

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. IMAGING SCIENCES c© 2017 Society for Industrial and Applied Mathematics
Vol. 10, No. 4, pp. 2049–2090

Guidefill: GPU Accelerated, Artist Guided Geometric Inpainting for 3D
Conversion of Film∗

L. Robert Hocking† , Russell MacKenzie‡ , and Carola-Bibiane Schönlieb†

Abstract. The conversion of traditional film into stereo 3D has become an important problem in the past
decade. One of the main bottlenecks is a disocclusion step, which in commercial 3D conversion is
usually done by teams of artists armed with a toolbox of inpainting algorithms. A current difficulty
in this is that most available algorithms either are too slow for interactive use or provide no intuitive
means for users to tweak the output. In this paper we present a new fast inpainting algorithm based
on transporting along automatically detected splines, which the user may edit. Our algorithm is
implemented on the GPU and fills the inpainting domain in successive shells that adapt their shape
on the fly. In order to allocate GPU resources as efficiently as possible, we propose a parallel algorithm
to track the inpainting interface as it evolves, ensuring that no resources are wasted on pixels that
are not currently being worked on. Theoretical analyses of the time and processor complexity of
our algorithm without and with tracking (as well as numerous numerical experiments) demonstrate
the merits of the latter. Our transport mechanism is similar to the one used in coherence transport
[F. Bornemann and T. März, J. Math. Imaging Vision, 28 (2007), pp. 259–278; T. März, SIAM J.
Imaging Sci., 4 (2011), pp. 981–1000] but improves upon it by correcting a “kinking” phenomenon
whereby extrapolated isophotes may bend at the boundary of the inpainting domain. Theoretical
results explaining this phenomenon and its resolution are presented. Although our method ignores
texture, in many cases this is not a problem due to the thin inpainting domains in 3D conversion.
Experimental results show that our method can achieve a visual quality that is competitive with
the state of the art while maintaining interactive speeds and providing the user with an intuitive
interface to tweak the results.

Key words. image processing, image inpainting, 3D conversion, PDEs, parallel algorithms, GPU

AMS subject classifications. 68U10, 68W10, 65M15

DOI. 10.1137/16M1103737

1. Introduction. The increase in demand over the past decade for 3D content has resulted
in the emergence of a multimillion dollar industry devoted to the conversion of 2D films into
stereo 3D. This is partly driven by the demand for 3D versions of old films, but additionally
many current filmmakers are choosing to shoot in mono and convert in postproduction [40].
Examples of recent films converted in whole or in part include Maleficent, Thor, and Guardians

∗Received by the editors November 15, 2016; accepted for publication (in revised form) August 17, 2017; published
electronically November 21, 2017.

http://www.siam.org/journals/siims/10-4/M110373.html
Funding: The work of the first author was supported by the Cambridge Commonwealth Trust and the Cambridge

Center for Analysis. The work of the third author was supported by the Leverhulme Trust project Breaking the Non-
convexity Barrier, the EPSRC grants EP/M00483X/1 and EP/N014588/1, the Cantab Capital Institute for the
Mathematics of Information, the CHiPS (Horizon 2020 RISE project grant), the Global Alliance project “Statistical
and Mathematical Theory of Imaging,” and the Alan Turing Institute.
†Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB2 1TN,

UK (lrh30@cam.ac.uk, cbs31@cam.ac.uk).
‡Gener8 Media Corp, Vancouver V5T 1M6, BC, Canada (russell@gener8.com).

2049D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siims/10-4/M110373.html
mailto:lrh30@cam.ac.uk
mailto:cbs31@cam.ac.uk
mailto:russell@gener8.com

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2050 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

of the Galaxy [1].
Mathematically, 3D conversion amounts to constructing the image or video shot by a

camera at the perturbed position p+ δp and orientation O + δO, given the footage at (p,O).
Two primary conversion pipelines. There are essentially two pipelines for achieving this.

The first pipeline assumes that each frame of video is accompanied by a depth map (and
hence is more applicable to footage from RGB-D cameras). The new viewpoint is generated
by “warping” the original footage based on the given depth map and known or estimated
camera parameters; see [10] for an excellent recent overview. This pipeline has applications
including 3D TV and free-viewpoint rendering [48, 18]. However, it is not typically used in the
movie industry—this is for a number of reasons (including, for example, the fact that much
of what is being converted are older movies created before RGB-D cameras were invented);
see [47, 40] for more details and discussion.

We focus in this paper on a second pipeline, which is of greater interest in film. This
pipeline does not assume that a depth map is given. Instead, it is based on teams of artists
generating a plausible 3D model of the scene, reprojecting the original footage onto that
model from a known or estimated camera position, and then rerendering the scene from a
novel viewpoint. Unlike the previous pipeline, this one involves a step whereby teams of
artists create masks for every relevant object in the original scene. Crucially, these masks
include occluded parts of objects; see Figure 1(c). We go over this pipeline in detail in section
2.

One thing both pipelines have in common is a hole-filling or disocclusion step whereby
missing information in the form of RGB values visible from (p+δp,O+δO) but not from (p,O)
is “inpainted.” This step is considered one of the most technical and time-consuming pieces of
the pipeline [40]. However, while the disocclusion step arising in the first pipeline has received
a lot of attention in the literature (see, for example, [10, 46, 45, 18, 48, 24, 34, 17, 26, 30] to
name a few), the disocclusion step arising in the second pipeline relevant to film has received
far less attention. The present paper, to the best of our knowledge, is the first paper to address
it directly. While related, these two disocclusion problems have important differences. Most
significantly, the facts that our pipeline comes with an explicit mask for every scene object—
even occluded parts—and that we have a full 3D model instead of just a single depth map
from a single viewpoint have two major consequences. First, while the methods above need
to inpaint both the color information at the new view and the corresponding new depth map,
we get the depth map at the new viewpoint for free. This is important because most of the
methods in the literature either devote quite a bit of effort to inpainting the depth map [10]
or else do so based on rough heuristics [46, 45, 18, 48, 24, 34, 17, 26, 30], which, as noted
in [10, sect. II.C.], tend to fail. Second, these masks give an explicit segmentation of the
scene into relevant objects both in the old viewpoint and in the new one. The methods in
the other pipeline, by contrast, have access to neither. This means that we, unlike the above
approaches, always know which pixels to use for inpainting and do not have to worry about
(for example) inpainting a piece of the foreground into the background. By contrast, all of the
above methods have to rely on imperfect heuristics to guess based on the depth map which
pixels belong to which object; see [10, sect. II.B.].

Additionally, in our pipeline, the inpainting is done by teams of artists armed with a
“toolbox” of inpainting algorithms. These algorithms provide a starting point which artists

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2051

may then touch up by hand. Hence interactive speeds and the ability of the user to influence
the results of inpainting, which may not be a priority in the other pipeline, are important in
ours.

Image and video inpainting. Image inpainting refers to the filling in of a region in an
image called the inpainting domain in such a way that the result looks plausible to the human
eye. Image inpainting methods can loosely be categorized as exemplar-based and geometric.
The former generally operate based on some procedure for copying patches of the undamaged
portion of the image into the inpainting domain, either in a single pass from the boundary
inward as in Criminisi, Pérez, and Toyama [16], or iteratively as in Wexler, Shechtman,
and Irani [44] and Arias et al. [3]. The choice of which patch or patches to copy into a
given area of the inpainting domain is decided using a nearest neighbor search based on
a patch similarity metric. Originally prohibitively expensive, a breakthrough was made in
the PatchMatch algorithm [5], which provides a fast approximate nearest neighbor search.
PatchMatch is used behind the scenes in Photoshop’s famous Content-Aware Fill tool. On
the other hand, geometric inpainting methods aim to smoothly extend image structure into
the inpainting domain, typically using PDEs or variational principles. Continuation may be
achieved by either interpolation or extrapolation. Examples of methods based on interpolation
include the seminal work of Bertalmio et al. [6], TV, TV-H−1, Mumford–Shah, Cahn–Hilliard
inpainting [14, 8], Euler’s elastica [29, 13], as well as the joint interpolation of image values
and a guiding vector field in Ballester et al. [4]. These approaches are typically iterative and
convergence is often slow, implying that such methods are usually not suitable for real-time
applications. Telea’s algorithm [42] and coherence transport [7, 27] (which can be thought of
as an improvement of the former) are based on extrapolation and visit each pixel only once,
filling them in order according to their distance from the boundary of the inpainting domain.
Unlike their iterative counterparts, these two methods are both very fast, but may create
“shocks”; see section 4.2. See also [39] for a comprehensive survey of geometric inpainting
methods, as well as [20] for a recent survey of the field as a whole.

Geometric methods are designed to propagate structure, but fail to reproduce texture.
Similarly, exemplar-based approaches excel at reproducing texture, but are limited in terms
of their ability to propagate structure. A few attempts have been made at combining geometric
and exemplar-based methods, such as Cao et al. [12], which gives impressive results but is
relatively expensive.

Video inpainting adds an additional layer of complexity, because now temporal information
is available, which is exploited by different algorithms in different ways. For example, when
inpainting a moving object in the foreground, one can expect to find the missing information
in nearby frames; this type of strategy is utilized in, for example, [23]. Another strategy is to
generalize exemplar-based image inpainting methods to video by replacing 2D image patches
with 3D spacetime cubes. This approach is taken in [31, 32], which also present a generalized
patchmatch algorithm for video. While producing impressive results, this method is also very
expensive, both in terms of runtime and memory requirements (see section 6). Finally, the
authors of [21] present a strategy for video inpainting of planar or almost-planar surfaces,
based on inpainting a single frame and then propagating the result to neighboring frames
using an estimated homography.

Related work. Our method is a (1st-order) transport-based inpainting method for the

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2052 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

disocclusion step in 3D conversion. Here we review the related work on both aspects.
I. Disocclusion inpainting for 3D conversion. Over the past decade considerable attention

has been given in the literature to the design of algorithms for automatic or semiautomatic
3D conversion—at least for the first pipeline based on depth maps. As we have already
stated, the pipeline used in film, on which we focus in this work, has received little to no
attention. Nevertheless, we review here briefly the work on 3D conversion using the first
pipeline. In regards to the hole-filling step, there is great variability in how it is handled. At
one extreme are cheap methods that inpaint each frame independently using very basic rules
such as clamping to the color of the nearest usable pixel [24], or taking a weighted average
of the closest usable pixels along a small number (8–12) of fixed directions [48, 18]. Slightly
more sophisticated is the approach in [34] which applies a depth-adapted variant of Telea’s
algorithm [42]. These methods are so basic that they do not appear to inpaint the depth map.
In the midrange are a variety of methods based on first inpainting the depth map, and then
applying a depth aided variant of Criminisi’s method; examples include [45, 46, 17, 26, 30, 10]
(see also [10] for an overview of the state of the art). Unfortunately, until recently most of
these approaches have been limited in the sense that too little attention has been given to the
depth inpainting step, which is done based on crude heuristics, while most of the attention is
given to the subsequent color inpainting step. To the best of our knowledge, [10] is the first
paper to acknowledge this gap in the literature and addresses it with a sophisticated approach
to depth inpainting.

Finally, at the most expensive extreme are methods taking temporal information explicitly
into account, such as [15], which copies spacetime patches into the inpainting domain via a
process similar to Criminisi, Pérez, and Toyama.

II. Inpainting based on 1st-order transport. There are a small number of inpainting strate-
gies in the literature based on the idea of 1st-order transport of image values along a vector
field, which is either predetermined or else calculated concurrently with inpainting (the semi-
nal work of Bertalmio et al. [6] was also based on transport, but in their case the equation was
3rd-order). While generally lower quality than their higher order counterparts, these methods
have the potential to be extremely fast. The earliest of these to the best of our knowledge is
Ballester et al. [4], which considers both the joint interpolation of image values and a guiding
vector field, as well as the propagation of image values along a known vector field. In the
latter case, they note that their approach is equivalent to a 1st-order transport equation. This
was the first time to the best of our knowledge that 1st-order transport was proposed as a
strategy for inpainting. However, none of the approaches suggested in their paper are fast
enough for our application.

Next, Telea [42] proposed filling the inpainting domain in successive shells from the bound-
ary inward, visiting each pixel only once and assigning it a color equal to a weighted average
of its already filled neighbors, resulting in a very fast algorithm. The connection to transport
was not known until Bornemann and März showed that Telea’s algorithm and their improve-
ment thereof, which they called coherence transport [7, 27], both become 1st-order transport
equations under a high-resolution and vanishing viscosity limit. In Telea’s algorithm, the user
has no control over the transport direction; it was shown in [7] to simply be equal to the local
normal vector to the boundary of the inpainting domain. Coherence transport attempts to
improve on this by either allowing the user to supply the desired transport direction manually

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2053

as a vector g, or else finding “good” values for g(x) concurrently with inpainting. However, as
we will see, the algorithm actually has challenges in both respects (see below). März went on
in [27] to suggest improvements to coherence transport based on a carefully selected fill order,
and then went on in [28] to explore in depth an issue first raised in [4]—how to make sense
of the well-posedness of a 1st-order transport equation on a bounded domain with Dirichlet
boundary conditions, where integral curves of the transport field may terminate at distinct
points with incompatible image values.

Our contribution. Our contributions are multiple. First, while any of the disocclusion
algorithms from the previous section could be adapted to our pipeline, they are not designed
to take advantage of its particular characteristics. In particular, none of them are designed
to take advantage of the scene segmentation available in our pipeline, and with the possible
exception of the recent high-quality approach [10], this is likely to lead to needless “bleeding”
artifacts when pixels from the wrong object are used for inpainting. See Figure 2(c) as well
as the discussion in [10, sect. II.C]. Our first contribution is to define an inpainting algorithm
designed to take advantage of this extra information explicitly, which we do by making use of
a set of “bystander pixels” not to be used for inpainting (section 2.1).

Second, even if the above methods were to be adapted to our pipeline, what appears to be
missing is an algorithm suitable for the “middle ground” of cases where Telea’s algorithm and
coherence transport are inadequate, but exemplar-based approaches are needlessly expensive.
In particular, because the inpainting domains in 3D conversion tend to be thin “cracks” (see
Figure 1), there are many situations in which one can safely ignore texture.

Third, we acknowledge that in the movie industry inpainting is typically done by teams
of artists who are happier if they have the ability to influence the results of inpainting, and
thus we have designed our algorithm with this in mind.

Fourth, our method is a transport-based algorithm inspired by the coherence transport
algorithm [7, 27], but improving upon it by correcting some of its shortcomings. Both methods
proceed by measuring the orientation of image isophotes in the undamaged region near the
inpainting domain and then extrapolating based on a transport mechanism. However, in
the case of coherence transport both of these steps have problems. First, the procedure for
measuring the orientation g of isophotes in the undamaged region is inaccurate and leads to
“kinking” in the extrapolation. See Figure 5 as well as sections 3.2 and 3.2.1 for a discussion of
this problem and our resolution. Second, once fed a desired transport direction g (which may
or may not be accurate based on the last point), coherence transport instead transports along
a direction g∗ such that g∗ 6= g unless g points in one of a small number of special directions.
The result is a secondary “kinking” effect of extrapolated isophotes (see Figures 6, 7, and
9). This behavior, which the authors of [7, 27] appear unaware of (the theory in [7] does not
account for it), is explored in section 3.3 and rigorously analyzed in section 4. We present an
improved transport mechanism overcoming this problem, as well as a theoretical explanation
of its origin and resolution; see Theorem 4.1. However, our ability to transport along these
additional directions comes at a price in the sense that our method introduces some blurring
into extrapolated edges. This blurring can be significant for low-resolution images and wide
inpainting domains, but otherwise it appears to be minimal; see section 4.1.2. Additional
details on the similarities and differences between our method and coherence transport [7, 27]
are presented in section 3.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2054 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

In this paper we present a fast, geometric, user guided inpainting algorithm intended for
use by artists for the hole-filling step of 3D conversion of film. We have designed our algorithm
with two goals in mind:

• The method retains interactive speeds even when applied to the HD footage used in
film.
• Although the method is automatic, the artist is kept “in the loop” with a means of

possibly adjusting the result of inpainting that is intuitive (that is, they are not simply
adjusting parameters).

The first of these goals is accomplished via an efficient GPU implementation based on a
novel algorithm for tracking the boundary of the inpainting domain as it evolves. Since our
method only operates on the boundary of the inpainting domain in any given step, knowing
where the boundary is means that we can assign GPU processors only to boundary pixels,
rather than all pixels in the image. For very large images (

√
N � p, where N denotes the

number of pixels in the inpainting domain, and p denotes the number of available processors),
our tracking algorithm leads to a time and processor complexity of T (N,M) = O(N logN),
P (N,M) = O(

√
N +M), respectively (where N + M is the total number of pixels in the

image), versus T (N,M) = O((N + M)
√
N), P (N,M) = O(N + M) without tracking; see

Theorems 5.1 and 5.2. Moreover, for moderately large problems (
√
N / p and N + M � p)

the gains are larger—T (N,M) = O(
√
N logN) with tracking in this case.

The second goal is accomplished by providing the user with automatically computed
splines showing how key image isophotes are to be extended. These splines may be edited if
necessary. In this regard, our algorithm is not unlike those of Sun et al. [41] and Barnes et
al. [5], both of which allow the user to similarly promote the extension of important structures
by drawing them onto the image directly. However, both of these approaches are exemplar-
based, the former is relatively expensive, and the latter, while less expensive, is limited to
linear edges. As far as we know our method is the first geometric method to give the user this
type of control over the results of inpainting.

Our method, which we call Guidefill, is intended as a practical tool that is fast and flexible,
and applicable to many, but not all, situations. It is not intended as a black box capable of
providing the correct result in any situation given enough time. Our method was originally
designed for the 3D conversion company Gener8, and a version of it is in use by their stereo
artists.

Similarly to many state-of-the-art 3D conversion approaches, we treat the problem frame
by frame. While an extension that uses temporal information would be interesting (and is a
direction we would like to explore in the future), it is outside of the scope of this paper.

Organization. In section 2 we go over a 3D conversion pipeline commonly used in film.
Section 2.2 also goes over the alternative pipeline commonly appearing in the literature,
highlighting some of its potential drawbacks. Next, in section 3 we present our proposed
method as part of a broader class of shell-based algorithms, highlighting issues with earlier
methods and how ours overcomes them. Sections 3.2.1 and 3.3 in particular focus on two
kinking issues associated with coherence transport and how Guidefill overcomes them, in the
latter case through the introduction of what we call “ghost pixels.” Pixel ordering strategies
for Guidefill are compared and contrasted with other strategies in the literature in section 3.4.
Two separate GPU implementations are sketched in section 3.5. Section 4 is devoted to a

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2055

continuum analysis of our algorithm and others like it. It enables us to rigorously explain some
of the strengths and shortcomings of both Guidefill and coherence transport. Our analysis is
different from the analysis by Bornemann and März in [7]; we consider a different limit and
uncover new behavior. In section 5 we analyze the time complexity and processor complexity
of our method as a parallel algorithm. In section 6 we show the results of our method applied
to a series of 3D conversion examples. Results are compared with competing methods both
in terms of runtime and visual quality. At the same time, we also validate the complexity
analysis of section 5. Finally, in section 7 we draw some conclusions.

Notation.
• h = the width of one pixel.
• Z2

h := {(nh,mh) : (n,m) ∈ Z2}.
• Given x ∈ R2, we denote by θ(x) ∈ [0, 2π) the counterclockwise angle x makes with

the x-axis.
• Ω = [a, b]× [c, d] and Ωh = Ω ∩ Z2

h are the continuous and discrete image domains.
• Dh = D

(0)
h ⊂ Ωh is the (initial) discrete inpainting domain.

• D(k)
h ⊆ D(0)

h is the discrete inpainting domain on step k of the algorithm.
• Bh ⊂ Ωh\Dh is the set of “bystander pixels” (defined in section 2.1) that are neither

inpainted nor used for inpainting.
• uh : Ωh\(Dh ∪Bh)→ Rd is the given image (video frame).
• D ⊂ Ω := {x ∈ Ω : ∃y ∈ Dh s.t. ‖y − x‖∞ < h} is the continuous inpainting domain.
• D(k) is the continuous inpainting domain on step k of the algorithm, defined in the

same way as D.
• B ⊂ Ω is the continuous bystander set, defined in terms of Bh in the same way as D.
• g : Dh → R2 is the guide field used to guide the inpainting.
• Aε,h(x) denotes a generic discrete (but not necessarily lattice aligned) neighborhood

of radius ε surrounding the pixel x and used for inpainting.1

• Bε,h(x) = {y ∈ Ωh : ‖x− y‖ ≤ ε}, the choice of Aε,h(x) used by coherence transport.
• B̃ε,h(x) = R(Bε,h(x)), where R is the rotation matrix taking (0, 1) to g(x), the choice

of Aε,h(x) used by Guidefill.
• N (x) = {x + y : y ∈ {−h, 0, h} × {−h, 0, h},y 6= 0} is the eight-point neighborhood

of x.
• Given Ah ⊂ Z2

h, we define the discrete (inner) boundary of Ah by

∂Ah := {x ∈ Ah : N (x) ∩ Z2
h\Ah 6= ∅}.

For convenience we typically drop the word “inner” and refer to ∂Ah as just the
boundary of Ah.
• Given Ah ⊂ Z2

h, we define the discrete outer boundary of Ah by

∂outerAh := {x ∈ Z2
h\Ah : N (x) ∩Ah 6= ∅}.

• ∂activeD
(k)
h ⊆ ∂D(k)

h is the active portion of the boundary of the inpainting domain on

1That is, Aε,h(x) ⊂ Ω is a finite set and ‖y − x‖ ≤ ε for all y ∈ Aε,h(x).

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2056 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

(a) (b) (c)

(d) (e) (f)

Figure 1. Intermediate data generated in a 3D conversion pipeline prior to inpainting: (a) Original image,
(b) rough 3D geometry, (c) object masks including occluded areas, (d) projection of an object mask onto the
corresponding object geometry, (e) example labeling of pixels in the new view according to object and visibility
(in this case the object in question is the wall, white pixels are visible from both viewpoints, red are visible from
the new viewpoint but occluded in the original view, gray are occluded in both views), and (f) the generated new
view with red “cracks” requiring inpainting.

step k of the algorithm. That is,

∂activeD
(k)
h = {x ∈ ∂D(k)

h : N (x) ∩ (Ωh\(D
(k)
h ∪Bh)) 6= ∅}.

In other words, ∂activeD
(k)
h excludes those pixels in ∂D(k)

h with no readable neighboring
pixels.
• If x ∈ Rn and y ∈ Rm, then x⊗ y denotes the n×m matrix tensor product of x and

y, defined by (x ⊗ y)i,j = xiyj , where xi is the ith component of x and yj is the jth
component of y.

2. A 3D conversion pipeline for film. Here we briefly review a 3D conversion pipeline
commonly used in film; see, for example, [47] for a more detailed description. The pipeline
relevant to us involves three main steps (typically done by separate teams of specialized artists)
which must be completed before inpainting can proceed:

1. If camera data (including position, orientation, and field of view) is not known, it must
be estimated. This process is often called “match-move” and is typically done with
the aid of semiautomatic algorithms based on point tracking [38, 19].

2. Accurate masks must be generated for all objects and for every frame, including oc-
cluded areas (see Figure 1(c)). This is typically done to a subpixel accuracy using
editable Bézier splines called “roto.” These masks play three important roles:

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2057

(a) generating the depth discontinuities visible from the new viewpoint(s),
(b) generating the scene segmentation in the old viewpoint,
(c) generating the scene segmentation in the new viewpoint(s).

These masks need to be as accurate as possible [40].
3. A plausible 3D model of the scene must be generated (see Figure 1(b) for an example).

This will effectively be used to generate the “smooth” component of the depth map as
viewed from the new viewpoint(s) and does not have to be perfect. It is, however, very
important that each object’s mask generated in the previous step fits entirely onto its
geometry when projected from the assumed camera position, as in Figure 1(d). For
this reason 3D geometry is typically designed to be slightly larger than it would be in
real life [47].

4. For each object, a multilabel mask must be generated assigning a label to each pixel
in the new view as

• belonging to the object and visible from the original viewpoint, or
• belonging to the object and occluded in the original viewpoint, but visible in

the new viewpoint, or
• belonging to the object and occluded in both the original and new viewpoints,

or
• belonging to another object.

See Figure 1(e) for an example where the four labels are colored white, red, gray, and
black, respectively, and the object in question is the background.

Once these components are in place, the original footage, clipped using the provided masks,
is projected onto the geometry from the assumed camera position and orientation. The new
view is then generated by rendering the 3D scene from the perspective of a new virtual camera.
This new view, however, contains disoccluded regions—formerly hidden by geometry in the
old view—which must be inpainted (see Figure 1(f)). Inpainting then proceeds on an object
by object basis, with each object inpainted separately.

2.1. Bystander pixels. In most image inpainting algorithms it is assumed that all pixels
in Ωh\Dh may be used for inpainting. However, for this application, each object is inpainted
separately, so some of the pixels in Ωh\Dh belong to other objects (according to the labeling
in step 4) and should be excluded. Failure to do so will result in “bleeding” artifacts, where,
for example, a part of the background is extended into what is supposed to be a revealed
midground object; see Figure 2(c).

Pixels which are neither inpainted nor used as inpainting data are called “bystander pix-
els,” and the set of all such pixels is denoted by Bh. Pixels in Ωh\(Dh ∪ Bh) are called
“readable.”

2.2. An alternative pipeline. Here we briefly review the depth map based pipeline that
has so far received the most attention in the literature. We will go over some of the heuristics
employed and give a simple example to show how these heuristics can fail. Please also see
[10], which covers the same issues we raise but in more detail, and aims at overcoming them.

The general setup is that we have an initial image/video frame u0 with an accompanying
depth map d0 taken from a known camera position, and we wish to know the image/video
frame u′0 from a new virtual camera position. The key idea is that of a warping function

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2058 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

(a) Detail from “Bust”:
A complex hole involv-
ing several objects at
multiple depths.

(b) Segmentation of
the new view available
to our pipeline.

(c) Midground struc-
ture cut off by “bleed-
ing” of the background
into the midground,
when (b) is not taken
into account.

(d) Our result.

Figure 2. Importance of the pixel labeling step. Unlike our pipeline, which has an explicit scene segmen-
tation (b) available to it from the new viewpoint, the depth map based pipeline does not have this information
and must rely on heuristics. As noted in [10], these heuristics tend to fail for complex holes involving multiple
objects at different depths, such as (a). Most methods in the literature (especially those based on scanlines such
as [46, 45, 34]) with the exception of [10] itself (a very recent paper designed to cope with these situations) would
struggle to correctly inpaint this hole and would likely produce artifacts similar to (c), where the midground
structure is cut off by “bleeding” of background into the midground. Our pipeline does not have this problem as
it is able to take advantage of the segmentation in (b).

W, constructed from the known camera positions and parameters, that determines where a
pixel x in u0 at depth d0(x) “lands” in u′0. u′0 and d′0 are then constructed by applying W
to all pixels in u0, d0 (note that some care may be required as in general W(x, d0(x)) may
lie between pixel centers). It is typically assumed that the camera positions are related by a
translation orthogonal to the optical axis and parallel to the horizon so that W is a simple
horizontal translation. The result is a new image u′0 and depth map d′0 with “gaps” due to
disocclusion.

The main disadvantage of this approach is that it has access to neither a depth map of
the new view nor a segmentation thereof, whereas we have both. When confronted with a
complex hole as in Figure 2(a), our pipeline also has access to the segmentation in Figure
2(b), and hence while it does not know what RGB values a given pixel in the hole is meant
to have, it at least knows which object it belongs to. Without this information, algorithms in
this pipeline instead have to make guesses based on heuristics. One common approach is to
first inpaint the depth map based on heuristics and then use the inpainted depth map to guess
which pixels belong to which objects. For depth map inpainting, a very common heuristic,
used in, for example, [46, 45], is to divide the inpainting domain into horizontal scanlines.
Each scanline is then filled with a constant depth value that may be that of the endpoint
with the greater depth [45], or the minimal extrema of depth patch statistics centered at the
endpoints of the scanline as well as their inverse images under the warping function W [46].
In [34], the authors do not inpaint the depth map, but divide the inpainting domain into
horizontal scanlines as usual, declaring the endpoint with greater depth “background” and
hence usable for inpainting, while discarding the other endpoint. These approaches will work

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2059

for most of the hole in Figure 2(a), but all of them will incorrectly cut off the vertical plate leg
as in Figure 2(c). Another approach, used in, for example, [26], is to inpaint using a modified
variant of Criminisi that assigns higher priority to pixels with greater depth. This approach is
also likely to fail to extend either leg of the plate, since as an object lying in the midground,
it will be given a lower priority than background pixels.

In fact, of the approaches currently in the literature, the only one likely to give the correct
result in this case is that in [10], which was designed to address this gap in the literature
by incorporating an explicit structure propagation step. By contrast, our algorithm, taking
advantage of the segmentation in Figure 2(b), produces the result in Figure 2(d).

3. Proposed approach. Guidefill is a member of an extremely simple class of inpainting
algorithms which also contains coherence transport [7, 27] and Telea’s algorithm [42]. These
methods fill the inpainting domain in successive shells from the boundary inward, with the
color of a given pixel due to be filled computed as a weighted average of its already filled
neighbors. The averaging weights wε are nonnegative and are allowed to depend on x but
must scale proportionally with the size of the neighborhood Aε,h(x). That is,

(3.1) wε(x,y) = ŵ

(
x,

y − x
ε

)
for some function ŵ(·, ·) : Ωh × B1(0) → [0,∞]. See (3.2) for the weights used by coherence
transport and Guidefill, which are of the form (3.1). Note that we will sometimes write wr or
w1 in place of wε; in this case we mean (3.1) with ε replaced by r or 1 on the left-hand side.
As the algorithm proceeds, the inpainting domain shrinks, generating a sequence of inpainting
domains Dh = D

(0)
h ⊃ D

(1)
h ⊃ · · · ⊃ D

(K)
h = ∅. At iteration k, only pixels belonging to the

current active boundary ∂activeD
(k)
h are filled; however, ∂activeD

(k)
h need not be filled in its

entirety—certain pixels may be made to wait until certain conditions are satisfied before they
are “ready” to be filled (see section 3.4 for discussion and (3.8) for a definition of “ready”).
Algorithm 1 illustrates this with pseudocode. While basic, these methods have the advantage
of being cheap and highly parallelizable. When implemented on the GPU, the entire active
boundary of the inpainting domain can be filled in parallel. If done carefully, this yields a
very fast algorithm suitable for very large images; see section 3.5.

Guidefill is inspired in part by coherence transport [7, 27]. Coherence transport operates
by adapting its weights to extrapolate isophotes in the undamaged portion of the image when
they are detected, and applying a smooth blur when they are not. While relatively fast and
achieving good results in many cases, it has a number of drawbacks:

1. Users may need to tune parameters in order to obtain a good result.
2. Extrapolated isophotes may “kink” due to inaccurate computation of the guidance

direction g (see Figure 5 and section 3.2.1).
3. Even if g is computed correctly, extrapolated isophotes may still “kink” if g does not

belong to a finite set of special directions (see Figures 6, 7, and 9 and sections 3.3 and
4).

4. The method is a black box with no artist control.
5. The quality of the result can be strongly influenced by the order in which pixels are

filled; see Figure 8. This is partially addressed in [27], where several methods are

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2060 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

Algorithm 1 Shell Based Geometric Inpainting
uh = image/video frame.
D

(0)
h = initial inpainting domain.

∂activeD
(0)
h = initial active inpainting domain boundary.

Bh = bystander pixels.
for k = 0, . . . do

if D(k)
h = ∅ then

break
end if
for x ∈ ∂activeD

(k)
h do

compute Aε,h(x) = neighborhood of x.
compute nonnegative weights wε(x,y) ≥ 0 for Aε,h(x).
if ready(x) then

uh(x) =

∑
y∈Aε,h(x)∩Ω\(D(k)∪B)wε(x,y)uh(y)∑

y∈Aε,h(x)∩Ω\(D(k)∪B)wε(x,y)

end if
end for
F = {x ∈ ∂activeD

(k)
h : ready(x)}.

D
(k+1)
h = D

(k)
h \F .

∂activeD
(k+1)
h = {x ∈ ∂D(k+1)

h : N (x) ∩ (Ωh\(D
(k+1)
h ∪Bh)) 6= ∅}.

end for
See (3.8) for a definition of the ready function for Guidefill. Coherence transport and Guidefill
use the neighborhoods Aε,h(x) = Bε,h(x), Aε,h(x) = B̃ε,h(x), respectively; see Figure 4. They
also both use the same weights (3.2). Note that in coherence transport, ∂activeD

(k)
h = ∂D

(k)
h

as there are no bystander pixels.

proposed for precomputing improved pixel orderings based on non-Euclidean distance
functions. However, these methods all either require manual intervention or else have
other disadvantages; see section 3.4.

Guidefill is aimed at overcoming these difficulties while providing an efficient GPU imple-
mentation (the implementation of coherence transport in [7, 27] was sequential, despite the
inherent parallelizability of the method), in order to create a tool for 3D conversion providing
intuitive artist control and improved results.

3.1. Overview. The main idea behind Guidefill is to generate, possibly based on user
input, a suitable vector field g : Dh → R2 to guide the inpainting process, prior to inpainting.
The vector field g, which we call the “guide field,” is generated based on a small set of curves
carrying information about how key image edges in Ωh\(Dh ∪ Bh) should be continued into
Dh. These curves provide an intuitive mechanism by which the user can influence the results
of inpainting (see Figure 3).

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2061

(a) Automatically generated
splines.

(b) After user adjustment. (c) Close-up of the resulting guide
field.

Figure 3. Generating the guide field g (c) based on splines automatically generated by Guidefill (a) and
edited by the user (b).

Coherence transport also utilizes a vector field g(x), but it is calculated concurrently with
inpainting. Precomputing the guide field ahead of time is an advantage because the guide
field contains information that can be used to automatically compute a good pixel ordering,
avoiding artifacts such as Figure 8. At step k of our algorithm, given any pixel x ∈ ∂activeD

(k)
h

due to be filled, our algorithm decides based on g(x) whether to allow x to be filled, or to wait
for a better time. Our test amounts to checking whether or not enough pixels have already
been inpainted in the area pointed to by g(x) and is discussed in greater detail in section 3.4.

The method begins with the user either drawing the desired edges directly onto the image
as Bézier splines using a GUI (Graphic User Interface), or else by having a set of splines
automatically generated for them based on the output of a suitable edge detection algorithm
run on Ωh\(Dh ∪ Bh). In the latter case, the user may either accept the result or else use it
as a starting point which they may improve upon by editing and/or removing existing splines
as well as drawing new ones. This is illustrated in Figure 3.

Next, the idea is to choose g(x) to be 0 when x is far away from any splines (e.g., more
than a small number of pixels—around ten by default) and “parallel” to the splines when x
is close. Details are provided in section 3.2.

The purpose of the guide field is to ensure that the inpainting will tend to follow the
splines wherever they are present. To accomplish this, at step k of our algorithm a given
pixel x ∈ ∂activeD

(k)
h due to be inpainted is “filled” by assigning it a color equal to a weighted

average of its already filled neighbors, with weights biased in favor of neighboring pixels y
such that y − x is parallel to g(x). This is accomplished using the weight function

(3.2) wε(x,y) =
1

‖y − x‖
exp

(
− µ

2

2ε2
(g⊥(x) · (y − x))2

)
,

(introduced in coherence transport [7]), where µ > 0 is a positive parameter and ε > 0 is the
radius of the neighborhood Aε,h(x). However, whereas the sum in coherence transport is taken
over the filled portion of the discrete ball Aε,h(x) = Bε,h(x) aligned with the image lattice, we
sum over the available “pixels” within a rotated ball Aε,h(x) = B̃ε,h(x) aligned with the local

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2062 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

(a) Aε,h(x) = Bε,h(x). (b) Aε,h(x) = B̃ε,h(x). (c) Illustration of the (normalized)
weights (3.2) for µ = 10.

Figure 4. Illustration of the neighborhoods Aε,h(x) and weights (3.2) used by coherence transport and
Guidefill. In each case ε = 3px and g(x) = (cos 73◦, sin 73◦). Coherence transport (a) uses the lattice-aligned
discrete ball Aε,h(x) = Bε,h(x), while Guidefill (b) uses the rotated discrete ball Aε,h(x) = B̃ε,h(x). The ball
B̃ε,h(x) is rotated so that it is aligned with the line L (shown in red) passing through x parallel to g(x). In
general B̃ε,h(x) contains “ghost pixels” lying between pixel centers, which are defined using bilinear interpolation
of their “real” pixel neighbors. Both use the same weights (3.2) illustrated in (c). The parameter µ controls the
extent to which the weights are biased in favor of points lying on or close to the line L.

guide direction g(x); see Figure 4 for an illustration. The color uh(x) is then computed using
the formula in Algorithm 1, taking Aε,h(x) = B̃ε,h(x) and using weights (3.2). Coherence
transport “fills” a pixel using exactly the same formula, except that now Aε,h(x) = Bε,h(x).

Unlike in coherence transport, however, our neighborhood Aε,h(x) = B̃ε,h(x) is not axis
aligned (unless g(x) is parallel to e1 or e2), and this means that in general we have to evaluate
uh between pixel centers, which we accomplish by extending the domain of uh at step k from
Ωh\(D

(k)
h ∪Bh) to Ω\(D(k) ∪B) using bilinear interpolation. That is, we define

(3.3) uh(x) =
∑
y∈Ωh

Λy,h(x)uh(y) for all x ∈ Ω\(D(k) ∪B),

where {Λy,h}y∈Ωh denotes the basis functions of bilinear interpolation. Note that the con-
tinuous sets B and D(k) have been defined so that they include a one pixel wide buffer zone
around their discrete counterparts, ensuring that bilinear interpolation is well defined outside
D(k) ∪ B. The reason for the introduction of B̃ε,h(x) is to avoid a “kinking” phenomenon
whereby isophotes given a guidance direction g(x) instead extrapolate along g∗(x) 6= g(x).
This is discussed in detail in sections 3.3 and 4. But first we describe our process of spline
detection and the generation of the guide field, and how this is done in such a way as to avoid
a second “kinking” phenomenon in the computation of g(x) itself.

Remark 3.1. Note that although the weights (3.2) have a pole at y = x, because uh(x) is
expressed as a weighted average of its already filled neighbors, the weights wε(x,y) are never
evaluated at y = x, and so this has no effect.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2063

3.2. Automatic spline detection and creation of the guide field. The goal of automatic
spline detection is to position splines as straight lines in areas near the active boundary of
the inpainting domain where we have detected a strong edge. These splines are lengthened so
that they extend into the inpainting domain and may be edited by the user before being used
to construct the guide field.

A one pixel wide ring R is computed a small distance from ∂activeDh in the undamaged
area Ωh\(Dh ∪Bh) (as we will see in the next subsection, this dilation of R from ∂activeDh is
crucial for obtaining an accurate orientation of extrapolated isophotes).

We then run a version of Canny edge detection [11] on an annulus of pixels containing
the ring and check to see which pixels on the ring intersect a detected edge. Portions of the
annulus not labeled as belonging to the current object are ignored. For those pixels which do
intersect a detected edge, we draw a spline in the direction of the edge beginning at that pixel
and extending linearly into the inpainting domain.

The direction of the edge is calculated based on the structure tensor [43]

(3.4) Jσ,ρ := gρ ∗ (∇uσ ⊗∇uσ), where uσ := gσ ∗ uh

(and where gσ is a Gaussian centered at 0 with variance σ2, ⊗ denotes the tensor product,
∇ denotes the centered difference approximation to the gradient, and ∗ denotes convolution),
evaluated at the point xbase ∈ R. By xbase, we mean a pixel on the annulus R intersecting
one of the edges detected by Canny edge detection. It is called xbase because it is the base
point from which we will draw a spline extending into Dh. In practice the above convolutions
are truncated to windows of size (4σ + 1)2, (4ρ+ 1)2, respectively, so in order to ensure that
Jσ,ρ(xbase) is computed accurately we have to ensure that R is far enough away from Dh∪Bh
that neither patch overlaps it. Note that our approach is different from that of coherence
transport [7, 27] (later adopted by Cao et al. [12]), which proposes calculating a modified
structure tensor directly on ∂activeDh. As we will show shortly, the modified structure tensor
introduces a kinking effect, and so we do not use it. Once Jσ,ρ(xbase) has been calculated for
a given spline Γ, we assign Γ a direction based on the vector gΓ,

gΓ := ± tanh
(
λ+ − λ−

Λ

)
v−,

where (λ±,v±) are the maximal and minimal eigenpairs of Jσ,ρ(xbase), respectively, Λ is a
constant that we fix at Λ = 10−5 by default, and the sign of gΓ is chosen in order to point
into Dh. Then, the guide field g at a point x ∈ Dh is computed by first finding the spline Γx
closest to x, and then applying the formula

g(x) = gΓxe
− d(x,Γx)2

2η2 ,

where d(x,Γx) is the distance from x to Γx and η > 0 is a constant that we set at η = 3px by
default. In practice, if d(x,Γx) > 3η, we set g(x) = 0.

3.2.1. Kinking artifacts created by the modified structure tensor and their resolution.
Coherence transport operates by computing for each x ∈ ∂Dh a local “coherence direction”

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2064 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

g(x) representing the orientation of isophotes in Ωh\(Dh∪Bh) near x. Inspired by the success
of the structure tensor (3.4) as a robust descriptor of the local orientation of complete images,
but also noting that Jσ,ρ(x) is undefined when x ∈ ∂Dh, the authors proposed the modified
structure tensor
(3.5)

Ĵσ,ρ(x) :=

(
gρ ∗

(
1

Ωh\(D
(k)
h ∪Bh)

∇vσ ⊗∇vσ
))

(x)(
gρ ∗ 1

Ωh\(D
(k)
h ∪Bh)

)
(x)

, where vσ :=
gσ ∗

(
1

Ωh\(D
(k)
h ∪Bh)

uh

)
gσ ∗ 1

Ωh\(D
(k)
h ∪Bh)

,

which has the advantage that it is defined even for x ∈ ∂Dh. (Note the use of vσ as opposed
to uσ in (3.5). This notation was introduced in [7] because uσ is already defined in (3.4).)
The authors provide no theoretical justification for Ĵσ,ρ(x) but instead argue that it solves
the problem “experimentally.” However, closer inspection shows that the modified structure
tensor is an inaccurate description of the orientation of undamaged isophotes near x when the
latter is on or near ∂Dh. We illustrate this using the simple example of inpainting the lower
half plane given data in the upper half plane consisting of white below the line y = x and gray
above it (Bh = ∅ in this case). We take σ = 2, ρ = 4. This is presented in Figure 5(a), where
the inpainting domain is shown in red and where we also show two square neighborhoods of
size (4σ + 1)2, both centered at points on the line y = x, but with one center at point A on
∂Dh, and the other at point B ∈ Ωh\Dh, which is far away enough from Dh that neither it
nor the larger neighborhood of size (2ρ+1)2 (not shown) overlaps with Dh. The core problem
lies in the “smoothed” version vσ of u, which for pixel A is computed based on a weighted
average of pixel values only in the top half of the box above y = 0. Ideally, vσ sitting on the
line y = x should be half way between gray and white. However, as the weights are radially
symmetric and the “angular wedge” of the partial box centered at A contains far more gray
pixels than it does white, at point A we end up with a color much closer to gray. This results
in a curvature of the level curves of vσ that can be seen in Figure 5(b). The result is that the
modified structure tensor at point A has an orientation of 57◦ (off by 12◦), whereas the regular
structure tensor, which is defined at point B since point B is far enough away from Dh to be
computed directly, predicts the correct orientation of 45◦. Figures 5(c)–(d) show the results
of inpainting using, respectively, the minimal eigenvalue of modified structure tensor at point
A and the structure tensor at point B as the guidance direction. This is why in section 3.2
we backed our splines up from the inpainting domain and computed their orientation using
the structure tensor rather than the modified structure tensor.

Remark 3.2. In some ways our spline-based approach resembles the earlier work by Mas-
nou and Morel [29] and later Cao et al. [12] in which level lines are interpolated across the
inpainting domain by joining pairs of “compatible T-junctions” (level lines with the same gray
value intersecting the boundary with opposite orientations). This was done first as straight
lines [29], and later as Euler spirals [12]. An O(N3) algorithm was proposed in [12] for joining
compatible T -junctions, where N is the number of such junctions. This could be beneficial in
situations such as Figure 3(a)–(b), where a similar process was done by hand in the editing
step.

However, our situation is different because we no longer have a simple interpolation prob-
lem; in particular, instead of an inpainting domain surrounded on both sides by usable pixels,

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2065

(a) Points A, B and
their respective neigh-
borhoods of size (4σ +
1)2.

(b) The isocontours of
vσ used to compute the
modified structure ten-
sor (3.5) bend near point
A.

(c) Inpainting using
Guidefill with g calcu-
lated at point A using
the modified structure
tensor (3.5).

(d) Inpainting using
Guidefill with g calcu-
lated at point B using
the ordinary structure
tensor (3.4).

Figure 5. Kinking induced by the modified structure tensor. Consider the simple problem shown in (a)
of extending a 45◦ line into the inpainting domain (red). A first step is to measure the orientation of this
line, which coherence transport proposes to do directly on ∂Dh, at point A, using the modified structure tensor
Ĵσ,ρ (3.5) (with σ = 2, ρ = 4). However, as can be seen in (b), the level lines of vσ, a smoothed version of
u computed as an intermediate in (3.5) (as noted in the text, the notation vσ was introduced in [7] because
the ordinary structure tensor (3.4) already defines a uσ), bend in the vicinity of ∂Dh. The resulting guidance
direction gA (computed at A using the modified structure tensor) makes an angle of 57◦ with the horizontal, off
by 12◦ from the correct value of 45◦ obtained by evaluating the ordinary structure tensor (3.4) at B. (c)–(d)
show the results of inpainting using Guidefill with guidance directions gA and gB, respectively.

we now typically have Dh with usable pixels on one side, and bystander pixels on the other
(for example, pixels belonging to some foreground object as in Figure 1(f)). In some cases we
might get around this by searching the perimeter of Dh ∪Bh, as opposed to just the perimeter
of Dh, for compatible T-junctions. However, this will not always work. For example, consider
the problem of inpainting a compact object in the midground partially occluded by something
in the foreground. In this case the usable pixels Ωh\(Bh ∪ Dh) may be a small island en-
tirely surrounded by Bh ∪Dh. In such cases our problem is clearly no longer interpolation but
extrapolation, and it does not make sense to talk about joining compatible T-junctions.

Nevertheless, following the definition of “compatibility” given in [12], one way of incorpo-
rating this idea would be to declare two splines S1 and S2 based at x(1)

base and x(2)
base “compatible”

if
(∇uσ(x(1)

base) · TR(x(1)
base))(∇uσ(x(2)

base) · TR(x(2)
base)) < 0,

where uσ is given by (3.4) and TR(x) denotes the unit positively oriented tangent vector to
the ring R evaluated at x ∈ R. Compatible splines could then be further tested by comparing
patches around the base of each, with the patches rotated according to the orientation of the
spline. Those with a high match score could be tentatively joined, with the user given the
option to accept or reject this. However, this is beyond the scope of the present work.

3.3. Resolving additional kinking artifacts using ghost pixels. The last section showed
how coherence transport can cause extrapolated isophotes to “kink” due to an incorrect mea-
surement of the guidance direction g, and how this is overcome in Guidefill. In this section,
we briefly go over a second kinking effect that can occur even when g is known exactly, and

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2066 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

(a) Coherence transport (θ = 90◦). (b) Guidefill (θ = 90◦).

(c) Coherence transport (θ = 73◦). (d) Guidefill (θ = 73◦).

Figure 6. Connecting broken lines using coherence transport (left column) and Guidefill (right column).
When the line to be extrapolated is vertical (θ = 90◦), both methods are successful. However, when the line is
rotated slightly (θ = 73◦), coherence transport causes the extrapolated line to “kink,” whereas Guidefill continues
to produce a successful connection. A theoretical explanation for this phenomenon is provided in Theorem 4.1
and illustrated in Figure 9.

how Guidefill overcomes this as well. More details and a theoretical explanation are provided
by our continuum analysis in section 4.

Figure 6 illustrates the use of coherence transport and Guidefill, each with ε = 3px and
µ = 50, for connecting a pair of broken lines. In each case both methods are provided the
correct value of g. When the line to be extrapolated is vertical (θ = 90◦), both methods
are successful. However, when the line is rotated slightly (θ = 73◦), coherence transport
causes the extrapolated line to “kink,” whereas Guidefill makes a successful connection. This
happens because coherence transport is trying to bias inpainting in favor of those pixels y
in the partial ball Bε,h(x) ∩ (Ωh\(D(k) ∪ B)) sitting on the line L passing through x in the
direction g(x), but in this case Bε,h(x) contains no such pixels (other than x itself, which
is excluded as it has not been inpainted yet); see Figure 4(a). Instead coherence transport
favors the pixel(s) closest to L, which in this case happens to be y = x+ (0, h). Since y−x is
in this case parallel to (0, 1), isophotes are extrapolated along g∗(x) = (0, 1) instead of along
g(x) as desired. This implies that inpainting can only be expected to succeed when g(x) is
of the form g(x) = (λn, λm) for λ ∈ R, n,m ∈ Z, and n2 +m2 ≤ 9.

We resolve this problem by replacing Bε,h(x) with the rotated ball of ghost pixels B̃ε,h(x),
which is constructed in order to contain at least one “pixel” on L besides x, as illustrated in
Figure 4(b).

In Figure 7 we also illustrate the importance of ghost pixels on the nonsynthetic example
with a smoothly varying guide field shown in Figure 3. When ghost pixels are not used, the
extrapolated isophotes are unable to smoothly curve as only finitely many transport directions
are possible. The result is a break in the extrapolated isophote. On the other hand, when
ghost pixels are turned on, we get a smoothly curving isophote with no break.

3.4. Automatic determination of a good pixel order (smart order). Figures 8(a) and
8(c) show the result of inpainting using an “onion shell” fill order (where pixels are filled as soon
as they appear on the boundary of the inpainting domain), for a synthetic and nonsynthetic

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2067

(a) Ghost pixels disabled. (b) Ghost pixels turned on.

Figure 7. The effect of ghost pixels on a nonsynthetic example (ε = 3px, µ = 50). When ghost pixels are
disabled, the extrapolated isophotes are unable to smoothly curve as only finitely many transport directions are
possible.

(a) Onion shell order
(synthetic).

(b) Smart order (syn-
thetic).

(c) Onion shell order
(nonsynthetic).

(d) Smart order (non-
synthetic).

Figure 8. Importance of pixel order. When pixels are filled in a simple “onion shell” order (i.e., filled
as soon as they appear on the boundary of the inpainting domain), this creates artifacts including “clipping”
of isophotes. Our smart order (3.8) avoids this by using information from the precomputed guide field to
automatically decide when pixels should be filled.

example. In these cases extrapolated lines are cut off due to certain pixels being filled too
early. Figures 8(b) and 8(d) show the same examples using our improved fill order defined by
the ready function (3.8).

Review of pixel ordering strategies in the literature. There are at least three pixel order-
ing strategies for shell based inpainting methods currently in the literature. Sun et al. [41]
proposed having the user draw critical curves over top of the image, and then filling patches
centered on those curves first. März [27] suggested calculating nonstandard distance from
the boundary functions, and then filling pixels in an order based on those functions. Finally,
Criminisi, Pérez, and Toyama [16] compute for each p ∈ ∂Dh a patch priority function P (p)
as a product of a confidence term C(p) and a data term D(p), that is, P (p) = C(p)D(p),
where

(3.6) C(p) =

∑
q∈Ψp∩(I\Ω)C(q)

|Ψp|
and D(p) =

|∇I⊥p · np|
α

,

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2068 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

where Ψp denotes the patch centered at p, ∇⊥Ip is the orthogonal gradient to the image I
at p, α = 255, and np denotes the inward facing unit normal to the current boundary of the
inpainting domain.

Patches are then filled sequentially, with the highest priority patch filled first (note that
after a patch has been filled, the boundary changes, and certain patch priorities must be
recomputed).

Our approach. The approach of März [27] based on distance maps might seem the most
natural—and indeed there are very simple ways one might imagine constructing a distance
map given our already known splines and guide field. For example, distance could grow more
“slowly” along or close to splines, while growing at the normal rate far away from splines
where the guide field is zero. However, we chose not to go to this route because we wanted to
avoid the extra computational effort involved in computing such a map.

Instead, our approach most closely resembles the approach in Criminisi, Pérez, and
Toyama [16]. For each x ∈ ∂activeDh, we compute the ratio

(3.7) C(x) =

∑
y∈B̃ε,h(x)∩(Ω\(D(k)∪B))wε(x,y)∑

y∈B̃ε,h(x)wε(x,y)
,

where wε(x,y) is the weight function (3.2) depending implicitly on g. The ratio C measures
what fraction of ghost pixels in B̃ε,h(x) have been filled, weighted according to their impor-
tance, and plays a role similar to the confidence term in (3.6). However, because our definition
of C(x) also implicitly depends on the guide field g(x), it will be small when not much infor-
mation is available in the direction g(x), even if the majority of the ghost pixels in B̃ε,h(x)
have already been filled. In this sense it also plays a role analogous to the data term in (3.6),
which tries to ensure that the angle between ∇⊥Ip and np is not too large. However, unlike
Criminisi, Pérez, and Toyama [16], our algorithm is parallel and not sequential. Therefore,
instead of every iteration filling the pixel x ∈ ∂Dh with the highest value of C(x), at every
iteration we fill all pixels x ∈ ∂Dh for which C(x) is greater than a threshold. That is, we
define

(3.8) ready(x) = 1(C(x) > c),

where c > 0 is some small user supplied constant (c = 0.05) by default.
Possible extensions. Unlike [16], which assigns high priority to pixels with a large gradient,

(3.8) does not take into account the size of ‖g(x)‖. The result is that areas where g = 0 fill
concurrently with areas where ‖g‖ > 0. However, if one wanted to obtain an algorithm along
the lines of Sun et al. [41] where the region with ‖g‖ > 0 filled first, one would only have to
add a data term

D(x) = ‖g(x)‖
and then modify (3.8) as

(3.9) ready(x) = 1(D(x) > c2)1(C(x) > c1),

where c1 = c = 0.05 by default. For c2, one would take c2 = 0 initially, until it was detected
that the entire region ‖g‖ > 0 had been filled, after which point one could revert back to
(3.8).

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2069

3.5. GPU implementation. Here we sketch two GPU implementations of Guidefill, differ-
ing in how they assign GPU threads to pixels in Ωh. In section 5 we will analyze the time and
processor complexity of these algorithms and show that they belong to different complexity
classes. The motivation behind these algorithms is the observation that a typical HD image
contains millions of pixels, but the maximum number of concurrent threads in a typical GPU
is in the tens of thousands.2 Hence, it can be advantageous to ensure that GPU threads are
only assigned to the subset of pixels currently being worked on.

1. Guidefill without tracking. This implementation assigns one GPU thread per pixel
in Ωh, regardless of whether or not that pixel is currently being worked on. This
implementation is simplest, but for the reason above does not scale well to very large
images.

2. Guidefill with tracking. This implementation maintains a list of the coordinates of
every pixel in ∂activeDh, which it updates every iteration using a method that requires
O(|∂activeDh|) threads to do O(log |∂activeDh|) work each. This extra overhead means
a longer runtime for very small images but leads to massive savings for large images
as we can assign GPU threads only to pixels in ∂activeDh.

Implementation details of both methods are in the accompanying supplementary material
(M110373 01.pdf [local/web 6.44MB]).

4. Continuum limit. Here we present a special case of the analysis in [22], which aims
to provide a rigorous justification of the discussion in section 3.3. This is accomplished by
considering the continuum limit of uh as h→ 0 with r := ε/h ∈ N, the radius of the neighbor-
hood Aε,h(x) measured in pixels, fixed. Note that this is different from the limit considered
in [7], where first h→ 0 and then ε→ 0; see Remark 4.3. Our objective is to assume enough
complexity to explain the phenomenon we have observed, but otherwise to keep our analysis
as simple as possible. We aim to prove convergence of uh, when computed by inpainting using
coherence transport or Guidefill with guidance direction g, to u obeying a (weak) transport
equation

(4.1) ∇u · g∗ = 0,

where g∗ 6= g in general (indeed, this inequality is the source of our observed “kinking”).
We will define convergence relative to discrete Lp norms defined shortly by (4.2), and we will
see that convergence is always guaranteed for p < ∞, but not necessarily when p = ∞. We
then connect this latter point back to a known issue of progressive blurring when bilinear
interpolation is iterated [37, sect. 5].

Assumptions. We assume a constant guide direction

g(x) := g,

as this is all that is required to capture the phenomenon in question. We assume no bystander
pixels (B = ∅), and that the image domain Ω, inpainting domain D, and undamaged region
U := Ω\D are all simple rectangles

Ω = (0, 1]× (−δ, 1], D = (0, 1]2, U = (0, 1]× (−δ, 0]

2For example, the GeForce GTX Titan X is a flagship NVIDIA GPU at the time of writing and has a total
of 24 multiprocessors [2], each with a maximum of 2048 resident threads [33, Appendix G.1].

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_01.pdf

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2070 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

equipped with periodic boundary conditions at x = 0 and x = 1. We discretize D = (0, 1]2 as
an N × N array of pixels Dh = D ∩ Z2

h with width h := 1/N . We assume that h < δ/r so
that ε < δ. Given fh : Dh → R, we introduce the following discrete Lp norm for p ∈ [0,∞]:

(4.2) ‖fh‖p :=
(∑

x∈Dh

|fh(x)|ph2) 1
p , ‖fh‖∞ := max

x∈Dh
|fh(x)|.

We similarly define Ωh = Ω ∩ Z2
h, Uh = U ∩ Z2

h and assume that the pixels are ordered using
the default onion shell ordering, so that at each iteration D

(k)
h = {(ih, jh) : j > k}Ni=1.

Regularity. In [22] we consider general boundary data u0 : U → Rd with low regularity
assumptions, including but not limited to nowhere differentiable boundary data with finitely
many jump discontinuities. Here, we limit ourselves to piecewise C2 boundary data because
this is the case most relevant to image processing. To be more precise, we assume that u0 is C2

everywhere on U except for on a (possibly empty) finite set of smooth curves {Ci}Ni=0, where
N ≥ 0. We assume that the Ci intersect neither themselves nor each other, and moreover
that within 0 < x ≤ 1, −δ < y ≤ 0 each Ci can be parametrized as a smooth monotonically
increasing (or monotonically decreasing) function y = fi(x), each of which makes a nonzero
angle with the line y = 0 (that is, if fi(x∗) = 0, then f ′i(x

∗) 6= 0).
Weak solution. As we have allowed discontinuous boundary data u0, the solution to

(4.1) given boundary data u0 must be defined in a weak sense. Since we have assumed a
constant guidance direction g(x) := g and due to the symmetry of the situation, the resulting
transport direction g∗ will also be constant (we will prove this), so this is simple. As long
as g∗ · e2 6= 0, we simply define the solution to the transport problem (4.1) with boundary
conditions u(x, 0) = u0(x, 0), u(0, y) = u(1, y) to be

(4.3) u(x, y) = u0(x− cot(θ∗)y mod 1, 0),

where the mod 1 is due to our assumed periodic boundary conditions and where

θ∗ = θ(g∗) ∈ (0, π)

is the counterclockwise angle between the x-axis and a line parallel to g∗.

Theorem 4.1. Let the image domain Ω, inpainting domain D, and undamaged region U as
well as their discrete counterparts be defined as above. Similarly, assume the boundary data
u0 : U → Rd obeys the regularity conditions above and in particular that it is C2 except for on
a finite, possibly empty set of smooth curves {Ci}Ni=1, N ≥ 0, with the assumed properties.

Assume Dh is inpainted using Algorithm 1, with neighborhood

Aε,h(x) ∈ {Bε,h(x), B̃ε,h(x)}

(that is, either the neighborhood used by coherence transport or the one used by Guidefill).
Let wε(x,y) be given by (3.2) with guidance direction g(x) := g constant. Suppose we fix
r := ε/h ∈ N, assume r ≥ 2 (that is, the radius of Aε,h(x) is at least two pixels), and consider
h→ 0. Define the transport direction g∗ by

(4.4) g∗ =

∑
y∈A−r wr(0,y)y∑
y∈A−r wr(0,y)

, A−r :=
{

(y1, y2) ∈ 1
h
Aε,h(0) : y2 ≤ −1

}
.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2071

Note that A−r depends only on r. Also note that we have written wr to mean the weights (3.2)
with ε replaced by r. Let u : (0, 1]2 → Rd denote the weak solution (4.3) to the transport PDE
(4.1) with transport direction g∗ and with boundary conditions u(x, 0) = u0(x, 0), u(0, y) =
u(1, y).

Then u exists and for any p ∈ [1,∞] and for each channel 3 of u, uh we have the bound

(4.5) ‖u− uh‖p ≤ Kh
1
2p

if {Ci} is nonempty and

(4.6) ‖u− uh‖p ≤ Kh

independent of p otherwise (that is, if u0 is C2 everywhere). Here K is a constant depending
only on u0 and r.

Remark 4.1. The transport direction g∗ predicted by Theorem 4.1 has a simple geometric
interpretation. It is the average position vector or center of mass of the set A−r with respect
to the normalized weights wr (3.2). This is true regardless of whether or not A−r is axis
aligned. For coherence transport and Guidefill, we give the set A−r the special names b−r and
b̃−r , respectively. For g 6= 0 they are given by

b−r := {(n,m) ∈ Z2 : n2 +m2 ≤ r2,m ≤ −1},
b̃−r := {nĝ +mĝ⊥ : (n,m) ∈ Z2, n2 +m2 ≤ r2, nĝ · e2 +mĝ⊥ · e2 ≤ −1},

where ĝ := g/‖g‖ (if g = 0 we set b̃−r = b−r). These sets can be visualized by looking at the
portion of the balls in Figure 4(a)–(b) below the line y = −1. The limiting transport directions
for coherence transport and Guidefill, denoted by g∗c.t. and g∗g.f., respectively, are then given by

(4.7) g∗c.t. =

∑
y∈b−r wr(0,y)y∑
y∈b−r wr(0,y)

and g∗g.f. =

∑
y∈b̃−r wr(0,y)y∑
y∈b̃−r wr(0,y)

.

Although these formulas differ only in the replacement of a sum over b−r with a sum of over
b̃−r , this difference is significant, as is explored in Figure 9.

Proof. Here we prove the easy case where u0 is C2 everywhere and Aε,h(x) contains no
ghost pixels, that is, Aε,h(x) ⊂ Z2

h. For the case where Aε,h(x) contains ghost pixels lying
between pixel centers and for u0 with lower regularity, we refer the reader to [22]. We also
only prove the case p =∞, as p <∞ follows trivially since the bound is independent of p in
this case. We use the notation x := (ih, jh) interchangeably throughout.

First note that the symmetry of the situation allows us to rewrite the formula in Algorithm
1 as

uh(x) =

∑
y∈A−r wr(0,y)uh(x + yh)∑

y∈A−r wr(0,y)
.

3Remember that u, u0, and uh are all vector valued. We could have made this more explicit by writing
u(i)−u(i)

h in (4.5), (4.6) to emphasize that it holds channelwise for each i = 1, . . . , d, but we felt that this would
lead to too much clutter.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2072 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

Next we note that A−r is nonempty, since we assume Aε,h(x) ∈ {Bε,h(x), B̃ε,h(x)} and r ≥ 2
(we leave it as an exercise to the reader that no matter how we rotate B̃ε,h(x), this is always
true). Since A−r 6= ∅, it follows that g∗ (4.4) is defined, and moreover g∗ · e2 6= 0. This was
the condition we needed to ensure that u is defined.

Now that we know u exists, let us define eh := uh − u. Then it suffices to prove

(4.8) |eh(x)| ≤ Kh

for all x ∈ Dh, where K > 0 is a constant independent of x. To prove this, we make use of
the fact that since u0 is C2, u is as well, and so there is a D > 0 s.t. ‖Hu‖2 ≤ D uniformly
on (0, 1]2, where Hu denotes the Hessian of u and ‖ · ‖2 is the usual operator norm induced
by the vector 2-norm (moreover, this D depends only on u0). We will use this to prove the
stronger condition that for any 1 ≤ i, j ≤ N we have

(4.9) |eh(ih, jh)| ≤ jDr2h2,

from which (4.8) follows with K = Dr2 since j ≤ N = 1/h.
We proceed by induction, supposing that (4.9) holds for all (i′h, j′h) with 1 ≤ i′ ≤ N and

j′ < j (the base case j = 0 is obvious). Applying our inductive hypothesis and expanding u
to second order, we obtain

|eh(ih, jh)| ≤
∑

y∈A−r wr(0,y)|eh(x + yh)|∑
y∈A−r wr(0,y)

+

∣∣∣∣∣
∑

y∈A−r wr(0,y)u(x + yh)− u(x)∑
y∈A−r wr(0,y)

∣∣∣∣∣
≤ (j − 1)Dr2h2 +

∣∣∣∣∣∇u(x) ·
∑

y∈A−r wr(0,y)yh∑
y∈A−r wr(0,y)

∣∣∣∣∣+Dr2h2

= jDr2h2 + |h∇u(x) · g∗︸ ︷︷ ︸
=0

|,

where we have used the fact that when x = (ih, jh) and y ∈ A−r , then (x+yh) is of necessary
form (i′h, j′h) with 1 ≤ i′ ≤ N and j′ < j needed for our inductive hypothesis to hold.

4.1. Consequences. Theorem 4.1 helps us to understand two important features of the
class of algorithms under study. First, it helps us to understand a kinking phenomenon
Guidefill aims to overcome. Second, it will help us to understand a new phenomenon Guidefill
introduces (and, indeed, a limitation of the method)—the gradual degradation of the signal
due to repeated bilinear interpolation.

4.1.1. Kinking. Figure 9 illustrates the significance of Theorem 4.1 by plotting the phase
θ(g∗c.t.) and θ(g∗g.f.) of the theoretical limiting transport directions of coherence transport and
Guidefill, respectively, (4.7) as a function of the phase θ(g) of the guidance direction g. The
cases ε = 3h and ε = 5h are considered (coherence transport [7] recommends ε = 5h by
default) with µ→∞. For coherence transport we have θ(g∗) 6= θ(g) except for finitely many
angles, explaining the kinking observed in practice. On the other hand, for Guidefill we have
θ(g∗) = θ(g) (in other words, no kinking) for all angles greater than a minimum value. We
refer the reader to [22] for additional details.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2073

(a) Coherence transport, r = 3. (b) Coherence transport, r = 5.

(c) Guidefill, r = 3. (d) Guidefill, r = 5.

Figure 9. The theoretical limiting curves θ∗ = θ(g∗c.t.) (coherence transport (a)–(b)) and θ∗ = θ(g∗g.f.)
(Guidefill (c)–(d)) as a function of θ = θ(g), with g∗c.t. and g∗g.f. given by (4.7), and where g is the desired
guidance direction fed into the weights (3.2). We set r := ε/h = 3, 5 and consider µ → ∞. The ideal
curve θ∗ = θ is highlighted in red. The limiting guide directions g∗c.t. and g∗g.f. are related by (4.4) to the
weights (3.2) as well as the distribution of sample points within Aε,h(x). Coherence transport makes the choice
Aε,h(x) = Bε,h(x), leading to the “kinking” observed in (a)–(b), where θ∗ 6= θ for all but finitely many angles.
The choice Aε,h(x) = B̃ε,h(x) made by Guidefill is largely able to avoid this and exhibits no kinking for all
angles greater than a critical minimum; see Remark 4.2 as well as [22] for more details.

Remark 4.2. In order to understand the kinking of Guidefill shown in Figure 9(c)–(d) at
small angles for g 6= 0 and µ� 1, it is helpful to consider the decomposition

B̃ε,h(x) = `ε,h(x) ∪ (B̃ε,h(x)\`ε,h(x)), where `ε,h(x) := {x + εkĝ}rk=−r ,

where ĝ := g/‖g‖, and where r := ε/h ∈ N as usual. If `ε,h(x)∩ (Ωh\(D
(k)
h ∪Bh)) 6= ∅, that is,

if `ε,h(x) contains readable ghost pixels, then under the assumptions of Theorem 4.1 one may
readily show that g∗g.f. given by (4.7) obeys g∗g.f. = g. The kinking observed for small angles in
Figure 9(c)–(d) occurs when `ε,h(x) contains no readable pixels, that is,

(4.10) `ε,h(x) ∩ (Ωh\(D
(k)
h ∪Bh)) = ∅.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2074 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

In practice, the smart order proposed in section 3.4 is likely to detect this situation. Since
the weights (3.2) concentrate most of their mass in `ε,h(x) when µ is large, in this case we
can expect the confidence term (3.7) to be small and the smart order test (3.8) will tell the
algorithm to delay the filling of x. If at a later iteration (4.10) no longer holds, (3.8) should
be satisfied and inpainting can resume with no kinking.

Remark 4.3. The limiting transport direction g∗ predicted by Theorem 4.1 is similar to the
transport direction predicted by Bornemann and März in [7] (Theorem 1). The key difference
is that while Bornemann and März considered the double limit where h→ 0 and then ε→ 0,
we consider the single limit (h, ε) → (0, 0) with r = ε/h fixed, which we argue in [22] is
more relevant. The result is that whereas [7] obtains a formula for g∗ as an integral over a
(continuous) half-ball, our g∗ is a finite sum over a discrete half-ball. In particular, when
Aε,h(x) = Bε,h(x) as in coherence transport, the following predictions are obtained for the
limiting transport direction (note that we write wr and w1 to mean the weights (3.2) with ε
replaced by r and 1, respectively):

g∗März =

∫
y∈B−1 (0)w1(0,y)ydy∫

y∈B−1 (0)w1(0,y)
, g∗ours =

∑
y∈b−r wr(0,y)y∑
y∈b−r wr(0,y)

,

where

B−1 (0) := {(x, y) ∈ R2 : x2 + y2 ≤ 1 and y < 0},
b−r := {(n,m) ∈ Z2 : n2 +m2 ≤ r2 and m ≤ −1}.

Our discrete sum g∗ours predicts the kinking observed by coherence transport in practice, whereas
the integral g∗März does not.

4.1.2. Signal degradation. Theorem 4.1 says that when u0 has jump discontinuities, we
can expect convergence in Lp for all 1 ≤ p <∞, but potentially with a gradually deteriorating
rate and with no guarantee of convergence when p = ∞. This suggests that our method
may have a tendency to gradually blur an initially sharp signal. Indeed, our method is
based on bilinear interpolation, and a known property of the repeated application of bilinear
interpolation is to do just that; see, for example, [37, sect. 5]. Moreover, this blurring is
plainly visible in Figure 5(c)–(d). To explore this phenomenon, we considered the continuum
problem of inpainting the line

tan(73◦)− 0.1 ≤ y ≤ tan(73◦) + 0.1

over the image domain Ω = [−1, 1] × [−0.5, 0.5] and inpainting domain D = [−0.8, 0.8] ×
[−0.3, 0.3]. We then used Guidefill to solve the discrete inpainting problem at four different
image resolutions: 200×100px, 400×200px, 4000×2000px, and 8000×4000px. In each case,
we examined a horizontal cross-section of the solution at three places: y = 0.3, the boundary
of the inpainting domain where the signal is perfect, y = 0.25, a short distance inside the
inpainting domain, and y = 0, the midpoint of the domain where we can expect maximal
deterioration. The results are given in Figure 10.

There is indeed signal degradation, most significantly for low-resolution problems, and it
does indeed get worse as we move further into the inpainting domain. This is a limitation of

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2075

(a) (b)

(c) (d)

Figure 10. Signal degradation and Lp convergence of Guidefill. The continuum problem of inpainting the
line tan(73◦) − 0.1 ≤ y ≤ tan(73◦) + 0.1 with image domain Ω = [−1, 1] × [−0.5, 0.5] and inpainting domain
D = [−0.8, 0.8] × [−0.3, 0.3] is rendered at a variety of resolutions and inpainted each time using Guidefill.
Examining cross-sections of uh at y = 0.3 (on the boundary of Dh), y = 0.25 (just inside), and y = 0 (in
the middle of Dh), we notice a gradual deterioration of the initially sharp signal. This deterioration is to be
expected as our method is based on iterated bilinear interpolation, which is known to have this effect [37, section
5]. However, also note that, in accordance with Theorem 4.1, the signal is less degraded in higher resolution
images, even though we have applied more bilinear interpolation operations.

our method, especially for thin edges to be extrapolated across long distances. However, also
note that, as predicted by Theorem 4.1, when we increase the image resolution, the degree of
degradation drops significantly, even though we are applying many more bilinear interpolation
operations.

4.2. Formation of shocks. A disadvantage of the shell based approach in Algorithm
1 is the potential to create a shock in the middle of Dh, where image values propagated
from initially distant regions of ∂Dh meet; see Figure 11(a)–(b) for a simple example. One
way of understanding this is based on the connection to 1st-order transport obtained in the
continuum. This was anticipated by Ballester et al. [4], who noted that the boundary value

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2076 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

(a) An inpainting problem with
incompatible boundary condi-
tions. The inpainting domain Dh
is in gray, and the skeleton Σ is
drawn in black.

(b) Inpainting using Guidefill. A
shock is formed on the skeleton
set Σ shown in (a).

(c) Inpainting by solving the
second order elliptic equation
−ε∆u + ux = 0 with ε = 10−7.
Shocks are prevented, but the so-
lution (using GMRES) becomes
much more expensive.

Figure 11. Creation of shocks by Algorithm 1. When Algorithm 1 is used to inpaint problems with incom-
patible boundary conditions, such as the problem illustrated in (a) of inpainting a stripe that is red on one end
and green on the other, the result may contain shocks as in (b). These shocks can be understood by adopting the
framework proposed in [7, 28], where the output of Algorithm 1 under a high-resolution and vanishing viscosity
limit is shown to be equivalent to the solution of a first order transport equation on D\Σ, where Σ is a set of
measure zero containing any potential shocks. Ballester et al. [4] suggested overcoming this problem by adding
a diffusive term −ε∆u to the transport equation and taking ε → 0. As can be seen in (c), in this case the
formation of shocks is prevented, but the algorithm becomes much more expensive, in this case requiring several
minutes for GMRES [36] to converge on a 200×200px inpainting domain (Guidefill by contrast took only 60ms).

problem

(4.11) c(x) · ∇u = 0 in D, u = ϕ on ∂D

(obtained as a special case of their inpainting framework) does not have an obvious solution.
Indeed, the integral curves of c(x), each with a beginning and endpoint on ∂D, may have
incompatible values of ϕ at those endpoints. To resolve this issue they suggested, among
other things, adding a diffusive term −ε∆u to (4.11) to make it well posed, and then taking
ε → 0. See Figure 11(c), where we solve the resulting nonsymmetric linear system with
ε = 10−7 using GMRES (the Generalized Minimum RESidual method for nonsymmetric
linear systems) [36]. In a series of papers [7, 27, 28] März took a different approach. First he
showed that Algorithm 1 (with Bh = ∅ and under other assumptions) reduces to (4.11) with
D replaced by D\Σ in a high-resolution and vanishing viscosity limit [7, Theorem 1]. The set
Σ is a set of measure zero containing any potential shocks. Then he showed that (4.11) is well
posed on D\Σ. The set Σ is related to a distance map prescribing the order in which pixels
are filled, so by choosing the distance map carefully one can in some cases eliminate shocks
and in other cases at least have some control over where they appear [27].

In our case this issue is less significant as we only specify boundary data on ∂activeDh ⊂
∂Dh. Indeed, as long as the integral curves of c(x) do not cross and always have one endpoint
on ∂activeDh and the other on ∂Dh\∂activeDh, we avoid the issue altogether. However, there
is nothing about our framework that explicitly prevents the formation of shocks, and indeed
they do sometimes occur; see, for example, Figure 15(f).

5. Algorithmic complexity. In this section we analyze the complexity of the two imple-
mentations of Guidefill sketched in section 3.5 as parallel algorithms. Specifically, we analyze
how both the time complexity T (N,M) and processor complexity P (N,M) vary with N = |Dh|
and M = |Ωh\Dh|, where a time complexity of T (N,M) and processor complexity of P (N,M)

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2077

mean that the algorithm can be completed by O(P (N,M)) processors in O(T (N,M)) time
per processor. See, for example, [35, Chap. 5] for a more detailed discussion of the time and
processor complexity formalism for parallel algorithms.

We assume that Guidefill is implemented on a parallel architecture consisting of p proces-
sors working at the same time in parallel. We further assume that when Guidefill attempts to
run P > p parallel threads such that there are not enough available processors to comply, the
P threads are run in dP/pe sequential steps. In reality, GPU architecture is not so simple;
see, for example, [33, Chap. 4] for a discussion of GPU architecture, and, for example, [25] for
a more realistic theoretical model. We do not consider these additional complexities here.

In Theorem 5.1 we derive a relationship between the time and processor complexities
T (N,M), P (N,M) and the number of iterations K(N) required for Guidefill to terminate.
This relationship is valid in general but does not allow us to say anything about K(N) itself.
Next, in Theorem 5.2 we establish bounds on K(N) under two simplifying assumptions. First,
we assume that the inpainting domain is surrounded entirely by readable pixels—that is,
(∂outerDh)∩Bh = ∅. In particular, this means that we assume the inpainting domain does not
include the edge of the image and is not directly adjacent to pixels belonging to another object
(such as an object in the foreground). Second, we assume that the smart ordering of section
3.4 is turned off. We also include a discussion in the accompanying supplementary material
(M110373 01.pdf [local/web 6.44MB]) of what to expect in the general case. Our analysis
considers only the filling step of Guidefill after the guide field has already been constructed.

Theorem 5.1. Let N = |Dh|, M = |Ωh\Dh| denote the problem size, and let T (N,M) and
P (N,M) denote the time complexity and processor complexity of the filling step of Guidefill
implemented on a parallel architecture as described above with p available processors. Let K(N)
denote the number of iterations before Guidefill terminates. Then the processor complexity of
Guidefill with and without boundary tracking is given by

P (N,M) =

{
O(N +M) without tracking,
O(
√
N +M) with tracking,

while the time complexity is given by

T (N,M) =

{
O(K(N)) if P (N,M) ≤ p
O((N +M)K(N)) if P (N,M) > p

without tracking,

T (N) =

{
O((
√
N +K(N)) log(N)) if P (N,M) ≤ p

O((N +K(N)) log(N)) if P (N,M) > p
with tracking.

Proof. For the case of no boundary tracking Guidefill allocates one thread per pixel in Ωh;
hence P (N,M) = O(|Ωh|) = O(N +M). In this case if |Ωh| := N +M < p, then each thread
fills only one pixel and hence does O(1) work. On the other hand, if N +M > p, each thread
must fill dN+M

p e pixels. It follows that

T (N,M) ≤
K(N)∑
k=1

⌈
N +M

p

⌉
≤

{
K(N) if N +M < p,
2
p(N +M)K(N) otherwise.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_01.pdf

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2078 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

Guidefill with tracking allocates O(|∂D(k)
h |) threads per iteration of Guidefill, each of which

does O(log |∂D(k)
h |) work. This is because, as stated in section 3.5, the boundary is updated

over a series of O(log |∂D(k)
h |) parallel steps. In order to keep the processor complexity at

O(
√
N +M), we assume that in the unlikely event that more than

√
N +M threads are

requested, then Guidefill runs them in O(d |∂D
(k)
h |√

N+M
e) sequential steps each involving

√
N +M

processors. We therefore have, for
√
N +M < p,

T (N,M) ≤
K(N)∑
k=1

(
|∂D(k)

h |√
N +M

+ 1

)
C log |∂D(k)

h | ≤ C log(N)
K(N)∑
k=1

(
1 +

|∂D(k)
h |√

N +M

)
,

where the factor C > 0 comes from the hidden constants in the Big O notation. But we know
that {∂D(k)

h }
K(N)
k=1 forms a partition of Dh, so that

∑K(N)
k=1 |∂D

(k)
h | = N . Therefore,

T (N,M) ≤ C log(N)
(
K(N) +

N√
N +M

)
≤ C(

√
N +K(N)) log(N).

An analogous argument with
√
N +M in the denominator replaced by p handles the case

P (N,M) > p.

Theorem 5.2. If we make the same assumptions as in Theorem 5.1 and if we further sup-
pose (∂outerDh)∩Bh = ∅ and that the smart order test from section 3.4 is turned off, then we
additionally have

(5.1) K(N) = O(
√
N)

so that, in particular, we have T (N,M) = O(
√
N), T (N,M) = O(

√
N log(N)) for Guide-

fill without and with tracking given sufficient processors, and T (N,M) = O((N + M)
√
N),

T (N,M) = O(N log(N)), respectively, when there is a shortage of processors.

Proof. Now assume (∂outerDh) ∩Bh = ∅ and (3.8) is disabled. Then after k iterations all
pixels x such that N (k)(x) ∩ Ωh\Dh 6= ∅ will have been filled, where

N (k)(x) =
⋃

y∈N (k−1)(x)

N (y), N (1)(x) = N (x).

Therefore, if Dh has not been completely filled after k iterations, there must exist a pixel
x∗ ∈ Dh such that N (k)(x∗) ⊆ Dh. However, it is easy to see that |N (k)(x∗)| = (2k + 1)2.
But since |Dh| = N , after k = d

√
N/2e iterations N (k)(x∗) will contain more pixels than Dh

itself and cannot possibly be a subset of the latter.
This proves that Guidefill terminates in at most d

√
N/2e iterations, and hence K(N) =

O(
√
N).

6. Numerical experiments. In this section we aim to validate our method as a practical
tool for 3D conversion, and also to validate the complexity analysis of section 5. We have
implemented Guidefill in CUDA C and interfaced with MATLAB. Our experiments were run

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2079

on a laptop with a 3.28GHz Intel i7 − 4710 CPU with 20GB of RAM and a GeForce GTX
970M GPU.4

6.1. 3D conversion examples. We tested our method on a number of HD problems, in-
cluding the four photographs shown in Figure 12 and the video illustrated in Figure 13. The
photographs were converted into 3D by building rough 3D geometry and creating masks for
each object, as outlined in section 2. For the movie, we used a computer generated model
with existing 3D geometry and masks,5 as generating these ourselves on a frame by frame
basis would have been far too expensive (indeed, in the industry this is done by teams of
artists and is extremely time-consuming). One advantage of this approach is that it gave us
a ground truth to compare against, as in Figure 13(k). Please see also the accompanying
supplementary material, where our results can be viewed in video form (M110373 02.mp4 [lo-
cal/web 973KB], M110373 03.mp4 [local/web 857KB], M110373 04.mp4 [local/web 833KB],
M110373 05.mp4 [local/web 826KB], M110373 06.mp4 [local/web 817KB]) and in anaglyph
3D (anaglyph glasses required). Timings for Guidefill are given both with and without the
boundary tracking as described in section 3.5.

As has been noted in the related work, the literature abounds with depth-guided variants
of Criminisi’s method [16] designed for the disocclusion step arising in 3D conversion using the
depth-map based pipeline discussed in section 2.2 (see, for example, [45, 46, 17, 26, 30, 10]),
but not for the pipeline relevant to us. In particular, none of these methods are designed
to make explicit use of the bystander set Bh available to us and instead rely on heuristics.
In section 2.2, Figure 2, we have shown a simple example where with the exception of [10]
these heuristics are likely to fail. Adapting these methods to our pipeline where depth map
inpainting is unnecessary would require considerable effort and fine tuning. Therefore, rather
than comparing with these methods, we considered it more natural to compare with our own
“bystander-aware” variant of Criminisi, adapted in an extremely simple way to incorporate
the set Bh. We simply modify Criminisi’s algorithm by setting the priority equal to 0 on
∂D

(k)
h \∂activeD

(k)
h and restricting the search space to patches that do not overlap Ωh\(Dh∪Bh).

However, we acknowledge that many of these methods also make further optimizations to
Criminisi, Pérez, and Toyama from the point of view of running time; for example, [10]
incorporates the running time improvements originally published in their earlier work [9]. We
also could have based our “bystander-aware” Criminisi on the improvement in [9]; however,
instead we note that the running time published in [10] is about 1500px/s, which is still much
slower than Guidefill, especially for high-resolution problems (see Table 1).

For the photographs, in addition to our “bystander-aware” Criminisi, we also compare the
output of Guidefill with four other inpainting methods: coherence transport [7, 27], the varia-
tional exemplar-based methods nl-means and nl-Poisson from Arias et al. [3], and Photoshop’s
Content-Aware fill. For the movie, we compare with the exemplar-based video inpainting

4The experiments involving nl-means and nl-Poisson are an exception. Because the implementation available
online does not support Windows, these experiments had to be done on a separate Linux machine with a
3.40GHz Intel i5−4670 CPU with 16GB of RAM. As a comparison, we measured the time to solve a 500×500
Poisson problem to a tolerance of 10−6 using the conjugate gradient method in MATLAB, which took 8.6s on
our Windows laptop, and 5.2s on the Linux box.

5Downloaded from http://www.turbosquid.com/ in accordance with the Royalty Free License agreement.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

M110373_02.mp4
M110373_02.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_02.mp4
M110373_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_03.mp4
M110373_04.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_04.mp4
M110373_05.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_05.mp4
M110373_06.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_06.mp4
http://www.turbosquid.com/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2080 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

(a) Wine. (b) Bust.

(c) Pumpkin. (d) Planet.

Figure 12. Example photographs used for 3D conversion of different sizes (a) 528×960px, (b) 1500×1125px,
(c) 4000× 4000px, and (d) 5000× 5000px.

method of Newson et al. [32, 31]. However, generating “bystander-aware” versions of all of
these methods would have been a significant undertaking, so we arrived at a compromise. To
avoid bleeding-artifacts like in Figure 2(c), we first ran each method using Dh ∪Bh as the in-

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2081

(a) Frame 0 (pre inpainting). (b) Frame 26 (pre inpainting). (c) Frame 100 (pre inpainting).

(d) Frame 26 detail. (e) Guidefill (pre edit). (f) Guidefill (post edit). (g) Newson’s Method.

(h) Frame 100 detail. (i) Guidefill (no edit). (j) Newson’s Method. (k) Ground Truth.

Figure 13. Comparison of Guidefill (19s with tracking, 31s without) and Newson’s method (5hr37min) for
inpainting the “cracks” (shown in red) arising in the 3D conversion of an HD video (1280px× 960px× 101fr).
Guidefill produces artifacts such as the incorrectly extrapolated window in (e), but these can be corrected as in
(f), and it is several orders of magnitude faster than Newson’s method (which also required more than 16GB
of RAM in this case). The latter produces very high quality results, but is prohibitively expensive and still
produces a few artifacts as in (j), which the user has no recourse to correct. A disadvantage of Guidefill is a
flickering as the video is viewed through time due to the frames being inpainted independently. The video is pro-
vided in the accompanying supplementary material (M110373 02.mp4 [local/web 973KB], M110373 03.mp4 [lo-
cal/web 857KB], M110373 04.mp4 [local/web 833KB], M110373 05.mp4 [local/web 826KB], M110373 06.mp4
[local/web 817KB]).

painting domain, giving the results shown. However, as this led to an unfair running time due
to the need to fill Bh, we then ran each method again using only Dh as the inpainting domain,
in order to obtain the given timings. All methods are implemented in MATLAB+ C (mex) and

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

M110373_02.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_02.mp4
M110373_03.mp4
M110373_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_03.mp4
M110373_04.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_04.mp4
M110373_05.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_05.mp4
M110373_06.mp4
http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_06.mp4

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2082 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

Table 1
Timings of different inpainting algorithms used in the conversion of the four examples in Figure 12. The

inpainting domains of “Wine,” “Bust,” “Pumpkin,” and “Planet” contain 15184px, 111277px, 423549px, and
1160899px, respectively. “Guidefill n.t.” refers to Guidefill without boundary tracking, “B.A.C.” stands for
Bystander-Aware Criminisi, and “C.T.” refers to coherence transport.

C.T. B.A.C. nl-means nl-Poisson Guidefill n.t. Guidefill
Wine 340ms 1 min 40s 41s 2min11s 233ms 261ms
Bust 2.13s 37min 23min 1hr 10min 1.34s 559ms

Pumpkin 15.7s − − − 6.66s 1.14s
Planet 28.5s − − − 4.27s 923ms

are available for download online.6 Figure 13 shows a few frames of a 1280px× 960px× 101fr
video, including the inpainting domain and the results of inpainting with both Guidefill and
Newson’s method. With the exception of a few artifacts such as those visible in Figure 13(j),
Newson’s method produces excellent results. However, it took 5hr37min to run and required
more than 16GB of RAM. In comparison, Guidefill produces a few artifacts, including the
incorrectly completed window shown in Figure 13(e). In this case the failure is because the
one pixel wide ring described in section 3.2 fails to intersect certain edges we would like to
extend. However, Guidefill requires only 19s (if boundary tracking is employed, and 31s if
it is not) to inpaint the entire video, and these artifacts can be corrected as in Figure 13(f).
However, due to the frame by frame nature of the computation, the results do exhibit some
flickering when viewed temporally, an artifact which Newson’s method avoids.

Timings for the images are reported in Table 1, with the exception of Content-Aware
fill, which is difficult to time as we do not have access to the code. We also do not provide
timings for Bystander-Aware Criminisi, nl-means, and nl-Poisson for the “Pumpkin” and
“Planet” examples as the former ran out of memory while nl-means and nl-Poisson did not
finish within two hours. However, for the “Pumpkin” example we do provide the result of
nl-Poisson run on a small region of interest. Results are given in Figures 14, 15, and 17. We
do not show the output of every method and have included only the most significant.

The first example, “Wine,” is a 528 × 960px photo. Timings are reported only for the
background object, which has an inpainting domain containing 15184px. Figure 16 shows
the detected splines for the background object and illustrates the editing process. Results
are shown in Figure 14 in two particularly challenging areas. In this case the highest quality
results are provided by nl-means and nl-Poisson, but both are relatively slow. Bystander-
Aware Criminisi and Content-Aware fill each produce noticeable artifacts. Guidefill also has
problems, most notably in the area behind the wine bottle, where the picture frame is extended
incorrectly (this is due to a spline being too short) and where additional artifacts have been
created next to the Chinese characters. These problems, however, are mostly eliminated by
lengthening the offending spline and editing some of the splines in the vicinity of Chinese
characters as illustrated in Figure 16. Guidefill is also the fastest method, although in this
case the gains are not as large as those for bigger images.

6Coherence transport: http://www-m3.ma.tum.de/bornemann/InpaintingCodeAndData.zip. Criminisi’s
method: https://github.com/ikuwow/inpainting criminisi2004. nl-means and nl-Poisson: http://www.ipol.
im/pub/art/2015/136/. Newson’s method: http://perso.telecom-paristech.fr/∼gousseau/video inpainting/.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www-m3.ma.tum.de/bornemann/InpaintingCodeAndData.zip
https://github.com/ikuwow/inpainting_criminisi2004
http://www.ipol.im/pub/art/2015/136/
http://www.ipol.im/pub/art/2015/136/
http://perso.telecom-paristech.fr/~gousseau/video_inpainting/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2083

(a) Detail one. (b) Coherence trans-
port; note the bending
of the picture frame.

(c) nl-means; good re-
sult, but slow.

(d) nl-Poisson; Chi-
nese characters are a
solid block.

(e) Content-Aware
Fill; distorted picture
frame.

(f) Guidefill (before
spline adjustment);
numerous issues.

(g) Guidefill (after ad-
justment); issues are
mostly resolved.

(h) Detail two. (i) Bystander-Aware
Criminisi; a piece of
the picture frame is
used to extrapolate
the drawing.

(j) nl-Poisson; good
result, but slow.

(k) Guidefill (before
spline adjustment);
extension of drawing
does not look natural.

(l) Guidefill (after ad-
justment); more be-
lievable extrapolation.

Figure 14. Comparison of different inpainting methods for the “Wine” example. Two challenging areas
are shown.D

ow
nl

oa
de

d
05

/1
0/

19
 to

 1
31

.1
11

.1
84

.1
02

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2084 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

The second example, “Bust,” is a 1500 × 1125px image. Timings are reported only for
inpainting the background object, which has an inpainting domain containing 111277px, and
results are shown in Figure 15(a)–(f). In this case we chose to edit the automatically detected
splines, in particular rotating one that was crooked. Once again, the nicest result is prob-
ably nl-Poisson, but an extremely long computation time is required. All other algorithms,
including Bystander-Aware Criminisi and nl-means, which are not shown, left noticeable arti-
facts. The fully automatic version of Guidefill also leaves some artifacts, but these are largely
eliminated by the adjustment of the splines. The exception is a shock visible in the inpainted
picture frame in Figure 15(f). As we noted in section 4.2, shock artifacts are an unfortunate
feature of the class of methods under consideration.

Our third example, “Pumpkin,” is a very large 4000×4000px image. Timings are reported
only for the pumpkin object, which has an inpainting domain containing 423549px. Results
are shown in Figure 15(g)–(l). We ran nl-Poisson on only the detail shown in Figure 15(g),
because it did not finish within two hours when run on the image as a whole. In this case we
edited the automatically detected splines as shown in Figure 3(a)–(b). In doing so we were
able to recover smooth arcs that most fully automatic methods would struggle to produce.
Guidefill in this case is not only the fastest method by far; it also produces the nicest result.
In this example we also see the benefits of our boundary tracking algorithm, where it leads to
a speedup by a factor of 2–3. The gains of boundary tracking are expected to be greater for
very large images where the pixels greatly outnumber the available processors.

Our final example is a fun example that illustrates how 3D conversion may be used to
create “impossible” 3D scenes. In this case the image is a 5000 × 5000px “tiny planet”
panorama generated by stitching together dozens of photographs. The choice of projection
creates the illusion of a planet floating in space; however, a true depth map would appear as
an elongated finger, as in reality the center of the sphere is only a few feet from the camera,
while its perimeter is at a distance of several kilometers. In order to preserve the illusion we
created fake spherical 3D geometry. See the accompanying supplementary material for the
full 3D effect; here we show only a detail in Figure 17. In this example the inpainting domain
is relatively wide, and the image is dominated by texture. As a result, geometric methods are
a bad choice, and exemplar-based methods are more suitable.

6.2. Validation of complexity analysis. As stated in section 5, our analysis assumes that
Guidefill is implemented on a parallel architecture consisting of p identical processors acting in
parallel. In reality, GPU architecture is more complex than this, but as a rough approximation,
we assume p = 20480, the maximum number of resident threads allowed for our particular
GPU. See the accompanying supplementary material (M110373 01.pdf [local/web 6.44MB])
for a deeper discussion.

In order to explore experimentally the time and processor complexity of Guidefill, we
considered the continuum problem of inpainting the line 0.45 ≤ y ≤ 0.55 across the inpainting
domain D = [0.4, 3.96] × [0.2, 0.8] with image domain Ω = [0, 4] × [0, 1]. This continuum
problem was then rendered at a series of resolutions varying from as low as 280 × 70px all
the way up to 4000× 1000px. The resulting series of discrete inpainting problems were solved
using Guidefill. For simplicity, smart order was disabled, and splines were turned off. In each
case, we measured the execution time T (N) of Guidefill as well as the maximum number of

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://epubs.siam.org/doi/suppl/10.1137/16M1103737/suppl_file/M110373_01.pdf

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2085

(a) Detail of “Bust.” (b) Coherence transport. (c) Content-Aware Fill.

(d) nl-Poisson. (e) Guidefill (before spline ad-
justment).

(f) Guidefill (after adjustment).

(g) Detail of “Pumpkin.” (h) Coherence transport. (i) Content-Aware Fill.

(j) nl-Poisson. (k) Guidefill (before spline ad-
justment).

(l) Guidefill (after adjustment).

Figure 15. Comparison of different inpainting methods for the “Bust” and “Pumpkin” examples. Note the
shock visible in the inpainted picture frame in (f), as discussed in section 4.2.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2086 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

requested threads P (N), with and without tracking. Results are shown in Figure 18; note the
loglog scale. In Figure 18(b) we have also indicated the value of p for comparison; note that
for Guidefill without tracking we have P (N) � p for all but the smallest problems, but for
Guidefill with tracking we have P (N) < p up until N ≈ 2× 105.

Based on Theorems 5.1 and 5.2 for Guidefill without tracking we expect T (N) ∈ O(N1.5)
for all N , but for Guidefill with tracking we expect T (N) ∈ O(N0.5 log(N)) for N up to about
105px (where P (N) ≈ p), with somewhat worse performance as N grows larger, converging
to O(N log(N)) when P (N) � p. To test these expectations we assume a power law of
T (N) ≈ ANα and solve for α using least squares. The results are α = 0.54 and α = 1.10 for
Guidefill with and without tracking, respectively. Assuming a similar power law P (N) ≈ BNβ

gives β = 1.0, β = 0.5 for Guidefill without and with tracking, respectively. These results
suggest that the analysis in section 5 does a reasonable job of predicting the rough behavior
of our method in practice.

(a) (b) (c) (d)

Figure 16. Stages of spline adjustment for the “Wine” example: (a) The automatically detected splines for
the background object. (b) Undesirable splines are deleted. (c) Deleted splines are replaced with new splines,
drawn by hand, which form a plausible extension of the disoccluded characters. (d) Some of the remaining
splines on the painting in the upper right corner are edited to form a more believable extension.

(a) Detail of “Planet.” (b) Content-Aware
Fill.

(c) Coherence trans-
port.

(d) Guidefill (no spline
adjustment).

Figure 17. Comparison of different inpainting methods for the “Planet” example. In this case geometric
methods leave noticeable artifacts, and exemplar-based methods like Content-Aware Fill are a better choice.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2087

(a) Time complexity. (b) Processor complexity.

Figure 18. Experimental time complexity T (N) and processor complexity P (N) of Guidefill with and
without boundary tracking: The continuum inpainting problem Ω = [0, 4]× [0, 1], D = [0.4, 3.96]× [0.2, 0.8] was
discretized at a variety of resolutions leading to inpainting domains with N := |Dh| varying from N ≈ 104px
up to N ≈ 106px. Results are given on a loglog scale to emphasize the approximate power law T (N) ≈ ANα,
P (N) ≈ BNβ. A least squares fit gives α = 1.1, β = 1.0 without tracking, and α = 0.54, β = 0.5 with tracking
(see section 3.5 for a review of these terms). The superior scaling law of Guidefill with tracking kicks in around
N ≈ 2 · 105. Processor complexity is compared with the maximum number of resident threads (green line).

7. Conclusions. We have presented a fast inpainting method suitable for use in the hole-
filling step of a 3D conversion pipeline used in film, which we call Guidefill. Guidefill is
non–texture based, exploiting the fact that the inpainting domains in 3D conversion tend to
be in the form of a thin “crack” such that texture can often be neglected. Its fast processing
time and its setup, allowing intuitive, user-guided amendment of the inpainting result, render
Guidefill a user-interactive inpainting tool. A version of Guidefill is in use by the stereo
artists at the 3D conversion company Gener8, where it has been used in major Hollywood
blockbusters such as Mockingjay, Pan, and Maleficent. In those cases where it is suitable,
especially scenes dominated by structure rather than texture and/or thin inpainting domains,
Guidefill produces results that are competitive with alternative algorithms in a tiny fraction
of the time. In practice, Guidefill was found to be particularly useful for movies with many
indoor scenes dominated by structure, and less useful for movies taking place mainly outdoors,
where texture dominates. Because of its speed, artists working on a new scene may apply our
method first. If the results are unsatisfactory, they can edit the provided splines or switch to
a more expensive method.

In addition to its use as an algorithm for 3D conversion, Guidefill belongs to a broader class
of fast geometric inpainting algorithms also including Telea’s algorithm [42] and coherence
transport [7, 27]. Similarly to these methods, Guidefill is based on the idea of filling the
inpainting domain in shells while extrapolating isophotes based on a transport mechanism.
However, Guidefill improves upon these methods in several important respects, including the
elimination of two forms of kinking of extrapolated isophotes. In one case this is done by
summing over a non–axis aligned ball of “ghost pixels,” which as far as we know has never
been done in the literature.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2088 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

We have also presented a theoretical analysis of our method and methods like it by con-
sidering a relevant continuum limit. Our limit, which is different from the one explored in
[7, Theorem 1], is able to theoretically explain some of the advantages and disadvantages of
both our method and coherence transport. In particular, our analysis predicts a kinking phe-
nomenon observed in coherence transport in practice but not accounted for by the analysis in
[7]. It is also able to explain how our ghost pixels are able to fix this problem, but also sheds
light on a new problem that they introduce—the progressive blurring of the extrapolated sig-
nal. Nonetheless, our analysis predicts that this latter effect becomes less and less significant
as the image resolution increases, and our method is designed with HD in mind. More details
of our analytic framework are explored in [22].

In order to make our method as fast as possible, we have implemented it on the GPU
where we consider two possible implementations. A naive implementation, suitable for small
images, simply assigns one GPU thread per pixel. For our second implementation, we propose
an algorithm to track the inpainting interface as it evolves, facilitating a massive reduction in
the number of threads required by our algorithm. This does not lead to speedup by a constant
factor; rather, it changes the complexity class of our method, leading to improvements that
become arbitrarily large as N = |Dh| increases. In practice we observed a slight decrease in
speed (compared with the naive implementation) for small images (N . 105px) and gains
ranging from a factor of 2–6 for larger images.

A current disadvantage of our method is that, in order to keep execution times low,
temporal information is ignored. In particular, splines are calculated for each frame separately,
and inpainting is done on a frame by frame basis without consideration for temporal coherence.
As a result of the former, artists must perform separate spline adjustments for every frame.
In practice we find that only a minority of frames require adjustment; however, one potential
direction for improvement is to design a system that proposes a series of animated splines to the
user, which they may then edit over time by adjusting control points and setting key frames.
Further, a procedure for enforcing temporal coherence, if it could be implemented without
significantly increasing the runtime, would be beneficial. However, these improvements are
beyond the scope of the present work.

Acknowledgment. The authors are grateful to the insightful comments of three anony-
mous referees, which greatly improved the clarity of the text.

REFERENCES

[1] https://www.gener8.com/projects/.
[2] http://www.geforce.co.uk/whats-new/articles/nvidia-geforce-gtx-titan-x.
[3] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro, A variational framework for exemplar-based

image inpainting, Internat. J. Comput. Vision, 93 (2011), pp. 319–347, https://doi.org/10.1007/
s11263-010-0418-7.

[4] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, Filling-in by joint in-
terpolation of vector fields and gray levels, IEEE Trans. Image Process., 10 (2001), pp. 1200–1211,
https://doi.org/10.1109/83.935036.

[5] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, PatchMatch: A randomized correspon-
dence algorithm for structural image editing, ACM Trans. Graphics (Proc. SIGGRAPH), 28 (2009),
24.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://www.gener8.com/projects/
http://www.geforce.co.uk/whats-new/articles/nvidia-geforce-gtx-titan-x
https://doi.org/10.1007/s11263-010-0418-7
https://doi.org/10.1007/s11263-010-0418-7
https://doi.org/10.1109/83.935036

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GUIDEFILL 2089

[6] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison–
Wesley, New York, 2000, pp. 417–424.

[7] F. Bornemann and T. März, Fast image inpainting based on coherence transport, J. Math. Imaging
Vision, 28 (2007), pp. 259–278, https://doi.org/10.1007/s10851-007-0017-6.

[8] M. Burger, L. He, and C.-B. Schönlieb, Cahn–Hilliard inpainting and a generalization for grayvalue
images, SIAM J. Imaging Sci., 2 (2009), pp. 1129–1167, https://doi.org/10.1137/080728548.

[9] P. Buyssens, M. Daisy, D. Tschumperlé, and O. Lézoray, Exemplar-based inpainting: Technical
review and new heuristics for better geometric reconstructions, IEEE Trans. Image Process., 24 (2015),
pp. 1809–1824, http://doi.org/10.1109/TIP.2015.2411437.

[10] P. Buyssens, O. Le Meur, M. Daisy, D. Tschumperlé, and O. Lézoray, Depth-guided disocclusion
inpainting of synthesized RGB-D images, IEEE Trans. Image Process., 26 (2017), pp. 525–538, https:
//doi.org/10.1109/TIP.2016.2619263.

[11] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intell., 8
(1986), pp. 679–698.

[12] F. Cao, Y. Gousseau, S. Masnou, and P. Pérez, Geometrically guided exemplar-based inpainting,
SIAM J. Imaging Sci., 4 (2011), pp. 1143–1179, https://doi.org/10.1137/110823572.

[13] T. Chan, S. Kang, and J. Shen, Euler’s elastica and curvature-based inpainting, SIAM J. Appl. Math.,
63 (2002), pp. 564–592, https://doi.org/10.1137/S0036139901390088.

[14] T. Chan and J. Shen, Variational image inpainting, Comm. Pure Appl. Math., 58 (2005), pp. 579–619.
[15] S. Choi, B. Ham, and K. Sohn, Space-time hole filling with random walks in view extrapolation for

3D video, IEEE Trans. Image Process., 22 (2013), pp. 2429–2441, https://doi.org/10.1109/TIP.2013.
2251646.

[16] A. Criminisi, P. Pérez, and K. Toyama, Region filling and object removal by exemplar-based image
inpainting, IEEE Trans. Image Process., 13 (2004), pp. 1200–1212.

[17] I. Daribo and B. Pesquet-Popescu, Depth-aided image inpainting for novel view synthesis, in 2010
IEEE International Workshop on Multimedia Signal Processing (Saint Malo, France), IEEE, Wash-
ington, DC, 2010, pp. 167–170, https://doi.org/10.1109/MMSP.2010.5662013.

[18] L. Do, G. Bravo, S. Zinger, and P. H. N. de With, GPU-accelerated real-time free-viewpoint DIBR
for 3DTV, IEEE Trans. Consumer Electron., 58 (2012), pp. 633–640, https://doi.org/10.1109/TCE.
2012.6227470.

[19] T. Dobbert, Matchmoving: The Invisible Art of Camera Tracking, Sybex, New York, 2005.
[20] C. Guillemot and O. Meur, Image inpainting: Overview and recent advances, IEEE Signal Process.

Mag., 31 (2014), pp. 127–144, https://doi.org/10.1109/MSP.2013.2273004.
[21] J. Herling and W. Broll, High-quality real-time video inpainting with PixMix, IEEE Trans. Visualiza-

tion Comput. Graphics, 20 (2014), pp. 866–879, https://doi.org/10.1109/TVCG.2014.2298016.
[22] L. Hocking, T. Holding, and C. Schönlieb, Numerical Analysis of Shell-Based Geometric Image In-

painting Algorithms and Their Semi-Implicit Extension, preprint, https://arxiv.org/abs/1707.09713,
2017.

[23] A. Kokaram, B. Collis, and S. Robinson, Automated rig removal with Bayesian motion interpolation,
IEE Proc. Vision Image Signal Process., 152 (2005), pp. 407–414, https://doi.org/10.1049/ip-vis:
20045152.

[24] Y. Lai, Y. Lai, and J. Lin, High-quality view synthesis algorithm and architecture for 2D to 3D con-
version, in Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS 2012,
Seoul, South Korea, 2012, pp. 373–376, https://doi.org/10.1109/ISCAS.2012.6272040.

[25] L. Ma, K. Agrawal, and R. Chamberlain, A memory access model for highly-threaded many-core
architectures, Future Generation Comput. Syst., 30 (2014), pp. 202–215, https://doi.org/10.1016/j.
future.2013.06.020.

[26] L. Ma, L. Do, and P. de With, Depth-guided inpainting algorithm for Free-Viewpoint Video, in Pro-
ceedings of the 19th IEEE International Conference on Image Processing (Orlando, FL), IEEE, Wash-
ington, DC, 2012, pp. 1721–1724, https://doi.org/10.1109/ICIP.2012.6467211.

[27] T. März, Image inpainting based on coherence transport with adapted distance functions, SIAM J. Imaging
Sci., 4 (2011), pp. 981–1000, https://doi.org/10.1137/100807296.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1007/s10851-007-0017-6
https://doi.org/10.1137/080728548
http://doi.org/10.1109/TIP.2015.2411437
https://doi.org/10.1109/TIP.2016.2619263
https://doi.org/10.1109/TIP.2016.2619263
https://doi.org/10.1137/110823572
https://doi.org/10.1137/S0036139901390088
https://doi.org/10.1109/TIP.2013.2251646
https://doi.org/10.1109/TIP.2013.2251646
https://doi.org/10.1109/MMSP.2010.5662013
https://doi.org/10.1109/TCE.2012.6227470
https://doi.org/10.1109/TCE.2012.6227470
https://doi.org/10.1109/MSP.2013.2273004
https://doi.org/10.1109/TVCG.2014.2298016
https://arxiv.org/abs/1707.09713
https://doi.org/10.1049/ip-vis:20045152
https://doi.org/10.1049/ip-vis:20045152
https://doi.org/10.1109/ISCAS.2012.6272040
https://doi.org/10.1016/j.future.2013.06.020
https://doi.org/10.1016/j.future.2013.06.020
https://doi.org/10.1109/ICIP.2012.6467211
https://doi.org/10.1137/100807296

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2090 L. R. HOCKING, R. MACKENZIE, AND C.-B. SCHÖNLIEB

[28] T. März, A well-posedness framework for inpainting based on coherence transport, Found. Comput.
Math., 15 (2015), pp. 973–1033, https://doi.org/10.1007/s10208-014-9199-7.

[29] S. Masnou and J. Morel, Level lines based disocclusion, in Proceedings of the International Conference
on Image Processing, ICIP 98, IEEE, Washington, DC, 1998, pp. 259–263.

[30] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle, K. Muller, and T. Wiegand,
Depth image-based rendering with advanced texture synthesis for 3-D video, IEEE Trans. Multimedia,
13 (2011), pp. 453–465, https://doi.org/10.1109/TMM.2011.2128862.

[31] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Pérez, Towards fast, generic video
inpainting, in Proceedings of the 10th European Conference on Visual Media Production, CVMP ’13,
ACM, New York, 2013, 7, https://doi.org/10.1145/2534008.2534019.

[32] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Pérez, Video inpainting of complex
scenes, SIAM J. Imaging Sci., 7 (2014), pp. 1993–2019, https://doi.org/10.1137/140954933.

[33] NVIDIA, CUDA C Programming Guide, NVIDIA, Santa Clara, CA, 2015.
[34] K. Oh, S. Yea, and Y. Ho, Hole filling method using depth based in-painting for view synthesis in free

viewpoint television and 3-D video, in Proceedings of the 27th Picture Coding Symposium, PCS’09
(Chicago, IL), IEEE, Piscataway, NJ, 2009, pp. 233–236, https://doi.org/10.1109/PCS.2009.5167450.

[35] S. Roosta, Parallel Processing and Parallel Algorithms: Theory and Computation, Springer, New York,
2000, https://doi.org/10.1007/978-1-4612-1220-1.

[36] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869, https://doi.org/10.1137/0907058.

[37] R. Sadek, G. Facciolo, P. Arias, and V. Caselles, A variational model for gradient-based
video editing, Internat. J. Comput. Vision, 103 (2013), pp. 127–162, https://doi.org/10.1007/
s11263-012-0597-5.

[38] H. Sawhney, Y. Guo, J. Asmuth, and R. Kumar, Multi-view 3D estimation and applications to
match move, in Proceedings of the IEEE Workshop on Multi-View Modeling and Analysis of Visual
Scenes, MVIEW ’99 (Fort Collins, CO), IEEE Computer Society, Washington, DC, 1999, p. 21,
https://doi.org/10.1109/MVIEW.1999.781079.

[39] C. Schönlieb, Partial Differential Equation Methods for Image Inpainting, Cambridge University Press,
Cambridge, UK, 2015.

[40] M. Seymour, Art of Stereo Conversion: 2D to 3D, https://www.fxguide.com/featured/
art-of-stereo-conversion-2d-to-3d-2012/, 2012.

[41] J. Sun, L. Yuan, J. Jia, and H. Shum, Image completion with structure propagation, ACM Trans.
Graphics, 24 (2005), pp. 861–868, https://doi.org/10.1145/1073204.1073274.

[42] A. Telea, An image inpainting technique based on the fast marching method, J. Graphics Tools, 9 (2004),
pp. 23–34.

[43] J. Weickert, Anisotropic Diffusion in Image Processing, ECMI Series, Teubner, Stuttgart, 1998, http:
//www.mia.uni-saarland.de/weickert/book.html.

[44] Y. Wexler, E. Shechtman, and M. Irani, Space-time completion of video, IEEE Trans. Pattern Anal.
Mach. Intell., 29 (2007), pp. 463–476, https://doi.org/10.1109/TPAMI.2007.60.

[45] X. Xu, L. Po, C. Cheung, L. Feng, K. Ng, and K. Cheung, Depth-aided exemplar-based hole filling
for DIBR view synthesis, in IEEE International Symposium on Circuits and Systems, ISCAS 2013
(Beijing, China), IEEE, Washington, DC, 2013, pp. 2840–2843, https://doi.org/10.1109/ISCAS.2013.
6572470.

[46] S. Yoon, H. Sohn, Y. Jung, and Y. Ro, Inter-view consistent hole filling in view extrapolation for multi-
view image generation, in IEEE International Conference on Image Processing, ICIP 2014 (Paris,
France), IEEE, Washington, DC, 2014, pp. 2883–2887, https://doi.org/10.1109/ICIP.2014.7025583.

[47] J. Zhi, A case of study for 3D stereoscopic conversion in visual effects industry, Internat. J. Comput.
Elect. Automat. Control Inform. Engrg., 7 (2013), pp. 53–58, http://iastem.com/Publications?p=73.

[48] S. Zinger, L. Do, and P. de With, Free-viewpoint depth image based rendering, J. Vis. Commun.
Image Represent., 21 (2010), pp. 533–541, https://doi.org/10.1016/j.jvcir.2010.01.004.

D
ow

nl
oa

de
d

05
/1

0/
19

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1007/s10208-014-9199-7
https://doi.org/10.1109/TMM.2011.2128862
https://doi.org/10.1145/2534008.2534019
https://doi.org/10.1137/140954933
https://doi.org/10.1109/PCS.2009.5167450
https://doi.org/10.1007/978-1-4612-1220-1
https://doi.org/10.1137/0907058
https://doi.org/10.1007/s11263-012-0597-5
https://doi.org/10.1007/s11263-012-0597-5
https://doi.org/10.1109/MVIEW.1999.781079
https://www.fxguide.com/featured/art-of-stereo-conversion-2d-to-3d-2012/
https://www.fxguide.com/featured/art-of-stereo-conversion-2d-to-3d-2012/
https://doi.org/10.1145/1073204.1073274
http://www.mia.uni-saarland.de/weickert/book.html
http://www.mia.uni-saarland.de/weickert/book.html
https://doi.org/10.1109/TPAMI.2007.60
https://doi.org/10.1109/ISCAS.2013.6572470
https://doi.org/10.1109/ISCAS.2013.6572470
https://doi.org/10.1109/ICIP.2014.7025583
http://iastem.com/Publications?p=73
https://doi.org/10.1016/j.jvcir.2010.01.004

	Introduction
	A 3D conversion pipeline for film
	Bystander pixels
	An alternative pipeline

	Proposed approach
	Overview
	Automatic spline detection and creation of the guide field
	Kinking artifacts created by the modified structure tensor and their resolution

	Resolving additional kinking artifacts using ghost pixels
	Automatic determination of a good pixel order (smart order)
	GPU implementation

	Continuum limit
	Consequences
	Kinking
	Signal degradation

	Formation of shocks

	Algorithmic complexity
	Numerical experiments
	3D conversion examples
	Validation of complexity analysis

	Conclusions

