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Abstract

Demand for aluminium in final products has increased 30-fold since 1950 to 45 million tonnes per
year, with forecasts predicting this exceptional growth to continue so that demand will reach 2 to 3
times today’s levels by 2050. Aluminium production uses 3.5% of global electricity and causes 1% of
global CO; emissions, while meeting a 50% cut in emissions by 2050 against growing demand would
require at least a 75% reduction in CO; emissions per tonne of aluminium produced—a challenging
prospect. In this paper we trace the global flows of aluminium from liquid metal to final products,
revealing for the first time a complete map of the aluminium system and providing a basis for future
study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also
draws attention to two key issues. Firstly, around half of all liquid aluminium (~39Mt) produced each
year never reaches a final product, and a detailed discussion of these high yield losses shows
significant opportunities for improvement. Secondly, aluminium recycling, which avoids the high
energy costs and emissions of electrolysis, requires signification ‘dilution’ (~8Mt) and ‘cascade’
(~6Mt) flows of higher aluminium grades to make up for the shortfall in scrap supply and to obtain
the desired alloy mix, increasing the energy required for recycling.
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1 Introduction

Aluminium production is energy intensive and is a significant contributor to global greenhouse gas
(GHG) emissions. Efforts to date have mainly been focused on decarbonising the energy supply,
however providing sufficient ‘clean’ energy at scale and in time is proving to be very difficult. The
International Energy Agency (IEA) in a recent report states that, “few clean energy technologies are
currently on track” and that, “carbon capture and storage (CCS) is not seeing the necessary rates of
investment”.! Slow progress is causing a shift in attention towards demand side measures. Yet, the
processes used to make aluminium are already energy efficient, and demand is likely to double or
treble over the next 40 years, so achieving an absolute reduction in emissions is still challenging and
is likely to require the strategies of material efficiency. In order to plan our way towards a lower
emissions aluminium future, we need to understand not just the processes, but also the flows of
aluminium. A detailed map of global aluminium flows is needed to: understand the potential for
future recycling which is complex due to the problems of balancing the alloy mix; forecast future
emissions; evaluate the potential for energy and material efficiency options; ensure aluminium is
used in the most effective applications where use-phase energy savings can be realised. However,
existing maps lack sufficient detail to meet our needs, and therefore this paper seeks to create a new
map of global flows.

1.1 Demand for aluminium products

Aluminium is the second most used metal after steel and more aluminium is produced than all other
non-ferrous metals put together. End user demand for aluminium in final products has risen 30-fold
since 1950, reaching nearly 45Mt (million tonnes) in 2007 as shown in Figure 1,2-3 while meeting this
demand required 11 kilograms of aluminium to be cast, every year, for every person on earth.
Growth in demand is expected to continue, with the International Energy Agency (IEA) predicting
that by 2050 demand for aluminium in final products will be between 110Mt and 153Mt.4P171 Ore-
based primary production continues to outpace production from recycled scrap, indicating that
demand for new aluminium products rather than replacement products is driving growth, and unlike
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steel, aluminium shows no sign of saturating at a constant stock level per person.5

Aluminium demand is estimated using production statistics, collated and published by numerous
organisations, and representing different parts of the production supply chain and distinct
geographical regions. Approximately 200 primary smelting plants operate around the world,®r6 in a
highly consolidated industry, which aids the collection and accuracy of global primary production
statistics. The International Aluminium Institute now represents 100% of global primary production
and the U.S. Geological Survey (USGS) tracks global bauxite extraction, while regional data is collated
by the European Aluminium Association (EAA) and The Aluminum Association, for North America.

In contrast, aluminium recycling occurs on a smaller industrial scale and consists of around 1200
remelter and refining plantsér¢ supported by a network of collectors, dismantlers and scrap
merchants operating at a local level. The collection of recycling data is therefore more difficult and
less accurate. Despite these challenges the International Aluminium Institute (global), The Aluminum
Association (North America) and the Organisation of the European Aluminium Recycling Industry
(OEA) (Europe) all report aggregated recycling statistics for aluminium, which is complemented by
national statistics offices, individual companies (e.g. Alcoa and Novelis) and media organisations (e.g.
the CRU Group). Table S1 in the Supporting Information describes these data sources in more detail.

1.2 Energy consumption and GHG emissions

Ore-based ‘primary’ aluminium, made using the Hall-Héroult electrolysis process, is energy intensive
and uses 3.5% of global electricity.+r161 Despite the high fraction of renewable electricity used for
electrolysis, the aluminium industry still emits 0.4 GtCO (about 1% of global energy and industrial
process related GHG emissions) and the [EA baseline scenario predicts emissions will rise to between
1.0 and 1.4 GtCOz by 2050.4r161 At the same time, internationally agreed climate change targets,”
require a cut in total absolute emissions to less than half by 2050. If such targets were to be applied
directly to the aluminium industry, in the face of a tripling in demand, then a challenging 85%

reduction in emissions intensity (emissions per tonne of aluminium) would be needed.

More than 80% of the industry’s CO; emissions occur in the upstream aluminium production
processes—bauxite mining, alumina refining, aluminium smelting, scrap melting and ingot casting—
and consequently most efforts to reduce emissions in the industry have been focused here. In a
previous paper® we assessed all known process efficiency options for reducing CO; emissions from
aluminium production in 2050 and found the reduction potential limited to only 23%. The
aluminium industry, being a heavy user of energy, has already exhausted most of the available
process efficiency gains. Recycling scrap aluminium helps, as it requires less energy and generates
fewer emissions than electrolysis, yet scrap availability lags well behind total aluminium demand
preventing any significant shift away from primary production.

In response to the limited potential gains from process efficiency and scrap recycling, we have
explored six material efficiency strategies® which aim to reduce our demand for cast aluminium
without compromising the service level provided by aluminium products: (i) using less metal by
design; (ii) reducing yield losses; (iii) diverting manufacturing scrap; (iv) re-using metal components;
(v) longer life products; (vi) reducing final demand. Initial results from our scenario work suggest
that pursuing material efficiency strategies in addition to more conventional process efficiency
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options has the effect of doubling the overall emissions reduction potential. To further study the
combined effects of process efficiency options and recycling potential, alongside our proposed
material efficiency solutions, we require a detailed global map of aluminium which traces the
physical flows of aluminium from liquid metal to final products.

1.3 Limits of existing maps of aluminium flow

The most significant contribution towards mapping aluminium flows comes from a combined
industrial effort to create a global dynamic MFA model for aluminium flows and stocks. This original
model was created at Alcoa in the late 1990s, then taken over by the Global Aluminium Recycling
Committee (GARC), and is now being developed by the International Aluminium Institute. Bruggink
and Martchek,19 Boin and Bertram (2005)!! and Martchek (2006)!2 have published results from the
model and describe its development during this time. The industry also recognized the benefits of
reporting clear and transparent aluminium data, with the EAA publishing a 2004 Europe and global
flow diagram based on the model!3 and the International Aluminium Institute publishing an annual
MFA diagram in their Aluminium for Future Generations reports (2006-2009),2 while also extending
the regional coverage of the model.

This dynamic model of aluminium stocks and flows is built around annual primary aluminium
production data and net product shipments by market sector, and for ten geographical regions. Scrap
flows from casting, forming, and fabrication are estimated based on yield rates for each market
sector, and end-of-life scrap from discarded products is estimated based on historical product
shipments, product life times, scrap collection rates and melting yields. A full summary of the
development of the dynamic MFA model is given by Bertram et al.1* and the International Aluminium
Institute has recently created an online animated version of the flow diagram.15

Chen and Graedel¢ provide a review of anthropogenic element cycles, listing 26 different material
flow analysis (MFA) studies of aluminium across a range of geographical scales and life-cycle stages.
Two additional sources were not included in the review, but proved useful for our analysis:

Liu et al. (2011)° create a dynamic material flow model to simulate aluminium stocks and flows
in the U.S. and associated greenhouse gas emissions, and show that although in-use stocks are
still growing large mitigation potential existing through recycling.

AluNorf, the world’s largest aluminium rolling and remelting plant, uses the European
Commission’s Eco-Management and Audit Scheme (EMAS) to report environment indicators for
the operation of the plant. EMAS requires the company to disclose their annual material and
energy flows,7 which they report using a material flow diagram.

Previous studies of aluminium flows are useful for discussion of issues in specific regions, processing
routes and products. However, research to date is incomplete, and unsuitable for our purpose of
assessing global emissions abatement options, because it is either not at the global scale, or in the
case of the few global studies available, does not describe the entire supply chain in sufficient detail.
This paper aims to provide a more detailed mapping of global aluminium flows and is motivated by
three specific knowledge gaps in the existing MFA modelling literature:

As aluminium flows from production (smelting and melting), through intermediate products, to
final fabricated goods, the flows divide, becoming smaller and more diverse. A handful of flows
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might be sufficient to describe the upstream production of aluminium, whereas the downstream
fabrication of aluminium products is more diverse and complex. For this reason, a detailed
mapping of the links between intermediate products and fabricated goods is missing from the
current MFA modelling, but is important if we wish to examine options for material efficiency.

The global aluminium scrap system has to date only been mapped at an aggregated level, with no
separation between the aluminium scrap flows to remelters (which melt scrap for use in wrought
products) and to refiners (which melt scrap for use in cast products). Providing a detailed
analysis of aluminium scrap flows is important as the value of recycling is undermined when

alloy streams are mixed, down-cycled or diluted during melting.

To create our map of global aluminium flows involves collating and balancing data from many
different sources, giving us the opportunity to resolve discrepancies between existing data sets.

2 Constructing a map of global aluminium flows

In this section we describe the methodology for allocating aluminium flows and accounting for
manufacturing yields using a matrix notation, and the population of the matrices using data from a
range of sources, while ensuring a consistent mass balance. The resulting model of aluminium flows
is presented visually as a Sankey diagram allowing comparisons to be quickly made between the
scale of flows. The Sankey diagram format has been used previously by Cullen and Allwood to map
global energy flows8-19 and to create an equivalent map of global steel flows.2% A preliminary version
of the aluminium Sankey diagram was presented in the book, Sustainable Materials: with both eyes
open.?»55 The map for this paper has been revised following further consultation with the
International Aluminium Institute and our industrial partners, and cross-referencing to additional
data sources. This resulted in substantial changes to many of aluminium flows, particularly for the
scrap recycling flows to Remelters and Refiners, and required a complete rebalancing of the model.
Furthermore, for the first time we have publish the detailed analysis and source data used to create
the diagram in the comprehensive Supporting Information, enabling other research groups to use
and build upon this work.

2.1 Methodology

The global aluminium supply chain is divided into five major process steps, shown in Table 1, which
form the vertical slices of the Sankey diagram. Each slice can contain several individual processes,
and represents a transformation of an input aluminium flow into three possible outputs: useful

aluminium products; scrap aluminium; losses (typically as dross or oxidised aluminium).

Slices Description
Electrolysis/ Alumina (extracted from bauxite ore) is converted using electrolysis to liquid aluminium ore.
Melting Aluminium scrap (from forming, fabrication and end-of-life) is melted in remelters (to make

wrought alloys) and refiners (to make casting alloys).

Casting Liquid aluminium is cast into slab, billet and alloy ingots, and subsequent remelting and
casting in downstream facilities.

Rolling/ Slab ingots are hot rolled to plate and strip with some material undergoing further cold rolling
Forming/ and foil rolling; billet ingots are extruded or wire drawn; alloy ingots are shape cast to produce
Shape Casting  arange of intermediate products.

5
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Fabrication Intermediate products are cut, joined, machined and assembled into fabricated products.

End-uses Fabricated products are allocated to vehicles, industrial equipment, construction and metal
products, and then divided further into subcategories.

Table 1—Major processes steps for aluminium are used to create the five vertical slices in the Sankey diagram.

For each of the five slices, we map the inputs (vector x) onto the outputs (vector y) using two
matrices: an allocation matrix A, which maps each input, by fractions, onto each output, and a
manufacturing yield matrix Y, which accounts for any material discarded as scrap in transforming the
input materials into output products. The two matrices are of equal size and are multiplied element
wise, using the Hadamard product (symbol o ). Written formally:

y=(AY)x 1)
An equivalent loss vector y; is defined as:

v, = (Ao (J-Y))x )
where ] is a matrix of ones, of equal size to Y and A.

Four allocation matrices and four yield matrices are created to map the five slices in the Sankey
diagram and populated using industrial statistics from a number of different sources. In some cases,
the mapping is inferred, estimated or back calculated, if the direct values for the vectors or matrices
are not available.

2.2 Global model of aluminium flows

In this section we summarise the main data sources, calculations and assumptions behind our global
model. The model is balanced to remain consistent with the overview of major global aluminium
flows in 2007, provided in the International Aluminium Institute’s global mass flow diagram? and
supporting dynamic model.3 Full details of the data sources and the mapping process are given in the
Supporting Information: §2.

Electrolysis/Melting/Casting: The International Aluminium Institute diagram? shows the sources
of liquid aluminium (75.6Mt) divided evenly into primary aluminium (electrolysis) and remelted
aluminium (recycled scrap), while the International Aluminium Institute model3 gives a breakdown
of the scrap inputs for remelting: casting (1.6Mt); internal scrap/forming (20Mt); fabrication (9.5Mt);
post-consumer/end-of-life (8.3Mt).

Recycled aluminium is produced in two separate processes: Remelters, which produce wrought
alloys (<10% alloy) for rolled and extruded products; Refiners, which produce casting alloys (<20%
alloy) for shape-cast products and deoxidation aluminium. Each scrap input flow is divided between
the Remelter and the Refiner based on a mass balance of scrap flows for Europe,!! resulting in all
casting scrap, 10% of wrought forming and fabrication scrap, and 78% of end-of-life scrap being sent
to the Refiner.

The liquid aluminium from Electrolysis, Remelters and Refiners is cast into ingots for transportation
to downstream production facilities, creating 1.6Mt3 of ‘aluminium skimmings’ of which 0.8Mt is
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recovered as aluminium. Internal casting losses (i.e. defects, sawing, scalping) are not reported by the
International Aluminium Institute, but these remelting loops are estimated to add 9% to the cast
output, using the Remelter mass balance from AluNorf.17 In many cases ingots are remelted and
recast a second time to refine the alloy mix prior to downstream forming/casting processes, although
fraction of recast aluminium could not be ascertained.

Scrap recycling requires the addition of primary aluminium to ‘sweeten the melt’ and obtain the
desired alloy mix. The primary sweetner fraction for the Remelter is set at 5% based on a mass
balance from AluNorf!7 and the observed fraction at a UK remelting facility producing UBC ingots.
The sweetner fraction for the Refiner is found by balancing the demand for wrought alloys (46.7Mt)
and shape-casting alloys (27.3Mt) against the scrap inputs to the Remelter (16.9Mt) and the Refiner
(22.4Mt), after accounting for casting yield losses.3 The result is 7.1Mt of primary sweetner input to
the Refiner, equal to 25% of the Refiner input.

Rolling/Forming/Shape Casting: The demand for Rolling, Extrusion, Wire Drawing and Shape
Casting is back calculated from the Intermediate Product vector. The International Aluminium
Institute model*lists semi-fabricator yields (corresponding to our forming/casting processes), but
these are organized by end-use categories. It is more accurate to estimate the forming/casting yields
directly for each process while accounting for the cascading flows between the hot, twin roll, cold and
foil rolling processes. Therefore, we survey forming yields from four literature sources—AluNorf,”
EAA,2! Milford et al.,22 Schifo and Radia23—covering individual processes and multi-process chains, to
assign yields to each forming/casting process. These are adjusted in combination with the
Forming/Casting allocation matrix to match the total forming/casting scrap of 20Mt from the
International Aluminium Institute global diagram.2

Fabrication: The International Aluminium Institute model3 collates net product shipments
(equivalent to Intermediate Products in our model) for the ten major regions covering the world
(1950-2007) and estimates fabrication yields to generate a breakdown of “finished products”, which
are matched to the End-use categories in our model. However, the International Aluminium Institute
product shipment data is organised by end-uses (i.e. buildings, transport, machinery) rather than
intermediate product categories (i.e. rolled, extruded, shape-cast) required for the Sankey diagram.
Therefore, we back-calculate the Intermediate Product vector by using the fabrication yields from the
International Aluminium Institute model and creating a fabrication allocation matrix: using sector
specific breakdowns from North America%4tab13 for Construction and Transport end-uses; assuming
Mechanical Equipment has a similar breakdown to Cars; using direct one-to-one allocations for
Electrical Cable and Drinks Cans; estimating breakdowns for Other Electrical and the remaining
Metals Products. Each row of the matrix is finally balanced to match the End-uses vector, while the
total fabrication scrap is constrained to match the International Aluminium Institute value of 9.5Mt.2
A complete description of the data sources and assumptions is provided in the Supporting
Information, §2.7.

2.3 Data uncertainty

Aluminium production statistics are not reported with error bands, as is common for experimental
findings, making it impossible to determine data accuracy or perform an uncertainty analysis for our
model. Data is normally collated from individual company surveys, which are aggregated at the

7
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country, regional or global level and reported in national statistical bodies and by trade
organisations. Some likely sources of uncertainty are: misinterpretation of the survey questions and
the terminology used to describe process and materials; unintentional or deliberate misreporting of
data in the surveys; incomplete coverage of global production facilities, requiring data to be scaled;
calculation errors in the aggregation of data; miscommunication of data in published reports.
Organisations such as the International Aluminium Institute work to minimise data errors, by cross-
referencing data sources and auditing their data collection practices, nevertheless some degree of
error is still likely to persist.

In our analysis, we attempt to further minimise data uncertainty by: relying heavily on a few trusted
sources, which are then validated against other sources when available; using mass balance checks
for every process and slice to ensure mass conservation; publishing a full supporting information
that describes in detail the sources and calculations used in our model. Aluminium flows are reported
in the paper to the nearest 100,000 tonnes of aluminium as a precaution to avoid any overstatement
of the data accuracy. Despite the limitations of using data of unknown accuracy, our whole-system
approach is still valid for comparing the relative scale of global aluminium flows and for directing
actions towards where the largest gains can be made.

3 Results

Figure 2 presents a map of global aluminium flow for 2007, which traces the flow of aluminium from
aluminium production (left) through to fabricated products (right). The map is drawn in a Sankey
diagram format, such that the width of each horizontal line in the map is proportional to the mass
flow of aluminium, with specific flows given in million tonnes (Mt). A vertical black line indicates a
major process step in the aluminium supply chain, where the aluminium flow is split into three
possible outputs: useful metal (shown in colour); losses, typically dross or aluminium oxide (shown
black); and process scrap which loops back to a melting step for recycling (shown in grey). Two
‘recasting’ processes are shown with dashed vertical black lines to indicate that some aluminium
ingots are remelted and cast a second time to adjust the alloy concentrations or to create an ingot
shape more suitable for the downstream processes, although the fraction of aluminium that is recast

is unknown.

8

ACS Paragon Plus Environment



Page 9 of 37

©CoO~NOUTA,WNPE

Environmental Science & Technology

The map is the first breakdown of global scrap flows through Remelters and Refiners, including

calculation of the dilution flows of primary aluminium to the remelting processes. It is also the first

study to map intermediate products onto end-use goods in detail and to disaggregate the scrap

generation from rolling, extrusion and shape-casting processes.

Electrolysis / Melting Casting Rolling / Forming / Casting Fabrication End-use products

Electrolysis

3.8

End-of-life
scrap 8.3
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Global demand for aluminium
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Figure 2—Sankey diagram, tracing the global flow of aluminium from ore-based and scrap-based

production, through casting, forming and fabrication processes, to deliver end-use goods.

4 Discussion

Figure 2 shows the relative scale of different aluminium flows in the supply chain. For example, a

quick scan of the map shows: roughly half of all aluminium is made from bauxite ore and half from

recycled scrap; two-thirds of cast aluminium is formed into wrought products and one-third shape-

cast; final product demand is divided roughly evenly between vehicles, industrial equipment,

construction and metal products. Two additional aspects of the global aluminium map demand

further attention: (i) the poor material efficiency of the industry, where approximately 50% of all

cast aluminium is discarded as scrap during manufacturing; (ii) the significant ‘dilution’ and ‘cascade

flows from high grade aluminium to lower purity alloys and the effect on the energy required for

recycling.
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4.1 Material efficiency and industrial scrap

The material efficiency of the aluminium production system is surprisingly low in comparison to
other engineering materials. From a reported 74Mt of cast aluminium,? the industry delivers only
44.5Mt of final products to consumers—at an average material efficiency (manufacturing yield) of
60%—with the remaining aluminium discarded as industrial scrap during manufacturing. If we
include the unreported internal recycling of casting scrap, the material efficiency falls to 53% with
almost half of all cast aluminium (39.4Mt) discarded as industrial scrap. Furthermore, if we assume
that 70% of all ingots are recast, then the fraction of industrial scrap rises to 50% of all cast
aluminium. In comparison, steel production has an average material efficiency of 76%.2° (Full
calculations are included in the Supporting Information, Table S7.)

Certainly, every effort should be made to collect and recycle aluminium scrap, whether the source is
manufacturing processes or consumer discards. Current collection efficiencies for industrial scrap
are high, so efforts should be focused on end-of-life recycling where collection rates are estimated to
range from 50% in some sectors to as high as 90% for construction and transport.3 (In comparison,
steel recycling is reported to average 80%,2° although the exact calculation method may differ.) Yet,
of even more importance than recycling is avoiding the generation of scrap at source, through
improvements to manufacturing processes, so that recycling of industrial scrap is no longer required.

Analysing the material yields across ingot casting, forming and fabrication processes reveals the
reasons behind the high losses of industrial scrap and points to technical options for improving
material efficiency.

Ingot casting: The material yield for aluminium ingot casting is 88% (including internally recycled
scrap), much lower than the equivalent for steel of 94%.2° The difference is mainly due to the need to
remove inferior quality surface material from ingots (by scalping and sawing) and defects created in
the batch casting process, and because the greater material losses can be offset against the typically
higher value of aluminium products. The resulting scrap is recycled internally but often not reported
in company and industry statistics, and although the overall metal balance is unaffected, the
remelting of scrap consumes additional energy.

Almost all aluminium is as some point cast as an ingot, so any improvement in the casting yield has
the potential to deliver savings across all products. Electromagnetic casting (EMC) is an alternative
ingot casting technology which avoids any contact with a physical mould during casting, providing a
smooth cast surface that can normally be rolled without scalping.2¢ Introducing intensive shearing
during the melting of aluminium disperses porosity in the melt resulting in considerable reductions
in cast defects.2” Application of these technologies would increase the material yield of ingot casting
from 88% to an estimated 92%.

Rolling/Forming/Shape-Casting: The overall material efficiency of rolling, forming and shape-
casting is 73%, which is well below the yield for steel at 92%,20 with three reasons suggested for the
difference. Firstly, a third of all aluminium products are shape-cast compared with only 6% for steel,
and product casting has comparatively lower yields (67%) than other forming processes (77% for
aluminium and 90%-96% for steel) due to the complex set of ‘runner’, riser’ and ‘gating’ systems
which feed liquid metal into the casting mould. Secondly, one quarter of aluminium products are
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extruded at a comparably low material yield of 76%, whereas extruded steel products are much less
common. Thirdly, the average material yield for rolling aluminium is only 75%, compared to 92% for
steel rolling, which can be explained by: the sawing and scalping of slab ingots prior to hot rolling;
aluminium being softer than steel and more prone to damage while handling; aluminium being rolled
to finer grades and higher surface finishes than steel, resulting in a more quality control defects.

Two key yield improvements are described below, which if implemented would raise the overall
material efficiency for forming processes from 73% to 82%. Firstly, Schifo and Radia?3 estimate that
a 5% gain in yield can be achieved for aluminium shape-casting, citing improvements to computer
solidification modelling and research into the “application of acoustic energy to reduce gating weight
and improve casting quality”. We assume a similar 5% improvement is achievable in extrusion and
wire drawing processes. Secondly, continuous casting processes, such as twin-roll casting, produce a
cast ‘sheet’ which can be immediately cold-rolled without the need for ingot casting, scalping/sawing
and hot rolling. The technology is particularly suited for non-heat treatable alloys and currently one-
third of all cold-rolled sheet and foil can be continuously cast.28 To calculate the potential savings in
industrial scrap, we assume that all cold-rolled sheet and foil is continuously cast, which is equal to
two-thirds of all rolled products, noting that 90% of rolled products are made from non-heat
treatable alloys.24

Fabrication: The yield for aluminium fabrication processes is 82%, which is only slightly lower than
the yield for steel at 85%,20 and is probably due to aluminium components being typically smaller
and more complex than steel products. Reducing industrial scrap across all processes is made more
difficult by the lower melting temperature of aluminium, at 600°C compared to 1600°C for steel,
which results in lower energy costs for remelting, creating less incentive to reduce aluminium
manufacturing scrap. Based on a previous analysis,? we estimate that fabrication yields could be
increased up to 90%.

Potential to reduce industrial scrap: The technical options and estimated yield improvements
described above represent our best estimate of the practical limits of material efficiency applied to
industrial aluminium scrap. We calculate that if all options were applied together, then today’s 45Mt
of aluminium in end-use goods would require only 65Mt of cast aluminium, avoiding 19Mt of
industrial scrap recycling. In practice, a detailed analysis of the economic and institutional barriers
would be required to assess the likely adoption of this material efficiency strategy.

4.2 Isrecycling always the best option?

Recycling is less energy intensive than making aluminium from ore, but recycling is not always as
good as it looks. In particular, the practice of dilution and cascading result in significant flows of
aluminium from high-grade to lower purity alloys, increasing the energy required for recycling.

Dilution: Our map of global aluminium flows (Figure 2) shows 8.0Mt per year of pure aluminium
being used to dilute (or ‘sweeten’) the alloy mixes in the Remelting and Refining processes.
Thermodynamics dictates that it is easy to add alloys to aluminium but very difficult to remove them,
and therefore dilution is mostly irreversible and results in a permanent downgrading of aluminium

quality. The practice of dilution also distorts the energy requirement of recycling.

11
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Table 2 demonstrates that the embodied energy of recycled aluminium increases rapidly when using
primary ‘sweetner’ to dilute the alloy mix. The baseline energy requirements are taken directly from
the International Aluminium Institute recycling website,!>and matches the claim that “Aluminum
recycling requires up to 95% less energy than primary production” if a direct comparison is made
between electrolysis against scrap melting. However, diluting the scrap mix with 5% pure aluminium
sweetner (e.g. as calculated for Remelters) nearly doubles the embodied energy of the recycled
aluminium, and the addition of 25% sweetner (as observed for Refiners) results in a five-fold
increase in embodied energy, with aluminium recycling now requiring nearly one-third of the energy
of primary production. Furthermore, the collection, sorting and cleaning of recycled scrap, and
manufacturing the product for a second time, add even more energy to the equation.

Pure Al used Embodied energy

to dilute Recycling Electrolysis  Total Compared to
scrap (%) (GJ/t)2 (GJ/t)>  (GJ/t) electrolysis (%)
Electrolysis (pure Al) 0 170 170 100%
Industry claim (0%) 10 0 10 6%
Remelter (5%) 10 9 19 11%
Refiner (25%) 10 43 53 31%
Notes:

a [t is assumed that the pure Al from electrolysis (sweetner) must be remelted using
the same energy as required for melting scrap

b Energy embodied in the primary ‘sweetner’ during primary production of
aluminium using electrolysis.

Table 2—The effect of using pure aluminium (sweetner) to dilute scrap, on the embodied energy of recycled

aluminium.

The global mass balance requires a dilution flow of pure aluminium to meet the demand for shape
cast products, resulting in an average 25% sweetner fraction for Refiners. The only feasible
alternative to balance scrap supply with cast product demand would be a significant increase in the
down-cycling of wrought industrial scrap to the Refiner. Such a scenario would contradict the mass
balance data from Europe, and would still result in the down-grading of higher quality aluminium
and increase the embodied energy of recycled aluminium. The high fraction of pure aluminium
sweetner used in Refiners is surprising. It indicates the level of scrap supply constraint that Refiners
are forced to operate under, for without the use of pure aluminium, Refiners would be unable to
realise the residual value of the recycled scrap.

Down-cycling: Six main alloying metals—copper, magnesium, manganese, silicon, zinc and lithium—
are added to wrought alloys in low concentrations and casting alloys in higher concentrations.
Nakajima et al. have evaluated the removal limits of alloys and impurities during aluminium scrap
melting and concluded that apart from magnesium and zing, all other alloying elements are almost
impossible to remove, even under varying temperature and oxygen partial pressure conditions.2° For
this reason, wrought alloys can be recycled into casting alloys, but the reverse is practically
impossible, so recycling tends to cascade or down-cycle from wrought alloys to less pure shape
casting alloys.

12
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1

2

3 Figure 2 shows the extent of down-cycling in the aluminium industry, which results in an estimated
g 6.1Mt of wrought scrap being diverted into cast products:

6 Only about a fifth of end-of-life scrap is remelted into wrought alloys, despite wrought products
; outweighing cast production by two to one. We estimate that 3.7Mt of wrought scrap is down-

9 cycled into cast products, assuming product lifetimes for wrought and cast products are the

10 same.

1; Industrial scrap can be easily segregated and cleaned, yet we found that 10% of industrial scrap
13 from forming and fabrication processes (1.7Mt) is still diverted to refiners to make casting alloys.
1;31 Wrought ingot casting losses (skimmings, 0.7Mt) are sent for reprocessing to remove impurities,
16 but the recovered aluminium is not returned to Remelters, but instead is cascaded to Refiners.
17

18

;g The recycling system in its current form is only viable because growth in demand for new products
21 outstrips the scrap aluminium available from discarded products, allowing wrought scrap to be

22 downgraded and used in cast products, while primary aluminium is mainly used in wrought

23 products. This behaviour is rational given the current economic drivers in the system, where the

gg scrap supply will cascade to the whomever values the material, irrespective of what is the most

26 optimal solution for material efficiency. However, in future, the recycling path for scrap from cast
27 products may become constrained. Modaresi and Miiller3® have explored such a scenario for

28 automobiles and show that under business as usual assumptions a surplus of non-recyclable casting
ég scrap will emerge by 2018 +5 years, while Hatayama et al. 3! forecast a surplus of 6.1Mt of

31 unrecyclable scrap in 2030, for Europe, United States, Japan and China, due to decreasing demand for
32 cast alloys resulting from the introduction of electric vehicles. Such projections require a dynamic
33 analysis of aluminium stocks over many years, as the supply and price of recycled aluminium

gg depends critically on the flow of stock products reaching end-of-life, as explained by Blomberg and
36 Soderholm.32

g; Options to minimise dilution and down-cycling: We have identified four possible solutions for
39 addressing the problems of dilution and down-cycling, which will require further research and

32 development to be realised:

42 Develop better solutions for segregating and sorting of end-of-life scrap, and promote take-back
43 loyalty schemes for unwanted products, to raise the fraction of wrought aluminium recycled in
jg Remelters. Limiting the number of different alloys in today’s products would aid the future

46 separation and recovery of specific alloys.

j; Explore options to reuse discarded products, to avoid recycling completely.

49 Reduce any potential surplus of casting alloys by developing new shape-cast product

30 applications. Research at the Brunel Centre for Advanced Solidification Technology on grain

g; refinement of as-cast aluminium alloys using physical shear of the alloy melt and enhanced

53 heterogeneous nucleation, is expected to deliver improved mechanical properties for cast

54 products without the need for forming and heat treatment processes.2’

55

56

57

58

2(9) 13
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Develop a better understanding of the demand drivers for cast and wrought products and the
future availability of scrap, so future shortfalls or surpluses of specific alloys can be identified
and responses formulated to avoid the practice of diluting scrap with pure aluminium.

4.3 Future work

In this paper, we have mapped the flow of aluminium from liquid aluminium to final products for the
year 2007 and developed a framework for directing actions to improve material efficiency and
reduce the environmental impacts of aluminium production. We have identified a genuine need to
improve data collection for Remelting and Refining processes, and in particular to ascertain the
fraction of aluminium ingots which are recast before forming processes and to confirm the fraction of

pure aluminium sweetner used for dilution of the alloy mix.

In future work, it would be possible to include the energy inputs and resulting CO; emissions in the
model, and use dynamic modelling and demand scenarios to predict how the map might change in
the future, along with an economic analysis to compare the costs of different strategies. Finally,
further work is required to evaluate the impact of economic and institutional barriers on the group of
strategies described by material efficiency.

14
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Abstract

Demand for aluminium in final products has increased 30-fold since 1950 to 45 million tonnes per
year, with forecasts predicting this exceptional growth to continue so that demand will reach 2 to 3
times today’s levels by 2050. Aluminium production uses 3.5% of global electricity and causes 1% of
global CO; emissions, while meeting a 50% cut in emissions by 2050 against growing demand would
require at least a 75% reduction in CO; emissions per tonne of aluminium produced—a challenging
prospect. In this paper we trace the global flows of aluminium from liquid metal to final products,
revealing for the first time a complete map of the aluminium system and providing a basis for future
study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also
draws attention to two key issues. Firstly, around half of all liquid aluminium (~39Mt) produced each
year never reaches a final product, and a detailed discussion of these high yield losses shows
significant opportunities for improvement. Secondly, aluminium recycling, which avoids the high
energy costs and emissions of electrolysis, requires signification ‘dilution’ (~8Mt) and ‘cascade’
(~6Mt) flows of higher aluminium grades to make up for the shortfall in scrap supply and to obtain
the desired alloy mix, increasing the energy required for recycling.
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1 Introduction

Aluminium production is energy intensive and is a significant contributor to global greenhouse gas
(GHG) emissions. Efforts to date have mainly been focused on decarbonising the energy supply,
however providing sufficient ‘clean’ energy at scale and in time is proving to be very difficult. The
International Energy Agency (IEA) in a recent report states that, “few clean energy technologies are
currently on track” and that, “carbon capture and storage (CCS) is not seeing the necessary rates of
investment”.! Slow progress is causing a shift in attention towards demand side measures. Yet, the
processes used to make aluminium are already energy efficient, and demand is likely to double or
treble over the next 40 years, so achieving an absolute reduction in emissions is still challenging and
is likely to require the strategies of material efficiency. In order to plan our way towards a lower
emissions aluminium future, we need to understand not just the processes, but also the flows of
aluminium. A detailed map of global aluminium flows is needed to: understand the potential for
future recycling which is complex due to the problems of balancing the alloy mix; forecast future
emissions; evaluate the potential for energy and material efficiency options; ensure aluminium is
used in the most effective applications where use-phase energy savings can be realised. However,
existing maps lack sufficient detail to meet our needs, and therefore this paper seeks to create a new
map of global flows.

1.1 Demand for aluminium products

Aluminium is the second most used metal after steel and more aluminium is produced than all other
non-ferrous metals put together. End user demand for aluminium in final products has risen 30-fold
since 1950, reaching nearly 45Mt (million tonnes) in 2007 as shown in Figure 1,23 while meeting this
demand required 11 kilograms of aluminium to be cast, every year, for every person on earth.
Growth in demand is expected to continue, with the International Energy Agency (IEA) predicting
that by 2050 demand for aluminium in final products will be between 110Mt and 153Mt.4P171 Ore-
based primary production continues to outpace production from recycled scrap, indicating that
demand for new aluminium products rather than replacement products is driving growth, and unlike
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steel, aluminium shows no sign of saturating at a constant stock level per person.5

Aluminium demand is estimated using production statistics, collated and published by numerous
organisations, and representing different parts of the production supply chain and distinct
geographical regions. Approximately 200 primary smelting plants operate around the world,®r¢ in a
highly consolidated industry, which aids the collection and accuracy of global primary production
statistics. The International Aluminium Institute now represents 100% of global primary production
and the U.S. Geological Survey (USGS) tracks global bauxite extraction, while regional data is collated
by the European Aluminium Association (EAA) and The Aluminum Association, for North America.

In contrast, aluminium recycling occurs on a smaller industrial scale and consists of around 1200
remelter and refining plantsé»¢ supported by a network of collectors, dismantlers and scrap
merchants operating at a local level. The collection of recycling data is therefore more difficult and
less accurate. Despite these challenges the International Aluminium Institute (global), The Aluminum
Association (North America) and the Organisation of the European Aluminium Recycling Industry
(OEA) (Europe) all report aggregated recycling statistics for aluminium, which is complemented by
national statistics offices, individual companies (e.g. Alcoa and Novelis) and media organisations (e.g.
the CRU Group). Table S1 in the Supporting Information describes these data sources in more detail.

1.2 Energy consumption and GHG emissions

Ore-based ‘primary’ aluminium, made using the Hall-Héroult electrolysis process, is energy intensive
and uses 3.5% of global electricity.+r161 Despite the high fraction of renewable electricity used for
electrolysis, the aluminium industry still emits 0.4 GtCO (about 1% of global energy and industrial
process related GHG emissions) and the [EA baseline scenario predicts emissions will rise to between
1.0 and 1.4 GtCO2 by 2050.4r161 At the same time, internationally agreed climate change targets,”
require a cut in total absolute emissions to less than half by 2050. If such targets were to be applied
directly to the aluminium industry, in the face of a tripling in demand, then a challenging 85%
reduction in emissions intensity (emissions per tonne of aluminium) would be needed.

More than 80% of the industry’s CO; emissions occur in the upstream aluminium production
processes—bauxite mining, alumina refining, aluminium smelting, scrap melting and ingot casting—
and consequently most efforts to reduce emissions in the industry have been focused here. In a
previous paper® we assessed all known process efficiency options for reducing CO; emissions from
aluminium production in 2050 and found the reduction potential limited to only 23%. The
aluminium industry, being a heavy user of energy, has already exhausted most of the available
process efficiency gains. Recycling scrap aluminium helps, as it requires less energy and generates
fewer emissions than electrolysis, yet scrap availability lags well behind total aluminium demand
preventing any significant shift away from primary production.

In response to the limited potential gains from process efficiency and scrap recycling, we have
explored six material efficiency strategies® which aim to reduce our demand for cast aluminium
without compromising the service level provided by aluminium products: (i) using less metal by
design; (ii) reducing yield losses; (iii) diverting manufacturing scrap; (iv) re-using metal components;
(v) longer life products; (vi) reducing final demand. Initial results from our scenario work suggest

3
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that pursuing material efficiency strategies in addition to more conventional process efficiency
options has the effect of doubling the overall emissions reduction potential. To further study the
combined effects of process efficiency options and recycling potential, alongside our proposed
material efficiency solutions, we require a detailed global map of aluminium which traces the
physical flows of aluminium from liquid metal to final products.

1.3 Limits of existing maps of aluminium flow

The most significant contribution towards mapping aluminium flows comes from a combined
industrial effort to create a global dynamic MFA model for aluminium flows and stocks. This original
model was created at Alcoa in the late 1990s, then taken over by the Global Aluminium Recycling
Committee (GARC), and is now being developed by the International Aluminium Institute. Bruggink
and Martchek,19 Boin and Bertram (2005)!! and Martchek (2006)!2 have published results from the
model and describe its development during this time. The industry also recognized the benefits of
reporting clear and transparent aluminium data, with the EAA publishing a 2004 Europe and global
flow diagram based on the model!3 and the International Aluminium Institute publishing an annual
MFA diagram in their Aluminium for Future Generations reports (2006-2009),2 while also extending
the regional coverage of the model.

This dynamic model of aluminium stocks and flows is built around annual primary aluminium
production data and net product shipments by market sector, and for ten geographical regions. Scrap
flows from casting, forming, and fabrication are estimated based on yield rates for each market
sector, and end-of-life scrap from discarded products is estimated based on historical product
shipments, product life times, scrap collection rates and melting yields. A full summary of the
development of the dynamic MFA model is given by Bertram et al.1* and the International Aluminium
Institute has recently created an online animated version of the flow diagram.15

Chen and Graedel® provide a review of anthropogenic element cycles, listing 26 different material
flow analysis (MFA) studies of aluminium across a range of geographical scales and life-cycle stages.
Two additional sources were not included in the review, but proved useful for our analysis:

Liu et al. (2011)° create a dynamic material flow model to simulate aluminium stocks and flows
in the U.S. and associated greenhouse gas emissions, and show that although in-use stocks are
still growing large mitigation potential existing through recycling.

AluNorf, the world’s largest aluminium rolling and remelting plant, uses the European
Commission’s Eco-Management and Audit Scheme (EMAS) to report environment indicators for
the operation of the plant. EMAS requires the company to disclose their annual material and
energy flows,7 which they report using a material flow diagram.

Previous studies of aluminium flows are useful for discussion of issues in specific regions, processing
routes and products. However, research to date is incomplete, and unsuitable for our purpose of
assessing global emissions abatement options, because it is either not at the global scale, or in the
case of the few global studies available, does not describe the entire supply chain in sufficient detail.
This paper aims to provide a more detailed mapping of global aluminium flows and is motivated by
three specific knowledge gaps in the existing MFA modelling literature:

4

ACS Paragon Plus Environment



©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Environmental Science & Technology Page 22 of 37

As aluminium flows from production (smelting and melting), through intermediate products, to
final fabricated goods, the flows divide, becoming smaller and more diverse. A handful of flows
might be sufficient to describe the upstream production of aluminium, whereas the downstream
fabrication of aluminium products is more diverse and complex. For this reason, a detailed
mapping of the links between intermediate products and fabricated goods is missing from the
current MFA modelling, but is important if we wish to examine options for material efficiency.

The global aluminium scrap system has to date only been mapped at an aggregated level, with no
separation between the aluminium scrap flows to remelters (which melt scrap for use in wrought
products) and to refiners (which melt scrap for use in cast products). Providing a detailed
analysis of aluminium scrap flows is important as the value of recycling is undermined when

alloy streams are mixed, down-cycled or diluted during melting.

To create our map of global aluminium flows involves collating and balancing data from many
different sources, giving us the opportunity to resolve discrepancies between existing data sets.

2 Constructing a map of global aluminium flows

In this section we describe the methodology for allocating aluminium flows and accounting for
manufacturing yields using a matrix notation, and the population of the matrices using data from a
range of sources, while ensuring a consistent mass balance. The resulting model of aluminium flows
is presented visually as a Sankey diagram allowing comparisons to be quickly made between the
scale of flows. The Sankey diagram format has been used previously by Cullen and Allwood to map
global energy flows8-19 and to create an equivalent map of global steel flows.2% A preliminary version
of the aluminium Sankey diagram was presented in the book, Sustainable Materials: with both eyes
open.??55 The map for this paper has been revised following further consultation with the
International Aluminium Institute and our industrial partners, and cross-referencing to additional
data sources. This resulted in substantial changes to many of aluminium flows, particularly for the
scrap recycling flows to Remelters and Refiners, and required a complete rebalancing of the model.
Furthermore, for the first time we have publish the detailed analysis and source data used to create
the diagram in the comprehensive Supporting Information, enabling other research groups to use
and build upon this work.

2.1 Methodology

The global aluminium supply chain is divided into five major process steps, shown in Table 1, which
form the vertical slices of the Sankey diagram. Each slice can contain several individual processes,
and represents a transformation of an input aluminium flow into three possible outputs: useful

aluminium products; scrap aluminium; losses (typically as dross or oxidised aluminium).

Slices Description
Electrolysis/ Alumina (extracted from bauxite ore) is converted using electrolysis to liquid aluminium ore.
Melting Aluminium scrap (from forming, fabrication and end-of-life) is melted in remelters (to make

wrought alloys) and refiners (to make casting alloys).

Casting Liquid aluminium is cast into slab, billet and alloy ingots, and subsequent remelting and
casting in downstream facilities.

5

ACS Paragon Plus Environment



Page 23 of 37

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Environmental Science & Technology

Rolling/ Slab ingots are hot rolled to plate and strip with some material undergoing further cold rolling
Forming/ and foil rolling; billet ingots are extruded or wire drawn; alloy ingots are shape cast to produce
Shape Casting  arange of intermediate products.

Fabrication Intermediate products are cut, joined, machined and assembled into fabricated products.

End-uses Fabricated products are allocated to vehicles, industrial equipment, construction and metal
products, and then divided further into subcategories.

Table 1—Major processes steps for aluminium are used to create the five vertical slices in the Sankey diagram.

For each of the five slices, we map the inputs (vector x) onto the outputs (vector y) using two
matrices: an allocation matrix A, which maps each input, by fractions, onto each output, and a
manufacturing yield matrix Y, which accounts for any material discarded as scrap in transforming the
input materials into output products. The two matrices are of equal size and are multiplied element
wise, using the Hadamard product (symbol o ). Written formally:

y=(AeY)x (1)

. An equivalent loss

vector y; is defined as:

v, = (Ao (J-Y))x )
where ] is a matrix of ones, of equal size to Y and A.

Four allocation matrices and four yield matrices are created to map the five slices in the Sankey
diagram and populated using industrial statistics from a number of different sources. In some cases,
the mapping is inferred, estimated or back calculated, if the direct values for the vectors or matrices
are not available.

2.2 Global model of aluminium flows

In this section we summarise the main data sources, calculations and assumptions behind our global
model. The model is balanced to remain consistent with the overview of major global aluminium
flows in 2007, provided in the International Aluminium Institute’s global mass flow diagram? and
supporting dynamic model.3 Full details of the data sources and the mapping process are given in the
Supporting Information: §2.

Electrolysis/Melting/Casting: The International Aluminium Institute diagram? shows the sources
of liquid aluminium (75.6Mt) divided evenly into primary aluminium (electrolysis) and remelted
aluminium (recycled scrap), while the International Aluminium Institute model3 gives a breakdown
of the scrap inputs for remelting: casting (1.6Mt); internal scrap/forming (20Mt); fabrication (9.5Mt);
post-consumer/end-of-life (8.3Mt).

Recycled aluminium is produced in two separate processes: Remelters, which produce wrought
alloys (<10% alloy) for rolled and extruded products; Refiners, which produce casting alloys (<20%
alloy) for shape-cast products and deoxidation aluminium. Each scrap input flow is divided between
the Remelter and the Refiner based on a mass balance of scrap flows for Europe,!! resulting in all

6
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casting scrap, 10% of wrought forming and fabrication scrap, and 78% of end-of-life scrap being sent
to the Refiner.

The liquid aluminium from Electrolysis, Remelters and Refiners is cast into ingots for transportation
to downstream production facilities, creating 1.6Mt3 of ‘aluminium skimmings’ of which 0.8Mt is
recovered as aluminium. Internal casting losses (i.e. defects, sawing, scalping) are not reported by the
International Aluminium Institute, but these remelting loops are estimated to add 9% to the cast
output, using the Remelter mass balance from AluNorf.17 In many cases ingots are remelted and
recast a second time to refine the alloy mix prior to downstream forming/casting processes, although
fraction of recast aluminium could not be ascertained.

Scrap recycling requires the addition of primary aluminium to ‘sweeten the melt’ and obtain the
desired alloy mix. The primary sweetner fraction for the Remelter is set at 5% based on a mass
balance from AluNorf!7 and the observed fraction at a UK remelting facility producing UBC ingots.
The sweetner fraction for the Refiner is found by balancing the demand for wrought alloys (46.7Mt)
and shape-casting alloys (27.3Mt) against the scrap inputs to the Remelter (16.9Mt) and the Refiner
(22.4Mt), after accounting for casting yield losses.3 The result is 7.1Mt of primary sweetner input to
the Refiner, equal to 25% of the Refiner input.

Rolling/Forming/Shape Casting: The demand for Rolling, Extrusion, Wire Drawing and Shape
Casting is back calculated from the Intermediate Product vector. The International Aluminium
Institute model*lists semi-fabricator yields (corresponding to our forming/casting processes), but
these are organized by end-use categories. It is more accurate to estimate the forming/casting yields
directly for each process while accounting for the cascading flows between the hot, twin roll, cold and
foil rolling processes. Therefore, we survey forming yields from four literature sources—AluNorf,7
EAA,2! Milford et al.,22 Schifo and Radia23—covering individual processes and multi-process chains, to
assign yields to each forming/casting process. These are adjusted in combination with the
Forming/Casting allocation matrix to match the total forming/casting scrap of 20Mt from the
International Aluminium Institute global diagram.2

Fabrication: The International Aluminium Institute model3 collates net product shipments
(equivalent to Intermediate Products in our model) for the ten major regions covering the world
(1950-2007) and estimates fabrication yields to generate a breakdown of “finished products”, which
are matched to the End-use categories in our model. However, the International Aluminium Institute
product shipment data is organised by end-uses (i.e. buildings, transport, machinery) rather than
intermediate product categories (i.e. rolled, extruded, shape-cast) required for the Sankey diagram.
Therefore, we back-calculate the Intermediate Product vector by using the fabrication yields from the
International Aluminium Institute model and creating a fabrication allocation matrix: using sector
specific breakdowns from North America%4tab13 for Construction and Transport end-uses; assuming
Mechanical Equipment has a similar breakdown to Cars; using direct one-to-one allocations for
Electrical Cable and Drinks Cans; estimating breakdowns for Other Electrical and the remaining
Metals Products. Each row of the matrix is finally balanced to match the End-uses vector, while the
total fabrication scrap is constrained to match the International Aluminium Institute value of 9.5Mt.2
A complete description of the data sources and assumptions is provided in the Supporting
Information, §2.7.
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2.3 Data uncertainty

Aluminium production statistics are not reported with error bands, as is common for experimental
findings, making it impossible to determine data accuracy or perform an uncertainty analysis for our
model. Data is normally collated from individual company surveys, which are aggregated at the
country, regional or global level and reported in national statistical bodies and by trade
organisations. Some likely sources of uncertainty are: misinterpretation of the survey questions and
the terminology used to describe process and materials; unintentional or deliberate misreporting of
data in the surveys; incomplete coverage of global production facilities, requiring data to be scaled;
calculation errors in the aggregation of data; miscommunication of data in published reports.
Organisations such as the International Aluminium Institute work to minimise data errors, by cross-
referencing data sources and auditing their data collection practices, nevertheless some degree of
error is still likely to persist.

In our analysis, we attempt to further minimise data uncertainty by: relying heavily on a few trusted
sources, which are then validated against other sources when available; using mass balance checks
for every process and slice to ensure mass conservation; publishing a full supporting information
that describes in detail the sources and calculations used in our model. Aluminium flows are reported
in the paper to the nearest 100,000 tonnes of aluminium as a precaution to avoid any overstatement
of the data accuracy. Despite the limitations of using data of unknown accuracy, our whole-system
approach is still valid for comparing the relative scale of global aluminium flows and for directing
actions towards where the largest gains can be made.

3 Results

Figure 2 presents a map of global aluminium flow for 2007, which traces the flow of aluminium from
aluminium production (left) through to fabricated products (right). The map is drawn in a Sankey
diagram format, such that the width of each horizontal line in the map is proportional to the mass
flow of aluminium, with specific flows given in million tonnes (Mt). A vertical black line indicates a
major process step in the aluminium supply chain, where the aluminium flow is split into three
possible outputs: useful metal (shown in colour); losses, typically dross or aluminium oxide (shown
black); and process scrap which loops back to a melting step for recycling (shown in grey). Two
‘recasting’ processes are shown with dashed vertical black lines to indicate that some aluminium
ingots are remelted and cast a second time to adjust the alloy concentrations or to create an ingot
shape more suitable for the downstream processes, although the fraction of aluminium that is recast
is unknown.

8
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The map is the first breakdown of global scrap flows through Remelters and Refiners, including
calculation of the dilution flows of primary aluminium to the remelting processes. It is also the first
study to map intermediate products onto end-use goods in detail and to disaggregate the scrap
generation from rolling, extrusion and shape-casting processes.

Electrolysis / Melting Casting Rolling / Forming / Casting Fabrication End-use products

Global demand for aluminium
products = 45 million tonnes

. Cold rolling
Foilrolling

17.2

0.9 rRemelter @.7) Extrusion

Aluminium

1.8 \ /// A Buildings
18 ' ' '// 4 structural 4.8
3 )
Forming scrap 10.1 &/'/ R Buildings
Fabrication scrap 5.4 /) non-structural 5.2
/ Infrastructure-0.9
Shape ; ;

6.5 Refiner ;—Recasting? casting Die castings 9.4 // Drinks cans 3.3

| /
Aluminium | Alloy ingot  27.0 (182 Permanent mould castings 4.6 / Metal  Packaging 2.7
| products Consumer
' Sand castings 2.4 durables 3.2

(2.7)

28 1.6 Other 1.8 Other 4.3
Feilie) S Global aliminum flows
Fabrication scrap 4.1 in million tonnes (2007)

Figure 2—Sankey diagram, tracing the global flow of aluminium from ore-based and scrap-based
production, through casting, forming and fabrication processes, to deliver end-use goods.

4 Discussion

Figure 2 shows the relative scale of different aluminium flows in the supply chain. For example, a
quick scan of the map shows: roughly half of all aluminium is made from bauxite ore and half from
recycled scrap; two-thirds of cast aluminium is formed into wrought products and one-third shape-
cast; final product demand is divided roughly evenly between vehicles, industrial equipment,
construction and metal products. Two additional aspects of the global aluminium map demand
further attention: (i) the poor material efficiency of the industry, where approximately 50% of all
cast aluminium is discarded as scrap during manufacturing; (ii) the significant ‘dilution’ and ‘cascade’
flows from high grade aluminium to lower purity alloys and the effect on the energy required for

recycling.
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4.1 Material efficiency and industrial scrap

The material efficiency of the aluminium production system is surprisingly low in comparison to
other engineering materials. From a reported 74Mt of cast aluminium,? the industry delivers only
44.5Mt of final products to consumers—at an average material efficiency (manufacturing yield) of
60%—with the remaining aluminium discarded as industrial scrap during manufacturing. If we
include the unreported internal recycling of casting scrap, the material efficiency falls to 53% with
almost half of all cast aluminium (39.4Mt) discarded as industrial scrap. Furthermore, if we assume
that 70% of all ingots are recast, then the fraction of industrial scrap rises to 50% of all cast
aluminium. In comparison, steel production has an average material efficiency of 76%.2° (Full
calculations are included in the Supporting Information, Table S7.)

Certainly, every effort should be made to collect and recycle aluminium scrap, whether the source is
manufacturing processes or consumer discards. Current collection efficiencies for industrial scrap
are high, so efforts should be focused on end-of-life recycling where collection rates are estimated to
range from 50% in some sectors to as high as 90% for construction and transport.3 (In comparison,
steel recycling is reported to average 80%,2° although the exact calculation method may differ.) Yet,
of even more importance than recycling is avoiding the generation of scrap at source, through
improvements to manufacturing processes, so that recycling of industrial scrap is no longer required.

Analysing the material yields across ingot casting, forming and fabrication processes reveals the
reasons behind the high losses of industrial scrap and points to technical options for improving
material efficiency.

Ingot casting: The material yield for aluminium ingot casting is 88% (including internally recycled
scrap), much lower than the equivalent for steel of 94%.2° The difference is mainly due to the need to
remove inferior quality surface material from ingots (by scalping and sawing) and defects created in
the batch casting process, and because the greater material losses can be offset against the typically
higher value of aluminium products. The resulting scrap is recycled internally but often not reported
in company and industry statistics, and although the overall metal balance is unaffected, the
remelting of scrap consumes additional energy.

Almost all aluminium is as some point cast as an ingot, so any improvement in the casting yield has
the potential to deliver savings across all products. Electromagnetic casting (EMC) is an alternative
ingot casting technology which avoids any contact with a physical mould during casting, providing a
smooth cast surface that can normally be rolled without scalping.2¢ Introducing intensive shearing
during the melting of aluminium disperses porosity in the melt resulting in considerable reductions
in cast defects.2” Application of these technologies would increase the material yield of ingot casting
from 88% to an estimated 92%.

Rolling/Forming/Shape-Casting: The overall material efficiency of rolling, forming and shape-
casting is 73%, which is well below the yield for steel at 92%,20 with three reasons suggested for the
difference. Firstly, a third of all aluminium products are shape-cast compared with only 6% for steel,
and product casting has comparatively lower yields (67%) than other forming processes (77% for
aluminium and 90%-96% for steel) due to the complex set of ‘runner’, riser’ and ‘gating’ systems
which feed liquid metal into the casting mould. Secondly, one quarter of aluminium products are
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extruded at a comparably low material yield of 76%, whereas extruded steel products are much less
common. Thirdly, the average material yield for rolling aluminium is only 75%, compared to 92% for
steel rolling, which can be explained by: the sawing and scalping of slab ingots prior to hot rolling;
aluminium being softer than steel and more prone to damage while handling; aluminium being rolled
to finer grades and higher surface finishes than steel, resulting in a more quality control defects.

Two key yield improvements are described below, which if implemented would raise the overall
material efficiency for forming processes from 73% to 82%. Firstly, Schifo and Radia?3 estimate that
a 5% gain in yield can be achieved for aluminium shape-casting, citing improvements to computer
solidification modelling and research into the “application of acoustic energy to reduce gating weight
and improve casting quality”. We assume a similar 5% improvement is achievable in extrusion and
wire drawing processes. Secondly, continuous casting processes, such as twin-roll casting, produce a
cast ‘sheet’ which can be immediately cold-rolled without the need for ingot casting, scalping/sawing
and hot rolling. The technology is particularly suited for non-heat treatable alloys and currently one-
third of all cold-rolled sheet and foil can be continuously cast.28 To calculate the potential savings in
industrial scrap, we assume that all cold-rolled sheet and foil is continuously cast, which is equal to
two-thirds of all rolled products, noting that 90% of rolled products are made from non-heat
treatable alloys.24

Fabrication: The yield for aluminium fabrication processes is 82%, which is only slightly lower than
the yield for steel at 85%,20 and is probably due to aluminium components being typically smaller
and more complex than steel products. Reducing industrial scrap across all processes is made more
difficult by the lower melting temperature of aluminium, at 600°C compared to 1600°C for steel,
which results in lower energy costs for remelting, creating less incentive to reduce aluminium
manufacturing scrap. Based on a previous analysis,? we estimate that fabrication yields could be
increased up to 90%.

Potential to reduce industrial scrap: The technical options and estimated yield improvements
described above represent our best estimate of the practical limits of material efficiency applied to
industrial aluminium scrap. We calculate that if all options were applied together, then today’s 45Mt
of aluminium in end-use goods would require only 65Mt of cast aluminium, avoiding 19Mt of
industrial scrap recycling. In practice, a detailed analysis of the economic and institutional barriers
would be required to assess the likely adoption of this material efficiency strategy.

4.2 Isrecycling always the best option?

Recycling is less energy intensive than making aluminium from ore, but recycling is not always as
good as it looks. In particular, the practice of dilution and cascading result in significant flows of
aluminium from high-grade to lower purity alloys, increasing the energy required for recycling.

Dilution: Our map of global aluminium flows (Figure 2) shows 8.0Mt per year of pure aluminium
being used to dilute (or ‘sweeten’) the alloy mixes in the Remelting and Refining processes.
Thermodynamics dictates that it is easy to add alloys to aluminium but very difficult to remove them,
and therefore dilution is mostly irreversible and results in a permanent downgrading of aluminium

quality. The practice of dilution also distorts the energy requirement of recycling.
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Table 2 demonstrates that the embodied energy of recycled aluminium increases rapidly when using
primary ‘sweetner’ to dilute the alloy mix. The baseline energy requirements are taken directly from
the International Aluminium Institute recycling website,!>and matches the claim that “Aluminum
recycling requires up to 95% less energy than primary production” if a direct comparison is made
between electrolysis against scrap melting. However, diluting the scrap mix with 5% pure aluminium
sweetner (e.g. as calculated for Remelters) nearly doubles the embodied energy of the recycled
aluminium, and the addition of 25% sweetner (as observed for Refiners) results in a five-fold
increase in embodied energy, with aluminium recycling now requiring nearly one-third of the energy
of primary production. Furthermore, the collection, sorting and cleaning of recycled scrap, and
manufacturing the product for a second time, add even more energy to the equation.

Pure Al used Embodied energy

to dilute Recycling Electrolysis  Total Compared to
scrap (%) (GJ/t)2 (GJ/t)>  (GJ/t) electrolysis (%)
Electrolysis (pure Al) 0 170 170 100%
Industry claim (0%) 10 0 10 6%
Remelter (5%) 10 9 19 11%
Refiner (25%) 10 43 53 31%
Notes:

a [t is assumed that the pure Al from electrolysis (sweetner) must be remelted using
the same energy as required for melting scrap

b Energy embodied in the primary ‘sweetner’ during primary production of
aluminium using electrolysis.

Table 2—The effect of using pure aluminium (sweetner) to dilute scrap, on the embodied energy of recycled

aluminium.

The global mass balance requires a dilution flow of pure aluminium to meet the demand for shape
cast products, resulting in an average 25% sweetner fraction for Refiners. The only feasible
alternative to balance scrap supply with cast product demand would be a significant increase in the
down-cycling of wrought industrial scrap to the Refiner. Such a scenario would contradict the mass
balance data from Europe, and would still result in the down-grading of higher quality aluminium
and increase the embodied energy of recycled aluminium. The high fraction of pure aluminium
sweetner used in Refiners is surprising. It indicates the level of scrap supply constraint that Refiners
are forced to operate under, for without the use of pure aluminium, Refiners would be unable to
realise the residual value of the recycled scrap.

Down-cycling: Six main alloying metals—copper, magnesium, manganese, silicon, zinc and lithium—
are added to wrought alloys in low concentrations and casting alloys in higher concentrations.
Nakajima et al. have evaluated the removal limits of alloys and impurities during aluminium scrap
melting and concluded that apart from magnesium and zing, all other alloying elements are almost
impossible to remove, even under varying temperature and oxygen partial pressure conditions.2° For
this reason, wrought alloys can be recycled into casting alloys, but the reverse is practically
impossible, so recycling tends to cascade or down-cycle from wrought alloys to less pure shape
casting alloys.
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Figure 2 shows the extent of down-cycling in the aluminium industry, which results in an estimated
6.1Mt of wrought scrap being diverted into cast products:

Only about a fifth of end-of-life scrap is remelted into wrought alloys, despite wrought products
outweighing cast production by two to one. We estimate that 3.7Mt of wrought scrap is down-
cycled into cast products, assuming product lifetimes for wrought and cast products are the
same.

Industrial scrap can be easily segregated and cleaned, yet we found that 10% of industrial scrap
from forming and fabrication processes (1.7Mt) is still diverted to refiners to make casting alloys.

Wrought ingot casting losses (skimmings, 0.7Mt) are sent for reprocessing to remove impurities,
but the recovered aluminium is not returned to Remelters, but instead is cascaded to Refiners.

The recycling system in its current form is only viable because growth in demand for new products
outstrips the scrap aluminium available from discarded products, allowing wrought scrap to be
downgraded and used in cast products, while primary aluminium is mainly used in wrought
products. This behaviour is rational given the current economic drivers in the system, where the
scrap supply will cascade to the whomever values the material, irrespective of what is the most
optimal solution for material efficiency. However, in future, the recycling path for scrap from cast
products may become constrained. Modaresi and Miiller3® have explored such a scenario for
automobiles and show that under business as usual assumptions a surplus of non-recyclable casting
scrap will emerge by 2018 +5 years, while Hatayama et al. 3! forecast a surplus of 6.1Mt of
unrecyclable scrap in 2030, for Europe, United States, Japan and China, due to decreasing demand for
cast alloys resulting from the introduction of electric vehicles. Such projections require a dynamic
analysis of aluminium stocks over many years, as the supply and price of recycled aluminium
depends critically on the flow of stock products reaching end-of-life, as explained by Blomberg and
Soderholm.32

Options to minimise dilution and down-cycling: We have identified four possible solutions for
addressing the problems of dilution and down-cycling, which will require further research and
development to be realised:

Develop better solutions for segregating and sorting of end-of-life scrap, and promote take-back
loyalty schemes for unwanted products, to raise the fraction of wrought aluminium recycled in
Remelters. Limiting the number of different alloys in today’s products would aid the future
separation and recovery of specific alloys.

Explore options to reuse discarded products, to avoid recycling completely.

Reduce any potential surplus of casting alloys by developing new shape-cast product
applications. Research at the Brunel Centre for Advanced Solidification Technology on grain
refinement of as-cast aluminium alloys using physical shear of the alloy melt and enhanced
heterogeneous nucleation, is expected to deliver improved mechanical properties for cast
products without the need for forming and heat treatment processes.2’
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Develop a better understanding of the demand drivers for cast and wrought products and the
future availability of scrap, so future shortfalls or surpluses of specific alloys can be identified
and responses formulated to avoid the practice of diluting scrap with pure aluminium.

4.3 Future work

©CoO~NOUTA,WNPE

10 In this paper, we have mapped the flow of aluminium from liquid aluminium to final products for the
year 2007 and developed a framework for directing actions to improve material efficiency and

13 reduce the environmental impacts of aluminium production. We have identified a genuine need to

14 improve data collection for Remelting and Refining processes, and in particular to ascertain the

15 fraction of aluminium ingots which are recast before forming processes and to confirm the fraction of

pure aluminium sweetner used for dilution of the alloy mix.

In future work, it would be possible to include the energy inputs and resulting CO; emissions in the
20 model, and use dynamic modelling and demand scenarios to predict how the map might change in

21 the future, along with an economic analysis to compare the costs of different strategies. Finally,

22 further work is required to evaluate the impact of economic and institutional barriers on the group of
strategies described by material efficiency.
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