasonable to rely on the use of generic 
access codes that prevent a capability from being copied as this 
hinders a domain that legally passes its arguments on to other 
domains in the course of its actions. 

Domain call parameter revocation is less disastrous from the 
systems point of view than its immediate filing system counterpart 
because it only takes place on domain exit, and does not interfere 
with the program running within the domain . 

Even with the use of revocation, it is not generally possible 
to prevent a domain from remembering information that it is passed 
and leaking it elsewhere. Revocation can only be used to confine 
the proliferation of privileges; it is no use at all as .a 
mechanism for preventing the flow of information and data. It is 
necessary to Jook 

[Denning et al 7 4, 

towards the analysis of information flow the. Fenton 7 4] to evaluate l possibili ty of a data 
leakage from a protection domain. 

6.2. Revocation in Capability-Based Systems . 

It might seem that the simplest way to allow .one domain to 
revoke privileges that it has passed to another domain is for the 
f ormer to have complete control over the capabilities of the 
latter. This assumes that the domain which is given a revocable 
capability has complete faith that its controlling domain will not 
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take advantages of its privileges and interfere with any other 
capabilities, apart from those which are to be revoked. 
Coordinators in the CAP system have a relationship of this sort 
with respect to their sub-processes and they can revoke a 
capability in a junior process by modifying the capability for the 
revocable object in the Coordinatdr's address space . Notice that, 
because of the nested address spaces in CAP , this mechanism 
revokes access in any copies of the capability in all the 
sub-processes of the Coordinator, so that a sub-prOcess cannot 
cheat by hiding a revocable capability in any of its brother 
processes. If CAP had a global naming scheme instead, the 
Coordinator could still use its position in the process hierarchy 
to get inside the processes it controls to carry out revocation, 
but the task would then be much harder as it would need to scan 
every capability within the controlled process, which might have 
taken many copies of the target capability . Furthermore , the 
controlled process would have to be confined so that it may not 
transmit a revocable capability to a process over which the 
Coordinator had no powers . 

An alternative mechanism, is to encapsulate a revocable 
capability in a domain that monitors all access to it. Mutual 
suspicion is now handled successfully because the shielding domain 
has no control over the domain which calls it, but the scheme is 
faced by a number of difficulties not very dissimilar to those 
encountered with the use of protection domains for typed objects. 
There is the problem of type recognition ; to the base level, a 
revocable capabil i ty for any sort of object always appears to be 
of the type 'domain' , al though the confusion can be avoided by 
u sing t he au xili a r y type marks that were suggested in Sedtion 5 . 2 . 
More important , there is a loss of efficiency caused by the time 
taken by the domain to check and interpret every service it is 
asked - to do , and in the case of kernel - defined objects such as 
segments th e l osses ar e imm ense . 

If copies of a revocable capabil i ty are given out to a numbe r 
of di f f e r ent use r s , it i s necessary to consider ho w a caretaker 
domain distinguishes between them. A simpl e ap proac h is t o pas s 
to each us e r a separate copy of the dom a in with his acc es s sta tus 
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bound into it, otherwise the domain must recognise each of its 
callers and check their corresponding access codes, which is a 
direct copy of the kernel protection facilities and a wasteful 
duplication of machinery. 

The two schemes outlined above are the only two revocation 
strategies available for users of the CAP system, the designers of 
which felt that revocation was undesirable as a matter of policy 
and were not willing to add any additional machinery to handle it. 
Redell's thesis [74] investigates many of the possible paths that 
may be fol .lowed if further mechanisms are introduced into the 
kernel specifically 

describes fall into 
dependent capabilities. 

to 

two 

handle revocation. 

classes: revoker 

The systems 

capabilities 

he 

and 

Revoker capabilities [Neumann et al 7 4] are capabilities for 
the mapping between a capability and the object it names. A 
revoker capability can be used to alter the mapping and vary the 
accesses conveyed by capabilities that map onto objects through it 
as illustrated in Figure 6. 2-1. In effect, the mapping between a 
capability and an object is itself treated as an object which 
suggests as an implementation that a revoker capability will map 
onto a revoker object whose representation 
for another object. The main difference 

describes the mapping 

between this and the 
gate-keeper domain scheme is that the revoker capability does not 
describe an active object which guards all access to the revocable 
object, instead it is a contrivance for interfering with the 
mapping between names in capabilities and entries in object 
tables. A corollary of this is that the privilege of revocation 
can itself be made revocable by controlling the mapping between 
revoker capabilities and revokers . 

The dependent capability scheme is rather different; there are 
. no special revoker capabilities, but instead it is arranged that 
all copies of a capability are . dependent on the original so that 
when the holder of a capability revokes access, all of the copies 
dependent upon it are similarly affected, which is to say that 
capabilities somehow depend on the so urce fr om which they were 
derived . In this approach there i s a dist inct i on bet ween 
transmitting a plain co py of a capability and a r e vocable one . 
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This distinction establishes a tree of dependencies between copies 
of a capability which is structured as follows: 

a) The initial capability occupies the root node . 
b) A non-revocable copy of a capability occupies the same 

node as the capability from which it was derived . 
c) A revocable copy of a capability occupies a new successor 

node descended f r om the node of the original capability . 
A diagrammatic representation of a typical tree is shown in Figure 
6.2-2 . All of the capabilities in an individual node of the tree 
always contain the same privileges , since any change to one of 
them affects all of its companions equally because they are all 
dependent on the capability from which they are descended . If a 
revocation alters a privilege at some level in the tree then 
privileges are affected in the levels descending from it. The 
main point to notice about the tree is that it demonstrates that 
with the two different copying primitives, dependent capabilities 
pose no constraints on the use of revocation because the tree 
describes a general hiera r chy of control. 

Dependent capabilities have a great deal to recommend them . 
They avoid the need for special capabilities authorising 
revocation and also escape f r om treating the capabi.lity t o object 
mapping as an object which is not straightforward to implement , 
although it does not mean that revocation itself cannot be made 
revocable . The main complaint against dependent capabilities i s 
that an early decision is required to dete r mine whether or not a 
capability should be revocable because, once a non-revocable copy 
is given away , all control over it is lost forever . 
is reasonable to suggest that any level of trust 

However , it 

apart from 
absolute confidcince is liable to ch ange an d s hou l d be mir r o r ed by 
the use of revocable capabilities at all times . 

6.3. A Sealed Capabil i ty Implementation , 

I n t he las t chapter, the use of seal i ng to conceal the 
r epresenta t ion of 

opaq u e s eal ing and 

sealing in which 

modifi e d . Re dell 

an ob j ect was desc r ibed ; Redell calls t his 
it i s al so poss i ble to consider transparent 

a sealed object can be r ead, but cannot be 
describes a mechanism based on a mi xture of 

these t wo types of sealing to implement a de pend e nt capability 
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revocation scheme. He introduces a new sort of slot, called a 
revoker, in the global object table which resembles an extended 
object, except that its type is recognised by the kernel. 
Capabilities for revocable objects are illustrated in Figure 
6. 3-1. A revoker contains a capability together with an access. 
mask and every field in a revoker, with the exception of the bits 
of the access mask that are off , is transparent ~ If, in the 
course of the evaluation of a capability, a revoker is 
encountered, the transparent capability sealed within it leads on 
to another table global object table entry which might also be a 
revoker until eventually either a basic or an extended object is 
found, which is taken to be the object the original capability 
denotes. The opaque parts of the access masks, that is the bits 
that are off, cut out accesses that are not to be permitted an~_ 
this selective filtering action is used to capture the action of 
revocation . 

Redell introduces a kernel primitive, REVOKE, which takes two 
arguments: a capability and an access mask. If the name in the 
capability points immediately at a revoker, the kernel modifies 
the access mask of the revoker to be the intersection of the 
access mask sealed in the revoker and the access mask argument , 
otherwise it signals a fault. Whenever any capability pointing at 
the revoker is subsequently evaluated, the privileges it conveys 
will be tempered by the new access mask so that if , for example , 
every bit in the mask was off , the effect would be one of total 
revocation of privilege . Thus , the main difference between 
dependent capabilities and revoker capabilities is that revocable 
dependent capabiliti~s may be used to access the revocable ob j ect , 
but revoker cap~bilities may not . 

It may be noted that Redell ' s scheme in this form only allows 
access to be r educed ; there is no mechanism for temporary 
r evocat i o n and it wi ll be s ho wn in th e de s i gn of the CAP k erne l 
(Sect i on 10 .4 ) tha t i t is onl y nece s sary to make a fe w changes in 
o r der t o r emov e this r estri ct i on . 

So f a r, th e mec hani s m developed permits capabilities that can 
be r e v o ked to be es tablish e d by sealing in the pr esence of a 
revoker type object ; some additional mec hani s m i s r e quired so 
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that it is possible 

power of revocation 

to copy revocable capabilities, leaving the 

with the owner of the revocable object, 

without allowing the privilege to others. For example, it might 
be required to pass copies of a revocable capability to several 

people without wishing to allow any one of sub-users to affect 
the powers of the others. On the other hand the owner of the 

object will wish to be able to deny access to the object to all of 
the sub-users. This is accomplished by an additional type of 
extended object called a locker which is totally transparent to 
the capability evaluation process. The only purpose of a locker 

is to prevent the REVOKE operation from being able to succeed, 
because the type of first table entry leading from a locked 

capability will be a locker and not a revoker. Thus, only the 
holder of a revocable capability can exercise REVOKE, although the 

its effect will be noticed by every capability that denotes a 
chain passing through the revoker controlled by the revoked 
capability. An example of this sort of sealing is shown in figure 
6 . 3-2. The UNSEAL operation is not allowed fo, ,evokers and 

lockers because it is not a acceptable function. 

In Redell's design, REVOKE is the only operation available for 
reducing access to objects because his capabilities do not contain 
access codes and therefore it is riot possible to carry out any 

form of access code refinement as is carried out in the CAP 
system. A capability on its own denotes full privileges for- an 

object and the access masks in any revokers intervening in the 
path between a capability and its root object table entry are the 

~only means available for reducing access. 
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CHAPTER SEVEN. 

PROCESSES AND PROTECTION DOMAINS. 

7.1 ~ Protection Domains. 

A capability for a protection domai n leads to an object whose 
representation holds information about the state of the domain and 
its capabilities in the form of a segm,ent known as the domain 
descriptor. Because nothing is ever done by a domain in 
isolation, but always . by a process executing within it, there is a 
relationship between domains and processes, which is called 
'environment-binding ' by Jones [ 73]. In the most general terms, 
domains and processes can be considered separately and processes 
allowed potentially complete freedom in their association with 
protection domains. This means that a process can move through 
many domains in the course of its execution and, on the other 
hand, allows many processes to execute concurrently 
domain. Most systems impose restrictions on 

in a 

this 

single 

total 
flexibility to reduce the amount of machinery needed for 
inter-domain and inter-process communication. 

One simplification is to make a process into a single 
protection domain so that the inter-process communication 
facilities can also be used for inter-domain calls; this means 
that a task, which in the general scheme would have been a process 
with several protection domains, has to be implemented as a 
multiple set of processes, only one of which will be active at any 
one time. This is a clumsy use of parallelism and can be rather 
ineff ic i ent if- i nter-process communicat i on is slow. In a 
traditional computer architecture , this is the only domain 
structure which exists and process switching is a slow and 
lumbe ~some task carried out by software . This discourages the use 
of small doma ins f or r easo n s of i nef f ic i ency and leads on t o 
contra ventions o f th e pri nciple of minimum pri v~lege because 
pr ocesses ( i . e . domains ) wi ll t yp ica l ly be l a r ge a nd encompass 
man y acti vi ties . · I t is pos s i b l e t o c ircumv ent these problems by 
maki ng th e cos t o f a pro c e s s change s mall and by building a simple 
int er-process communi ca tion sys t em which has the parameter passing 
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capabil'i ties and the speed that is expected of a domain call 
mechanism. 

The main reason for wanting no more than one process executing 
in a domain at any one time is because of the likelihood of 
addressing conflicts between parallel 
[Lampson 69]. There are a number of 
execution in a domain can be prevented, 

invocations of a domain 
ways in which multiple 

of which the simplest is 
to make an entire domain into a critic al section, 
Hoare monitor [Hoare 7 4]. However; it may wel 1 
introduces unnecessary serialisation for domains 

not unlike a 

be that this 

that are not 
critical regions. There is also a further problem concerned with 
the degree of parallelism associated with monitors: in general 
there are two forms of monitor cal 1 [Lauer and Needham 7 8]: one 
that diverts a process into a monitor directly and another that 
divides a process into two parallel forks, dynamically creating 
new workspace for both forks, only one of which enters the 
monitor. In a capability based protection system, a process has 
to carry a considerable amount of state information around 
describing its current set of capabilities and. so on, which would 
make the cost of a forking monitor call ~rohibitive because of the 
expense involved in duplicating the protection structure of a 
process as well as its workspace. 

Addressing conflicts in a domain that admits several processes 
at once can be avoided by one of two techniques, the first of 
which is to provide a stack- like implementation of dynamic 
workspace in each process, so that on calling a shared domain, a 
process can acquire its own local workspace and be free from 
interference from other processes executing in the same domain. 
The second technique is really a modification of this in that, 
instead of setting up the workspace dynamically , each process is 
given -its own private copy of the domain with the process's local 
workspace built into it and rel ies on the normal capability 
sharing mechanisms to avoid the wastefulness of duplicate copies 
of pure code and data . Protected procedures in CAP are shared 
between processes in this way . 
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7,2. Inter-Domain Communication. 

When a process moves from one domain to another, it needs to 
be able to pass capabilities as well as data parameters. It would 
not be reasonable for domains to pass arguments by puttirig them in 
shared segments because of the amount of memory that would be 
wasted setting up a buffer for every pair of communicating 
domains. Domain call mechanisms normally transmit privileges 
between domains by copying capabilities out of one domain into 
another: for example, in the CAP system [Needham and Walker 77], 
a pirticular capability table, number three, known as the 
N-capability table, becomes the number two, or A-capability, table 
in the called protected procedure after executing an ENTER 
instruction and capability parameters can be passed to the called 
procedure by copying them to the N-capability table prior to the-.. 
call. This mechanism is illustrated in figure 7.2-1. When 
control returns to the calling protected procedure, the 
A-capability table of the called procedure reverts to its previous 
state as the N-capability table of the caller and result 

-capabilities can be taken out of it. · The switching of the 
capability tables is carried out by manipulating those pointers in 
the process base that describe the current set of capability 
tables and effectively amounts to copying the capabilities for the 
capability tables in and out of the domain descriptors of the 
protected procedures. In advance of calling a procedure, an 
N-capability table can be allocated dynamically from a stack by 
the MAKEIND instruction and then capability arguments can be 
copied into it. The stack, called the C-stack, is controlled by 
the microprogram and also holds linkage information for use by the 
RETURN instruction which will cause control to resume in the 
calling domain immediately after the ENTER instruction that 
invoked the domain call . 

The HYDRA kernel has a · more complex domain 
[Cohen and Jefferson 75] although the principles 
similar to CAP. The main additional feature 

cal 1 mechanism 

are essentially 

is the use of 
parameter templates, similar in form to the type-extension 
templates described in Section 5. 3, to carry out argument 
checking. The domain call primitive compares each argument passed 
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to a domain against a set of parameter templates in the domain 
object and signals a fault · if an argument capability does not 
match the type of the corresponding template, or if its access 
code is weaker than the 'required access' field in the template . 
Provided that an argument capability is consistent with the 
matching template during a domain call, the domain is given a copy 
of the argument with the 'amplified access' field of the template 
included in its access code. The last facility is used 
extensively by type managers to acquire load and store privileges 
for extended objects. 

7.3~ The Use of Protected Domain~. 

There are four principal applications of protected procedures 
in the CAP system [Needham and Walker 77]: gate-keeping, 
protected objects, trivial services and operating system 
intervention. It is useful to look briefly at this spectrum with 
the aim · of indicating how much the efficient domain machinery of 
the CAP system contributes to the success of the CAP operating 
system. 

The first application includes domains guarding the use of 
other system facilities, such as the Enter Coordinator Procedure 
(ECPROC) which provides an interface to the Master Coordinator and 
per forms validation checks on Coordinator calls. ECPROC is in a 
much better position to look at capabilities during a Coordinator 
call than the Coordinator itself, because it runs in the same name 
space as the process making the call, whereas the Coordinator 

_ would have to interpret sub-process addresses and duplicate the 
naming mechanisms of the microprogram in software. There is also 
a · gain in eff1ciency because arguments are verified within a 
process and this reduces the amount of time spent with interrupts 
disabled and cuts down on the number of con.text switches between 
proceises and the Coordinator. 

The CAP sys tern embeds sys tern data 
procedures that implement all of the 

structures into protected 
operations allowed to be 

carried out upon the data which, as was stated in section 2. l, 
helps to achieve both minimum privilege and accountability . For 
example, the data structures of th e inter-process message system 
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are guarded by ECPROC because the interactions between the message 
system and multi-programming require access to Coordinator data 
structures. This data must be protected from being corrupted by 
ordinary programs and also it is necessary to prevent users from 
tampering with the contents of messages . 

In Section 5. 2 the use of protection domains as protected 
objects was investigated and it was noted that, for CAP, this was 
the only way of implementing extended types. Even if the CAP had 
a more powerful protected object mechanism, protection domains 
will still be needed for use as type managers . This use of 
domains is rather l ike the protection of data structures described 
above , because a type manager encapsulates the privileges for 
get ting into the structure of protected objects and performing 
operations upon them. 

A somewhat surprising use of protected procedures peculiar to 
the CAP system , and directly attributable to the cheapness of the 
ENTER and RETURN orders, is the implementation of trivial services 
as protected procedures. CAP has a general purpose prog ram called 
PARMS which takes a character string representation of a command 
line and will decode and command parameter strings f rom it . All 
protected procedures invoked by the CAP Command Program are given 
capabilities for PARMS , together with the command line that caused 
the procedure to be loaded and the procedure can cal 1 PARMS to · 
decode its command par ameters . 

simply so tha t the inter face 

PARMS is a protected procedure 

to it is well - defined and. 
straightforward in terms 6f the ENTER/RETURN and capability 
passing primitives . 

Casting serYices of this sort as procedures is ver y useful i n 
systems that support a multiplicity of languages because it avoids 
the need for one language s ystem to have to know how to make 
subroutine calls in another , which would be the case if say PARMS , 
wr i t ten in Algol68C, was called by a BCPL or a FORTRAN program as 
a subroutine . I nstead , it is only necessary fo r each language to 
provide a mec ha nis m· f or ca l ling protected procedur es and pass i ng 
a r g ument s , t o make it possible to use service utilities written in 
any oth e r l a ngua g e . From the point of view of both documentation 
and implementation, it is useful to have the common base level of 
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the hardware primitives "for describing interfaces in terms of 
domain calls with simple numeric and capability parameters, 
independently of language considerations. 

After a fault or trap, a process has often to be involuntarily 
forced into the operating system so that the event can be 
processed. In order to preserve the principle that the operating 
system should have as little access to user capabilities as 
possible, CAP makes the entry to the opera ting sys tern take the 
form of simulating the effect of an ENTER at the point of the 
fault into a special protected procedure that inspects the trap 
and decides what is to be done. The procedure, called FAULTPROC, 
can then call other protected procedures to recover from the 
fault. For exam_ple, after a virtual memory trap ECPROC will call 
the store management system to load a segment into store and 
RETURN to the procedure from which it was forcibly called so that 
normal execution can resume. 

In an evaluation of the CAP system, Needham [77] shows how the 
exploitation of protected procedures by the CAP opera ting system 
falls in line with the desiderata appearing in Chapter Two, and 
the conclusion that can be drawn is that the effectiveness of the 
CAP operating system is founded on the use of small _ independent 
protection domains. These domains exploit a very efficient domain 
call mechanism in which a domain call takes a time comparable to 
about one hundred ordirtary instructions [Cook 78]. Software 
kernels like HYDRA, in which the time taken to switch between 
domains is measured in the equivalent of thousands of basi~ 
instructions, cannot match this performance and the operating 
systems built around them suffer accordingly. 

The cost of domain calls can be cut down by making the 
parameter passing mechanisms as straightforward as possible. Much 
of the cost of a domain call in HYDRA comes from the parameter 
template machinery for checking arguments because it has to be 
sufficiently general to match most user requirements and naturally 
the price of this complexity is a high overhead. Simple 
transactions normally only involve a few trivial arguments and it 
is likely that user-written code within a domain, using knowledge 
of the nature of expected arguments can do a more efficient job of 
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parameter verification. 

A lesson to be learned from the implementation of the CAP 
ENTER/RETURN orders is that the domain call operation itself 
should carry the smallest overhead possible when establishing a 
new protection domain and should leave tasks like evaluating the 
capabilities in the new domain and setting up its capability 

tables undone, until they are referenced by the code running in 
the domain. Furthermore, effic.iency will be increased if it is 
possibl.e to preserve as much as possible of the state of the 
calling domain, so that on return to it there is no need to 

re-evaluate the capabilities that were current at the time of the 
call. 

7.4. Unified Communication Systems. 

Inter-domain communication is based on a procedure call model. 
Inter-process communication, on the other hand, is more complex 
because it is bound up with the synchronisation of parallel 
processes. For the purposes of discussion, a simple sys tern with 
processes communicating by messages using the primitive operations 
SEND, RECEIVE, REPLY and WAIT and domains using CALL and RETURN 
will be considered. Users of the system need to know in advance 
whether or not a particular module is either a parallel process or 
a domain in the current process so that they can use the 
appropriate communication functions. This can lead to great 
inconvenience if at some later stage it is decided to convert a 
module from a process to a domain or vice-v ersa to suit a change 
in hardware or software configuration. In the CAP sys tern the 

general structure of system modules is very simple as shown below: 

initialisation; 
DO# for every call# 

OD 

CASE get arguments; entry code 
IN 

service 1, 
service 2, 

service n 
ESAC; . 
return results 

If . the service is provided by a protected procedure , the arguments 
are passed in the course of the CALL operation and the answer is 
delivered by RETURN ; whereas , if a message interface is used, the 
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module will execute WAIT and hold up until a message despatched by 
SEND in another process arrives, so that the arguments in it can 
be picked up by RECEIVE and processed before the results are returned by using REPLY. 

\ 
CAP disguises the implementation of modules in the operating sys tern from users by concealing them in gate-keeping protected 

procedures that check arguments and then communicate with system 
modules either by domain calls or messages, depending on the type 
of the module. The use of a gate-keeper reduces the efficiency of 
the concealed module by adding to the overheads of transactions 
with it, but on the other · hand, if a sys tern module is to be 
reconfigured , it is only necessary to edit and recompile the 
gate-keeper and users do not have to alter their programs. 

If there was a single set of communication primitives that 
could be · used for both varieties of modules, there would be no 
need to recompile anything at all, instead it would be sufficient 
just to switch the type of the modu l e appropriately between 
'process' and ' domain '. There would be an increase in et'ficiency 
as gate-keeper domains could be disposed of, and in addition, 
users would only have to know about a single communication 
mechanism rather than two . 

In a simulator for investigating the effects of hardware and 
software configuration on system performance, Stroustrup [77) 
supports three types of modules: processes , procedures and 
monitors with two communication primitives, ACTIVATE and GET 
ARGUMENTS . ACTIVATE takes two arguments, the identity of a module 
to run and the name of an argument block which i~ used for passing 
arguments and results . The operand of GET ARGUMENTS is a notional 
communication channel which can take the two values 'request' and 
'reply'. These are a set of minimal facilities that can be 
expanded to allow for more ambitious communicition protocols . As 
an example, the following ~rocedural cal.l can be implemented 

results := CALL (module, arguments) 
as the sequence 

ACTIVATE (module , arguments); 
result GET ARGUMENTS (reply) 

If the module woken up by ACTIVATE is of the type ' process' or 
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'monitor' as opposed to 'procedure', it can be run in parallel to 
the calling module and GET ARGUMENTS functions as a 
synchronisation primitive to ensure the desired ordering of 
events. 

It is clear that in this unified scheme a module can be 
written without knowledge of how it, or the modules it calls, are 
configured, and changing the type of a module does not require its 
recompilation which provides a potent degree of flexibility. 
However, despite the utility of the mechanism for experimenting 
with the effects of reconfiguring systems, it is rather too 
fundamental to be included in a practical implementation and 
attention must be directed to see how similar freedom can be 
included into a mechanism that is reasonable for incorporation 
into an operating system kernel. 

Earlier it was stated that it is not reasonable to implement 
protection domains as monitors and thus it is necessary to turn to 
message-based communication systems. Watson [ 78], in his 
alternative protectiori system for CAP, has a non-hierarchical 
module structure which allows a module to be either a domain or a 
process. The unit of communication is a fixed size argument block 
issued from a central resident table. The ENTER instruction takes 
a capability for a module and an argument block as its operands 
and att~hes the argument block to a queue of incoming messages 
for the called module. This module will be marked as either a 
process or a domain: in the first case, the calling module is 
allowed to continue execution after the ENTER instruction, while 
in the second case, the calling module is held up until its 
argument block is processed by the called module . Upon receipt of 
an argument block, a module is activated and the head message is 
taken off its incoming queue and made available so that arguments 
can be extracted from it . When an activation has been processed, 
a module can execute the RETURN instruction which ~ill return the 
current argument block to to a queue of returned messages in its 
originator where it can be picked up by the RESULTS order. A 
module is deactivated if it tries to execute RESULTS when its 
returned messages queue is empty and will be awoken when a results 
message a rr i ves . Aft e r th e use o f RE TURN, t he i ncoming message 
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queue of a module is inspected and if there is more work to do, 
the module will stay active, otherwise it will be held up until a 
new message turns up. 

The microprogram implementing Watson's scheme carries out 
simple scheduling operations between modules as they execute the 
various message primitives, and it will select which processes to 
run on the basis of priorities held in proc~ss bases after 
process-type calls. More complex scheduling decisions are left to 
a software coordinator. 

Argument blocks are concealed from users; they are the private 
property of the microprogram. The capabilities they contain 
become available as a current capability table after use of the 
RESULTS operation, and the data arguments are loaded into 
registers. The remaining information in an argument block such as 
return links and status bits is private to the microprogram. 

Watson's scheme achieves the objective of unifying 
inter-process and inter-domain communication but it suffers from a 
number of drawbacks. Firstly, a module is only allowed to be in 
receipt of a single message at a time so that it is not possible 
for a module to multiplex calls as might be required by a disc 
driver that schedules disc accesses to minimise head movements. 

Modules communicate directly with other modules and there is 
no notion of a message channel which would permit a utility to be 
served by several parallel modules, or for message paths to be 
dynamically switched between processes . Furthermore, since 
messages are routed to the same queue, it is not possible for a 
module to associate priorities to different sources of calls; for 
example, the CAP real store manager has a high priority channel 
for virtual memory fault handling and a low priority channel for 
user services, such as demands to modify the length of a se9Men e: 

A fundamental difficulty is created by having a single 
resident table of argument blocks because of the po~sibility that 
the limited stock of blocks may be overdrawn with disastrous 
consequences for the operating system . 

Despite these objections, Watson's scheme has the advantage of 
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efficiency and simplicity because of its microprogrammed 
implementation and it demonstrates that it is possible to provide 
a basic set of primitives that encompass many of the properties of 
the fundamental scheme described by Stroustrup. In terms of 
microinstructions, the part of Watson's microprogram concerned 
with inter-module communication consumes a similar amount of space 
to the protected procedure and hierarchical process ca11 · 

· facilities of the original CAP system. The cost of an ENTER in 
Watson's scheme is much less than a message transaction in the CAP 
operating system and is comparable to the cost of an ENTER in the 
earlier CAP system in terms of machine cycles taken. 
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CHAPTER EIGHT. 

THE CAP COMPUTER. 

8.1. The Hardware. 

The hardware of the CAP computer was designed and built in the 
. Computer Laboratory at Cambridge. For severar years prior to 
commissioning the machine, there had been a project to design and 
implement a capability-based memory protection system and by 1973 
the project had arrived at an architecture [ Walker 7 3] that was 
considered worthy of turning into a machine so that the design 
could be evaluated in terms of real-life computing. To facilitate 
experimentation and possible changes in design, it was decided to 
to make the machine microprogrammable and to equip it with a 
substantial microprogram memory. Many of the features of the 
machine reflect the original architecture, though, fortunately for 
the work described in this thesis, the hardware is sufficiently 
general to permit investigation of alternative protection systems. 

The configuration of the CAP machine and its related hardware 
is shown in figure 8. 1-1. The two intimately connected 
peripherals are under direct microprogram control; the tape 
reader is used to bootstrap new microprograms from paper tape into 
microstore and the teletype is used purely for fault reporting and 
diagnostic purposes. All other peripherals are connected to a CTL 
Modular One Computer which acts as a front-end for CAP and is 
connected to it by a fast link. Either machine may send 
interrupts along the link and CAP has the ability to transfer data 
in and out of · the Modular One's local memory . There is a 
permanently resident executive and link program in the Modular One 
which provides CAP with access to its peripherals and it is left 
to the CAP microprogram to map this interface onto the I/O 
architecture that is to be presented at the user level. The 
Modular One can function independently to carry out peripheral 
tests and its own housekeeping; similarly, CAP is free to run in 
the absence of .the Modular One although it may only use the 
intimate devices for I/0. 
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The main memory of CAP is provided by two interleaved 32K 

Plessey two microsecond, thirty-two bit core stores and 512K bytes 

of Philips core which also has an cycle time of two microseconds . 

The CAP has a thirty-two bit word length and the time taken to 

access and merge four bytes serially from the Philips store to 

make a word is ten microseconds. The rather dismal speed of the 

stores is compensated for by three slave (or cache) memories that 
have been observed to be very effective in operation [Cook 78]. 

-Within the CAP processor there is an autonomous floating-point 

arithmetic unit which has a sixty-four bit mantissa and an eight 

bit exponent working register. The unit has its own internal 
---microprogram and processor to carry out addition, subtraction, 

multiplication, division and type conversion operations fo~ 

fixed-point and floating-point numbers. The CAP microprogram can 

transmit arguments and pick up results from the unit. 

The CAP supports a fixed format for ordinary instructions and 
has hardware to assist in function decoding. The instruction 

layouts are shown in figure 8. 1-2. F is an eight bit function 

code, Ba, Bm and Bn are all four bit fields that select one of 

sixteen general registers ( 80 to B 15). Register 80 always reads 

zero and B 15 is the program counter. N is a sixteen bit offset. 

In Type I instructions, Ba is an operand register. The contents 

of the register selected by the Bm field and the value of the N 
field (sign extended to thirty-two bits) are added to generate 

either a thirty-two bit address or literal data depending on the 

specification of the particular instruction. Type II orders are 

used to present three operands held in the registers nominated by 

Ba , Bm and Bn. 

8.2. The Microprogrammer's Machine . 

The structure of the microprogram processor is shown in figure 
8. 2-1. The microprogram memory holds 4K sixteen bit words, the 

top sixty-four words of whi ch contain a hard -wired bootstrap 

routine, while the remaind e r may be dynamically loaded with 

microcode and data . The V- store provides the microprogram wit h 
access to the registers and control signals of other parts of the 

processor, such as the sto r e logic and the floating point unit . 
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It appears to the programmer as a bank of 256 registers. Some 
V-stores representing control signals have the property that the 
microprogram processor is held up until the function associated 
with the V-store is carried out. For example, writing to V 17 
prints the character in bottom eight bits of the D register on the 
intimate teletype and reading V1 advances the intimate tape reader 
so that a character can be latched into the D register. Other 
V-stores trigger events that are to take place aiynchronously with 
the execution of microprogram instructions. 

The sixteen general B registers available at the user level 
are also addressable from the microprogram and in addition there 
are a further sixteen registers { AO-A 15) that are private to the 
microprogram. The D register is the central data highway of the 
machine; the Arithmetic and Logic Unit (ALU) deposits the result 
of a computation in D before routing it elsewhere. There is an 
interface between the ALU and the floating point unit and data 
sent between the units passes along this route. The microprogram 
controls the operation of the floating point unit by depositing 
data into the accumulator and, to a lesser extent, through the 
V-store. 

The ALU is driven by a 50ns clock. A microinstruction takes 
between three and seven clock beats to complete, provided that 
there are no waits for external events. The microinstruction set 
resembles the order code of a simple old-fashioned machine; 
microinstructions are short ( sixteen bits) and heavily encoded. 
This style of microprogram instruction set is often referred to as 
being 'vertical' in contrast to a 'horizontal' instruction set, 
where instructions are much longer and each bit of an instruction 
controls an individual function. The CAP microprogram instruction 
set is better illustrated by an example rather than by enumeration 
of the complete set of micro orders~ The notation used is that of 
the standard microprogram assembler and the fragment of code is 
the part of the microprogram that decodes instructions, known as 
stage one. 
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B15+1->I . FETCH 
STORE->FR AR 
BM+AR->P.FETCH 
STORE->D,AO 

AD->STORE:RESTART 
AD->STORE:RESTART 

II start fetch, increment B15 II instruction to FR,AR II modification - start fetch I I read data ( only for R or RW FMR) II instruction from FM intervenes II return from FM for W type II return from FM for RW type 
The first instruction causes register B15 to be incremented after 
sending its contents to P, the store address regi.ster, then the 
store access register, PAR, is set to be execute access and the 
store logic is started. The next instruction (2) completes the 
store cycle and routes the user instruction fetched from store, 
via the D register, to registers FR and AR. (AR is set to be the 
least significant sixteen bits of the instruction, sign extended 
to thirty-two bits). Instruction ( 3) carries out the standard 
addrE;lss modification: the contents of the B register selected by 
the Bm field of register FR are added to AR and sent to register P 
via D. The function code field of FR is used to index a bank of 
256 registers (FMR) that hold access requests which ar~ routed to 
PAR during this microinstruction. The access requests held in PAR 
may be 'read', 'write', 'read and write' , or 'none', depending on 
whether or not data is fetched from or updated in main memory by 

-t;he user instruction. The none code indicates that the modified 
address is being used literally and no store ace ess is required. 
Instruction (4) is only obeyed if the FMR value is 'read' or 'read 
and write' and causes data to be loaded from store into registers 
D and AO . The next instruction (5) is rather special; it is held 
in the function memory (FM), a 256 word microprogram memory, which 
is indexed by the function field of FR . The order executed from 
FM will either complete the user instruction or else it will jump 
to the microstore · address of further micro orders for more complex 
user instructions. For example, the order BBPS (B register 
incremented by contents of store) can be completed by: 

BA+AD->B:RESTART II ba:=ba+word from store 
To implement JNEQ (jump if B register=O) a jump is placed in the 
functfon memory: 

JMP JN.EQ II b15: = n,if ba=O 
which transfers control to the following orders: 

JN.EQ, BA OR NIL->D:CSKIP II skip next micro instruction if Ba=O :RESTART II start next user instruction BM+AR - >D II reconstruct literal address B15=D:RESTART II set program counter to jump address 
The RESTART option indicates that the instruction has been 
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finished off successfully and stage one decoding may begin for the 
next user instruction. If the intervening FM instruction in stage 
one does not jump out or restart either instruction (6) or (7) is 
executed depending on whether the currently selected FMR register 
has the value 'write' or 'read and write'. These final 
instructions enable orders that update store to be completed. For 
example, the order SSPB ( add B register to store) has in its FM 
slot the instruction: 

BA+AD->D // D:=store + Ba 
which computes the new value in register D and returns to 
instruction ( 6) to write the result to the store location whose 
address was computed by instruction (3). 

There are several other operations and instruction types apart 
from those illustrated above, · which include various shifts, byte 
masking, reading and writing microstore, accessing the V-store, 
logical operations, subroutine and unconditional jumps. 

The essential difference between microprogramming and assembly 
code programming is that in microcode, it is left to the 
programmer to ensure that he gets hardware interlocks correct. 
For instance, in the CAP it is possible to halt the processor by 
reading the store data lines if the store address lines have not 
been set previously . 

There are a number of faults primarily associated with 
addressing violations and arithmetic overflow in the floating 
point unit, which are trapped by the hardware and if one of these 
exceptions occurs, microprogram control is immediately switched to 
a specific location of microstore . It is left to the 
microprogrammer to provide code starting at · that location to 
investigate the nature of the fault and to take appropriate 
action. External interrupts, for example those from the Modular 
One, are only noticed whenever a return is made to stage one. If 
an interrupt is signalled at stage tine , control is diverted to an 
interrupt routine starting at a fixed address in microstore and 
the interrupt routine can determine the type of interrupt by 
reading registers in the V- sto r e . 

The microprogram instruction set has a number of weaknesses 
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that are a nuisance to the microprogrammer and · waste precious 
instructions in the cramped microprogram store. By far the 
greatest difficulty is caused by the subroutine jump and return 
mechanism which has only two registers available for holding 
return links, because in general, two levels of subroutine are 
insufficient in a complex microprogram and experience suggests 
that four link registers would probably be better. 

It is not possible to perform every operation on all 
registers, nor is it possible to route results back to all 
registers because many instructions are defined only to utilise a 
subset of the available registers. In general, the D register is 
the primary working register; the A registers are less useful in 
terms of the operations that can affect them and the ease with 
which they are accessed. As a result, the microprogrammer 
frequently has to waste instructions loading values into D to 
perform a calculation upon them and then copying the I'esult to 
another register. This fault is directly attributable to the 
compactness of the microinstruction format which does not have 
enough space to encode all of the possible register combinations. 
A further consequence of this arises in bonnection with an option 
which permits the next instruction to be skipped over if register 
D has a certain value after the current order. Un fortunately, 
each microinstruction supporting the option only generates a 
single condition and it is frequently necessary to write a further 
instruction to test a condition different from that available 
after a computation. A better mechanism would be to allow 
conditional skipping on a condition that may be specified within 
an instruction, for example, from the set {=O,>O,<O}. 

The difference between the thirty-two bit word length of the 
machine and the sixteen bit word length of the microprogram memory 
causes difficulty if copies of thirty-two bii words are to be kept 
in microstore . LOAD DOUBLE WORD and STORE DOUBLE WORD 
microinstructions would be v ery useful. If there were more 
registers ther~ would be less need to use microstore as a 
repository for data . 

There are , however , several benefits to be gained by having a 
simple and compact microprogram instruction set . It is much 
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easier to write code than would be the case in a highly parallel 
horizontally microprogrammed machine and this is helpful from the 
point of view of debugging microcode, making modifications to it 
and also for program verification. The last point is crucial: the 
state of the art of program v~rification is such that, for 
microcode at least, it is necessary to rely on visual checking 
alone. Therefore it is an advantage to have a microprogram which 
is easy to read and follow. In return, of course, there is not 
the same scope for carrying out several operations in parallel in 
a vertical microcode and efficiency will be lost because of 
unnecessary serialisation. 

8.3. Accessing Main Memory. 

In this section the hardware in the CAP system that is 
responsible for virtual address translation and memory protection 
will be outlined. The store logic operates in a number of 
different modes which may be selected by setting flip-flops in the 
V-store. In all cases an address is taken from the P register 
together with an access code from register PAR. 

The simplest addressing mode is called absolute m.Qde.. The 
least significant twenty bits of P a YOO ...... treated as an absolute 
address and are passed directly to the store address lines. The 
access code in PAR is used to determine whether a reading or a 
writing store cycle is to be generated. After setting register P, 
the microprogram will read or write to the store data lines to 
complete the store transfer. The slave store mechanisms are 
interposed between the addressing logic and the physicral memory so 
that, at the level of addressing, the slave is transparent to the 
microprogram. 

The other addressing modes are used to carry out address 
translations and access checks and for this purpose there is a 
capability unit, the organisation of which is shown in figure 
8. 3-1. The unit divides into two parts : a bank of sixteen 
registers known as the tag memory (TGM) and sixty- four capability 
registers. The latter divide into six sub-registers known as the 
tag, base, limit, access , count and spare registers. The TGM and 
tag r egisters are concerned with address translation and will be 
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described later. The count and spare registers take no part in 
addressing or access control and are used by the micro programmer 
for housekeeping purposes that will be the subject of a later 
chapter. The remaining registers function similarly to segment 
descriptor registers that are found in other machines. 

In last mode, a particular capability register may be selected 
by writing to a V-store location. When an address is written to 
P, only the least significant sixteen bits are used. They are 
compared to the limit field of the selected capability register 
and. if the address exceeds the limit field, an error is trapped 
and control is diverted to location eighteen in the microstore. 
Similarly, a check is made to see that all of the bits set in PAR 
( the access request) are al so set in the access field of the 
capability register. An access violation also causes a trap to · 
location eighteen. Provided that the access and limit checks are 
successful, the sixteen bit address in P is added to the twenty 
bit absolute base address in the base field of the selected 
capability register to . calculate an absolute address which is sent 
to the store address lines. Last mode · is used extensively to 
address data structures whose entries in the unit have been loaded 
by one of the two remaining addressing modes so that address 
relocation can be carried out automatically and also to prevent 
the microprogram from carrying out an illegal access to the data. 

Direct mode enables capability registers to be selected by a 
field in addresses. As with last mode, the least significant . 
sixteen bits of register P form a segment offset which, together 
with the access request in PAR, are compared with the contents of 
the selected caRability registe r . The selection is determined by 
the six bits preceding the segment offset in P. Using direct 
mode, it is possible to build a capability register system that 
resembles the Plessey System 250. 

The final addressing mode, normal mode, is the most involved 
as it carries out virtual address translation in addition to 
access checking . 

and l aid out thus : 

A CAP virtual address is thirty-two bits long 
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I I I I 
I ,--------,--------,--------------,-----------------------------, 1 table . 

1xxxxxxxx
1 capability I segment 

1 1 number 1xxXXXXXX I index I offset I ,--------,--------,--------------,-----------------------------, 31 28 27 24 23 16 15 0 

As before, a store cycle is started bt writing an address to P and 
an access request to PAR. The fqur bit capability table number 
indexes the TGM to yield a six bit tag. An associative search is 
then made through the capability unit looking for a register which 

-• has a fourteen bit tag field matching the concatenation of the six 
bit tag from the TGM and the capability index part of the address. 
If a register is selected, the remainder of the address is 
interpreted similarly to the last and direct modes of addressing. 
Otherwise a trap to microstore location seventeen is generated to 
indicate that a match was not made. 

The capability registers are divided into banks of four 
registers. The searching algorithm proceeds by selecting a bank 
and then performs an associative match on the registers within the 
bank. If there is no match, the search moves on to the next bank 

,cyclically, 

looked at. 

until all of the registers the unit have been 
Thus 

capabilities are 

start searching. 

The intricate 

there is a high premium on ensuring that the 
loaded near the . point at which the unit will 

structure of the unit allows capabilities to 
remain within the unit even when they are no longer addressable 
because of a protection domain or process change. This is useful 
if domains are small and are called frequently, as it avoids the 
overhead of flushing out and reloading the unit on every domain 
entry and exit. The details of the organisation of capabilities 
within the unit - and the way that the TGM and tag registers are 
used is discussed in more detail in Chapter Twelve. For the time 
being, it is sufficient to say that for each capability segment in 
a protection domain, the TGM holds a key which is in the tag 
register of every capability loaded from the segment into the 
capability unit. If a protection domain change occurs, new keys 
are put into the TGM, so that previously accessible capabilities 
will not match until the original keys are restored after 
returning from the called domain . 
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It is up to the microprogram to handle faults and exceptions 

reported by the capability unit. Furthermore, it is also the 

responsibility of the microprogram to allocate slots for newly 

evaluated capabilities and to arrange that any operations carried 

out on capabilities in store are reflected . by changes to the 

contenb:. of the capability unit . The microprogram is able to 

interrogate and modify the contents and state of the unit by 

depositing information i .n the accumulator and to a lesser degree 

by accessing parts of the V-store. 

It is the use of the capability unit as a cache for store 

capabilities that contributes most to the effectiveness of the CAP 

memory protection system: once a capability has been evaluated, 

address translation and access checks are carried out with only a 

minimal overhead and the unit is sufficiently large that 

capabilities are re-evaluated infrequently. The cost of a large 

cache has been traded against the time that would be wasted 

loading and unloading the unit if it held fewer capabilities and 

suffered from 'capability thrashing'. 

8.4. Microprogramming Aids. 

There is a standard microprogram assembler for the CAP 

machine. The assembler is not very rich in facilities and has a 

number of idiosyncracies. Despite this, the CAP kernel was 
written for this assembler so that code for emulating user 

instructions, performing I/O and so on, could be borrowed from the 

existing microprogram . The assembler was originally written for 

an IBM System/370 but at the time that the kernel was being 

developed , the CAP operating system became available and the 

assembler was moved across to it. At this stage, I modified the 

assembler so that it put microprograms onto disc in a format that 

can be loaded into CAP microstore by a sim·ple bootstrap pr?gram . 

This step greatly increased the rate at which new versions of the 

kernel could be assembled and tested, as in the past it was 

necessary to conduct an assembly on the IBM machine and then to 

punch out binaries on paper tape for loading via the CAP intimate 
tape reader. 
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The kernel was debugged using just the raw hardware. CAP is 
well equipped with LED displays of registers and control signals, 
and there is a well-endowed control panel with facilities for 
obeying single shot instructions, setting a break point and 
obeying instructions set up on the . hand keys. There is also a 
postmortem program which will tabulate the values of all of the 
microprogram registers (including the V-store) on the line 
printer. 

Working in this way . it is surprisingly easy to test large 
tracts of microprogram in a short time . The main difficulty is in 
persuading other users of the machine to desist so that hands-on 
access could be gained. Fortunately, during the period in which 
the kernel was written, this was not too great a problem. 
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CHAPTER NINE. 

A KERNEL FOR THE CAP COMPUTER. 

9.1. Preliminaries and Notation. 

In this and the following chapters the design of a kernel for 

the CAP computer and its implementation will be documented. The 

discussion will distinguish between the earlier memory protection 

sys tern and the kernel by referring to them as CAP-I and CAP-III 

respectively. The rationale for the decisions leading to the 

architecture about to be described can be found in the first 

section of the thesis. 

The instruction format, addressing conventions and word lengtn 

of the new system is identical to that of CAP-I for two reasons : 

firstly, so that utility programs like compilers can run unchanged 

on either system and secondly because CAP-III uses the same hard 

wired logic for instruction decoding and virtual address 

translation as CAP-I for reasons of efficiency. The microprogram 

for the basic instructions and organising I/O across the link to 

the Modular One computer within CAP-III is more or less an exact 

copy of its counterpart in CAP~I . The remainder of the 

microprogram is concerned with protection, which is very different 

in the two systems, although many of the kernel iristructions have 

direct analogues in the memory protection system. The 

implementation of this part of the kernel was carried out from 

scratch through a number of iterations to the current 

specification. 

The standard microprogrammed instruction set for the CAP 

machine is both conventional and extensive; it includes integer 

and logical operations between B-registers· and store, conditional 

jumps, subroutine entry and exit, byte addressing , byte packing 

and unpacking, multiple register to store dump and reload, fixed 

and floating point arithmetic, block move and clear, Algol 6 8 

CASE, modification of next instruction, integer and floating point 

conversions, test-and-count and exchange regi ste r with store 

functions . The full set is documented in Herbert [ 78]. In the 
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following · chapters, a standard notation is used for describing 

instructions thus: 

dxx digit xx of a binary number (dO is the least significant 

digit) 

F function code identified by d31-24 of the current order. 

Ba B register identified by d23-20 of the current order. 

ba The contents of Ba. 

Bm B register identified by d19-16 of the current order. 

bm The contents of Bm. 

Bn B register identified by d3-0 of the current order. 

bn the contents of Bn. 

N The signed integer formed by d15-0 of the current order. 

n The value bm+N. 

[ x] The contents of the store location whose virtual address 

is x. 

s The value [n]. 

# Used to introduce a hexadecimal number. 

It is always assumed in the description of an . . ... ins-cruction that 

any reference to reading store implies that a protection check is 

made every time store is accessed. Thus a protection viola~ion is 

signalled if insufficient access rights are held or if an address 

is invalid · or beyond the end of a segment or capability table. 

The kernel indicates these exceptions, along with other faults, as 

an interrupt to the software which contains a code indicating the 

nature of the fault. The program counter ( register B 15) of the 

current process at the time of the fault is set back so that if 

execution in the process is resumed, the failing order will be 

retried . The kernel always arranges that a process and all of the 

protection apparatus is left in a consistent state after a fau l t 

so that the integrity of the system will remain guaranteed. 

Furthermore, the kernel places no reliance ' on any data structures 

kept in main memory so that if a program , either by accident or 

malice , interferes with an intimate part of the protection 

apparatus , the kernel cannot be induced to give away privileges or 

behave in an unreasonable manner . 
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9.2. Naming. 

It was decided to employ a global naming system for the kernel 

because global names are conceptually easier to understand and 

they are more suited to extended object manipulation. Another aim 

was · to gain experience in the use of global names and to compare 

global naming schemes with the nested naming schemes. A 

forever~unique global naming scheme was obviously not suitable for 

microprogram implementation because of the large amount of code 

required to administer an object table that is kept partially on 

disc. Instead, a scheme that uses short names and a modestly 

sized resident table for just the set of currently-active objects 

is employed. As a consequence, active capabilities cannot be kept 

in the filing system and it is necessary to have operating system 

support for translating capabilities from the filing system into-

the run-time capabilities manipulated by the kernel. Experience 

with the CAP-I operating system System Internal Name mechanism 

( Chapter Three) suggests that the necessary translations can be 

performed at a cost that is at worst comparable to, but probably 

less than, the expense of organising passive and active object 

tables in a forever-unique scheme. 

In CAP-III the descriptions of all currently active objects 

are found in a resident table consisting of four word slots known 

as the map. The maximum size of the map is 65535 words (i.e. 

16383 slots) al though in practice, its size is expected to be in 

the order of four to eight thousand slots. An attempt to access a 

slot that is out of the bounds of a map will result in a fault. 

In general, the kernel will only talrn names from_ capabilities . or 

entries in the map. 

An object is said to be 'active' if there is at least one 

capability for it in a capability segment . . To help detect objects 

that are no longer referenced, the kernel keeps a reference count 

for each entry in the map, . and it is incremented whenever the 

kernel sets up a capability or map slot pointing to it and is 

decremented whenever the kernel deletes such a pointer. As will 

be shown in Section 9 . 8 , reference counts alone cannot detect all 

free slots in the map and it is necessary for the software to 

include a garbage collector which can function asynchronously 
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without holding up the remainder of the system . 

The kernel maintains a pool of map slots that are currently 

free and takes a slot out of the pool whenever a new object is set 

up. The pool is organised as a list and information about it can 

be obtained by the FREEQ instruction: 

FREEQ no arguments. 

ba(d31.-16) := head slot of free list. 
ba(d15-0) := length of free list. 

If the pool is empty when a new slot is required, a fault is 

generated and the failing instruction can be retried once some 

space has been recovered in the map. 

The layout of a capability is shown diagrammatically in Figure 

9.2-1. A capability is two words long and consists of four 

sixteen bit fields. The name field will nominate the map slot 

containing the description of the object protected by the 

capabilities. In fact only fourteen bits are required to address 

all of the slots in a map -0f maximu~ size and a sixteen bit field 

is only used for convenience in the kernel microprogram. The 

interpretation of the access code field depends upon the type of 

the object named in the capability, with the exception of bit 

fifteen, the revoke bit which is a generic code as·sociated with 

revocation (Section 10. 4) • The use of the base and size 

refinement fields will be dealt with in Section 9.3. 

There is one name that is treated specially; it has the value 

65535 and implies that the capability is null, that is to say, the 

capability is not bound to an object . This capability is useful 

for overwri ti_ng capabilities that are no longer required to 

prevent them from being used any further. The kernel will signal 

a fault if any at tempt is made to evaluate a null capability but 

it is perfectly permissable to move such capabilities around with 

the capability transfer instructions. 

The format of a map slot is shown in figure 9. 2-2 . The type 

field (sixteen bits) identifies the class of objects to which the 

particular obje6t belongs . Some types (segment , process , message 

channel, message and type-object) are recognis ed and supported by 

the kernel; other types are defined by software and are t he 

-87-

. ! 
1. 



.......... ,, 

I 
REVOKE access bit (d15) 
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Figure 9.2-1 Capability Format 
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REPRESENTATION 
WORDS 

REFERENCE COUNT 

Figure 9.2-2 Map Slot Format 

0 

TAG 

). 



currency of the operating system. 

The tag field (sixteen bits) is not interpreted by the kernel 

and can be used by software as a label for the slot and is ·---i 

initialised when it is set up. One potential use of these tags is 

so that the software for translating filing system names to map 

slot numbers cari record a key in a .map slot that can be used to 

locate information about the corresponding object in its 

translation tables. 

the 

The representation words in 

substance of an object and 

a map entry are used to describe 

may either be a capability or 

simple binary data. In the latter case, the name field of the 

representation will have the value 65535, which imposes the minor 

restriction that it is not possible to have extended objects with 

null capabilities as their representation. This restriction is 

enforced by all of the kernel type-extension facilities. 

The use of the twenty-eight bit reference count ~nd the 

reference count marker bit is deferred until Section 9.8. 

In the rest of this description it will be convenient to refer 

to the type of an object as an attribute of the capabilities for 

it al though type codes are only held in map entries. Thus, the 

term 'segment capability' means a capability that names a map slot 

defining a segment-type object. It is also useful to let the term 

'object' denote the map slot holding information about the 

representation of an object. When talking about 'objects' , it 

will be clear from the context whether the actual object itself or 

the map entry that describes it is intended. 

9. 3 . Segments ; 

The unit of memory protection is the segment which is a 

contiguous set of words in store of an arbitrary length up to a 

maximum of 65535 words . The · access codes defined for segments a~e 

read- and · write-capability , · and read, write and execute data . 

Segment type map entries are basic objects, which is to say that 

they have a data type representation as shown in figure 9.3-1 . 

The 

location 

twenty 

of th e 

bit absolute base field defines t he starting 

seg ment in physical memory and ther e fore, the 
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Word 1 

Word 2 

u 
t 

Word 3 f 

Word 4 

r 
m 

31 30 29 27 

'SEGMENT' TAG 

65535 SIZE 

ABSOLUTE ADDRESS 

REFERENCE COUNT 

20 19 16 15 0 

Figure 9. 3-1 Segment Map Entry Format 



maximum memory address that can be accommodated is 1024K words, 
which is in fact a hardware limit imposed by the addressing logic. 

The sixteen bit size field defines the length of the segment 
in words, although individual capabilities may select just a small 
portion of the whole. Capability segments are aligned so that 
capabilities occupy adjacent pairs of words starting from the base 
of the segment and most instructions reference capabilities by an 
index such that the first word of the capability will be found at 
the word in the segment whose offset is twice the index. 

The 'outform' status bit can be used for organising virtual 
memory swapping. The kernel signals a fault if the evaluation of 
a segment capability yields a map entry in which t~is bit is set. 
When the bit is on, the opera ting system may utilise the other 
fields of the entry to hold information about disc addresses and 
so on; at all other times, the absolute base and size fields are 
interpreted normally. 

The other two status bits, 'dirty' and 'used' , r'eco~d 
information about the types of access made to a segment. The 
'used' bit is set to one if it is read as zero when the capability 
for a segment is evaluated. The 'dirty' bit is set if it is read 
as zero when the capability for a segment is evaiua ted in the 
course of a store demand that includes 'write data' or 'write 
capability' access. The software can reset these bits and monitor 
them from time to time to discover which segments are accessed 
frequently and which ones have been modified. 

Sub-segmentation is performed by the base and size refinement 
fields of segl)'lent capabilities as illustrated in figure 9.3-2. 

· The base refinement field must be less than or equal to the size 
of the absolute segment and the sub-segment begins at the absolute 
address formed by adding the absolute address of the segment to 
the base refinement of the capability . The size of the 
sub-segment is the smaller of the size refinement field of the 
capability and the remaining length of the absolute segment beyond 
the base of the sub-segment. The refinement mechanism provides a 
means for selecting small portions of larger structures and this 
i s par t icularly useful in the manufacture of a r gument capabil i ties 
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during inter-process communication. 

Jn capabilities for objects other than segments, the 

refinement fields are not significant and have no effect on the 

process of capability evaluation. 

9.4. Addressing. 

The fact that capabilities and data are partitioned rules out 

the possibility of using Fabry's capability-based addressing 

scheme for CAP-III. Instead, the addressing architecture of CAP-I 

is adopted with the important restriction that there is only one 

domain per process. The CAP-III kernel has an efficient 

inter-process communication facility and the analogue of a CAP-I 

process consisting of several domains in CAP-III is a team of 

processes with shared capabilities for common objects. This means 

that the problems that can arise when CAP-I protected procedures 

pass addresses around or share multi-segment data structures do 

not cause concern, but the difficulties of addressing clashes 

remain for inter-process communication. However, • t
l. u is much 

better practice to transfer capabilities rather than addresses, 

and the CAP-III message system is suited to this. 

The root of a process's address space is its domain 

descriptor, which is a capability segment local to the process. 

The first sixteen slots in this segment define a set of capability 

tables which are capability segments. If one of the slots in the 

domain descriptor is a null capability, the corresponding table is 

deemed to be absent. Each table may contain up to 256 addressable 

capabilities and the complete set of all of the capabilities in 

the tables forms the process's domain of protection. 

of a thirty-two bit virtual address is shown below: 

The format 

1--------1--------1--------------;-----------------------------1 I table , XXXXXXXX I capability , · segment I 
1number ,xxxxxxxx 1 index I offset 1 ,--------,--------,--------------,-----------------------------, 31 28 27 24 23 . 16 15 0 

The table number selects one of the sixteen capability tables and 

the capability index then nominates a particular capability from 

within the table. These two fields of an address taken together 

are known as a capabilitv specifier. The offset part of an 
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address only applies to segment capabilities and indexes an 

individual word in the segment defined by the capability selected 

by the capability specifier part of the address. 

The virtual address translation mechanism will fault the 

evaluation of a capability if it is unable to read the domain 

descriptor or capability table with read-capability access, if any 

of the address fields index beyond the end of the appropriate 

segment, if the capability for a capability table in the domain 

descriptor is null, or if any of the capabilities for the various 

capability segments turn out to be for types of objects other than 

segments. 

The structure of a CAP-III address space and an example of 

address translation is shown in figure 9.4-1. It should be noted 

that both capability segments and data segments have the same type 

('segment') and · thus the interpretation of a segment capability 

depends on the access code within the capability. It is perfectly 

permissible for the software to have a data-type capability and a 

capab-ili ty-type. capability for the same segment in order that sctne 

part of the operating system can create or modify capabilities 

within the segment. In particular, the software responsible for 

translating between permanent and active names will need this 

privilege in order to 

for already active 

create additional 

objects. The 

instances of capabilities 

kernel caches evaluated 

capabilities for kernel-defined objects in the hardware capability 

unit and if the software overwrites a capability using the 

contrivance described above, it is necessary to ensure that the 

kernel notices the modified value of a capability. For this 

purpose, there . is the following instruction : 

FLUSH n ( d31 -16) capability specifier . 

Any entry for the capability . specified by n(d31-16) 

in the hardware capability unit is disabled, to force the 

re-evaluation of the capability from the updated segment 

if it is used again . 

This facility is only intended for use by opera ting sys terns 

software but it is perfectly in order for other programs to use it 

as the instr uction causes no harm , except to force a spurious 
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re-evaluation of the nominated capability. 

9.5. Information Orders. 

There are three instructions for obtaining information about 
capabilities and objects: 

OBJINF 

SEGINF 

n ( d31-16) capability specifier. 

ba(d31-16) := tag field of object n(d31-16). 
ba(d15-0) := access code of capability n(d31-16). 

n ( d31-16) segment capability specifier. 

ba(d31-16) := length in words of segment n. 
· ba(d15-0) := access code of segment capability n. 

CSEGINF n (d31-28) capability table number . 

ba(d31-16) := length in words of capability table n. 
ba( dl5-0) : = access code for capability table n. 

In these and other orders, arguments are interpreted as 
addresses which select capabilities which in turn lead to the 
description of particular objects. Thus, 'object n' denotes the 
object defined by the capability at address n. If the object 
located in this manner is inappropriate to the function of the 

instruction, such as SEGINF on a non-segment capability, a fault 
is signalled. 

9.6. Capability Transfer. 

It is useful to be able to move capabilities between 
capability tables in the current process. The capability transfer 

suite of orders are concerned purely with capabilities and do not 
affect the objects protected by them . Transfers are carried out 
by making a copy of the source capability and then overwriting the 
previous contents of the destination capability slot . It must be 
possible to read the source and destination capability tables and 

to write to the destination table with capability-type access. 
The capability transfer orders are specified thus: 

MOVECAP b a ( d3 1 -16) 
n ( d3 1-16) 

source capability s~ecifier. 
destination capability specifier. 

The capability is copied , without modification f r om 
source to destination . The pr evious capabilit y at the 

destination capabilit y slot is lost and an y ent ry i n the 
ha r dware capab ili t y unit for it is flush ed out so that 
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,.... 

.... 

REFINE 

the capability will be re-evaluated to pick up its new 
value . 

ba [ d3 1-16) 
ba d15-0) 
n d31-16) 

source capability specifier. 
access mask. 
destination capability specifier. 

In addition for segment source capabilities: 

b(a+1)(d31-16) base refinement. 
b(a+1)(d15-0) size refinement. 

For segment capabilities, the source segment is 

inspected to ensure that the base refinement does not 

exceed the current size of the sub-segment nominated by 
the source capability. The access of the copy . is the 

logical 'and' of the access code in the source capability 
and the access mask. For non-segment source 
capabilities, the second word of the capability is copi~d 

unaltered; otherwise the base of the copy is the sum of 

the base of the source capability plus the base 

refinement, and the size of the copy is the size 
refine~ent or the remaining size of the source capability 

after base modification, whichever is the smaller. For 
capability segments, it is only permitted to have an even 
base refinement otherwise capabilities could be 

misaligned in store. the previous capability at the 

destination · slot is lost and any entry for it in the 
hardware capability unit is flushed out. 

MOVECAPA ba(d31~16) 
n ( d3 1-16) 
n ( d1 5-0) 

source capabilitv s~ecifier. 
destination capaoil1ty segment soecifier. 
destination capability segment offset. 

The capability specifier part of n selects a 

capability for a capability segment. Provided that the 
destination offset is even, (to avoid alignment problems) 

the source capability is copied without modification to 

the two words starting at offset in the destination 
segment. This order is used to transfer capabilities 
from the capability tables of an address space into 

general capability segments. 
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9.7. The P-store and Peripheral Devices. 

Device transfers are initiated either by block transfer or by 

single character transfer instructions depending upon the nature 

of the device being driven. One argument of the I/O orders is 

always a device specifier that consists · of a sixteen bit 

capability specifier and a seven bit device number. Before 

starting a transfer, the I/O orders evaluate the capability 

nominated by the device specifier to see if it names a segment of 

memory whose absolute span embraces a word of store, the absolute 

address of which is given by the device number. Thus, permission 

to use a device is con trolled by the possession of a capability 

for a word of store associated with the device. The device 

numbers are in the range nought to thirty-one so that the first 

thirty-two words of store are tied down for device control and are 

known collectively as the P-store. 

Reading or writing to the P-store has no external effect on 

devices themselves; the mechanism is purely a contrivance for 

compatibility between CAP-I and CAP-III and takes advantage of the 

efficiency of the memory protection arrangements to provide a 

convenient and fast access check on the use of peripherals. It 

would be perfectly acceptable to introduce 'device' objects known 

to the kernel, with device numbers built into them, as a mechanism 

more in the spirit of the CAP-III kernel design. 

Al 1 buffering of peripheral transfers is carried out by the 

Modular One front-end computer and the kernel can transfer a 

buffer across the link at a comparable rate bo the CAP store 

cycle speed. For this reason, . transfers are carried out in a 

single burst during which no otber activity occurs. This greatly 

simplifies the internal organisation of the kernel and means that, 

during a block transfer, it is only nec ,essary to evaluate the 

capability for the CAP buffer at the start of the transfer and , 

because no other program may .execute during a transfer, there is 

no possibility that the buffer will be swapped out or the 

capability for it being otherwise invalidated. If CAP had devices 

that use asynchronous channels directly attached to it, the kernel 

would have to lock down buffer capabilities in the hardware 

capability unit and fault any attempt to destroy or modify them . 
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The kernel does possess this facility although it is used -for a 
different purpose and it will be described in Section 11.3. 

9.8. Reference Counts. 

Whenever the kernel creates an object by allocating a slot in 
the map, its reference count is set to one. If a capability for 
an object is copied, its reference count is incremented and if the 
kernel overwrites a capability, t~e latter's count is decremented. 
In this way, by testing the value of its reference count, the 
kernel can detect whether or not any references exist to a map 
slot. 

The kernel will automatically return to the free list any map 
slot whose reterence count falls to zero when it is decremented so 
that the map is kept free of useless entries. If the liberated 
slot is an extended object, the kernel goes on to decrement the 
count of the capability which is sealed in its representation and 
so on, potentially releasing a long chain of slots. It is the 
responsibility of the operating system to flush out the contents 
of any capability segment that is no longer active, because 
clearing out all of the capabilities in a segment could be a 
deeply recursive and · time consuming activity for the kernel to 
perform. 

Unfortunately, reference counts are not sufficient to detect 
every sort of garbage. In particular cyclic structures can arise; 
for example, an extended object represented by a capability 
segment that in turn contains a capability for the extended object 
is a simple looped structure 9 and one can donstruct more 
complicated ones. Cyclic structures that are inactive will remain 
in the map . because the loops that they contain will prevent 
reference counts from falling to zero. 

To solve this problem, there is a need for a map garbage 
collector. Since the · garbage collector will be system wide, it 
must run asynchronously to avoid holding up the machine while the 
map is scanned. In the CAP-I system where each process ha,s a 
private, 

Resource 

synchronous 

List, the 

software garbage collector for its Process 
occurrence of a garbage collection has a 

not ice~ble effect on the speed of execution of a pr6cess and 
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therefore, if the CAP-III garbage collector was synchronous, the 

effect would be greatly magnified across the system as a whole, 

with a disastrous result on response times and throughput . 

The main difficulty with an asynchronous garbage collector is 

that the map and active capability segments are changing as the 

garbage collector r uns. To cope with this, the kernel sets the 

reference count marker bit in a ·map entry whenever it increments a 

reference count, creates a new map entry or puts a slot on the 

free list. A simple garbage col1ector can proceed as follows: 

a) Scan the map unsetting all of the reference count marker 
bits. 

b) Use the FREE~ order to determine the free list and set all 
of the marker bits for slots in the list . 

c) Scan the map and all active capability segments marking 
slots in the map for which there is a valid capability. __ 

d) All slots whose marker bits are unset can be returned to 
the free list because they are no longer active. 

e) Go back to a) and repeat indefinitely. 

This garbage collector will detect any slots that were 

inactive at the start of its scan, and any that become inactive 

thereafter will be found in subsequent cycles. The size of the 

map and the frequency with which the garbage collector runs are 

parameters that must be adjusted in the light of experience in 

order to obtain the optimum sys tern performance with the minimum 

overheads. The algorithm given above is based on the CAP-I filing 

syst~m garbage collector [Birrell and Needham 78]. 
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CHAPTER TEN. 

TYPE-EXTENSION AND REVOCATION OPERATIONS. 

10.1. Sealing and Types, 

The type-extension mechanisms of the CAP-III kernel are based 

on the facilities proposed by Redell [74], with a number of 

additions. In the last chapter, two forms of map entry were 

described, corresponding respectively to basic and extended 

objects. The representation of basic objects consists simply of 

binary data, the interpretation of which depends upon the type of 

the object. Ex tended objects on the other hand, have a single 

capability as their representation and objects that are made up of 

several components can be manufactured by sealing a capability 

segment that holds capabilities for all of the constituent 

objects. This scheme has the advantage over the universal objects 

of HYDRA that all objects have fixed size entries in the map and 

the problems of handling small bundles of capabilities can be left 

to the operating system, rather than being the responsibility of 

the kernel. 

The kernel supports three basic primitives with . variants for 

basic and extended objects: SEAL is used to create new objects , 

UNSEAL to interrogate the representation of an object and ALTER to 

modify r~presentatio~s. To use one of these primitives it is 

necessary to quote a capability for a type object that bears the 

appropriate access code from the set seal, unseal and _alter. Type 

objects are basic objects whose type . is recognised by the kernel. 

Th e representation of a type object includes a sixteen bit type 

mark that is found in the type field of all objects belonging to 

the class nominated by the type object. Operations upon type 

obj ect·s are controlled by a type object whose type mark is 'type'. 

During the process of sealing, a type object acts as a proforma 

for set ting up a new object, by informing the kernel of th e type 

mark that is to be placed in the type field of the object's map 

entry. In the other two operations, UNSEAL and ALTER, a type 

object is used rather like a key to unlock a protected object and 

the key will only fit if the type mark of the type object is 
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identical to the type field of the object in question. 

object map entry is shown in figure 10.1-1. 

A type 

The principal difference between type objects in the CAP-III 

kernel and Redell' s scheme is that Redell places the name of a 

type object in the type field of protected objects, as opposed to 

the arbitrary type codes employed , by the kernel. Redell' s 

approach is conceptually more simple and unifies the management of 

types with all names, but in the CAP-III kernel, where names 

contribute towards reference counts, it is difficult to free slots 

automatically in the map if the scan of a chain of extended type 

map entries has to be altered from a linear progression to a tree 

walk that includes pointers to type objects. It would be 

unreasonable to ignore the contribution of type fields to the 

refer~nce count of a type object, because if the count of the typ~ 

object did reach zero, all of the objects of that type would be 

left pointing at an invalid map entry. In the CAP-III system, the 

management of type names must be carried out by the operating 

system type-object manager, rather than by the kernel unique name 

mechanisms. 

In the case of extended objects, there · is no restriction on 

the type of capability that is sealed in the presence any 

particular type object. In this way it is possible for an 

extended object to have different forms of representation and it 

is up to the type managers of objects with multiple 

representations to take steps to cope with the range of 

capabilities that might be extracted by the UNSEAL operation. 

The kernel will fault any attempt to unseal data from an 

extended object or a capability from a basic object, although 

ALTER will permit the representation of an object to be switched 

between the two forms. In the next two sections, the variants of 

SEAL, UNSEAL and REVOKE will be enumerated for data sealing and 

capability sealing respectively. 
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Word 1 'TYPE' TAG 

Word 2 65535 TYPE MARK 

Word 3 

, 

Word 4 REFERENCE COUNT 

31 30 _ . 28 27 16 15 0 

Figure 10.1 - 1 A Type Object Map Entry 
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10.2. Basic Objects and Data Sealing. 

SEALD (seal data) 
ba(d31-16) 
'ba(d15-0) 
L bro] , [ bro+ 1 ] 
bn( d31-16) 

type object capability specifier. 
tag for new object. 
representation data. 
destination capability speciiier. 

The type object capability is checked for seal access 

and then a map slot slot is detached from the map free 

chain and initialised as follows (using the terminology 

of Section 9. 2): the type field is set to be the type 

mark of the type object, the tag field is set to be 

ba(d15-0), the representation words are set to be [bro], 

[bm+1] with the top sixteen bits of [bro] forced to be all 

ones, the reference count is set to one an~ the reference 

count marker bit is set. Finally, a capability pointing 

to the newl~ created slot with all the access bits except 

d15 (the revoke access bit) set, is written to the 

destination slot. The previous capability in this · slot 

is lost and any entry for it in the hardware capability 

unit is flushed out. This instruction is illustrated by 

Figure 10.2-1. 

UNSEALD (unseal data) 
ba(d31-16) type object capability specifier. 
bm(d31-16) basic object capability specifier. 

ALTERD 

[bn], [bn+1] destination buffer. · 

The type object capability is checked for unseal 

access, the type mark of the type object is checked to 

match the type field of the basic object and then the two . 

words of data forming the representation of the object 

are copied to the two words of store [ bn], [ bn+ 1]. This 

instruction is illustrated by Figure 10.2-2. 

(alter data) 
ba ( d31-16) 
bm ( 931-16) 
[bnJ, [bn+1] 

type object capability specifier. 
source object capability specifier. 
new representation data. 

The type object capability is checked for alter 

access, the type mark of the type object is checked to 

match the type field of the source object and the two 
\ 

words of representation in the map entry for the object 

are overwritten by the contents of the two words of store 

[bn], [bn+1] with the top sixteen bits of [bn] forced to 

be all ones . If the previous representation of the 
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source object was a capability, 

the capability is decremented 

the reference count of 

and processed in the 

standard manner. Finally, any capability in the hardware 

capability unit derived from the object which has just 

been modified is flushed out so that it will be 

subsequently re-evaluated to take account of the new 

representation. 

Figure 10.2-3. 

This instruction is illustrated by 

As an example of the use of the data sealing instruction 

suite, consider the management of segment objects. When a . new 

segment is created by SEALD, the segment type manager will 

initialise . the data represention of the segment to hold the 

absolute location and size of the segment and set the usage bits 

to zero. If subsequently it is required to swap in a segment that

is on backing store, the segment manager can scan every segment 

object with UNSEALD to read the usage bits for use in calculating 

the cost of swapping out currently in-store segments to make room 

for the one to be ~rought in. The ALTERD order can then be used 

to reset the status bits in segment objects once they have been 

inspected and al so to switch on the out form bit in any segment 

that is to be swapped out. ALTERD may be used to change the 

representation data of a segment that is repositioned in store by 

the simple expedient of modifying its absolute address field. 

These uses of ALTERD justify the extensive scan and flush of the 

hardware capability unit after exercising the order, as clearly 

the system has to guarantee that all capabilities for the segments 

that have been tampered with are freshly evaluated to avoid the 

risks of accessing the wrong region of memory. 

It should be noted that neither data sealing nor the ALTER 

operation is present in Redell's design and they were invented for 

the CAP-III kernel to unify and enhance the range of operations 

that can be carried out on all objects, whether basic or extended. 

The capability sealing operations described in the next section 

(with the exception of ALTERC) are much closer to Redell's orders . 
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10.3. Capability Sealing and Extended Objects. 

Unlike capabilities in Redell ' s system, the capabilities 

supported by the CAP-III kernel contain access code information 

and , in the case of segment capabilities , refinement data . When a 

capability is sealed it is necess~ry to include all of this data 

in the r epresentation of the extended object , otherwise the 

process of unsealing would not know how to set up the fields in 

any capabilities that are extracted from extended objects. 

capability suite of type extension orders is listed below: 

The 

SEALC (seal capability) . . 
ba!d31-16) type object capability specifier. 

UNSEALC 

ba d15- 0) tag for new object. 
bm d31-16) representation capability specifier. 
bn d31-16) destination capability specifier . . 

The type object is checked to hold seal access and 
, 

then a slot is taken off the chain of free map entries 

and initialised as follows: the type field is set to be 

the type mark of the type object, the tag field is set to 

be ba(d15-0) , the representat i on is set to be a copy of 

the capability speci f ied by bm ( which must not b e null ), 

the reference count is set to one and the reference count 

marker bit is set. Finally, a capability pointing to the 

newl y created slot , with all of the a cces s bits except 

d15 set , is written to the destination capability slot . 

The previous capability in this slot is lost and any 

entry for it in the hardware capability unit i s flushed 

o ut . As a side- effect of this order , the reference count 

of the object named by the representation capability will 

be incremented by one . It is not possible to seal a null 

capability . 

10 . 3 - 1 . 

This instruction is illustrated by Figure 

(u~seal 9apability) 
ba{d13-1 bi type object capabiliby specifier . 
bm(d31 - 16 extended object capability specifier. 
bn(d31 -1 6 destination capability specifier . 

The type object capability is checked fo r unseal 

access and t he type mar k of t he type object mus t mat ch 

the type fi eld of the ex tended object . A copy of the 

capa bility representation o f the extended object is made 

in the destination ca pability s l ot. The previous 
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Figure 10.3-1 Action Of The SEALC Instruction 



capability in this slot is lost and any entry for it in 

the hardware capability unit is flushed out. As a 

side-effect of this instruction, the reference count of , 

the map slot pointed to by the sealed capability will be 

incremented by _one. It is not possible to seal a null 

capability. This ins trtiction is illustrated by Figure 

10.3-2. 

ALTERC (alter capability) 
ba(d31-16~ type object capability specifier. 
bm(d31-16 source object capability specifier. 
bn(d31-16 destination capability specifier. 

The type object is checked for alter access and the 

type mark of the type object is checked to be identical 

to the type field of the source object. The two words of 

representation information in the map slot for the source 

object are overwritten by a copy of the capability 

specified by bn(d31-16) which must not be null. This has 

the side effect of incrementing the reference count of 

the map slot pointed to by the new representation 

capability. If the previous representation of the object 

was al so a capability, the reference count of the slot 

that it pointed to is decremented and processed in the 

standard manner. Finally, any capability in the hardware 

capability unit that was derived from the modified object 

is flushed out, so that it will be subsequently 

re-evaluated to pick up the new representation. 

instruction is illustrated by Figure 10.3-3. 

10.4. Revocation . 

This 

The kernel revocation mechanism like the type-extension 

scheme, is closely modell~d on Redell's work. There is a special 

sort of map slot, called a revoker, that does not stand for an 

object in its own right, which is used- to control access to 

objects. Revoker map entries are r ecognised by the kernel and the 

layout of one is shown in figure 10.4-1. 

If, in the course of evaluating a capability, the name field 

points to a revoker map slot, the kernel will modify the computed 

access code to be the intersection of the access mask in the 

revoker and the access bits in the capabil i ty before going on to 
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Word 1 'REVOKER' 

Word 2 NAME 

Word 3 

Word 4 REFERENCE COUNT 

31 30 28 27 16 15 

Figure 10.4-1 Revoker Map Entry Format 

TAG 
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.. 

the map slot nominated by the name field of the revoker. If this 

slot too is a revoker, the process of access masking is repeated 

until a non-revoker map slot is reached. The final slot is the 

one that stands for the object protected by the original 

capability. Where, previously, the name of a capability has been 

taken to point at ln object, what was actually meant was that the 

name pointed at a ( possibly null) chain of revokers ending with 

the object in question. Thus, in most cases, any intervening 

revokers between a capability and an object are transparent to the 

user, apart from the modification of access codes, so that for 

example, OBJINF when applied to a capability that points at a 

chain of revokers will report, not the access code in the 

capability, but the computed access code together with the tag 

field of the root object. 

Map slot reference count management is done a little 

differently; whenever a name, be it in a capability or a map slot, 

is copied or deleted, it is the reference count of the first 

object in the chain pointed at by the name that is affected, so 

that revoker map .slots will be treated uniformly with those that 

denote objects from the point of view of automatic deletion. 

The access mask of a revoker can be changed by the REVOKE 

instruction. REVOKE must be applied to a capability, which has a 

name that immediately points at a revoker and the revoke access 

bit (d15) that is generic to all capabilities must also be set in 

its access code. The function of the revoke bit is analogous to 

the use of lockers in Redell's system in that the presence of the 

revoke bit conveys the privilege of being able to exercise 

revocation . If it is desired to copy a revocable capability as a 

parameter without passing on the · right of revocation, a copy of 

the capability should be made using the access code masking 

facilities of the REFINE order to cancel the revoke access bit. 

Redell makes objects revocable by sealing them in revokers and 

then returning a capability that points at the revoker , but in the 

CAP - III system , · sealing a capability involves pr eser ving all of 

t he fields of the capability and that would l eave no space in a 

r e v oke r map entr y fo r an access mask . At one stage i n the kernel 

desi gn whole cap a bilities were s eal e d and th e revoke op e ration was 
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defined only to reduce the access code of the sealed capability. 

This was unsatisfactory as ideally it should be possible to 

support temporary as well as permanent revocation. Users cannot 

be allowed to increase the access code of a sealed capability, 

otherwise they could easily gain extra privileges in their 

capabilities. To solve this problem the mechanism was revised so 

that the act of making a revoker does not seal the original 

capability. Instead a revoker was arranged to be interposed 

between the capability and the first object that it pointed to. 

With this organisation it is safe to allow users to increase 

access in a revoker's access mask because the privileges that they 

can gain are constrained by the access code in the capab~lity that 

has been made revocable. Revoker sealing is carried out by the 

SEALC instruction which behaves in a different way for revoker 

type-objects from the way it behaves with other type-objects. The 

specification of the two instructions concerned with revocation 

follows: 

SEALC (capability sealing - revokers only) 
ba(d31-16) revoker type-object capability specifier. 
ba(d15-0) tag for revoker map slot. 
bm(d31-16) source capability specifier. 
bn(d31-16) destination capability specifier. 

The revoker type-object capability is checked for 

seal access and a slot is taken from the chain of free 

map entries and initialised as follows: the type field 

is set to be 'revoker', the tag field . is set to be 

ba(d15-0), the most significant sixteen bits of the first 

representation word are set to be a copy of the name 

field of the capability, the least significant sixteen 

bits (the access mask). are set to be all binary ones, the 

second word of representation is not used, the reference 

count is set to one and the reference count marker bit is 

switched on. Finally, a version· of the source 

capability, with d15 (the revoke access bit) of its 

access code forced to be one, is moved to the destination 

capability slot. The previous capability ~n this slot is 

lost and any entry for it in the hardware capability unit 

is flushed out . A side-effect of this order is to 

increment the reference count of the map slot pointed to 

by the name field of the source capability . It is not 
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REVOKE 

possible to seal a null capability. This instruction is 

illustrated by Figure 10 . 4-2. 

n ( d31-16) 
n ( d15-0) 

revocable capability specifier '. 
new access mask. 

The access code of the revocable capability 

checked to contain the revoke access bit and a check 

also made that the capability points directly at 

revoker map slot. The new access mask specified 

n(d15-0) is written in the revoker map slot and 

is 

is 

a 

by 

any 

capabilities in the hardware capability unit that were 

derived from a chain of map slots including the modified 

slot are flushed out so that they will be computed afresh 

to take account of the hew access mask. 

The SEALD , UNSEALD , ALTERD , UNSEALC and ALTERC instructions 

· all signal a fault if an attempt is made to use them in the 

presence of the revoker type object . 
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CHAPTER ELEVEN. 

DOMAIN AND PROCESS STRUCTURE, 

11. 1. Preliminaries, 

The CAP-III kernel attempts to 

inter-domain communication by making 

unify inter-process and 

each protection domain a 

separate process in conjunction with a message system that is 

equivalent, in both speed and power, to the domain call machinery 

of the CAP-I memory protection system. There is no within-process 

communication facility which means that the analogue · of a CAP-I 

process with many protected procedures will be a cooperating group 

of processes in CAP-III and it may be hoped that the greater 

potential parallelism of - the CAP-III arrangements will have 

beneficial effects in the area of efficiency. The message system 

is designed to handle procedure call like communication in a 

simple and direct fashion, while at the same time providing 

support for more . complicated protocols. The global naming scheme 

employed by CAP-III makes it possible for all varieties of objects 

to be sent as the contents of messages without any need for 

translating names or duplicating data structures. There are no 

problems concerned with parallel execution within a single domain 

because each process can control its 

to accept and either handle just 

messages, at a time. 

own activations by choosing 

a single message, or many 

The advantages of a non-hierarchical domain structure within 

CAP-I processes suggests that in CAP-III it would be most suitable 

to have a non-hierarchic process structure and that all processes 

should be equal in status. However, the CAP-III kernel needs to 

be able to notify an operating system about faults, interrupts and 
-

scheduling requests. For this purpose one process, known as the 

Interrupt Process, is distinguished from all others. The kernel 

will cause this process 

operating system about 

to run whenever it wishe_s to inform the 

some event and it is also the initial 

process to be run by the kernel when the sys tern is loaded. The 

remaining processes in the system are treated equally by the 

kernel , although the operating system can elect to set up a 
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dynamic hierarchy of control by making the scheduling of some 

processes the responsibility of others; these coordinator 

processes will notify the Interrupt Process of their intentions to 

get them carried out. 

11.2. Data Structures. 

A process is represented in the map by a process object which 

contains a capability for the domain descriptor of the process. 

The first sixteen slots in this capability segment are for the 

capability tables of the process and there are two further slots 

that define other parts of a process's apparatus as described in 

the previous chapter. The seventeenth slot defines the process 

base which is a data segment. These data structures are 

illustrated in Figure 11.2-1. Like the domain descriptor, the 

process base is private to the process. Part of it is a dump area 

to hold the contents of the processor registers whenever control 

leaves the process. There is a time-slice word that contains a 

negative count and this is incremented at regular intervals while 

the process is running. Whenever the count reaches zero an 

interrupt is generated to signify that the process has exhausted 

its ration of time. Another word holds a wake up waiting flag 

that is used to prevent a program from accidentally ignoring some 

event, such as the arrival of a message or a peripheral interrupt . 

The flag is set whenever the kernel wishes to notify a process 

about an event and discovers that the process is already active. 

A process is prevented from waiting when the flag is · set, and any 

attempt by the process to hold up results in an immediate 

resumption so it can then poll message channels and peripherals to 

discover the · exact nature of the wake up. The condition of a 

process is held in a state word in the process base and this can 

take one of two values ' active ' or 'h eld up'. An active process 

is one that is free to run whenever the processor is available and 

a held up process is one that is awaiting an event . The priority 

word in the process base holds a numeric value that is used when 

the kernel has to choose between processes that are free to run; 

in such a case the numerically highest priority will take 

precedence. 
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The messages that can be sent between processes take the form 

of capability segments, known as message blocks, which are 

allocated from larger segments known as message pools and are 

shown diagrammatically in Figure 11.2-2. The eighteenth slot in a 

process's domain descriptor con ta ins a capability for the pool 

from which the process's message blocks are to be issued. A 

message pool can be local to a single process or common to a group 

of processes and there is no need for message pools to be resident 

in memory, as the kernel treats the message system segments 

uniformly with ordinary segments. This allows us to escape from 

the resource control problems of Watson's system with its single, 

central, resident pool. CAP-III message pools can be part of 

virtual 
1 
memory and swapped or extended at will. The first two 

capabilities in a message pool are head and tail pointers to a

chain of inactive message blocks within the pool. These pointers, 

in common with others in the message syste~ data structures, take 

the form of refined capabilities for sub-segments of message pools 

so that the kernel reference count mechanisms will lock down any 

· apparatus belonging to an active message transaction. 

pointer is indicated by a null capability. 

The null 

Message blocks are of fixed length and can hold five 

capability arguments . There is no provision for data arguments as 

such, but of course it is possible to pass a capability for an 

area of store that embraces some data parameters . There is a link 

capability which is used to hold a pointer to the next message 

block in a chain, such as the free chain in a message pool or a 

queue of messages waiting on a message channel. A message block 

holds information about the size of the pool from which it was 

allocated and its offset within the pool, so that it is possible 

for the kernel to undo the refinement data in a message block 

capability when it wishes to gain access to the pool to return a 

dead message to the pool's free list. This may take place in a 

process different from the one which constructed the block in the 

course of a non-reply type transaction or during fault processing. 

A message block may be labelled with a .1.sill. when it is created and 

this tag can then be used by processes that multiplex messages to 

correctly identify replies to them. To facilitate replying to 
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messages, a capability for a message channel , known as the reply 

channel, can be incorporated into a message block so that the 

recipient of the message can return it without requiring a. 

pre - existing channel to the sender. A non - reply type message will 

have a null capability instead of a channel capabili t y i n this 

field. Users only see message blocks as capabilities for message 

objects and they are not given access to the con tents of a block 

except ,through the kernel operations to load and unload argument 

capabilities . 

Message blocks as such are never given directly to processes. 

Instead they · a r e always encapsulated in message objects which are 

extended objects (whose type 'message' is recognised by the 

kernel) and have a segment capability for a message block as their 

representation. This is done so that the kernel can cause a 

process to relinquish access to a message block by updating the 

con tents of a message object no matter however the process has 

duplicated and distributed capabilities for it. 

Messages are. sent along message channels which are describ e d 

by channel objects that have a capability segment as their 

representation and a channel is shown in Figure 11.2-3. The first 

two capabilities in the segment act as head and tail pointers for 

the queue of messages despatched on the channel that have yet to 

be received. If there are no 

will be . null . The remaining, 

outstanding messages 

third capability in 

the pointers 

the channel 

segment is a capability fo r a process object defining the process 

to be woken up whenever a message arrives on the channel. Th e 

refinement field of this capability is utilised to hold a count of 

the number of _ messages que ued upon the channe l . Th ere are two 

access codes , send and recei v e associated wit h message channe l s 

that are used to control the transmission and reception of 

messages on the channel r espectively . 

A mor e general scheme would be to introduce ' mail box es ' i nto 

whi c h an y pr ocess could de posit messages a n d can be served by a 

n umbe r of pr ocesses . Ho wev er this would require the ke r nel t o 

kee p trac k of all th e process es wa iting on a ch a nn e l and then to 

wak e them all up when a mes sage arrives . Thi s i s a complic a ted 
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task that it would be difficult to do efficiently in microprogram. 

Instead, a slightly simpler approach has been chosen, in which 

only one process can be attached to a channel at any one time. 

There is complete freedom in the number of channels by which a 

process can send and receive messages. 

A process can obtain a message object ready for use by 

application of the MAKEBLOK order which takes a block off the 

process's message pool free chain. It is possible to specify the 

tag of the message block and also to set up the reply capability 

to be either a channel capability or null. The result of this 

operation is a capability for a message object encapsulating the 
message block. 

Capability arguments are put into a message by the PUTARG 

instruction and can be extracted by GETARG which are rather 

similar in function to the MOVECAP instruction for shipping 

capabilities between capability tables. 

When a message block is finished with, the KILLBLOK 
instruction can be used to overwrite any capabilities in the block 

with null capabilities and then to return the block to the pool 

from which it originated . The destruction of the capabilities 

within the block prevents dead messages from wastefully keeping 

slots tied down in the map. Once a message has been killed, it is 

necessary to prevent the message object from being used to ac~ess 

the message block any more, and this is done by replacing the 

capability for the message block in the message object with a data 

type representation that will cause any attempt to extract a 

capability from the message object to fai 1 ~ The invalidation of 

the message ob'j ect in this way wil 1 cause any occurences of the 

message block in the hardware capability unit to be lost. This 

contrivance is used in several places in the message system 

whenever it is desired that a process should lose access to a 

message. The 

listed below: 

instructions concerned with message blocks are 

MAKEBLOK ba~ d31-0) 
bm d31-16) 
bn d31-16) 

message block tag. 
reply channel or null capability specifier . 
destination capability specifier . · 

If the reply capability is not null, it must possess 
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the send access code . The head and tail pointers of the 

current process's message pool are inspected to see if 

there is a free message block available. If there is 

not, a fault is signalled and the instruction terminates, 

otherwise the head block on the free chain is detached 

and ini tia.lised as follows: the size and pool offset 

fields are set up to describe the current message pool, 

the tag field is set to be ba(d31-0) and the reply 

capability is copied to the reply capability slot in the 

block. A message object is set up in the map with a 

capability for the message block as its representation 

and a capability for this object is copied to the 

destination capability slot. The previous capability in 

this slot is lost and any previous entry for it in the 

hardware capability unit is flushed out. 

KILLBLOK n (d31-16) message object capability specifier. 

PUTARG 

GETARG 

If there is an unused reply capability in the 

message, . a fault is signalled and the instruction 

terminates. Otherwise the pool size and offset fields 

within the block are used to reconstruct a capability for 

the message pool from which the block was allocated and 

then the block is attached to the free chain in the pool . 

All of the capabilities in the message block are set to 

be null and the message object is then invalidated to 

ensure that the message object cannot be used again and 

any entries for it in the hardware capability unit are 

flushed out. 

ba argument number . 
bm(d31-16) message object capability specifier . 

The argument number must be in the range O to 4 

inclusive . The capability specified by bn is copied to 

the ( ba) - th argument capability slot in the message 

block . 

ba 
bm(d31 - 16) 
bn C ct31 - 16) 

a r gument number . 
message object capability specifier . 
dest i nation capability specifier . 

The ar gumen t numbe r mus t be in t h e r a n ge O t o 4 

inclusiv e . Th e (ba) - th a r g ument capab i li ty i n the 
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message object is copied to the destination capability 

slot. The previous capability in this slot is lost and 

any entry for it in the hardware capability unit is 

flushed out. 

11.3. The Interrupt Process, 

The kernel transfers control to the Interrupt Process whenever 

an interrupt or fault occurs. If a fault arises when the 

Interrupt Process itself is running, the kernel will print some 

diagnostic information on the CAP intimate teletype and resign. 

The major implication of this is the restriction that the 

Interrupt Process must be resident, as it must not be subject to 

any virtual memory faults. Interrupts are held off by the kernel 

when the Interrupt Process is running but they will automaticall~ 

lead to a resumption of the process if it tries to transfer 
control elsewhere. 

The Interrupt Process can start up other processes by using 

the WAKEUP order which takes a capability for a process object as 

its argument. To succeed, the corresponding process must be 

marked as active in its process base, otherwise control will 

temain in the Interrupt Process and a characteristic code will be 

delivered by WAKEUP. To start up the process, th·e kernel will 

preserve the processor registers in the Interrupt Process's 

process base and reload them from the process base of the target 

process. Then the capabilities of the Interrupt Process will be 

made inaccessible and control can be switched to the new process. 
When control is subsequently redirected back to the Interrupt 

Process, in response to an external interrupt or some other event, 
a register specified by the WAKEUP instruction will be set · to a 

characteristic code which can then be interpreted to discover what 

has happened. 

The Interrupt Process can determine which device caused an 

external interrupt by using the WAIT 1 instruction which will 

return the number of the device with the longest outstanding 

interrupt. The Modular One front-end computer will maintain a 

queue of interrupts and it may take several applications of' the 
WAI T 1 operation to clear the entire queue. The invalid device 
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number zero is returned if the queue of waiting interrupts is 

exhausted. 

If the Interrupt Process has no useful work to perform because 

all processes are held up awaiting some event, by obeying the WAIT 

0 instruction it . can request to be suspended until an external 

interrupt arrives. It is normal practice to follow a WAIT Oby a 

WAIT 1 to determine where the interrupt came from. 

The wake up waiting flag of the Interrupt Process is used to 

prevent the process from losing interrupts that occu~ while it is 

running. ThEl flag is . set whenever an interrupt arrives while the 

process is active and the flag can only be cleared by use of WAIT 

1. If the process tries to obey either WAKEUP or WAIT O when the 

flag is set, the process will resume immediately and must attempt 

to clear the condition. 

It is essential to the kernel interrupt handling mechanisms 

that the process base and domain descriptor of both the currently 

active process and the Interrupt Process are not flushed out of 

the · hardware capability unit otherwise it will be impossible to 

dump and restore processor registers. A fault wil 1 be signalled 

if either the REVOKE or the ALTER operations attempt to modify a 

capability that would in turn lead to the removal of the critical 

capabilities from the unit. 

The specification of the Interrupt Process orders is given 

below. In ordinary processes the WAKEUP order is defined to be a 

null operation. 

WAKEUP n ( d31-16) capability specifier for a process object. 

~f the Interrupt Process wake up waiting flag is set 

then: 

ba : = ffeOOOffff 

and execution continues in the Interrupt Process . 

Otherwise if the process base of the nominated process is 

marked as being held up then: 

ba(d31-16) := ffaOOO 
ba(d15-0) := tag field of process object 

and execution continues in the Interrupt Process. If, on 

the other hand, the process was marked as active, the 
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WAIT 

processor 

Process's 

registers are 

process base 

dumped into 

and restored 

the 

from 

Interrupt 

the target 

process's process base. When control eventually returns 

to the Interrupt Process, ba will be set as follows: 

ba(d15-0) := tag field of currently running process. 

ba(d31-28) := interrupt code thus: 

#0 - current process has become held up 
#1 to #9 - unused 
:fla - see above 
:fib - unused 
#c - time-slice exhausted 
#d device busy hold up (d27-16 is a device number) 
#e - external interrupt 
#f fault (d27-16 is the fault code). 

n ( dO) 

n = 0 

wait code. 

If the wake up waiting flag of the Interrupt_ 

Process is set, execution continues normally; 

otherwise, the Interrupt Process is suspended until 

an external interrupt arrives. 

n = 1 

ba := number of head device in Modular One interrupt 

queue (0 if queue is empty). 

1 1 • 4 • Sc h ed u 1 i n g . 

The kernel carries out some simple scheduling operations 

during message transactions by manipulating the priority and 

status words in process bases. When one process transmits a 

message to another, the kernel first inspects the state of the 

destination process. If it is active, the kernel will set its 

wake up waiting flag to indicate the presence of more work to do; 

otherwise, if ttie process was previously held up, its state word 

is set to be 'active'. In the latter case, the kernel will then 

go on to compare the priorities of the two processes involved and 

if the priority of the destination process is the greater of the 

two, control is switched to that process. 

A process may request to be held up until some event occurs , 

such · as the arrival of an interrupt or a message. In this case, 

the kernel first checks that the process's wake up waiting flag is 

not set and then marks the state word of the process base with the 

value 'active' before r eturning to the Interrupt Process with the 
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interrupt code #0. The automatic 'binary' scheduling carried out 

by the kernel means that the process that is running when the 

Interrupt Process is eventually re-entered after a WAKEUP may not 

necessarily be the process that was originally started off. This 

is the reason for including process object tags in interrupt codes 

so that the Interrupt Process can id~ntify the current process. A 

process that has been marked as being held up will only . become 

active again due to the arrival or an event or by · a message of the 

modification of the state word in its process base by explicit 

software action. 

Processes are forcibly held up if they attempt a transfer on a 

peripheral device that is busy . In these circumstances, the 

program counter of the process is set back so that when the 

process is resumed, probably in response to an external interrupt~ 

the failing order will be retried. To resume such a process the 

operating system must set the state word of its process base to 

the value 'active 1 • Peripher~l t~ansfers carried out by the 

Interrupt Process are treated specially in that the kernel will 

hold up the Interupt Process if it attempts to access a busy 

device until an external interrupt arrives. 

A process may elect to be held up immediately after 

transmitting a message and this results in the process being 

marked held up, provided that its wake up waiting flag is not set. 

If tne priority of the destination process is greater than or 

equal to the priority of the sending process, the kernel transfers 

control to the former; otherwise, if the destination process 

priority is lower, the kernel will enter the Interrupt Process 

with the interruI?t code ffO because there may be more deserving 

processes of an intermediate priority that can be run . 

Thus it may be seen that the kernel is responsible for simple 

scheduling decisions involving two processes and a software 

process coordinator need only be invoked when a comprehensive 

general reschedule is required. This intervention of the kernel 

in the scheduling of processes greatly contributes to the 

effectiveness of the CAP - III message system . 
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11.5. The Message System. 

The SEND instruction is used to despatch messages and takes 

two arguments: a channel capability specifier and a message 

capability specifier. The channel capability must hold the send 

access code, and the message object . must have a message block as 

its representation. The message is chained onto the t .ail of the 

queue of the messages attached to the channel, and then the 

message object named by the message capability has its 

representation invalidated to prevent further access to the 

message in the sending process. The kernel will · then schedule 

between the current process and the destination process according 

to the rules outlined above . 

A process may find out how many messages are waiting on a 

message channel by use of the MESSAGES instruction which has the 

specifier of a channel object as its argument and returns the 

message count in the channel segment as its result. 

A message may be received by use of the RECEIVE instruction 

which has a channel capability specifier and a destination 

capability slot as its arguments. The channel capability must 

hold the receive access code. If there are no messages queued 

upon the channel, the current process's program counter is set 

back and the process is held up until the arrival of an event 

signal when the channel will be inspected again. This affords a 

mechanism for making a process wait for a message on a single 

channel. If it is required to poll a group of channels, the 

MESSAGES operation should be used first of all to see if there is 

a message on one of the group of channels before a RECEIVE order 

is obeyed . If there is a message on the channel, RECEIVE will 

construct a new message object whose representation is the head 

message block queued on the channel and it w~ll copy a capability 

for this object to the destination capability slot. The tag of 

the message block is also made available so that replies can be 

distinguished. The head message segment will be stripped off the 

channel queue and the channel message count will be decremented. 

The newly made message ob j ect is suitable for interrogation by 

GETARG to extract argument capabilities and then result 
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capabilities can be loaded into the message with PUTARG. It is 

also possible to retransmit the message to another process with 

the SEND order, in which case the retransmitting process will lose 

all further rights of access to the message. This facility is of 

use to processes that act as gate-keepers for other processes. It 

should be noted that when the final recipient of a message replies 

to it, the reply returns directly to the originating process of 

the message and no action is required of the process that took 

part in forwarding the message. 

If a process runs out of things to do and wishes to await the 

arrival of a message it can execute the WAIT order which will 

cause it to be held up, subject 

waiting flag. When a process is 

to the value of its wake up 

woken up aft er a WAIT it may 

inspect its - incoming message channels with the MESSAGES order to 

decide upon which channel the message arrived. If the process is 

only interested in a single channel, it may wait upon it alone by 

using the RECEIVE order. 

The remaining primitive in the message system suite is called 

REPLY which has a message capability as its argucient. REPLY will 

extract the reply channel capability from the message and, if it 

is null, the mesgage will be disposed of identically to the way in 

which KILLBLOK behaves; so that the effect of replying to a 

non-reply type message is to throw the message away. If, on the 

other hand, the reply capability is valid, REPLY is equivalent to 

SEND with the reply channel as its argument together with the 

additional feature of overwriting the reply capability in the 

message segment with a null capability. This is so that the reply 

channel capa~ili ty cannot be exercised again . The reply 

capability in a message can be considered to be an analogy of a 

'reply-paid envelope'. 

There are two instructions called SENDW and REPLYW, that are 

the waiting variants of SEND and REPLY respectively. They are 

functionally equivalent to the conjunction of a . SEND or REPLY 

order and the WAIT order . These two orders are used to indicate 

that a process has no more useful work to do after transmitting a 

message . 
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The normal cycle of events for two processes communicating in 

a procedure call like fashion, analogously to inter-domain calls 

in other systems, is for the calling process to manufacture a 

message using the MAKEBLOK order , load · it with argument 

capabilities using PUTARG and then transmit it along a message 

channel to the target process. The sending process will use the 

SENDW instruction so that it goes to sleep until some event , such 

as a reply to this message, occurs . The called process will be 

woken up and the RECEIVE order can be used to pick up the newly 

arrived mes sage . Arguments in the message can be extracted with 

GETARG and then, aft er processing be the message , result 

capabilities can l oaded into the message with the PUTARG order 

before returning it with the REPLYW instruction . This latter 

order will also put the called process back into the waiting state 

until the arrival of a further message, whereupon the cycle can be 

continued. The return of the message block will re-awaken the 

sending process which can pick up the message with RECEIVE and 

extract the results with GETARG before disposing of the message 

wi th KILLBLOK. 

By using other combinations of the message orders it is 

possible fo r a process t o han dle r eque sts upon several channels 

concurrently and to construct non - reply type messages or pass 

received messages on to other processes in support of more complex 

communication protocols. In these cases, the tag field in message 

objects provides a simple mechanism t o enable a process to 

recognise replies that arrive in an order different from that in 

which the original messages were sent out . 

11. 6 . Specification Of The Message System . 

WAIT ba( d27 - 16) information code . 

If t he wake up waiting flag of the current pr ocess is 

s e t , c lea r it and c ontinue ex ecution. Ot h e rwi se ; 

preserv e t he s t ate of the process in its process base and 

trans f e r con tro l to the Interr upt Process set ti ng the 

i nterr up t i nform~tio n code as f ollows : 

d 3 1-28 : ltO 
d27 -1 6 : ba (d27-16) 
d16-0 : t ag of ma p entry for c urrent process . 
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SEND 

SENDW 

REPLY 

REPLYW 

RECEIVE 

ba( d31-16) 
n < d31-16) 

message object capability specifier. 
channel capability specifier . 

The channel capability is checked for send access . 

The message block specified by the message capability is 

chained onto the queue of messages on the channel . 

Adding the message onto the channel queue has the effect 

of incrementing the channel message count . The process 

associated · with the channel is then woken up and a 

schedule between the sending process and the target 

process takes place . 

ba ( d31-16) 
n ( d31-16) 

message object capability specifier. 
channel capability specifier. 

This order is similar in effect to SEND except, 

provided that its wait up waiting flag is unset, the 

current process is held up. 

n ( d31 -16) messa~e object capability specifier. 

If the reply capability in the message block 

specified by the message capability is a null capability, 

the effect of this order is identical to KILLBLOK. 
Otherwise the reply channel capability is extracted from 

the message block and replaced by a null capability 

whereafter the order behaves similarly to SEND with the 

reply channel as its channel argument. 

n ( d31 -16) message object capability specifier. 

This order is similar in effect to REPLY, except, 

provided that its wake up waiting flag is unset, the 

current process is unset. 

bm(d31-16) 
bn ( d31-16) 

message channel capability specifier. 
destination capability specifier . 

The channel capability is checked for the receive 

access code. If there are no messages queued upon the 

message channel, the program counter of the current 

process is stepped back and the process is held up and an 

enforced entry is made to the Interrupt Process. 

Otherwise the leading message block is taken off the 

message queue and a capability for a message object 

defining it is moved to the destination capability slot. 

Th e message block tag of the received message is loaded 
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in Ba(d31-0) . This results in a decrement of the channel 

message count. The previous capability in the 

destination capability slot is lost and any entry for it 

in the hardware capability unit is flushed out. Finally 

register Ba is set to be the value of the tag field of 

the message block. 

MESSAGES n (d31-16) message ch~nnel capability specifier. 

ba(d31-0) := the count of the number of messages waiting 
upon the message channel. 
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CHAPTER TWELVE. 

ORGANISATION OF THE KERNEL MICROPROGRAM. 

12.1. Initialisation. 

The kernel is loaded into microstore from disc by a bootstrap 

microprogram that is input by the intimate paper tape reader. The 

bootstrap, known as DISCBOOT, also clears the stores and loads the 

initial system code ready for running. Before control is 

transferred to the kernel, DISCBOOT will reset the state of the 

processor and clear any error indicators to put the machine into a 

tidy, standard initial condition. The communication link with the 

Modular One computer is restarted to prevent any incompleted 

operations from the last run interfering with the freshly loaded 

system. 

The DISCBOOT utility is shared by all CAP microprograms, so it 

~sup to the kernel to set up its own starting environment. It is 

passed a number of parameters, extracted by the bootstrap from the 

user system memory image on disc and these are used to tell the 

kernel the absolute location of the map and the map offset of the 

process object for the initial process. The kernel · can then set 

up in the capability unit those capabilities necessary to start 

the user sys tern. The kernel initialisation consists of of about 

250 microinstructions. 

12.2. Basic Instruction Set. 

Most basic user instructions are implemented entirely by the 

stage one sequence and a single micro-order in the Function Memory 

(Section 8.2), but the · more involved basic orders, particularly 

these for floating point operations, require additional space in 

microstore where they account for some 6 50 words. This part of 

the CAP-III kernel is more or less identical to its counterpart in 

the CAP-I microprogram so that the two basic instructions sets 

will be compatible this is useful when the transfer of programs 

between the two systems is concerned. 
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12.3. Peripheral Control. 

The microprogram for interpreting peripheral instructions and 

organising device transfers is also similar in both systems for 

compatibility. This part of the microprogram is quite complex. 

The CAP microprogram can read and write to the Modular One's 

memory and can also accept interrupts across the link. To start a 

transfer, the kernel will write a transfer request to the Modular 

One's store to attract the attention of the other machine. The 

link program in the Modular One· will then read the request, 

allocate buffer space and, for an input transfer, start to accept 

data from the appropriate device. When this stage is completed, 

the Modular One will interrupt the CAP to signal that the transfer 

is ready and the CAP can then carry out a fast store-to-store copy 

to effect the transfer. To finish off, the CAP will indicate to 

··· ·- the Modular One that the transfer has been done and the 

Modular One will reclaim the buffer, which if it was for an output 

transfer, will result in its being tr~nsmitted to the appropriate 

peripheral device. Most of the code in the kernel 1/0 system is 

concerned with ~dministering the protocol between the two machines 

and optimising efficiency by slaving the parameters for the 

current device in microstore to reduce the number of interactions 

between the machines. The slaving persists until a device order 

is encountered for a different device in which case the parameters 

of the old device have to be flushed out and those of the new 

device picked up. This part of the kernel is nearly 600 words 

long. 

12.4. Interrupt Handling. 

External inte~rupts and internal processor parity errors cause 

the microprogram to be diverted to an interrupt location in 

microstore whenever control returns to stage one. Parity errors 

are usually catastrophic and result in the kernel giving a 

diagnostic print-out on the intimate teletype before resigning. 

In the case of an external interrupt, the interrupt service 

routine will i nspect the state of the system; if control is in a n 

ordinary process , an entry is made directly to the Interrupt 

Pr ocess by disabling the ha r dwa r e capability registers fo r the 

current process and r e storing thos e of th e In terrupt Proc ess , 
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after dumping and restoring the processor registers from the 

appropriate process bases. On the other hand, if the Interrupt 

Process is already running, then its wake up waiting flag is set 

unless it was in the dormant WAIT O state , in which case the it 

resumes immediately. 

An interrupt is generated every time a tweLve bit count of the 

number of executed microinstructions overflows. If control is in 

an ordinary process when this signal arrives, the time-slice word 

in its process base is incremented by one and · if the resulting 

value is zero, an enforced entry is made to the Interrupt Proc~ss 

to signify that a time-slice is exhausted. In practicet one 

thousand of these counts are equivalent to about one second of 

real time although the exact relationship obviously depends on the 

mix of instructions executed. 

In the last chapter, there was a description of the behaviour 

of the kernel in response to faults. In most cases the code to 

signal faults is called if the kernel finds an unreasonable 

argument or request, but some faults are reported in direct 

response to microprogram traps gener~ted by protecti6n violations 

and arithmetic overflows. 

After a diagnostic print-out on the intimate teletype caused 

by a fault in the kernel or a parity error, it is possible to 

resume execution by typing the character 'C' (for continue) or to 

jump to a fault entry point in the current process by typing the 

character 'J'. The kernel can be stopped temporarily by typing an 

'X-on' character, which will produce the standard diagnostics and 

then the kernel can be resumed by typing the character 'C' as 

before . This particular facility is useful for conducting 

performance measurements · as part of the diagnostics include the 

value of a counter that will record hardware statistics selected 

by control switches on the processor. The microcode concerned 

with processing interrupts 

approximately 350 words . 

and reporting 
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12.5. Use Of The Capability Unit. 

The structure of the capability unit was outlined in Section 

8. 3. Capability register O is always used to hold a descriptor 

for the map, and it is set up from the parameters passed over by 

DISC BOOT at initialisation time. Whenever the kernel wishes to 

inspect or modify the contents of the map, it selects register 0 

in last mode and uses relative offsets within the map to address 

store so that any map pointers going outside the bounds of the map 

will result in a protection violation . . 

The most important field in each capability as held in the 

capability unit, from the point of view of the following 

discussion, is the tag field which consists of two sub-fields as 

described earlier. One holds the number of the capability_ 

register for the capability table from which the register in 

question was loaded, while the other normally gives the capability 

offset of the loaded capability in its parent segment. For 

example, a register for a capability table will have a tag that 

contains the regist'er number of the domain descriptor containing 

the capability and its table number, the latter being the offset 

of the table capability in the domain descriptor. 

A process is represented in the capability unit b~ a register 

whose tag is derived differently: the parent register sub-field is 

zero (pointing to the map register) and the offset sub-field is 

the least significant eight bits of the map index of the process's 

entry in the map. The full index is kept in the size field of the 

register and, because process capability registers are only used 

to fix a process's capabilities in the capability unit, the access 

field is zeroed to prevent any access to store through the 

register. Thus, when the kernel switches context between 

processes, it can scan the capability unit in normal mode with a 

tag based on the hashed map index of the target process in order 

to find the process ' s capability register. If a normal mode match 

occurs, the kernel checks that the value of the size field of the 

located register matches the map index of the process to be found . 

If this check succeeds , the register is accepted, otherwise a free 

register is found and allocated to the process . I t can be 

ex pected that onl y a few sea r ches of the unit for processes wil l 
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fail because of one process present in the unit having the same 

hash key as another that is found first by the normal mode search, 

leading the kernel to think that the first process is absent from 

the unit. 

In the CAP-I memory protectioQ system, processes are held 

differently in the unit: a process is represented by a capability 

for the PRL of the process with a tag which matches the address of 

the PRL segment in the process's coordinator's address space. In 

the CAP- III kernel, this contriYance cannot be used because there 

is no hierarchy of address spaces. However it must be possible to 

pick up a process if it is already in the capability unit because 

otherwise , the cost of evaluating the structure of a process is 

high, and the wasteful reloading of capabilities would reduce the 

efficiency of the message system by a considerable degree. 

The process 

registers which 

contained within 

capability register is the root 

controls access to the domain 

the process as shown in Figure 

of a tree of 

of protection 

12.5-1. The 

domain descriptor capability register is. a direct descendent of 

the process register and has the tag <process register, O>; This 

register is used to read capabilities for the process base and 

capability tables. The former would be found in a register . with 

the tag <domain descriptor register, 16> and the latter in 

registers with tags <domain descriptor register, n> where 'n' is 

the tab le 

.capabilities 

number 

in a 

in the range 0 

capability table 

to 

are 

15. The 

tagged 

individual 

thus <table 

register, capability index> as descendents of the tables from 

which they are evaluated . 

The TGM is set to hold the capability register numbers of the 

entries in the unit for the capability tables of the currently 

running process. In Section 8. 3 it was stated that the virtual 

address translation mechanism will translate the capability 

specifier of an address into the tag <contents of TGM indexed by 

table number in address, capability index in adqress> before 

scannin.g the capability unit, therefore only capabilities 

belonging to the process whose tables are set up in the TGM will 

be found and other capabilities in the unit remain inaccessible 

until the TGM is reloaded . 
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12.6. Reference Counts in The Capability Unit, 

The tree structure of capabilities in the capability unit is 

held in place by the use of reference counts kept in the count 

field of capability registers and these counts record the number 

of pointers, in tag fields and microprogram registers, to the 

register in question. Thus the count of a register ,for an 

ordinary capability will be zero and will contribute one towards 

the count of the register for the table from which it was loaded. 

That in turn adds one to the count of the register for its domain 

descriptor and this keeps the count of the process capability 

register at one. 

When the kernel wishes to find a free register for allocation 

to a new capability, it scans the unit, starting at the point at 

which a normal mode search based on the tag of the new capability 

would begin, looking for the first register with a zero count 

which can then be cleared and set up with the value of the new 

capability. The action of clearing the register includes 

decrementing the count of the parent register which, if its count 

falls to zero, may become a candidate for re-allocation later on. 

The mechanics of the interrupt handling and enforced Interrupt 

Process entry on faults and hold-ups requires tha·t the kernel 

locks down the process base and domain descriptor of the Interrupt 

Process and the current ordinary process (if there is one) so that 

process registers can be dumped and restored during a context 

switch. This is done by keeping the reference counts of these 

objects one higher than the actual number of references · to them; 

this will fix them in the capability unit. When a switch is made 

between two ordinary processes, the kernel restores the reference 

counts of the process being left so that its registers can be 

reclaimed if necessary. 

If a capability in store is overwritten , the kernel must also 

invalidate its entry in the capability unit and this is done by 

setting a value which has the significance of 'unset' in the 

access field of the register corresponding to the capability so 

that any attempt to address memory through it will fail with an 

access violation. Furthermore, if the r egister has a non - zero 
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count, 

table, 

say because it is a domain descriptor or a capability 

all of the capabilities in the tr.ee descending from the 

register must also be marked unset. 

The kernel only keeps the following hardware types in the 

capability unit:~ segments, messages and channels; a discourse on 

organisation of the l~tter two types is deferred until later on. 

12.7. The Reset Cycle, 

It is now possible to describe the kernel 'reset cycle' which 

loads a process and its capabilities into the capability unit. 

Before switching to a new process, the kernel allocates a process 

capability register, a domain descriptor register and a process 

base register, but only the first of these is initialised and the 

other two are left unset. During the context switch, the kernel 

will attempt to address the process base of the target process in 

last mode to load the processor's arithmetic registers, but this 

will fail with an access violation because the process base 

register is unset and it will result in an enforced trap to 

microstore address eighteen which activates the protection 

violation routine called TRAP18. 

The TRAP18 code will inspect the failing register and discover 

that it is unset and is a process base (this can be deduced from 

the tag and from marker bits kept in the spare field). TRAP18 

will then go to the reset cycle code for evaluating the process 

base capability, which will attempt to read store using the domain 

descriptor . register and suffer another TRAP18 call because this 

register is also unset. The reset cycle code is then ent erect 

again to set up the domain descriptor by reading the map entry 

whose index is held in the process capability register. As the 

map capability register is never unset, this reset cycle can 

complete and once the domain descriptor has been loaded, the 

context switch that fell foul of the unset capabilities can be 

restarted. 

Once again , TRAP 18 will be called because of the the process 

base register which is still unset, but the reset cycle will be 

able to read the domain descriptor this time, with the result that 

the process base register will be set up and the context switch 
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can be restarted once again. 

Now the process base of the new process can be read 

successfully and used to prime the arithmetic registers. The 

final act of a context switch is to set all of the sixteen TGM 

registers to zero; this makes the 9apabili ties of the previous 

process inaccessible to the virtual address translation machinery . 

However, for the time being, there are no capabilities 

available for the new process and an attempt to obey an 

instruction within it will cause a trap to location seventeen in 

microstore to signify that a capability for the process's current 

code segment was not found . The TRAP17 code found at this address 

initially looks at the TGM register . indexed by the capability 

table part of the failing address. If it is zero, the tab le has 

not yet been set up and the kernel scans the capability unit with 

a tag consisting of the domain descriptor register and the table 

number to see if the table is present and if so, sets the TGM 

register to point at it . If a register for the tab l e is not 

already set up in the unit, the kernel will allocate a spare 

register and mark it unset . The failing instruction in the new 

process will be retried and if the capability is still not found 

when the TGM is set up , the r e will be a s e cond c a ll of TRAP 17 

which will result i n the allo c ation of a capability register for 

the missing capability . 

Once the allocation is complete , the kernel will suffer a 

TRAP 18 call because the register is unset , and while trying to 

read it from the parent capabil it y table, there will be another 

TRAP18 as that register is also unset . These traps a r e resolved 

by t wo r eset cycles in a manner analogous to the evaluation of the 

process base capability described earlier. 

The sequence of e v ents outlined above is the full r eset cycle 

t ha t i s necess a r y i f al.l o f t he capabili t ies of a pr ocess a re 

abse n t f rom the capab il ity uni t. In practice , much of a process ' s 

appa r atu s wil l be f o und i n t h e unit and i n consequence , it may 

onl y bi necessary to ca r ry out a fe w, simple , pa r tial r eset c ycles 

be f o r e a process ca n sta rt running . As the pro c ess executes, 

there are likely to be s e veral mor e TRAP17 and TRAP18 calls to 

-128-

11 

I 



recover capabilities that have had their registers re-allocated 

since the process last ran, or for capabilities that have not been 

used before. 

The reset cycle is written to restart user instructions either 

after allocating or setting up a . single capability register 

because it is a potentially recursive task to initialise a 

capability register. The microprogram instruction set is not well 

suited to this, so an iterative approach is adopted instead. 

The segment reset cycle, which is triggered by the TRAP18 

routines to set up a capability register, will read a capability 

from the appropriate parent capability segment, using the parent 

capability register in last mode and then index the map through 

register Oto locate the segment's representation, taking account 

of any intervening revokers to modify the access code. The access 

code is checked to be either entirely data or entirely capability 

type and is copied to the access field of the register. The base 

and size fields are set up from the results of the refinement 

calculation using data in both the capability and the map entry as 

described in Section 9.3. 

The kernel uses the spare field of a capability register to 

contain marker bits that will be set if the register is used for a 

domain descriptor, a process base, a message or a channel. By 

inspecting these bits and the values of tag fields; it is possible 

for the TRAP18 routine to decide what sort of capability register 

has been violated and to set about loading it from the appropriate 

- parent segment. There is another marker bit called ' active ' that 

is used to flag the process bases and domain descriptors of the 

Interrupt Process - and the currently running process ( if there is 

one). The kernel routine for unsetting a capability register will 

complain if it is applied to a register marked 'active' and this 

prevents locked down registers from being flushed by REVOKE or the 

ALTER orders. 

Each stage of a reset cycle involves at least five store 

cycles; two to read a capability , three to r ead a map entry and 

two extra store cycles for every revoker object that intervenes in 

the path between the capability and the corresponding root object 
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in the map . However, the size of the unit is such that a 

capability will remain in existence for a reasonable period of 

time before its register is reclaimed for a different capability. ~, 

The kernel takes steps to avoid gratuitously throwing away useful 

capabilities so that the cost of evaluating a capability is spread 

out over many instructions by the slaving properties of the 

capability unit. 

12.8. Messages and Channels, 

As well as the segments describing the structure of a process 

and segments of data or program code, the kernel also keeps the 

segments sealed within message and channel objects in the 

capability unit. These latter objects are not set up in response 

to reset cycle faults; instead, the message system code will do a 

dummy normal mode scan of the capability unit to find a register 

with a tag that matches the address of the channel or message in 

question ahd will check to see if its access field is set. If the 

access field is not ~et, the kern~l will evaluate the appropriate 

capability for the channel or message object from which a segment 

capability will be taken and used to set up the register. Only 

when the register is set up does the message system try to access 

data through it to avoid the need for the ordinary re::1et cycle 

becoming involved with messages and channels . 

The 

register 

register 

message pool of a process is found in a 

with the tag <domain descriptor register, 

capability 

17>. This 

is only set up by explicit loading during the MAKEBLOK 

order which · always checks for the eiistence of a correctly 

configured register before addressing the message pool segment. 

The objects used by the message system are cached in the 

capability unit to optimise the performance of the inter-process 

communication operations because it may be expected that some of a 

process's capabilities for these objects will persist in the unit 

between message transactions and will be readily at hand the next 

time a message is to be processed. 
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12.9 . Segment Usage Bits, 

The previous description of the actions of TRAP18 was, in 

fact, rather simplified by ignoring the control of the segment 

usage bits to try to avoid obscurity . When a segment capability 

is loaded into the capability unit, . the reset cycle inspects the 

usage bits in the segment 1 s map entry. If the segment is marked 

as both 'used' and ' dirty ', then it is set up normally; otherwise, 

the calculated access code is copied to a location of microstore 

associated with register to be updated and, if the segment is 

neither 'used' nor 'dirty', the access field of the register is 

set to 'no access '. If the object is marked 'used' but not 

'dirty ', only the read type bits of the access code are set in the 

access field . On an access violation, the TRAP18 routine inspects 

the access field of the failing register and if it is unset , goes

directly to the reset cycle · to evaluate the capability. Otherwise 

the faulted access request is compared to the full access code 

held in the microstore record corresponding to the failing 

register and if this code is less potent than the request , an 

access violation fault is reported. In the case when the full 

access code is suitable and the request is of read type , the 

'used' status bit is set in the segment's map entry and the read 

type access bits of the full code are moved to the ·capability 

register access field . If the request was of write or 

read-and-write type, both the 'used' and the 'dirty' bits are set 

in the map entry and the full access code is moved to the access 

field of the register in its entirety. After one of these pseudo 

TRAP 18 entries , the cur rent instruction is restarted and , since an 

access code has been loaded into the capability unit , the memory 

c ycl e will s u cceed . 

The bod y of mic r oprogram devoted to evaluating segment 

capabilities , capab ility unit management and the segment reset 

cyc l e is nearly 400 mic r oi nst ruc ti ons i n length. 

12 .1 0 . Protec t ion Orde r s . 

Ther e a r e a number o f util i t y r outines fo r use b y the 

prot ec tion fun c tio n s of th e k e rne l, th e mos t im port a nt of which is 

a r e s e t cycle for non-hardware objects which are not ke pt in the 
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capability unit. This reset cycle will take the address of a 

capability and evaluate it to find the root object named by the 

capability. The routines for reading and writing capabilities in 

capability tables address the capability unit in last mode and 

jump into the segment reset cycle code if the capability table is 

not set up in the capability unit. When a capability is 

over-written, the capability unit is searched in normal mod~ with 

the address of the modified capability so that any machine 

register can be cleared by marking its access code as unset. 

Other utility rotitines deal with map slot reference counts and the 

chain of free map entries. 

The REVOKE order (Section 10.4) must unset any capabilities in 

the capability unit that were derived from paths that go through a 

modified revoker map slot. This is done by keeping a table which, 

for each capability register, records the map slot number of the 

entry from which the register was set up. The REVOKE instruction 

will determine the root map slot of the path from the revocable 

capability currently being exercised and will scan the table of 

map slots, unsetting the access code for all of the registers for 

which the table entry matches the root slot number. If one of the 

registers that is unset has any descendents, then they are also 

unset. The flush carried out by REVOKE may be more violent than 

is strictly necessary; it will remove capabilities for the root 

object that did not include the changed revoker in their 

evaluation, as well as those that did. This could be avoided by 

keeping an additional table to . record the length of the path 

between the capability and the root object, but it is debateable 

whether or not the saving on spurious capability evaluations would 

be adequate compensation for the extra code required in the 

microprogram. The routines for unsetting all instances of an 

object in the capability unit is also used by the ALTERC and 

ALTERD instructions together with the message system when it 

cl ears message objects but in these cases, the slot to flush out 

is the map slot that has been modified and not a slot. shielded by 

a revoker. 

Objects that are not hardware types are not kept in the 

capability unit because its registers are unsuitable for 
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representing objects other than segments. In any case, it may be 

reasonably assumed that there will be many more references to 

segments than to non-hardware type objects sd that the overhead of 

having to evaluate the latter every time should not prove too 

demanding. 

The distribution of code in the protection orders is as 

follows : utility routines, 200 words; type-extension and 

revocation, 250 words; capability transfer, 100 words; information 

orders, 25 words; message sys tern and process switching, 1 OOO 

words. There is remarkably little to comment about in the 

implementation of the protection orders save that they conform to 

the design rules that were laid down in Chapter Two concerning the 

complete validation of arguments before modifying capabilities or 

the map so that a call to the kernel with dubious parameters 

cannot cause harm or confusion. 

No accurate performance analysis analogous to Cook's work for 

the memory protection system has yet been carried out for the 

CAP-III kernel, but a number of ad hoe measurements made during 

the testing phase of the kernel development suggest that 

instructions like MOVECAP and SEAL, that carry out f~irly 

straightforward operations on capabilities and map entries, take 

between ten and fifty times as many machine cycles as basic 

instructions, whereas for the message system, the ratio is nearer 

several hundreds to one . Compared to the cost of an ENTER/RETURN 

sequence in the memory protection system this figure is a little 

disappointing, but on the other hand, it compares favourably with 

the cost of message transactions in the older system that consume 

many thousands of machine cycles . It is to be expected that the 

benefits gained here will more than adequately compensate for the 

disparity with the ENTER and RETURN operations. 
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CHAPTER THIRTEEN. 

REVIEW AND EVALUATION, 

13.1, Some Attributes of the Kernel. 

The primary motivation for the design and construction of the 

CAP-III kernel was to reduce the overheads of a powerful 

protection system by the use of microprogramming, and to a 

considerable degree this has been successful. The functions of 

the kernel are simple, which means that they are implemented by 

concise and straightforward sequences of code. Coupled with the 

hardware optimisations afforded by the hardware capability unit 

and instruction decoding logic of the CAP, this leads to fast and 

efficient operation. ' Most important, the memory protection 

facilities, which might reasonably be expected to be the most 

heavily used part of the kernel are very cheap, mainly because of 

the slaving properties of the hardware capability unit. The 

microprogramming of the inter-process communication system makes 

it considerably faster than any software implemented scheme and 

enables us to construct protection domains that can be ·mane very 

short and simple-minded without fear of suffering unduly from the · 

overheads of frequent domain changes. 

P~otection in the CAP-III kernel is fine-grained, which is to 

say that it is possible to protect many items of differing 

complexity, ranging from a segment that is 

length up to filing system directories and 

only a 

other 

few words in 

such 

structured, 

select and 

multi-component objects. 

protect just part of 

The ability to be 

highly . 

able to 

to the an item is crucial 

attainment of minimum privilege. 

The slaving of capabilities in the hardware capability unit 

allows a domain to have a working set of many capabilities. There 

is less of a psychological limit on the number of capabilities 

which it is reasonable to exercise than there would be in a system 

with only a few explicitly addressed capability registers; this 

encourages the full separation of the privileges of a domain. 
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The kernel is entirely self-contained and places no reliance 

on the integrity of the software sys tern running on the machine, 

which greatly contributes towards its ruggedness. The kernel 

always addresses data structures, including the map and capability 

segments, through the hardware capability unit so that any invalid 

addresses supplied by · user·s or resulting from incorrect 

calculations by the kernel will be trapped by the hardware 

protection mechanisms. It has been noted earlier that the kernel 

al ways tidies up after reporting a fault so that malfunctioning 

programs cannot expose any loopholes in the protection sys tern. 

The uniformity and simplicity of the protection mechanisms for 

both primitive hardware objects and user defined protected objects 

offers not only an economy of code inside the kernel but also 

minimises the amount that has to be learned by users, who will be 

more likely to exploit to the full mechanisms that they can easily 

comprehend. 

13.2. An Evaluation of the Kernel. 

The global naming scheme of the kernel is conceptually more 

simple than the nested address space structure of the memory 

protection system of CAP-I and involves less memory being tied 

down in protection data structures. In the memory protection 

system, the route between a capability in a user process and the 

representational information for the object it protects is eight 

store cycles long: two each in a capability tab 1 e, the Process 

Resource List, a coordinator capability table and the Maste.r 

Resource List. In the CAP-III system, only five store cycles are 

required : two in a capability table and three in the map . It is 

reasonable to expect that the number of protected objects in the 

CAP-III map will be close to the number of segments, protected 

procedures and software capabilities in the CAP-I operating 

system, .which means that the · resident memory requirements of the 

map for the kernel will match those of the MRLs and PR Ls in the 

older system. 

Short names were adopted in the kernel because in the earlier 

stages of design and implementation, it was found that hashing 

long unique names was a costly operation both in terms of the code 
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required in the microprogram and the time taken to find objects in 

the map. There were also difficulties in trying to provide 

mechanisms for keeping the microprogram image of a global name 

space in step with the permanent record on backing store. What 

has been lost by the kernel is the ability to allow users to keep 

capabilities in a filing system without translating names. It may 

be noted that in the CAP-I system it is necessary to carry out 

such a translation and the efficiency of the operating system has 

not suffered noticeably, so, it may be hoped that the same will 

apply to CAP-III. There are one or two complications involved in 

filing active capabilities for extended objects because the 

operating system will have to ensure that the structure of a filed 

extended object is duplicated in the kernel . map · and its own data 

structures. Given the simple organisation of objects and the 

centralisation of information about them in the map it should be 

straightfoward for the ioftware to cope with this problem. 

It is much easier for the kernel to carry out automatic 

garbage collection, because of the central collection of ... , , 
Q.J..~ 

information about objects in the single global map, than it is for 

the memory protection system to garbage collect Process Resource 

Lists. In CAP-I, each process has to have its own garbage 

collector for the process's resource list, and as there are no 

microprogram maintained reference counts, the garbage collectors 

will be activated frequently with a corresponding degradation of 

the amount of useful computation carried out. The CAP-III kernel 

only requires that the system-wide software garbage collector runs 

to flush out complex looped str~ctures (that it is safe to assume 

will only arise occasionally) so that the garbage collector need 

only scan the system at low frequency and this imposes very little 

in the way of overheads. On the other hand , there is the expense 

of maintaining reference counts, but as this , activity is carried 

out by the kernel microprogram the cost should be small. 

The partitioning approach for segregating capabilities from 

data is forced upon the kernel mainly by the hardware of the CAP 

machine, but there is also an interesting dependency between 

tagged capabilities and forever-unique names that would make 

tagging unsuitable for short unique naming schemes. In Section 
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4.1, it was noted that in a tagged architecture, it is impossible 

to keep track of capabilities because they can be scattered 

arbitrarily throughout memory. It is therefore necessary to 

employ hashed , forever-unique names so that names will always be 

valid, because the system cannot tell when the names are no longer 

required. From this observation the applicability of Fabry's 

capability-based addressing scheme must be restricted to 

forever-unique name systems because of its need for tagged 

capabilities. 

The type-ex tension facilities of the kernel are very basic, 

but they have the expressive power of more elaborate mechanisms 

such as those found in HYDRA. The sealing and unsealing 

operations provide the essential machinery for concealing the 

representation of an object from its users, while at the same time 

permitting a duly authorised type manager to ·get inside any 

objects that it controls. Because of their simplicity, the kernel 

primitives are very fast, but on the other hand, the checking 

functions of the slower HYDRA amplification template scheme must 

be carried out by the software of a type-manager. It is likely 

that software can perform the verification of arguments as quickly 

as a general purpose template system because the verification code 

can be specific to the particular . interface in question and can 

have knowledge of the expected arguments built in, rather than 

having to be able to cope with all possible requirements. 

The introduction of basic objects and data sealing to the 

extended object and capability sealing mechanisms proposed by 

Redell (74] has lead to a uniform set of operations for creating 

objects, manipulating them and interrogating their 

representations. This saves a lot of space in the kernel 

microprogram because the type extension facilities can be used 

internally by the kernel in the processing of hardware objects . 

The revocation features of the kernel integrate well with the 

type-extension scheme and the other protection operations. 

Revocation can be temporary or partial, although by adopting a 

dependent capability system , the ability to make the privilege of 

revocation itself revocable has been sacrificed. It is unlikely 

that this latter facility would be heavily used and caretaker 
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protection dom~ins can be used if the facility is required. 

The unified process and protection domain structure is 
successful mainly because of the versatile microprogrammed message 

system which can be applied equally well to simple procedure-like 

interfaces and to more complex ones involving processes thai 

handle many messages at one time. There is little· problem of 

resource control for message blocks in the CAP-III system because 

it supports many message pools that need not be locked down in 

memory, and the involvement of the kernel in the scheduling of 

processes contributes towards the speed of message transactions by 

cutting down on the number of times that the operating system 

scheduler has to be invoked. 

13.3. Relationship with the CAP-I Memory Protection System. 

One of the original motivations for the research described in 

this thesis was to extend the facilities of' the CAP-I memory 

protection system and to investigate some alternative strategies 

for implementing · protection mechanisms, so it is informative to 

emphasise briefly the differences between the two systems. 

Experience would suggest that using short term global names to 
reference objects in a central resident table is at least as 

efficient as the nested resource list approach and is conceptually 
much simpler. However, global names do require a closer 

microprogram involvement with garbage collection because space in 

the . map is a scarce resource across the entire system, whereas 

slots in a resource list are only drawn upon by a single process , 
so that garbage collection can be done by a program running 

synchronously in the 

system as a whole. 

process without 

Earlier in this 

any drastic effect 

chapter it was noted 

evaluation in the 

on the 

that, 

CAP-I because 

kernel 

of global naming, capability 

requires fewer store cycles and so the overheads of 

protection are correspondingly less expensive. 

In the CAP-I system the type-extension and revocation 

facilities of the CAP~III kernel can only be modelled by the use 

of protection domains . Thus it might be expected that the 

protection of abstract objects to be sharper . and more economical 

· in CAP - III. Also, because the kernel has a uniform mechanism for 
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describing all types of objects and controlling access to them in 
a system built around the kernel , there will be less requirement 
for software to mimic the basic access control, type checking and 
naming functions of the microprogram. 

The total replacement of the hierarchical process and 
non-hierarchical domain structure of CAP-I by a non-hierarchic 
single-domain process architecture within a microprogrammed 
message system greatly reduces the amount of operating system code 
required to support multiprogramming and it provides a uniform set 
of communication primitives for all modules of the system. It is 
hoped that the lower cost of message transactions will increase 
the speed of the system and that, despite the slight slowness of 
the CAP-III message system compared to the CAP-I protected 
procedure call machinery, users will have no qualms abou~ 
implementing complex tasks as a set of inter-communicating 
processes in the new system, in the same way that they would use 
protected procedures in the older design. 

It is reasonable to claim that the kernel provides a complete, 
powerful and efficient protection kernel around which it will be 
possible to build sturdy and trustworthy operating systems. 
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