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Abstract:  

Spatial and temporal dissection of the genomic changes occurring during the 

evolution of human non-small cell lung cancer (NSCLC)  may help elucidate the basis 

for its dismal prognosis. We sequenced 25 spatially distinct regions from seven 

operable NSCLCs  and found evidence of  branched evolution, with driver mutations 

arising before and after subclonal diversification. There was pronounced intra-tumor 

heterogeneity in copy number alterations, translocations, and mutations associated 

with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, 

tumors from smokers showed a relative decrease in smoking-related mutations over 

time, accompanied by an increase in APOBEC-associated mutations. In tumors from 

ex-smokers, genome-doubling occurred within a smoking-signature context before 

subclonal diversification, suggesting that a long  period of tumor latency had preceded 

clinical detection. The regionally separated driver mutations, coupled with the 

relentless and heterogeneous nature of the genome instability processes are likely to 

confound treatment success in NSCLC. 



Main Text:  

Lung cancer is the leading cause of cancer-related mortality (1, 2). 

Understanding the pathogenesis and evolution of lung cancer may lead to greater 

insight into tumor initiation and maintenance, and guide therapeutic interventions. 

Previous work characterizing the genome of non-small cell lung cancer (NSCLC) has 

demonstrated that NSCLC genomes exhibit hundreds of non-silent mutations together 

with copy number aberrations and genome doublings (3-9). Although subclonal 

populations have been identified within single biopsies (9), the extent of genomic 

diversity within primary NSCLCs remains unclear. Moreover, while both exogenous 

mutational processes, such as smoking (10-12) and endogenous processes, such as up-

regulation of APOBEC cytidine deaminases (13-15), have been found to contribute to 

the large mutational burden in NSCLC, the temporal dynamics of these processes and 

their contribution to driver somatic aberrations over time remains unknown.  

To investigate lung cancer evolution, we performed multi-region whole-

exome and/or whole-genome sequencing (M-seq WES/WGS) on a total of 25 tumor 

regions, collected from seven NSCLC patients who underwent surgical resection prior 

to receiving adjuvant therapy. The major NSCLC histological subtypes, including 

adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), were represented 

(table S1). Sequencing of tumor and normal DNA to mean coverage depths of 107x 

and 54x for M-WES and M-WGS respectively (table S2), identified 1884 non-silent 

and 76,129 silent mutations (16). 

To evaluate the intra-tumor heterogeneity of non-silent mutations, we 

classified each mutation as ubiquitous (present in all tumor regions) or heterogeneous 

(present in at least one, but not all regions). Spatial intra-tumor heterogeneity was 



identified in all seven NSCLCs with a median of 30% heterogeneous mutations 

(range 4-63%, Fig. 1A and fig. S1). In the adenosquamous tumor L002, 

heterogeneous mutations separated concordant with LUAD (regions R1-R2) or LUSC 

(regions R3-R4) histopathologies (Fig. S2). Patients L003 and L008 each presented 

with two tumors in separate lobes of the lung. Whilst M-seq WES revealed 74% 

ubiquitous mutations in L008, only a single mutation (EGFRL858R) was detected in 

both tumors for L003 (Fig. 1A). Given that EGFRL858R is a highly recurrent mutation 

(17) and also that no silent mutations were shared, we conclude these tumors were of 

independent clonal origin, converging upon identical oncogenic events. 

To resolve the extent of genomic diversity in NSCLC and infer the ancestral 

relationships between tumor regions, we estimated the proportion of tumor cells 

within each region harboring each mutation (16, 18).  Almost all ubiquitous mutations 

(>99%) were classified as fully clonal within each region. Moreover, in most regions, 

the majority of heterogeneous/branched mutations were clonal and thus present in all 

cells within the region (Figs. 1B and fig. S3). However, certain regions displayed 

considerable subclonal diversity. For example, >75% of heterogeneous mutations 

present in L004 R5 were subclonal and this region consisted of two distinct subclonal 

populations  (Fig 1B). The subclonal structure of each tumor region was then used to 

construct phylogenetic trees, using both Maximum Parsimony and the Unweighted 

Pair Group Methods (UPGMA), and also accounting for regional copy number losses 

resulting in shared truncal mutations becoming private to one region (16) (fig. S4). 

Notably, all seven NSCLCs showed evidence of branched tumor evolution (fig. S5).   

We next evaluated the regional heterogeneity of potential NSCLC driver 

mutations, classified into three categories based on current evidence supporting driver 

mutation status (16). Every tumor showed evidence for ubiquitous as well as 



heterogeneous driver mutations, many of which were clonally dominant in a subset of 

tumor regions while entirely absent in others (Fig. 1B, fig. S3 and table S3). 

Importantly, the probability of missing a category 1 “high confidence” driver gene by 

analyzing a single region for each tumor was on average 42% (range 0-67%), and 

83% (range 67-100%) for all potential driver genes (category 1-3), highlighting the 

potential limitations of single-biopsy approaches. Nevertheless, category 1-2 driver 

mutations were significantly more often truncal compared to mutations in non-driver 

genes in our M-seq analysis (P=0.04). Consistent with these data, in the TCGA cohort 

previously reported driver genes (5, 19, 20) were significantly enriched for clonal 

mutations (fig. S6, P<0.001). These data indicate that in NSCLC most known driver 

mutations occur early in tumor evolution. 

To determine the intra-tumor heterogeneity of copy number aberrations, we 

estimated integer DNA copy numbers for each tumor region (7, 16, 21, 22). A large 

fraction of the genome had undergone alterations in all tumors, and genomic profiles 

were more similar within tumors than between different tumors (fig. S7). To evaluate 

the spatial heterogeneity of potential tumor driver copy number aberrations, we 

explored the regional distribution of chromosomal segments identified as recurrently 

gained or lost in TCGA LUAD or LUSC tumors. Most segments were identified as 

aberrant in at least one tumor region and many recurrent gains and losses were found 

to be heterogeneous in at least one tumor (Fig 2A). For example, in L001, a focal 

EGFR amplification as well as deletions of chromosomal segments harboring 

CDKN2A and PTEN was observed in all regions, whereas in L008 we observed 

heterogenous copy number losses involving CDKN2A and PTEN.  In support of copy 

number aberrations occurring later in tumor development, we also identified 

subclonal copy number aberrations within tumor regions. For instance, over 15% of 



the genome in region R1 of L008 was subject to subclonal copy number alterations 

(fig. S8). Consistent with evidence of subclonal copy number aberrations, centromeric 

FISH analyses confirmed numerical chromosomal diversity within individual tumor 

regions (fig. S9), suggesting chromosomal instability may provide a substrate for 

subclonal competition.  

The high coverage M-seq WGS (mean 96x) for L002 and L008 enabled us to 

investigate the regional separation of large-scale genomic events in these samples. For 

the adenosquamous tumor L002, we identified 30 structural variants, most of which 

were found either in the LUAD region R1 or the LUSC region R3 but not both (table 

S4), suggesting they occurred after diversification into two distinct histological 

subtypes (Fig. 2B). By contrast, for L008, 48 of the 52 identified structural variants 

were shared between the two tumor regions from different lobes of the lung (Fig 2B). 

Intriguingly, in L008 “chains” of translocations with highly clustered breakpoints 

were found between chromosomes 14 and 17 as well as chromosomes 17 and 19 (fig. 

S10 and table S4), disrupting the FANCM and NF1 tumor suppressor genes. 

Breakpoint homology profiling suggests involvement of either non-homologous or 

alternative end-joining (23, 24), indicative of double-strand break events. This lesion 

pattern is consistent with chromoanagenesis (25), and indicates a punctuated 

evolution pattern where multiple oncogenic events may occur simultaneously (26). 

Four tumors displayed evidence for whole genome-doubling events (16). In 

three tumors (L001, L004, and L008), the genome-doubling event was shared across 

every tumor region, occurring prior to diversification with the majority of truncal 

mutations (84-88%) present at ploidy ≥2, indicative of a large mutational burden prior 

to genome doubling. In one tumor, L002, the majority of heterogeneous mutations 

were also present at ploidy ≥2, indicative of two independent genome-doubling 



events, one in the LUAD region and one in the LUSC region (fig. S11). Notably, 

every truncal driver mutation likely occurred prior to genome doubling.  

To further explore the dynamics of the mutational processes shaping lung 

cancer genomes over time, the spectra of point mutations in each tumor were 

temporally dissected. Early (truncal) mutations likely reflect processes involved prior 

to and during tumor initiation and early development, while late (branched) mutations 

reveal mutational processes shaping the genome during tumor maintenance and 

progression, including those contributing to intra-tumor heterogeneity. For L002 we 

analyzed regions R1 and R3 separately allowing comparisons of LUAD and LUSC 

histologies within the same tumor.  

In all tumors we observed statistically significant shifts in the mutation spectra 

over time (Fig. 3A; P<0.05 all cases). Furthermore, every tumor exhibited a 

statistically significant decrease in the proportion of C>A transversions in late 

compared to early mutations (Fig. 3A, P<0.05), although this was more pronounced 

in the LUAD cases (mean odds ratio: LUAD 3.13 (range 2.07-5.55), LUSC 1.34 

(range 1.21-1.46)).  Since C>A transversions are associated with the mutagenic 

effects of tobacco smoke (12), a decrease in the proportion of C>A transversions 

indicates a relative decrease in the mutational burden attributable to smoking during 

LUAD development, in both ex-smokers and current-smokers.  

To validate these observations in a larger NSCLC cohort, mutations in TCGA 

LUAD and LUSC samples were temporally dissected (16). Consistent with our M-seq 

analyses, both TCGA LUAD and LUSC smokers and ex-smokers exhibited a 

decrease in the proportion of C>A transversions in late mutations (Fig. 3B; LUAD 

current-smokers P<0.0001; ex-smokers P<0.0001; never-smokers P=0.147; LUSC 

current-smokers P=0.003; ex-smokers P<0.0001; never-smokers P=0.673). Similarly, 



the least pronounced decrease was observed in LUSC current-smokers; 25% of LUSC 

displayed no decrease in C>A transversions, compared to less than 10% in LUAD. 

The mutational footprint of smoking exhibits a strand bias with C>A transversions 

accumulating preferentially on the transcribed strand (10, 12). Both LUAD and LUSC 

ex-smokers revealed a statistically significant decrease in strand bias (10, 12) in late 

compared to early C>A transversions (LUAD P = 0.00354; LUSC P = 0.046), 

consistent with smoking having left a footprint on these genomes but no longer being 

active. Conversely, no statistically significant difference was observed between early 

and late mutations in current-smokers (LUAD P = 0.23; LUSC P = 0.22).  

In the majority of M-seq tumors, the decreased proportion of C>A mutations 

was accompanied by an increase in C>T and C>G mutations at TpC sites, indicative 

of APOBEC cytidine deaminase activity (13-15). Mutations consistent with 

APOBEC-mediated mutagenesis were more pronounced on the branches compared to 

the trunk in 4/5 LUAD M-seq samples (Fig. 3C). On average 1931% (88-431%) of 

non-silent branch mutations occurred in an APOBEC mutation context compared to 

811% (57--136%) of truncal non-silent mutations. Branched driver mutations 

PIK3CA, EP300, TGFBR1 and AKAP9 harbored mutations in an APOBEC context 

indicating a possible functional impact of APOBEC activity upon subclonal 

expansion. Likewise, TCGA LUAD tumors with detectable APOBEC mutational 

signatures showed significant enrichment in late compared to early APOBEC 

mutations (fig. S12, P <0.001) and 1820% of subclonal driver mutations were found 

to occur in an APOBEC context, compared to 911% of clonal driver mutations.  

However, for TCGA LUSC tumors with detectable APOBEC mutational signatures, 

temporal dissection of APOBEC mutations did not reveal such a clear trend (fig. 

S12), indicating potential differences in the temporal dynamics of APOBEC mediated 



mutagenesis between histological subtypes. In addition to temporal heterogeneity, 

spatial heterogeneity in both the proportion of APOBEC associated mutations (Fig 

3D,E), as well as APOBEC mRNA expression was observed in the M-seq tumors 

(fig. S13).   

To gain a deeper understanding of NSCLC evolution, we focused on the two 

tumors with high coverage M-seq WGS  and temporally placed the genomic 

instability processes relative to the emergence of the most-recent common ancestor 

(Fig. 4). In L002, a current-smoker, tobacco carcinogens played a significant role 

early in tumor development, with C>A transversions representing 39% of truncal 

mutations (Fig 4A). Early mutations included multiple driver genes, such as TP53 and 

CHD8. Upon diversification into a LUAD subclone and a LUSC subclone, copy 

number alterations (fig. S7) and driver mutations were acquired independently in both 

subclones, such as a stopgain mutation in the tumor suppressor gene FAT1 on the 

LUSC branch, and mutations affecting TGFBR1, ZFHX4, ARHGAP35 and PTPRD in 

the LUAD region. APOBEC-associated mutations were elevated specifically in the 

LUAD region, including the driver mutations in TGFBR1 and PTPRD, and the 

highest APOBEC3B mRNA expression was detected in this region (fig. S13). 

L008 also revealed truncal C>A transversions and spatial heterogeneity in 

APOBEC enrichment, with a more pronounced APOBEC signature in the tumor of 

the middle lobe compared to the upper lobe (Fig 4B). In L008 we gained further 

temporal resolution by exploring the mutations before and after the truncal genome-

doubling event, revealing a tobacco smoke signature of C>A transversions in over 

30% of truncal mutations both before and after doubling, and only in 21% and 9% of 

heterogeneous mutations in the two regions R1 and R3 from separate lobes of the 

lung. Since L008 ceased smoking over 20 years prior to surgery (table S1), these data 



suggest the genome-doubling event occurred within a smoking carcinogenic context 

over 20 years ago. Similarly, the genome-doubling event in ex-smoker L001 also 

appeared to occur prior to smoking cessation over 20 years prior to surgery (fig S14). 

These data suggest a prolonged tumor latency period following genome doubling 

prior to clinical detection in NSCLC.  

Through sequencing multiple surgically resected tumor regions we were able 

to unravel both the extent of genomic heterogeneity and the evolutionary history of 

seven NSCLCs. Unlike clear cell renal cell carcinoma (ccRCC)(27, 28), we find that 

known driver mutations typically occur early in NSCLC development and the 

majority of high confidence driver events are fully clonal, conceivably explaining the 

progression free survival benefits associated with NSCLC oncogenic driver targeting 

(29).  However, like ccRCC(27, 28), heterogeneous driver mutations and/or recurrent 

copy number aberrations were present in all tumors and many heterogeneous 

mutations gave the “illusion of clonality” being present in all cells from certain 

regions but undetectable within other regions. Notably, although our multi-regional 

sampling approach allowed us to evaluate spatial heterogeneity, we estimate only a 

small part of the entire tumor was sampled (on average <5%), suggesting we might be 

underestimating the full extent of heterogeneity in these tumors.  

Conceivably, intra-tumor heterogeneity may compromise the ability of a 

single biopsy to define all driver events comprehensively for optimal tumor control. 

For instance, L008 presented with an activating BRAF (G469A) mutation (30) in all 

regions and an activating PIK3CA (E542K) mutation (31) only in region R3. Thus, a 

biopsy taken from R3 might suggest treatment with an inhibitor of the PI3K/mTOR 

signaling axis and combination therapy. Conversely, a single biopsy from any other 



region would suggest treatment with a BRAF inhibitor, for which the tumor cells 

from R3 might be resistant due to the PIK3CA mutation (32). 

Our study also sheds light on the divergent genomic instability processes 

involved in NSCLC evolution and their dynamics over time. Evidence for spatial 

diversity in genomic instability processes suggests that opportunities to exploit such 

mechanisms therapeutically may be limited in this disease(33). In three tumors we 

detected genome-doubling events occurring prior to subclonal diversification but after 

acquisition of driver mutations, consistent with findings in colorectal cancer that 

genome doubling may accelerate cancer genome evolution (34). The relationship of 

chromosomal instability with drug resistance and early tumor recurrence (35, 36) 

suggest targeting truncal driver events may be compromised by the initiation of 

chromosomal instability later in tumor evolution. These results, coupled with the 

observation that NSCLC tumors may have prolonged latency periods, support 

continued efforts to optimize methods for earlier detection 

Unexpectedly, after detectable subclonal diversification, we find that even in 

tumors that are continuously subject to the mutagenic insults of tobacco smoke, an 

additional genomic instability process, such as APOBEC-mediated mutagenesis, often 

contributes to tumor progression. A large proportion of subclonal driver mutations 

were found to occur in an APOBEC context suggesting the differences in mutation 

spectra over time and space may reflect the activity of the process generating the 

mutations as well as the selective advantage of the acquired mutations.  

The presence of subclonal, regionally separated driver events coupled with the 

relentless and dynamic nature of genomic instability processes observed in this study, 

highlight the therapeutic challenges associated with NSCLC. Engaging an adaptable 

immune system may present a tractable approach to manage the dynamic complexity 



in NSCLC(37). Longitudinal studies will be required to decipher drivers of subclonal 

expansion, identify the origins of subclones contributing to metastatic recurrence and 

resolve the evolutionary principles that underpin the dismal outcome associated with 

this disease. 

 

Figure Legends: 

Fig. 1. Intratumor heterogeneity of somatic mutations.  

A) Heatmaps show the regional distribution of all non-silent mutations; presence 

(blue) or absence (grey) of each mutation is indicated for every tumor region. 

Cartoons depict the location of each tumor. Column next to heatmap shows the 

intratumor heterogeneity; mutation present in all regions (blue), in more than one, but 

not all (yellow) or in one region (red). Mutations are ordered on tumor driver category 

with categories 1-3 indicated in the right column in black, dark grey and light grey 

respectively (details in table S3). Total number of non-silent mutations (n) is provided 

for each tumor. In L001, * this mutation is additional to the germ-line MEN1 

mutation.  

B) 2D-dirichlet plots show the cancer cell fraction of the mutations in all regions of 

tumors L004; increasing intensity of red indicates the location of a high posterior 

probability of a cluster. In region R5 the majority of heterogenous mutations are 

subclonal and a cluster of mutations with a cancer cell fraction below 1 can be 

observed. 

 

Fig. 2. Intratumor heterogeneity of chromosomal alterations. 

A) Distribution of potential tumor driver copy number alterations is indicated for each 



tumor region. The upper heatmaps show the regional distribution of recurrently 

amplified (left) or deleted (right) chromosomal segments based on TCGA LUAD 

data, and the lower heatmaps show the regional distribution of recurrently amplified 

or deleted chromosomal segments based on TCGA LUSC data. For each region gain 

(red) and loss (blue) was determined relative to the mean ploidy.  

B) Circos plots depicting inter- and intrachromosomal translocations as well as 

deletions and insertions for regions R1 and R3 for L002 (upper) and L008 (lower); 

shared events are indicated in blue, events private to region R1 are indicated in red 

and private to region R3 in green. The outer circle represent the integer copy number 

data for R1 and the inner circle for R3 for each tumor sample, copy number segments 

with an integer value greater than mean ploidy are in red and those less than mean 

ploidy in blue.  

 

Fig. 3. Temporal and spatial dissection of mutation spectra in LUAD and LUSC 

samples.  

A) Pie chart showing the fraction of early mutations (trunk) and late mutations 

(branch) accounted for by each of the six mutation types in all M-seq samples.  

B) Beeswarm plots showing the fraction of early mutations and late mutations 

accounted for by each of the six mutation types in every TCGA ex-smoker or current-

smoker with both early and late mutations.  Significance is indicated.  

C) Barplot showing APOBEC mutation enrichment odds ratio for early (trunk, blue 

bars) and late (branch, red bars) mutations for M-seq samples. The APOBEC 

signature encompasses C>T and C>G mutations in a TpC context (16). 95% 

confidence intervals for Fisher’s exact test are indicated.  



D,E) Stacked barplots showing three mutation types (C>A; C>G and C>T) at all 

sixteen possible trinucleotide contexts for L002 (D) and L008 (E). For both samples, 

trunk mutations and branch mutations from two regions are depicted. 

Fig. 4. A model of the evolutionary history of NSCLC. 

A, B) Evolutionary histories of L002 (A) and L008 (B) are depicted. Genomic 

instability processes defining NSCLC evolution have been placed on their 

phylogenetic trees. Driver mutations occurring in an APOBEC context are highlighted 

with a blue dashed box, and those occurring in a smoking context with a grey dashed 

box. In each case, the timing of genome doubling events is indicated with an arrow.  
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