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Abstract. We consider a bilevel optimization approach in function space for the choice
of spatially dependent regularization parameters in TV image denoising models. First- and
second-order optimality conditions for the bilevel problem are studied when the spatially-
dependent parameter belongs to the Sobolev space H1(Ω). A combined Schwarz domain
decomposition-semismooth Newton method is proposed for the solution of the full opti-
mality system and local superlinear convergence of the semismooth Newton method is
verified. Exhaustive numerical computations are finally carried out to show the suitability
of the approach.

1. Introduction

The idea of Total Variation (TV) regularization for removing the noise in a given noisy
image f consists in reconstructing a denoised version u of it by minimizing the generic
functional

(1.1) F(u) = |Du|(Ω) +

∫
Ω
λφ(u, f)dx

where

|Du|(Ω) = sup
v∈C∞0 (Ω,R2),‖v‖≤1

∫
Ω
u∇ · v dx

is the total variation (TV) of u in Ω, λ is a positive parameter function and φ is a suitable
fidelity function, dependent on the type of noise included in f . The parameter λ can be either
a positive constant or a spatially dependent function λ : Ω→ R+. If λ ∈ R+, the parameter
serves as a homogeneous weight between the fidelity measure and the TV-regularizing term.
On the other hand, if λ is considered as spatially dependent, i.e., λ : Ω → R+, it can
also reflect information on possibly heterogenous noise in the image, as well as making a
difference between regularization of small and large scale features in the image. Hence,
λ has a key role in spatially balancing the amount of regularization. Spatially dependent
parameters have been considered in the recent papers [1, 8, 11,20,21].

The choice of an appropriate regularization parameter λ is a difficult task and has been
the subject of many research efforts (see, e.g., [8, 10–12, 14, 28, 29, 31]). In [7], a bilevel
optimization approach in function space was proposed for learning the weights in (1.1). In
the flavour of supervised machine learning, the approach presupposes the existence of a
training set of clean and noisy images. Existence of Lagrange multipliers was proved and
an optimality system characterizing the solution was obtained. The analytical results hold
both for λ ∈ R+ and λ : Ω→ R+, while a solution algorithm was only designed for solving
the bilevel optimization problem with λ ∈ R+. A related approach for finite-dimensional
variational problems was proposed in [19].
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Figure 1.1. TV denoised images that have been computed as minimizers
of (1.1) with different choices for λ ∈ R+. While choosing λ too small is
over-regularizing the image, choosing it too large is under-regularizing, the
question is what the best choice of λ is and how to compute it.

Figure 1.2. TV denoised images, computed as minimizers of (1.1), with
a λ that has been optimised with the bilevel approach in [7]. On the left
the optimally computed λ ∈ R+ is constant, on the right the λ is spatially
dependent, computed with the approach proposed and analysed in this paper.

In Figure 1.1 the influence of the choice of a constant λ in (1.1) is shown, over-regularising
the reconstructed image if chosen too small and under-regularising if chosen too large. More-
over, in Figure 1.2 the reconstructed images with constant and spatially-dependent λ are
shown, where λ has been optimized with the bilevel approach for (1.1) proposed in [7].

In this article we consider the bilevel optimization approach for (1.1) from [7], with a
spatially dependent parameter λ ∈ H1(Ω) and φ(·) = (·)2 as presented in Section 2, and
investigate first- and second-order optimality conditions for the bilevel problem. In addition
to the nonsmooth lower level denoising problems, a positivity constraint on the functional
parameter (λ ≥ 0 a.e. in Ω) has to be imposed to guarantee well-posedness. These elements
lead to a nonlinear and nonsmooth first-order optimality system with complementarity re-
lations.

For proving second order sufficient optimality conditions, we improve previous Gâteaux
differentiability results of the solution mapping [7] and show that it is actually twice Fréchet
differentiable under suitable assumptions. We then define a cone of critical directions and
prove the result by utilizing a contradiction argument.

Since the resulting optimality system involves several coupled PDEs (twice the size of
the training set), the efficient numerical solution of the problem becomes challenging. We
consider a combined Schwarz domain decomposition-semismooth Newton approach, where
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the domain Ω is subdivided into overlapping subdomains Ωi with "optimized" transmission
conditions (see, e.g., [13,26,27]). We apply Schwarz domain decomposition methods directly
to the nonlinear optimality system rather than to a linearisation of it, and solve, in each
subdomain, a reduced nonlinear and nonsmooth optimality system. We propose a semis-
mooth Newton algorithm for the solution of each subdomain system and analyze the local
superlinear convergence of the method.

The outline of the paper is as follows. In Section 2 the bilevel optimization problem
is stated and analyzed. The analysis involves differentiability properties of the solution
operator and the derivation of first and second order optimality conditions. The numerical
treatment of the problem is considered in Section 3. The discretization of the problem is
described and the domain decomposition and semismooth Newton algorithms are presented.
Also the convergence analysis of the semismooth Newton method is carried out. Finally, in
Section 4 an exhaustive numerical experimentation is presented. We compare our approach
with other spatially-dependent approaches and apply it to problems with large training sets.

2. The bilevel optimization problem in function space

Bilevel optimization encompasses a general class of constrained optimization problems in
which the constraint constitutes an optimization problem itself, which is called the lower
level problem. The idea of employing bilevel optimization for learning variational image pro-
cessing approaches arises as minimizing a quality measure for the solution of the variational
approach with respect to free parameters in the model. That is, we consider the problem

min
λ

C(u(λ))

s.t. u(λ) ∈ argminuJ (u, λ),

where λ encodes the free parameters and C is a quality measure for a minimizer of the
functional J . If J is the TV denoising functional (1.1) such a free parameter is the regu-
larization parameter λ. The most standard quality measure used in the bilevel context is
the mean of L2 squared distances of solutions of the variational model to desirable examples
that are given in form of a training set. For learning variational image denoising models such
a training set consists of noisy images and the corresponding clean/true images. In other
contexts the training set will be different, e.g. for image segmentation the training set might
consist of the to be segmented image and the true segmentation. Once the parameters in
the variational model are learned on the basis of the training set, then the learned model is
used for new image data. See [2] for a recent review on bilevel learning in image processing.
In the context of learning image processing approaches, the constraint problem is typically
non-smooth — as with TV regularization as in (1.1) — making its robust numerical solution
a challenging topic. In particular, the derivation of sharp, analytic optimality conditions
usually requires twice-continuous differentiability of the functional in the lower level prob-
lem and invertibility of its Hessian. Roughly, this is because the solution of the lower level
problem does in general not have an explicit expression and we therefore have to apply
the implicit function theorem for being able to insert it in the optimality condition for the
upper level problem. A successful strategy for dealing with non-smooth lower level prob-
lems, therefore, are targeted, active-inactive set smoothing approaches, such as smoothing
the TV with Huber regularisation [3, 7, 19]. Another recent proposal for the computational
realisation of bilevel problems with non-smooth constraints can be found in [25], where the
lower level problem is approximated by an iteration of sufficiently smooth update rules. The
latter has been derived considering the discrete bilevel problem. In contrast, deriving the
optimality conditions for the smoothed-problem in function space as in [3, 7], following the
principle of optimize then discretize rather than discretize then optimize, has the advantage
that these conditions can be used to construct resolution independent iterative schemes [16].
This is the approach that we too pursue in this paper.

We consider the bilevel problem for learning the parameter λ for a smoothed version of
the TV denoising model in (1.1). Given a training set (u†i , fi), i = 1, . . . , N, of true and



OPTIMAL SPATIALLY-DEPENDENT REGULARIZATION 4

noisy images, respectively, the bilevel optimization problem under consideration reads as
follows:
Find a minimizer (u∗1, . . . , u

∗
N , λ

∗) ∈ [H1
0 (Ω)]N ×H1(Ω) of the problem

min
(u1,...,uN ,λ)∈[H1

0 (Ω)]N×H1(Ω)
J(u1, . . . , uN , λ) :=

N∑
i=1

‖ui − u†i‖
2
L2 + β‖λ‖2H1(Ω)(2.1a)

subject to:

〈ei(ui, λ), v〉H−1,H1
0

= µ
(
Dui, Dv

)
L2 +

(
hγ(Dui), Dv

)
L2(2.1b)

+

∫
Ω

λφ′(ui, fi)vdx = 0 for all v ∈ H1
0 (Ω), i = 1, . . . , N,

λ ≥ 0 a.e. in Ω,(2.1c)

where N is the size of the training set of images, 0 < µ� 1, ei : H1
0 (Ω)×H1(Ω)→ H−1(Ω),

for i = 1, . . . , N and
φ(ui, fi) = (ui − fi)2, i = 1, . . . , N.

In order to simplify the presentation, we focus hereafter on the case N = 1. The results are,
however, easily extendable to larger training sets, as will be shown in Section 4.

The Huber C2-regularizing function hγ is given by:

(2.2) hγ(z) =



z
|z| if γ|z| ≥ b
z

|z|

{
2γ − 1

4γ
+
γ|z|

2
− γ

2

(
γ|z| − a

)(
γ|z| − b

)
+
γ3

2

(
γ|z| − a

)2(
γ|z| − b

)2} if a < γ|z| ≤ b

γz else,

where a = 1 − 1
2γ and b = 1 + 1

2γ . This function locally regularizes the subgradient of the
TV-norm around 0. Note that the smoothing applied to the TV denoising problem firstly
smoothes the TV with (2.2), and secondly adds a small elliptic regularisation term (weighted
by µ) to the functional which results in the weak optimality condition in (2.1b). We have
outlined the reason for the Huber regularisation above. The reason for the addition of the
elliptic term µ‖Du‖22 to (1.1) is, that it numerically renders the inversion of the Hessian
of the lower level functional more robust and that it places the problem in Hilbert space
and therefore opens up a large toolbox for the analysis of the smoothed problem and its
approximation properties, see also [6].

The next result involves some properties of hγ , which will be used throughout the paper.

Lemma 2.1. There exist constants Lγ , Cγ ,Mγ > 0 only dependent of γ such that

a) For all z, ẑ ∈ RN ,

(2.3)
∣∣h′′γ(z)− h′′γ(ẑ)

∣∣ ≤ Lγ |z − ẑ|.
b) For all u,w ∈ L4(Ω) = L4(Ω)× L4(Ω) we have h′γ(u)[w] ∈ L2(Ω) and(

[h′γ(u)− h′γ(û)]w, v
)
L2 ≤ Cγ‖u− û‖L2‖w‖L2‖v‖L2 , ∀v ∈ L2(Ω).

Proof. The proof is included in the Appendix. �

From [7] we know that for each fixed γ > 0, there exists an optimal solution for problem
(2.1). Denoting by G : H1(Ω)→ H1

0 (Ω) the solution operator G(λ) = u, where u is solution
of equation (2.1b) corresponding to λ ∈ H1(Ω), it has been shown in [7] that the operator
is Gâteaux differentiable. In the next theorem we improve that result and prove that the
solution operator is actually Fréchet differentiable.
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Theorem 2.1. Let f ∈ Lp(Ω), for some p > 2, and λ ∈ Vad := {v ∈ H1(Ω) : v ≥
0 a.e. in Ω}. Let further B(λ) be a neighbourhood of λ. Then, the solution operator

G : B(λ)→ H1
0 (Ω)

λ̃ 7→ u(λ̃),

where u(λ̃) is the solution to (2.1b) associated to λ̃, is Fréchet differentiable on B(λ) and
its derivative at λ ∈ Vad, in direction ξ ∈ H1(Ω), is given by zξλ = G′(λ)ξ ∈ H1

0 (Ω), which
corresponds to the unique solution of the linearized equation:

(2.4) µ(Dz,Dv
)
L2 +

(
h′γ(Du)Dz,Dv

)
L2 + 2

∫
Ω
λzv + 2

∫
Ω
ξ(u(λ)− f)v = 0,∀v ∈ H1

0 (Ω).

Proof. Along this proof we denote by C a generic positive constant which may depend on
γ and λ. Let us also denote by u and uξ the corresponding solutions to (2.1b) with λ and
λ+ ξ, respectively. By monotonicity techniques (see [4, Thm. 2.7]), we obtain the existence
of a unique solution uξ, for ‖ξ‖H1(Ω) sufficiently small, and of a unique solution zξλ ∈ H

1
0 (Ω)

to (2.4). Moreover, we get the estimates

(2.5) ‖uξ − u‖H1
0

= O(‖ξ‖H1), ‖zξλ‖H1
0

= O(‖ξ‖H1).

By taking the difference between (2.1b), with λ and λ+ ξ, and (2.4) we get that

µ
(
D(uξ − u− zξλ), Dv

)
L2 +

(
hγ(Duξ)− hγ(Du)− h′γ(Du)Dzξλ, Dv

)
L2

+ 2

∫
Ω
λ(uξ − u− zξλ)v + 2

∫
Ω
ξ(uξ − u)v = 0, ∀v ∈ H1

0 (Ω).

Introducing η := uξ − u− zξλ, we can write the last equation as follows

µ
(
Dη,Dv

)
L2 +

(
h′γ(Du)Dη,Dv

)
L2 + 2

∫
Ω
ληv = −2

∫
Ω
ξ(uξ − u)v

−
(
hγ(Duξ)− hγ(Du)− h′γ(Du)D(uξ − u), Dv

)
L2 , ∀v ∈ H1

0 (Ω).

Taking v = η and using the monotonicity of h′γ(Du) and λ ≥ 0 a.e. in Ω, we get that

‖η‖2H1
0
≤
∣∣∣∣(hγ(Duξ)− hγ(Du)− h′γ(Du)D(uξ − u), Dη

)
L2

∣∣∣∣+ C‖ξ‖H1‖uξ − u‖H1
0
‖η‖H1

0
.

Due to the differentiability of hγ , we obtain

(2.6) ‖η‖H1
0
≤ C

(
‖uξ − u‖2W 1,p + ‖ξ‖H1‖uξ − u‖H1

0

)
,

for all p > 2 and some constant C > 0. Thanks to [15, Thm. 1], there is some p̂ > 2 such
that

(2.7) ‖uξ − u‖W 1,p̂ = O(‖ξ‖H1).

From the latter and estimates (2.5), it then follows that ‖η‖H1
0

= O(‖ξ‖2H1). The last

relation ensures the Fréchet differentiability of G and that zξλ = G′(λ)ξ. �

A second-order differentiability result for the solution mapping can also be obtained under
certain regularity assumptions on the data. The second derivative is used in the derivation of
second order sufficient optimality conditions and for the convergence analysis of the proposed
Newton type algorithms.

Theorem 2.2. If f ∈ L∞(Ω) and u(λ) ∈ C1,β(Ω), for some β ∈ (0, 1), and there exists
p̂ > 4 such that

(2.8) ‖uζ − u‖W 1,p̂ ≤ C‖ζ‖H1 , for any ζ ∈ H1(Ω),
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then G is twice Fréchet differentiable and its second derivative is given by w(ξ,ζ)
λ ∈ H1

0 (Ω) as
the solution of

(2.9) µ
(
Dw

(ξ,ζ)
λ , Dv

)
+
(
h′γ(Du(λ))Dw

(ξ,ζ)
λ , Dv

)
+ 2

∫
Ω
λw

(ξ,ζ)
λ vdx

+
(
h′′γ(Du(λ))[Dzξλ, Dz

ζ
λ], Dv

)
+ 2

∫
Ω
ζzξλvdx+ 2

∫
Ω
ξzζλvdx = 0, ∀v ∈ H1

0 (Ω).

Remark 2.1. The Hölder continuity assumption on the gradient of u(λ) and estimate (2.8)
may be proved under some hypothesis on the domain and the data (see [5, Thm. 2.2] and [15,
Thm. 1], repectively).

Proof of Theorem 2.2. If f ∈ L∞(Ω) and u(λ) ∈ C1,β(Ω), we obtain from elliptic regularity
theory (see, e.g., [30]) that

(2.10) ‖zξλ‖W 1,s ≤ C‖ξ‖H1 , for any s > 2

and

‖η‖W 1,r ≤ C
(
‖η‖H1

0
+ ‖ξ(uξ − u)‖Lr + ‖hγ(Duξ)− hγ(Du)− h′γ(Du)D(uξ − u)‖Lr

)
≤ C

(
‖ξ‖2H1 + ‖ξ‖H1‖uξ − u‖H1

0
+ ‖uξ − u‖2W 1,r

)

where C > 0 stands for a generic constant and r ∈ (2, p̂). Thanks to estimates (2.5) and
(2.8) we then obtain that

(2.11) ‖η‖W 1,r ≤ Cr‖ξ‖H1 , for r ∈ (2, p̂).

For ξ, ζ ∈ H1(Ω), we denote by w(ξ,ζ)
λ the solution of the following equation:

(2.12) µ
(
Dw,Dv

)
+
(
h′γ(Du)Dw,Dv

)
+ 2

∫
Ω
λwv

+
(
h′′γ(Du)∗[Dzξλ, Dz

ζ
λ], Dv

)
+ 2

∫
Ω
ζzξλvdx+ 2

∫
Ω
ξzζλv = 0, ∀v ∈ H1

0 (Ω).

Existence and uniqueness of w(ξ,ζ)
λ follows in a standard manner from the Lax-Milgram

theorem.
Let now λζ := λ+ ζ and let zξλζ := G′(λζ)ξ, with uζ the solution to (2.1b) corresponding

to λζ . Taking the difference between (2.4) for zξλ and zξλζ , we get

(2.13) µ
(
D(zξλζ − z

ξ
λ), Dv

)
+
(
h′γ(Du)D(zξλζ − z

ξ
λ), Dv

)
+ 2

∫
Ω
λ(zξλζ − z

ξ
λ)v

+
([
h′γ(Duζ)− h′γ(Du)

]
Dzξλζ , Dv

)
+ 2

∫
Ω
ζzξλζv + 2

∫
Ω
ξ(uζ − u)v = 0,∀v ∈ H1

0 (Ω).

Testing (2.13) with v = zξλζ − z
ξ
λ, we get

(2.14) ‖zξλζ − z
ξ
λ‖

2
H1

0
≤ C

{∣∣∣∣([h′γ(Duζ)− h′γ(Du)
]
Dzξλ, D(zξλζ − z

ξ
λ)
)∣∣∣∣

+

∣∣∣∣ ∫
Ω
ζzξλ(zξλζ − z

ξ
λ)

∣∣∣∣+

∣∣∣∣ ∫
Ω
ξ(uζ − u)(zξλζ − z

ξ
λ)

∣∣∣∣}.
From the the Lipschitz properties of h′γ(·) the last relation yields

‖zξλζ − z
ξ
λ‖H1

0
≤ C

(∥∥uζ − u∥∥W 1,p̂‖zξλ‖W 1,r̂ + ‖ζ‖H1‖zξλ‖H1
0

+ ‖ ξ‖H1‖uζ − u‖H1
0

)
,
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with r̂ such that 1/p̂+ 1/r̂ ≤ 1/2. Considering (2.10) and (2.7), then the following estimate
holds

(2.15) ‖zξλζ − z
ξ
λ‖H1

0
≤ C‖ζ‖H1‖ξ‖H1 .

Again, thanks to elliptic regularity theory,

(2.16) ‖zξλζ − z
ξ
λ‖W 1,q̂ ≤ Cp‖ζ‖H1‖ξ‖H1 , for q̂ =

r̂p̂

r̂ + p̂
> 2.

In particular, we may choose r̂ ≥ 4p̂
p̂−4 , which yields q̂ ≥ 4.

By setting τ := zξλζ − z
ξ
λ − w

(ξ,ζ)
λ and subtracting (2.12) from (2.13), we get that

µ
(
Dτ,Dv

)
+
(
h′γ(Du)Dτ,Dv

)
+ 2

∫
Ω
λτv =

−
([
h′γ(Duζ)− h′γ(Du)

]
D(zξλζ − z

ξ
λ), Dv

)
− 2

∫
Ω
ζ(zξλζ − z

ξ
λ)v − 2

∫
Ω
ξ(uζ − u− zζλ)v

−
(
h′γ(Duζ)Dz

ξ
λ − h

′
γ(Du)Dzξλ − h

′′
γ(Du)∗[Dzξλ, Dz

ζ
λ], Dv

)
, ∀v ∈ H1

0 (Ω).

Testing with v = τ and using the ellipticity of the terms on the left hand side, we obtain
that

(2.17) ‖τ‖H1
0
≤ C

{∥∥∥[h′γ(Duζ)− h′γ(Du)
]
D(zξλζ − z

ξ
λ)
∥∥∥
L2

+
∥∥∥ζ(zξλζ − z

ξ
λ)
∥∥∥
L2

+

+
∥∥∥ξ(uζ − u− zζλ)

∥∥∥
L2

+
∥∥∥h′γ(Duζ)Dz

ξ
λ − h

′
γ(Du)Dzξλ − h

′′
γ(Du)∗[Dzξλ, Dz

ζ
λ]
∥∥∥
L2

}
.

For the first term on the left hand side, thanks to the Lipschitz continuity of h′γ and
estimate (2.16), we get that∥∥∥[h′γ(Duζ)− h′γ(Du)

]
D(zξλζ − z

ξ
λ)
∥∥∥
L2
≤
∥∥h′γ(Duζ)− h′γ(Du)

∥∥
Lp̂

∥∥∥zξλζ − zξλ∥∥∥W 1,q̂

≤ L‖uζ − u‖W 1,p̂

∥∥∥zξλζ − zξλ∥∥∥W 1,q̂

≤ C‖ζ‖2H1‖ξ‖H1 .

Since the solution operator has been proved to be Fréchet differentiable, it follows that
‖uζ − u− zζλ‖H1

0
= o(‖ζ‖H1) and, thus,∥∥∥ξ(uζ − u− zζλ)

∥∥∥
L2
≤ C‖ξ‖H1o(‖ζ‖H1).

From (2.15) it also follows that∥∥∥ζ(zξλζ − z
ξ
λ)
∥∥∥ ≤ C‖ζ‖2H1‖ξ‖H1 .

For the last term on the right hand side of (2.17), we obtain that∥∥∥(h′γ(Duζ)− h′γ(Du)− h′′γ(Du)Dzζλ

)
Dzξλ

∥∥∥
L2
≤
∥∥∥h′′γ(Du)D(uζ − u− zζλ)

∥∥∥
Lr
‖Dzξλ‖Ls

+
∥∥h′γ(Duζ)− h′γ(Du)− h′′γ(Du)D(uζ − u)

∥∥
Lr
‖Dzξλ‖Ls ,

where 1/r+ 1/s = 1/2 and r ∈ (2, p̂). Taking into account estimates (2.8), (2.10) and (2.11)
we get that∥∥∥(h′γ(Duζ)− h′γ(Du)− h′′γ(Du)Dzζλ

)
Dzξλ

∥∥∥
L2
≤ C‖ξ‖H1 (o(‖ζ‖H1) + o(‖uζ − u‖W 1,p̂)) .

Now plugging the last estimates into (2.17) and using (2.8), we get that

‖τ‖H1
0
≤ C‖ξ‖H1o(‖ζ‖H1).
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The last relation ensures the twice differentiability of G and we also have that w(ξ,ζ)
λ =

G′′(λ)[ξ, ζ]. �

Based on the differentiability properties of the solution operator, a first order optimality
system characterizing the optimal weight function is derived next.

Theorem 2.3. Let (u, λ) ∈ H1
0 (Ω)× Vad be an optimal solution for (2.1). Then there exist

p ∈ H1
0 (Ω) and ϑ ∈ L2(Ω) such that the following optimality system holds (in weak sense):

−µ∆u−Div q + 2λ(u− f) = 0 in Ω,(2.18a)
u = 0 on Γ,(2.18b)
q = hγ(Du) a.e. in Ω,(2.18c)

−µ∆p−Div z + 2(λp+ u− u†) = 0 in Ω,(2.18d)
p = 0 on Γ,(2.18e)

z = h′γ(Du)∗Dp a.e. in Ω,(2.18f)
ϑ = −β∆λ+ βλ+ (u− f)p in Ω,(2.18g)

∂λ

∂~n
= 0 on Γ,(2.18h)

λ ≥ 0, ϑ ≥ 0, ϑ λ = 0 a.e. in Ω.(2.18i)

Proof. Since the solution operator is differentiable, it follows, using the reduced cost func-
tional

(2.19) J (λ) = ‖u(λ)− u†‖2L2 + β‖λ‖2H1(Ω),

that

(2.20) J ′(λ)(ξ − λ) = (u(λ)− u†, u′(λ)(ξ − λ)) + β(λ, ξ − λ)H1 ≥ 0, ∀ξ ∈ Vad.

Introducing p ∈ H1
0 (Ω) as the unique weak solution of the adjoint equations (2.18d)-(2.18f)

and using the linearised equation (2.4), we obtain that

2(u− u†, u′) = −µ(Dp,Du′)−
∫

Ω
h′γ(Du)∗Dp ·Du′ − 2

∫
Ω
λu′p

= 2

∫
Ω
p(u− f)(ξ − λ),

where we used the notation u′ := u′(λ)(ξ − λ). Replacing the last term in (2.19), we get
that

(2.21) β(λ, ξ − λ)H1 +

∫
Ω
p(u− f)(ξ − λ) ≥ 0,∀ξ ∈ Vad.

Inequality (2.21) corresponds to an obstacle type problem with unilateral bounds. Thanks
to regularity results for this type of problems (see [30, Thm.5.2, p.294]), it follows that
λ ∈ H2(Ω) (if f ∈ Lp(Ω) for some p > 2) and, therefore, we may define

ϑ := −β∆λ+ βλ+ (u− f)p ∈ L2(Ω).

Integrating by parts in (2.21) we then obtain that
(
ϑ, ξ−λ

)
L2 ≥ 0. From the latter and the

sign of λ, we finally get that

λ ≥ 0, ϑ ≥ 0, ϑ λ = 0 a.e. Ω.(2.22)

�

Remark 2.2. If u† ∈ L∞(Ω) and u(λ) ∈ C1,β(Ω), it follows from elliptic regularity theory
(see, e.g., [30]) that the adjoint state p ∈W 1,q(Ω), for all q ∈ (2,+∞), and

(2.23) ‖p‖W 1,q ≤ Cq‖u− u†‖L∞ .
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The complementarity condition (2.22) can also be reformulated as the following non-
smooth equation:

ϑ = max(0, ϑ− αλ), for any α > 0,

where max is interpreted in an almost everywhere sense. By choosing α = β and replacing
in (2.18g) one gets

(2.24) −β∆λ+ βλ+ (u− f)p−max(0,−β∆λ+ (u− f)p) = 0.

Altogether, we obtain the following system for y = (u, q, p, z, λ)

(2.25) F (y) =


−µ∆u−Div q + 2λ(u− f)

hγ(Du)− q
−µ∆p−Div z + 2λp+ 2(u− u†)

h′γ(Du)∗Dp− z
−β∆λ+ βλ+ (u− f)p−max

(
0,−β∆λ+ (u− f)p

)
∂~nλ|Γ = 0

 = 0,

where F : V → W with V := H1
0 (Ω) × L2(Ω) × H1

0 (Ω) × L2(Ω) × H1(Ω) and W :=

H−1(Ω)× L2(Ω)×H−1(Ω)× L2(Ω)×H1(Ω)′ ×H−1/2(Γ).

2.1. Second order sufficient optimality condition. Thanks to Theorem 2.1 we can
derive a second order optimality system. To state a second order condition, let us start by
computing the second derivatives of J(u, λ) and the state equation operator e(u, λ) defined
in (2.1b). For (u, λ) ∈ (Ω)×H1(Ω) and for all w, η ∈ H1

0 (Ω), l ∈ H1(Ω), we have:

eλλ(u, λ) = 0(2.26a)

〈euλ(u, λ)[w, l], v〉H−1,H1
0

= 2

∫
Ω
wlv, ∀v ∈ H1

0 (Ω)(2.26b)

〈euu(u, λ)[w, η], v〉H−1,H1
0

=

∫
Ω
h′′(Du)[Dw,Dη] ·Dv, ∀v ∈ H1

0 (Ω).(2.26c)

Note that for any fixed λ ∈ H1(Ω) and u ∈ H1
0 (Ω) we also get

(2.27) 〈eu(u, λ)w, v〉H−1,H1
0

= µ
(
Dw,Dv

)
L2 +

(
h′γ(Du)Dw,Dv

)
L2 + 2

∫
Ω
λwv,

for all v ∈ H1
0 (Ω). Now let a := 1− 1

2γ and b := 1 + 1
2γ , and let us introduce the sets

(2.28)
Aγ(u) :=

{
∈ Ω : γ|Du(x)| ≥ b

}
; Sγ(u) :=

{
x ∈ Ω : a < γ|Du(x)| < b

}
;

Iγ(u) :=
{
x ∈ Ω : γ|Du(x)| ≤ b

}
and t1(u) := γ

2

(
γ|Du|−a

)
= γ

2

(
γ|Du|− 1 + 1

2γ

)
; t2(u) = γ|Du|− 1− 3

2γ . For all z ∈ H
1
0 (Ω),

we get the following expressions for the derivatives of hγ :

(2.29)

h′γ(Du)Dz = χAγ(u)

{
Dz

|Du|
− 〈Du,Dz〉
|Du|3

Du

}
+ γχIγ(u)

(
Dz
)

+ χSγ(u)

{
γ

2
Dz + γ2

(
γ|Du| − 1

)[
2γ2t1(u)t2(u)− 1

]
〈Du,Dz〉
|Du|2

Du

+

[
2γ − 1

4γ
− γt1(u)t2(u)

2
+
γ3t21(u)t22(u)

2

](
Dz

|Du|
− 〈Du,Dz〉
|Du|3

Du

)}
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and

(2.30)

h′′γ(Du)[Dp,Dz] = χAγ(u)Φ(Du,Dp)Dz

+χSγ(u)

{[
γ

2
t1(u)t2(u)

(
4γ3|Du|

(
γ|Du| − 1

)
− γ2t1(u)t2(u) + 1

)
−
(
γ3|Du|2 − γ2|Du|+ 1

2
− 1

4γ

)]
Φ(Du,Dp)Dz

+ 6γ5t1(u)t2(u)
〈Du,Dp〉(DuDuT )

|Du|3
Dz

}
,

where the operator

Φ(Du,Dp) :=
3〈Du,Dp〉(DuDuT )

|Du|5
− (DpDuT )

|Du|3
− (DuDpT )

|Du|3
− 〈Du,Dp〉
|Du|3

.

We define the cone of critical directions by

(2.31) K(λ∗) =

{
l ∈ H1(Ω) : l(x)

{
= 0 if ϑ(x) 6= 0

≥ 0 if ϑ(x) = 0 and λ∗(x) = 0

}
.

Now let us state the second order optimality condition for problem (2.1). The proof goes
along the lines of [22,23]. However, since in our case the control enters in a bilinear way and
the PDE has a quasilinear structure, the proof has to be modified accordingly.

Theorem 2.4. Under the same hypotheses of Theorem 2.2. Let (u∗, λ∗, p∗) be a solution of
the optimality system (2.18) and suppose that

(2.32) 2‖w‖2L2 + 2β‖l‖2H1 +

∫
Ω
h′′(Du∗)[Dw]2 ·Dp∗ + 4

∫
Ω
wlp∗ ≥ ρ‖l‖2H1 ,

for every pair (w, l) ∈ H1
0 (Ω)×K(λ∗), (w, l) 6= (0, 0) which satisfies the linearized equation:

(2.33) µ
(
Dw,Dv

)
L2 +

(
h′γ(Du∗)Dw,Dv

)
L2 +2

∫
Ω
l(u∗−f)vdx+2

∫
Ω
λ∗wvdx = 0,∀v ∈ V.

Then there exist σ > 0 and τ > 0 such that

(2.34) J(u∗, λ∗) + τ‖λ− λ∗‖2H1 ≤ J(u, λ),

for every feasible pair (u, λ) such that u = G(λ) and ‖λ− λ∗‖H1 ≤ σ.

Proof. Suppose that λ∗ does not satisfy the growth condition (2.34). Then there exists a
feasible sequence {λk}k ⊂ H1(Ω) such that

‖λk − λ∗‖H1 <
1

k2
and(2.35)

J(u∗, λ∗) +
1

k
‖λ− λ∗‖2H1 > J(uk, λk) = L(uk, λk, p

∗) ∀k,(2.36)

where uk = G(λk) and L(u, λ, p) := 〈e(u, λ), p〉 + J(u, λ). From (2.8) we then get that
uk → u∗ strongly in W 1,p̂, with p̂ > 4. By setting ρk = ‖λk − λ∗‖H1 and ζk = 1

ρk
(λk − λ∗)

it follows that ‖ζk‖H1 = 1 and therefore we may extract a subsequence, denoted the same,
which converges to ζ weakly in H1(Ω).
Step 1. By the mean value theorem we have

L(uk, λk, p
∗) + Lu(νk, λk, p

∗)(u∗ − uk) = L(u∗, λk, p
∗)

= L(u∗, λ∗, p∗) + ρkLλ(u∗, ξk, p
∗)ζk

where νk, ξk are points between u∗ and uk, λ∗ and λk, respectively. From (2.36) and
J(u∗, λ∗) = L(u∗, λ∗, p∗) it follows that

(2.37) Lλ(u∗, ξk, p
∗)ζk <

1

k
‖λk − λ∗‖H1 +

1

ρk
Lu(νk, λk, p

∗)(u∗ − uk).
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By using again the mean value theorem for the last term on the first variable, we obtain

Lu(νk, λk, p
∗)(u∗ − uk) =Ju(νk)(u

∗ − uk) + 〈p∗, eu(νk, λk)(u
∗ − uk)〉H1

0 ,H
−1

=Ju(νk)(u
∗ − uk) + 〈p∗, eu(u∗, λk)(u

∗ − uk)〉H1
0 ,H

−1

+ 〈p∗, euu(u∗, λk)(νk − u∗)(u∗ − uk)〉H1
0 ,H

−1

+
〈
p∗,
(
euu(ηk, λk)− euu(u∗, λk)

)
(νk − u∗)(u∗ − uk)

〉
H1

0 ,H
−1 ,

where ηk = u∗+ t(νk−u∗), for some t ∈ [0, 1]. From (2.27) and the optimality system (2.18)
it follows that

〈p∗, eu(u∗, λk)(u
∗−uk)〉H1

0 ,H
−1

=〈p∗, eu(u∗, λ∗)(u∗ − uk)〉H1
0 ,H

−1 + 2

∫
Ω

(λk − λ∗)(u∗ − uk)p∗

=− Ju(u∗)(u∗ − uk) + 2

∫
Ω

(λk − λ∗)(u∗ − uk)p∗.

Hence, from the Lipschitz continuity and the boundedness of h′′γ , and the extra regularity of
p (see Remark 2.2), we get∣∣Lu(νk, λk, p

∗)(u∗ − uk)
∣∣ ≤‖Ju(νk)− Ju(u∗)‖H−1‖u∗ − uk‖H1

0

+ 2‖λk − λ∗‖L3‖u∗ − uk‖L3‖p∗‖L3

+ Lγ1‖p
∗‖H1

0
‖νk − u∗‖W 1,p̂‖u∗ − uk‖W 1,p̂

+ Lγ2‖p
∗‖W 1,4‖νk − u∗‖2W 1,p̂‖u∗ − uk‖W 1,p̂ .

Due to the quadratic cost and the convergence ζk ⇀ ζ, ξk → λ∗ in H1(Ω) and uk → u∗ in
W 1,4(Ω), from (2.37) it follows that

Lλ(u∗, λ∗, p∗)ζ = lim
k→∞
Lλ(u∗, ξk, p

∗)ζk ≤ 0.

On the other hand, since λk(x) ≥ 0 a.e in Ω, it follows that

(2.38) Lλ(u∗, λ∗, p∗)ζk = ρkLλ(u∗, λ∗, p∗)(λk − λ∗) ≥ 0.

Since ζk ⇀ ζ one gets Lλ(u∗, λ∗, p∗)ζ = lim
k→∞
Lλ(u∗, λ∗, p∗)ζk ≥ 0.

Altogether we obtain that Lλ(u∗, λ∗, p∗)ζ = 0.

Step 2. Now we will show that ζ ∈ K(λ∗). The set{
v ∈ H1(Ω) : v(x) ≥ 0 if ϑ(x) = 0 and λ∗(x) = 0

}
is convex and closed, hence it is weakly sequentially closed. Since λk is feasible, then for
each k, ζk belongs to this set and, consequently, ζ also does. From (2.18i) it follows that
ϑ(x)ζ(x) ≥ 0 a.e in Ω, which implies

0 = Lλ(u∗, λ∗, p∗)ζ = β
(
λ∗, ζ

)
H1 +

∫
Ω

(u∗ − f)p∗ζ =

∫
Ω
ϑζ =

∫
Ω
|ϑζ|.

It follows that ζ(x) = 0 if ϑ(x) 6= 0 and therefore ζ ∈ K(λ∗).

Step 3 (ζ = 0). Using a Taylor expansion of the Lagrangian L at (u∗, λ∗, p∗) we have

(2.39)
L(uk, λk, p

∗) =L(u∗, λ∗, p∗) + ρkLλ(u∗, λ∗, p∗)ζk +
ρ2
k

2
Lλλ(u∗, λ∗, p∗)ζ2

k

+ ρkLuλ(u∗, λ∗, p∗)(uk − u∗)ζk +
1

2
Luu(νk, λ

∗, p∗)(uk − u∗)2,
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where νk is an intermediate point between uk and u∗. Therefore, thanks to the bilinear
control structure,

(2.40)

ρkLλ(u∗, λ∗, p∗)ζk +
ρ2
k

2
Lλλ(u∗, λ∗, p∗)ζ2

k + ρkLuλ(u∗, λ∗, p∗)(uk − u∗)ζk

+
ρ2
k

2
Luu(u∗, λ∗, p∗)

(
uk − u∗

ρk

)2

= L(uk, λk, p
∗)− L(u∗, λ∗, p∗)

+
ρ2
k

2

[
Luu(u∗, λ∗, p∗)− Luu(νk, λ

∗, p∗)

](
uk − u∗

ρk

)2

.

Moreover, from (2.36) it follows that

(2.41) L(uk, λk, p
∗)− L(u∗, λ∗, p∗) <

ρ2
k

k
.

From the properties of G, we have that ‖uk−u
∗

ρk
‖W 1,4 =

‖G(λk)−G(λ∗)‖W1,4

‖λk−λ∗‖H1
is bounded. Hence,

from λk → λ∗, ‖ζk‖H1 = 1 and by (2.8) we obtain

(2.42)

∣∣∣∣[Luu(u∗, λ∗, p∗)− Luu(νk, λ
∗, p∗)

](
uk − u∗

ρk

)2∣∣∣∣
≤ Lγ2‖p

∗‖W 1,4‖u∗ − uk‖W 1,4

∥∥∥∥uk − u∗ρk

∥∥∥∥2

W 1,4

k→∞−→ 0.

From (2.40) it follows that

lim
k→∞

inf Lλλ(u∗, λ∗, p∗)ζ2
k + lim

k→∞
inf Luu(u∗, λ∗, p∗)

(
uk − u∗

ρk

)2

+ 2 lim
k→∞

inf
1

ρk
Luλ(u∗, λ∗, p∗)(uk − u∗)ζk

≤ 2 lim
k→∞

sup
1

ρ2
k

[
L(uk, λk, p

∗)− L(u∗, λ∗, p∗)
]
− 2 lim

k→∞
inf

1

ρk
Lλ(u∗, λ∗, p∗)ζk.

Since Lλλ(u∗, λ∗, p∗)ζ2
k = 2β‖ζk‖2H1 is weakly lower semi-continuous and from (2.38), (2.41),

the last relation implies

(2.43)
Lλλ(u∗, λ∗, p∗)ζ2 + lim

k→∞
inf Luu(u∗, λ∗, p∗)

(
uk − u∗

ρk

)2

+ 2 lim
k→∞

inf Luλ(u∗, λ∗, p∗)

(
uk − u∗

ρk

)
ζk ≤ 2 lim

k→∞

1

k
= 0.

Let us denote by ϑζk the solution of (2.33) associated with ζk. Since ζk ⇀ ζ in H1(Ω) and
‖ζk‖H1 = 1 one gets that ζk → ζ in Lp(Ω), for all p ∈ [1,∞). Hence, from (2.33) and the
continuous invertibility of eu(u∗, λ∗), we have ϑζk → ϑζ in W 1,4(Ω).
Besides,

Luu(u∗, λ∗, p∗)

(
uk − u∗

ρk

)2

= Luu(u∗, λ∗, p∗)

(
G(λk)−G(λ∗)

‖λk − λ∗‖H1

− ϑζk
)2

+ 2Luu(u∗, λ∗, p∗)

(
G(λk)−G(λ∗)

‖λk − λ∗‖H1

− ϑζk , ϑζk
)

+ Luu(u∗, λ∗, p∗)(ϑζk)2

and

Luλ(u∗, λ∗, p∗)

(
uk − u∗

ρk

)
ζk =Luλ(u∗, λ∗, p∗)

(
G(λk)−G(λ∗)

‖λk − λ∗‖H1

− ϑζk
)
ζk

+ Luλ(u∗, λ∗, p∗)(ϑζkζk).
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Note that ϑζk also corresponds to the derivative of the control-to-state mapping G at λ∗ in
direction ζk. From the differentiability of G, it follows that G(λk)−G(λ∗)

‖λk−λ∗‖H1
− ϑζk −→

k→∞
0. Due

to the continuity of the bilinear form Luu(u∗, λ∗, p∗), since ϑζk → ϑζ and from (2.18g-2.18i),
we get

Lλλ(u∗, λ∗, p∗)ζ2 + 2Luλ(u∗, λ∗, p∗)(ϑζζ) + Luu(u∗, λ∗, p∗)ϑ2
ζ ≤ 2 lim

k→∞

1

k
= 0.

Since ζ ∈ K(λ∗), from (2.32) it then follows that (ζ, ϑζ) = 0.

Step 4: Finally, from ϑζk → ϑζ = 0, (2.32), (2.38), (2.41) we have

lim
k→∞

sup ρ‖ζk‖2H1 ≤ lim
k→∞

supLλλ(u∗, λ∗, p∗)ζ2
k ≤ 2 lim

k→∞

1

k
= 0.

Hence, ζk → 0 in H1(Ω), which is in contradiction to ‖ζk‖H1 = 1. �

3. Discretization and numerical treatment

In this section we present a numerical strategy for the solution of problem (2.25). We
start by explaining how the domain is discretized using finite differences and introduce the
resulting discrete operators. Due to the size of the problem, an overlapping Schwarz domain
decomposition strategy is considered, where the transmission conditions between subdo-
mains are determined in an optimized way. The resulting subdomain finite-dimensional
nonlinear systems are then solved by using a semismooth Newton method, for which lo-
cal superlinear convergence is verified. A further modification of the semismooth Newton
algorithm is introduced in order to get a global convergent behaviour.

3.1. Discretization schemes. For the image domain, we use a finite differences scheme on
a uniform mesh and consider the problem (2.25) on the domain Ω := [0, (w−1)h]×[0, (l−1)h],
where h denotes the mesh step size, and w, l ∈ N∗ depend on the resolution of the input data.
In practice, w and l are width and length of the input images f, u† in pixels. In what follows,
the notation ũ, q̃, p̃, z̃, λ̃ is used for the discretized variables that approximate u, q, p, z, λ and
Fh, Divh, ∆h are used for the discrete approximations of F,Div,∆, respectively.

In order to approximate the state and adjoint variables, as well as their derivatives, we
consider a modified finite differences scheme (see [24]). We define the following grid domains:

Ωh = {xij := ((i− 1)h, (j − 1)h)|i = 1, . . . , w; j = 1, . . . , l};
Ω1
h = {xij := ((i− 0.5)h, (j − 1)h)|i = 1, . . . , w; j = 1, . . . , l};

Ω2
h = {xij := ((i− 1)h, (j − 0.5)h)|i = 1, . . . , w; j = 1, . . . , l}.

and the corresponding spaces of grid functions:

Uh = {uij := u(xij)|xij ∈ Ωh; ui0 = u0j = 0; 1 ≤ i ≤ w, 1 ≤ j ≤ l};
Λh = {λij := λ(xij)|xij ∈ Ωh; 1 ≤ i ≤ w, 1 ≤ j ≤ l};
D1
u = {uij := u(xij)|xij ∈ Ω1

h; ui0 = u0j = 0; 1 ≤ i ≤ w, 1 ≤ j < l};
D2
u = {uij := u(xij)|xij ∈ Ω2

h; ui0 = u0j = 0; 1 ≤ i < w, 1 ≤ j ≤ l}.

Therefore, ũ, p̃ ∈ Uh, λ̃ ∈ Λh and q̃, z̃ ∈ D1
u ×D2

u. We define the operator Dh as follows:

Dh : Λh −→ D1
u ×D2

u; (Dhv)i,j =
(
(Dhx1

v)i,j , (Dhx2
v)i,j

)
where Dhx1

and Dhx2
are computed by forward differences of the "inner points"

(Dhx1
v)i,j :=

vi+1,j − vi,j
h

; (Dhx2
v)i,j :=

vi,j+1 − vi,j
h

; 1 ≤ i < w − 1, 1 ≤ j < l − 1.
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The discrete Laplacian ∆h : Λh → Λh is computed by using a classical five point stencil.
For the Neumann boundary conditions for u, p and λ we get

ũ0,j = ũ2,j ; ũw+1,j = ũw−1,j (1 ≤ j ≤ l); ũi,2 = ũi,0; ũi,l+1 = ũi,l−1 (1 ≤ i ≤ w)

p̃0,j = p̃2,j ; p̃w+1,j = p̃w−1,j (1 ≤ j ≤ l); p̃i,2 = p̃i,0; p̃i,l+1 = p̃i,l−1 (1 ≤ i ≤ w)

λ̃0,j = λ̃2,j ; λ̃w+1,j = λ̃w−1,j (1 ≤ j ≤ l); λ̃i,2 = λ̃i,0; λ̃i,l+1 = λ̃i,l−1 (1 ≤ i ≤ w).

The discrete divergence operator Divh : D1
u × D2

u → Uh is computed by using backward
differences q̃ = (q̃1, q̃2) ∈ D1

u ×D2
u

(Divhq̃)i,j =
q̃1
i,j − q̃1

i−1,j

h
+
q̃2
i,j − q̃2

i,j−1

h
.

• � : Points for ũ, p̃, λ̃, ∆h,
Dhq, Dhz;
• © : Points for Dhũ, Dhp̃,
Dhλ̃, q, z.

Figure 3.1. Mesh structure of the discretization scheme

Accordingly, we define the approximation operator Fh : Hh → H ′h, where Hh = Uh ×
(D1

u ×D2
u)×Uh × (D1

u ×D2
u)×Λh and H ′h = Uh × (D1

u ×D2
u)×Uh × (D1

u ×D2
u)×Uh, and

for ỹ = (ũ, q̃, p̃, z̃, λ̃) ∈ Hh, we obtain the equation

(3.1) Fh(ỹ) =


−µ∆hũ−Divh q̃ + 2λ̃(ũ− f)

hγ(Dhũ)− q̃
−µ∆hp̃−Divh z̃ + 2λ̃p̃+ 2(ũ− u†)

h′γ(Dhũ)∗Dhp̃− z̃
−β∆hλ̃+ βλ̃+ (ũ− f)p̃−max

(
0,−β∆hλ̃+ (ũ− f).p̃

)

 = 0.

Above, we used the notation u.v to present the grid function (uv)ij = uijvij for all u, v ∈ Λh
or u, v ∈ Dk

u (k = 1, 2). Hereafter, the notations 〈·, ·〉 and ‖ · ‖ stand for the Euclidian
product and norm in Rn, respectively. Besides, for q = (q1, q2), z = (z1, z2) ∈ D1

u ×D2
u, we

denote (q, z)D1
u×D2

u
:= 〈q1, z1〉+ 〈q2, z2〉.

3.2. Schwarz domain decomposition methods. The nonlinear system (3.1), arising
from the discretization of (2.25), is of large scale nature, involving the solution of three
coupled PDEs per each training pair of images. Even for the case of a single training pair,
this task cannot be performed on a desktop computer. In the case of larger training sets,
the problem becomes much harder, not to mention the increasingly high resolution of the
images at hand.

To tackle this problem, we consider the application of Schwarz domain decomposition
methods for solving the resulting optimality system. Since our aim is to set up a parallel
method based on domain decomposition, we focus on additive Schwarz methods. Once the
domain is decomposed, the nonlinear optimality system is solved in each subdomain.

It is well-known that the convergence rate of the Schwarz method is dependent on the
size of the overlapping area. In order to improve the convergence rate, a modified version
of the method was proposed in [13, 26]. To illustrate the main idea, consider the following



OPTIMAL SPATIALLY-DEPENDENT REGULARIZATION 15

coupled linear system with an optimality system type structure:

−∆u+ ηu = f + θp in Ω, u = 0 on ∂Ω;

−∆p+ ηp = −(u− ud) in Ω, p = 0 on ∂Ω,

where θ, η > 0. The so-called optimized Schwarz method (with two subdomains) works as
follows: For k ≥ 0 and i, j ∈ {1, 2}, i 6= j

−∆uk+1
i + ηuk+1

i = f + µpk+1
i in Ωi;

uk+1
i

∣∣
∂Ω

= 0;
(
αi + ∂~n

)
uk+1
i

∣∣
Γi

=
(
αi + ∂~n

)
ukj
∣∣
Γi

;

−∆pk+1
i + ηpk+1

i = −(uk+1
i − ud) in Ωi;

pk+1
i

∣∣
∂Ω

= 0;
(
αi + ∂~n

)
pk+1
i

∣∣
Γi

=
(
αi + ∂~n

)
pkj
∣∣
Γi
,

where the transmission parameters α1, α2 are approximated as follows (by zero order ap-
proximations)

α1 =
√
η; α2 = −√η.

In order to obtain the formulas for the transmission parameters of the optimized Schwarz
method, we consider the equations for u and p in the optimality system (in strong form) as
a coupled system

−µ∆u−Div[hγ(Du)] + 2λ(u− f) = 0,

−µ∆p−Div[h′γ(Du)∗Dp] + 2λp+ 2(u− u†) = 0.

By skipping the regularization terms, we get again the linear coupled system as in [26] with
µ = 1. In addition, we consider the gradient equation

−β∆λ+ βλ+ (u− f)p = 0

for the functional parameter λ. We use the common forms of transmission conditions on
Γ1,Γ2 in the optimized Schwarz method as follows

(3.2)

( ∂
∂~n

+ S(uk,pk,λk)
v1

)
vk+1

1 (·, x2) =
( ∂
∂~n

+ S(uk,pk,λk)
v1

)
vk2 (·, x2) on Γ1;( ∂

∂~n
+ S(uk,pk,λk)

v2

)
vk+1

2 (·, x2) =
( ∂
∂~n

+ S(uk,pk,λk)
v2

)
vk1 (·, x2) on Γ2,

where the transmission parameters are chosen in a similar way as for the coupled (linear)
system (see [26]):

S(uk,pk,λk)
u1 = S(uk,pk,λk)

p1 =

√
2λn1
µ

; S(uk,pk,λk)
u2 = S(uk,pk,λk)

p2 = −

√
2λk2
µ

;

S
(uk,pk,λk)
λ1

= 1; S
(uk,pk,λk)
λ2

= −1.

3.3. Semismooth Newton method. The optimality system (3.1) has a nonlinear non-
smooth structure. Because of this, a Newton method cannot be directly applied. However,
the nonsmooth functions involved, in particular the max operator, have additional proper-
ties, which allow to define a generalized Newton step for the solution of the system.

Definition 3.1. Let X,Z be Banach spaces and D ⊂ X be an open set. The mapping
F : D → Z is called Newton differentiable on an open set U ⊂ D if there exists a mapping
G : U → L(X,Z) such that

lim
h→0

‖F (x+ h)− F (x)−G(x+ h)h‖Z
‖h‖X

= 0, h ∈ X

for every x ∈ U . G is called generalized derivative of F .

We also refer to [17,18] for a chain rule for Newton differentiable functions.
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Lemma 3.1. Let F : Y → Z be a Newton differentiable operator with generalized derivative
G; y∗ be a solution of equation F (y) = 0 and U ⊂ Y an open neighborhood containing y∗.
If for every y ∈ U , ‖[G(y)]−1‖L(X,Z) is bounded, then the Newton iterations

yk+1 = yk −G−1(yk)F (yk)

converge superlinearly to y∗, provided that ‖y0 − y∗‖X is sufficiently small.

In particular, it has been proved (see, e.g., [18]) that the mapping max(0, ·) : Rn → Rn is
Newton differentiable with generalized derivative Gm : Rn → L

(
Rn,Rn

)
given by

(Gm(y))i =

{
1 if yi > 0,

0 if yi ≤ 0
.

The operator Fh in (3.1) is therefore Newton differentiable and its generalized derivative
GF : Hh 7→ L(Hh, H

′
h) is given by

(3.3) GFh(y)δy =
(2λI− µ∆h)δu −Divhδq + 2(u− f)δλ

h′γ(Dhu)Dhδu − δq
2δu + (2λI− µ∆h)δp −Divhδz + 2pδλ(
h′γ(Dhu)∗Dhp

)
u
δu + h′γ(Dhu)Dhδp − δz

pδu + (u− f)δp + β(I−∆h)δλ −Gm
(
(u− f)p− β∆hλ

)(
pδu + (u− f)δp − β∆hδλ

)


where δy = (δu, δq, δp, δz, δλ) and I stands for the identify. The semi-smooth Newton step is
then given by

(3.4) GFh(yk)δy = −Fh(yk), yk+1 = yk + δy,

where F and GFh are defined in (3.1) and (3.3), respectively.
For the convergence analysis, we assume that there exists an optimal solution (u∗, λ∗) ∈

Uh × Λh, with λ∗ ≥ 0 on Ωh. The second order condition in Theorem 2.4 ensures that a
solution of the first order system is also solution of the optimization problem. However, to
consider the convergence of the semi-smooth Newton method, we need the following stronger
assumption: There exists ρ > 0 such that

(3.5) 2‖w‖2 + β(‖l‖2 + ‖Dhl‖2) +
(
h′′(Dhu

∗)[Dhw,Dhw], Dhp
∗)
D1
u×D2

u

+ 4〈w l, p∗〉 ≥ ρ(‖l‖2 + ‖Dhl‖2),

for every pair (w, l) ∈ Uh × K̃ that satisfies

−µ∆hw −Divh
(
h′γ(Dhu

∗)Dhw
)

+ 2l(u∗ − f) + 2λ∗ w = 0,

with
K̃ = {lij = l(xij) ∈ Λh : lij ≥ 0; lij 6≡ 0 ∀xij ∈ Ωh}.

Now we consider the mapping eu(u, λ) ∈ L(Uh, U
′
h) defined by

eu(u, λ)w = −µ∆hw −Divh
(
h′γ(Dhu)Dhw

)
+ 2λ w ∀w ∈ Uh.

From the properties of h′γ it can be verified that 〈eu(u, λ)w,w〉 ≥ 〈(2λI−µ∆h)w,w〉, ∀w ∈ Uh
and, hence, eu(u, λ) is invertible. Moreover, for fixed u ∈ Uh and λ ∈ K, there exists
C = C(λ) > 0 (only dependent on λ) such that for every ξ ∈ Uh, the equation

eu(u, λ)w = −µ∆hw −Divh
(
h′γ(Dhu)Dhw

)
+ 2λ w = ξ

has a unique solution w ∈ Uh which satisfies ‖w‖ ≤ C‖ξ‖. In order to consider the conver-
gence of the method, we use an additional assumption.

Assumption 3.1. There exists a neighbourhood V (λ∗) of the optimal parameter λ∗ and a
constant C > 0 (independent of u and λ) such that, for all (u, λ) ∈ Uh × V (λ∗) and for any
ξ ∈ Λh, there exists a unique solution w ∈ Uh of eu(u, λ)w = ξ and ‖w‖ ≤ C‖ξ‖.
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If a pair (w, l) ∈ Uh × Λh satisfies the equation

eu(u, λ)w + eλ(u, λ)l = −µ∆hw −Divh
(
h′γ(Dhu)Dhw

)
+ 2λ.w + 2(u− f) l = 0,

then ‖w‖ ≤ C1(u, λ)‖l‖, where C1(u, λ) > 0 is dependent on (u, λ). If Assumption 3.1 holds
and we only consider u in a bounded neighborhood of u∗, the last estimate yields

(3.6) ‖w‖ ≤ C1‖l‖

for some C1 > 0 and for all w ∈ Uh, l ∈ Λh satisfying eu(u, λ)w+ eλ(u, λ)l = 0. It is easy to
see that if λ ∈ R+, there always exist a neighborhood V1(u∗) of u∗ such that (3.6) hold.

Theorem 3.1. Let Assumption 3.1 and condition (3.5) hold. Then the semismooth Newton
method applied to (3.1), with generalized derivative GFh defined by (3.3), converges locally
superlinearly to a solution y∗ = (u∗, q∗, p∗, z∗, λ∗, µ∗), provided that ‖y0−y∗‖ is sufficiently
small.

Proof. At step k ≥ 0, we denote Ak := {xij ∈ Ωh : (u− f)p− β∆hλ > 0} and Ik := Ωh \A.
F ih are the components on the right-hand side, i = 1, .., 5. The 5th equation of the system
(3.4) can be expressed as{

χAkβδλ = χAkF
5
h

χIk
{
p.δu + (u− f)δp + β(I−∆h)δλ

}
= χIkF

5
h .

Therefore, we can write (3.4) in equivalent form as follows

{(2λk − µ∆h)−Divh[h′γ(Dhuk)Dh]}δu + 2(uk − f)δλ = f1(3.7a) {
2I−Divh

[(
h′γ(Dhuk)

∗Dhpk
)
u

]}
δu+(3.7b)

+
{

(2λk − µ∆h)−Divh[h′γ(Dhuk)Dh]
}
δp + 2pk.δλ = 2f2

χIk
{
pk.δu + (uk − f).δp + β(I−∆h)δλ

}
= χIkβ(I−∆h)f3(3.7c)

χAkδλ = χAkf4(3.7d)

where f1 = F 1
h −DivhF

2
h ; f2 = 1

2(F 3
h −DivhF

4
h ); f3 = β−1(I−∆h)−1F 5

h and f4 = β−1F 5
h .

For a fixed grid step size h > 0, we easily verify that there exist some constants m1, m2, m3,
m4, m5 > 0 such that ‖f1‖ ≤ m1‖F 1

h‖ + m2‖F 2
h‖D1

u×D2
u
, ‖f2‖ ≤ m3‖F 3

h‖ + m4‖F 4
h‖D1

u×D2
u

and ‖f3‖ ≤ m5‖F 5
h‖.

Next, we show that there exists a neighborhood V (u∗, λ∗, p∗) such that with any (u, λ, p) ∈
V (u∗, λ∗, p∗) the system (3.4) is solvable for every right-hand side F ih. We write (3.7a),
(3.7d) in form

E(δu, δλ) =

(
eu(uk, λk)δu + eλ(uk, λk)δλ − f1

χA(δλ − f4)

)
= 0, where E : Uh × Λh → Uh × Λh

∣∣
Ak
.

We have ker(E′) = {(v, l) ∈ Uh × Λh : χAv = 0; eu(uk, λk)v + eλ(uk, λk)l = 0}.
To show the existence and uniqueness of a solution to (3.7), let us introduce the following
auxiliary problem

(3.8)

minJA(δu, δλ) = ‖δu − f2‖2 + β‖χIk(δλ − f3)‖2 + β‖χIk [Dh(δλ − f3)]‖2

+
1

2

〈
euu[δu]2, pk

〉
+
〈
euλ[δu, δλ], pk

〉
subject to E(δu, δλ) = 0.

We consider the Lagrangian

(3.9)
LA(δu, δλ, δp, ψ) = JA(δu, δλ) + 〈ψ, χA(δλ − f4)〉

∣∣
Ak

+ 〈δp, eu(uk, λk)δu + eλ(uk, λk)δλ − f1〉.
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It is not difficult to show that (3.7) is the optimality condition for problem (3.8).
The Hessian of JA is determined by

J ′′A[δu, δλ]2 = 2‖δu‖2 + 2β
(
‖χIkδλ‖

2 + ‖χIk(Dhδλ)‖2D1
u×D2

u

)
+
(
[h′γ(Dhuk)

∗Dhδu]uδu, Dhpk
)
D1
u×D2

u
+ 4〈pk.δu, δλ〉.

For every (δu, δλ) ∈ ker(E′), we have χAkδλ = 0. Hence

J ′′A[δu, δλ]2 ≥ 2‖δu‖2 + 2β
(
‖δλ‖2 + ‖Dhδλ‖2D1

u×D2
u

)
+
(
[h′γ(Dhuk)

∗Dhδu]uδu, Dhpk
)
D1
u×D2

u
+ 4〈pk.δu, δλ〉.

By Lemma 2.1 and Assumption 3.1, there is a neighborhood of the solution such that
eu(u, λ)∗ is surjective, invertible and euu(u) is Lipschitz continuous. Hence, from (3.5) there
exists a neighborhood V (u∗, λ∗, p∗) of the solution and a constant ρ > 0, such that for all
(u, λ, p) ∈ V (u∗, λ∗, p∗), the estimates

(3.10)
2‖v‖2 + 2β(‖l‖2 + ‖Dhl‖2D1

u×D2
u
) +

(
[h′γ(Dhu)∗Dhv]uv,Dhp

)
D1
u×D2

u
+ 4〈p.v, l〉

≥ ρ(‖l‖2 + ‖Dhl‖2D1
u×D2

u
)

holds for every (v, l) ∈ Uh × Λh which satisfies eu(u, λ)v + eλ(u, λ)l = 0.
Now we assume (uk, λk, pk) ∈ V (u∗, λ∗, p∗). By using the formula of J ′′A[δu, δλ]2 and the last
inequality, we find that there exists constant K∗ > 0 such that

(3.11) J ′′A[δu, δλ]2 ≥ K∗
2θ2
‖(δu, δλ)‖2Uh×Λh

∀(δu, δλ) ∈ ker(E′).

Therefore, (3.9) is a linear quadratic optimization problem with convex objective function.
Besides, we also have that E′(u, λ) is surjective for fixed (u, λ) ∈ V (u∗, λ∗). Hence, there
exists a unique solution (δu, δλ, δp, ψ), with ψ ∈ Λ

∣∣
Ak

, to the following optimality system:

(3.12)


eu(uk, λk)δu + eλ(uk, λk)δλ − f1 = 0

χAk(δλ − f4) = 0

(2 + euu(uk)pk)δu + euλ(uk, λk)pkδλ + eu(uk, λk)δp = 2f2

euλ(uk, λk)pkδu + 2χIkβ(I−∆h)δλ + eλ(uk, λk)δp + χAkψ = 2χIkβ(I−∆h)f3.

Applying χAk and χIk to the last equation we get{
χIk
{
pkδu + (uk − f).δp + β(I−∆h)δλ

}
= χIkβ(I−∆h)f3

χAk{pkδu + (uk − f).δp + 1
2ψ} = 0,

which implies the solvability of (3.7). We write the system (3.12) in equivalent form as{
J ′′A(δu, δλ) + (E′)∗(δp, ψ) = 2(f2, χIkβ(I−∆h)f3)T

E′(δu, δλ) = (f1, χAf4).

From (2.30) it follows that ‖euu(u)[w]∗p‖ ≤ r‖p‖‖w‖ for some r > 0 independent in u and for
every p, w ∈ Uh. Besides, since 0 < β � 1, we have that there exist r1, r2 > 0 independent
of (uk, pk, λk) such that

∥∥J ′′A(δu, δλ)
∥∥
Uh×Uh

≤ r1

[
‖δλ‖ + (1 + r2)‖δu‖

]
. Therefore, from

the third and the forth equations of (3.12), since eu(u, λ) is continuously invertible for
(uk, pk, λk) ∈ V (u∗, p∗, λ∗), there exists r5, r6,K3 > 0 such that

(3.13) ‖(δp, ψ)‖
Uh×Λ

∣∣
Ak

≤ K3

(
‖(δu, 1/(1 + r4)δλ)‖Uh×Λh + r5‖f2‖Uh + r6‖f3‖Uh

)
,

for the solution (δu, δλ, δp, ψ) of the optimality system for auxiliary problem.
With u ∈ V1(u∗), λ ∈ V (λ∗) and Assumption 3.1, E′ is surjective. It follows that range((E′)∗)
is closed and therefore the following decomposition is well-defined

(δu, δλ) = (δku, δ
k
λ) + (δru, δ

r
λ) where (δku, δ

k
λ) ∈ ker(E′); (δru, δ

r
λ) ∈ range((E′)∗).
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From χAkβδ
r
λ = χAkf4 it follows ‖δrλ‖ ≤ K‖f4‖ for some constant K > 0 which is indepen-

dent of λ (since χAk is invertible on range((E′)∗)). Besides, from (δru, δ
r
λ) ∈ range((E′)∗) we

have euδru + eλδ
r
λ = 0, and one obtains for some K1 > 0 independent in λ

(3.14) ‖(δru, δrλ)‖Uh×Λh ≤ K1‖f4‖.

Besides, since (δku, δ
k
λ) ∈ ker(E′) and from (3.10), we have

(3.15)

K∗
2θ2
‖(δku, δkλ)‖2Uh×Λh

≤ 〈J ′′[δku, δkλ], (δku, δ
k
λ)〉

=〈J ′′[δu, δλ], (δu, δλ)〉 − 〈J ′′[δru, δrλ], (δru, δ
r
λ)〉 − 2〈J ′′[δku, δkλ], (δru, δ

r
λ)〉

=〈2(f2, χIkβ(I−∆h)f3), (δu, δλ)〉 − 〈(f1, χAf4), (δp, ψ)〉
Uh×Λh

∣∣
Ak

− 〈J ′′[δru, δrλ], (δru, δ
r
λ)〉 − 2〈J ′′[δku, δkλ], (δru, δ

r
λ)〉

=〈2(f2, χIkβ(I−∆h)f3), (δru, δ
r
λ)〉+ 〈2(f2, χIkβ(I−∆h)f3), (δku, δ

k
λ)〉

− 〈(f1, χAf4), (δp, ψ)〉
Uh×Λh

∣∣
Ak

− 〈J ′′[δru, δrλ], (δru, δ
r
λ)〉 − 2〈J ′′[δku, δkλ], (δru, δ

r
λ)〉.

From (3.13) and (3.14) it follows∣∣∣∣〈(f1, χAf4), (δp, ψ)〉
Uh×Λh

∣∣
Ak

∣∣∣∣ ≤ K4

( 4∑
i=1

r̃i‖fi‖2
)

+
K∗

4(1 + r4)θ2
‖δkλ‖2.

Besides, by the properties of euu in case (uk, pk, λk) ∈ V (u∗, p∗, λ∗) which are mentioned in
Lemma 2.1, we also have∣∣2〈J ′′[δku, δkλ], (δru, δ

r
λ)〉
∣∣ ≤ K5‖f4‖2 +

K∗
4(1 + r4)θ2

‖δkλ‖2;

〈2(f2, χIkβ(I−∆h)f3), (δku, δ
k
λ)〉 ≤ r7‖f2‖2 + r8‖f3‖2 +

K∗r4

4(1 + r4)θ2
‖(δku, δkλ)‖2Uh×Λh

;

−〈J ′′[δru, δrλ], (δru, δ
r
λ)〉 ≤ −〈pk, euu(uk)[δ

r
u]2〉 − 4〈pkδru, δrλ〉

≤ r9‖δru‖2 + r10‖δrλ‖2 ≤ r11‖(δru, δrλ)‖2Uh×Λh
≤ r12‖f4‖2.

where r̃i, ri and Ki stand for positive constants. These relations imply that for some con-
stants k1, k2, k3, k4 > 0

r4K∗
4(1 + r4)θ2

‖(δku, δkλ)‖2Uh×Λh
≤ k1‖f1‖2 + k2‖f2‖2 + k3‖f3‖2 + k4‖f4‖2.

By combining the last relation with (3.13), we find that there exists κ > 0, independent of
(uk, pk, λk) such that

‖(δu, δλ, δp, ψ)‖2
Uh×Λh×Uh×Λh

∣∣
Ak

≤ κ‖(f1, f2, f3, f4)‖2Uh×Uh×Λh×Uh

and therefore, we have for some κ̄ > 0

‖δ‖2Hh ≤ κ̄‖(F
1
h , F

2
h , F

3
h , F

4
h , F

5
h )‖2H′h .

The last relation implies GFh(y) is uniformly continuously invertible in V (y∗) and futher-
more, it follows that we have ‖GFh(y)−1‖L(Hh,H

′
h) ≤ κ̄. �

3.4. Globalization. The semismooth Newton method (3.4) typically exhibits a very small
convergence neighbourhood for high values of γ. In order to globalize the semismooth
Newton method, we consider a modified Jacobi matrix in each iteration. The main idea
consists in reinforcing feasibility of the dual quantities (with suitable projections) in the
building of the Jacobian.
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To describe the modification, let us first introduce the following notation:

P1(u) =
2γ − 1

4γ
+
γ|Dhu|

2
− γ

2
t1(u)t2(u) +

γ3

2
t21(u)t22(u);

P2(u) =
γ

2
− γ2

2

[
t1(u) + t2(u)

]
+ γ3

[
t1(u) + t2(u)

]
t1(u)t2(u).

The proposed building process is based on the properties of the stationary point we look
for. Indeed, at the solution y∗, we know the following:

• On Aγ : q = hγ(Dhu
∗) = Dhu

∗

|Dhu∗| . On the other hand, h′γ(Dhu)∗Dhz = Dhz
|Dhu| −

〈Dhu,Dhz〉
|Dhu|2

Dhu
|Dhu| . Since

∣∣∣ Dhu∗|Dhu∗|

∣∣∣ ≤ 1, by projecting onto the feasible set, we have an
approximation of h′γ(Dhu)Dh on Aγ :

(h′γ(Dhu))†Dh :=
Dh

|Dhu|
− 〈Dhu,Dh〉
|Dhu|2

q

max{1, |q|}
.

• On Sγ : q = hγ(Dhu
∗) = P1(u) Dhu

∗

|Dhu∗| , 1− 1
2γ ≤ P1(u) ≤ 1 and

h′γ(Dhu)∗Dhz = P1(u)

(
Dhz

|Dhu|
− 〈Dhu,Dhz〉

|Dhu|3
Dhu

)
+ P2(u)

〈Dhu,Dhz〉
|Dhu|2

Dhu

=

(
(DhzDu

T )

|Dhu|2
− 〈Dhu,Dhz〉

|Dhu|2

)
P1(u)

Dhu

|Dhu|
+ P2(u)

〈Dhu,Dhz〉
|Dhu|2

Dhu.

Hence, similar to the above consideration, we obtain:

(h′γ(Dhu))†Dh :=

{
(DhzDu

T )

|Dhu|2
+

[
P2(u)

P1(u)
− 1

|Dhu|

]
〈Dhu,Dh〉
|Dhu|

}
q

max{1, |q|}
.

By replacing (h′γ(Dhu)) by (h′γ(Dhu))†, we get a modified generalized derivative of Fh:

(3.16) G†Fh(y)(δu, δq, δp, δz, δλ)T =
(2λI− µ∆h)δu −Divhδq + 2(u− f)δλ

(h′γ(Dhu))†δu − δq
2δu + (2λI− µ∆h)δp −Divhδz + 2pδλ(
h′γ(Dhu)∗Dhp

)
u
δu + (h′γ(Dhu))†δp − δz

pδu + (u− f)δp + β(I−∆h)δλ −Gm
(
(u− f)p− β∆hλ

)(
pδu + (u− f)δp − β∆hδλ

)


and the corresponding modified iteration for solving of Fh(y) = 0 with Fh in (3.1):

(3.17) G†Fh(ỹk)
(
ỹk+1 − ỹk

)
= −Fh(ỹk).

4. Computational experiments

All schemes developed previously were implemented in MATLAB and run in a HP Blade
multiprocessor system. The overall used algorithm is given through the following steps:

Algorithm 4.1 (Domain decomposition-semismooth Newton algorithm).

0. Initialize y0 = (u0, q0, p0, z0, λ0)T , choose the number of subdomains M , the number
of intersecting pixels L and set k = 0.

1. In each subdomain j ∈ {1, . . . ,M}, solve iteratively (3.17):

G†Fh(yjk)δ
j
y = −Fh(yjk)

until ‖δjy‖ ≤ tol, and update yjk+1 = yjk + δjy.
2. Merge the subdomain solutions yjk+1 into one solution yk+1 on the whole image

domain.
3. Stop if the domain-decomposition stopping criteria is satisfied. Otherwise, update
k ← k + 1 and go to 1.



OPTIMAL SPATIALLY-DEPENDENT REGULARIZATION 21

Since the computations in each subdomain are independent from each other, these may
run simultaneously in parallel processors. We implemented a standard for-loop for iteration
k of the domain decomposition method and, within each k, a parallel MATLAB parfor-loop
for computing the solution on each subdomain.

For the numerical experimentation we introduce some notation and several quantities of
interest, which are described next:
L Number of overlapping pixels between 2 neighboring subdomains
MNonDDC Semismooth Newton method on the whole domain Ω
MorgDDC Original Schwarz-Semismooth Newton method
MoptDDC Optimized Schwarz-Semismooth Newton method
erλ ‖λDD − λ‖, where λDD is obtained by MorgDDC or MoptDDC , and λ by MNonDDC

eru ‖uDD − u‖, where uDD is obtained by MorgDDC or MoptDDC , and u by MNonDDC .
kmax Maximum number of subdomain SSN-iterations in all DD iterations
SSNR

∑
i ‖F ih(ykmax

)‖ on Ωi ⊂ Ω
Tp Performing time (in seconds).
We also use the structural similarity measure (SSIM) (see [32]) to compare the obtained

images with the original one.

4.1. Uniform Gaussian noise. In this first experiment, we consider the denoising problem
with brain scan images. The first set consists of images of 256 × 256 pixels and Gaussian
noise with zero mean and variance σ = 0.0075. The original and noisy images are shown
in Figure 4.1. The domain decomposition-semismooth Newton algorithms run with the
parameter values γ = 50, µ = 10−13, β = 10−9 and h = 0.01. The results are shown
in Figure 4.2. From the surface representation of λ, we can observe that λ is continuous
and its shape is related to the one of the original image. In particular, the regularisation
is stronger in homogeneous regions in the image, and weaker where the image intensity
undergoes variations on a smaller scale.

Figure 4.1. The first experiment: Original (left) and noisy (right) images.

In Table 4.1 the performance of the different methods is compared. For all of them,
only the first 2 domain decomposition iterations were considered. The total number of
SSN iterations differ at most by one. The impact of the domain decomposition method
becomes clear when comparing the computing times of the methods, corresponding to one,
two and four subdomains. The computing time is significantly reduced. The effect of
the optimized transmission conditions can be realized when comparing the gap between
subdomains, which is much lower in the case of optimized transmission conditions (MoptDDC)
than in the standard Schwarz method (MorgDDC).

4.2. Non-uniform Gaussian noise. For this experiment we consider input images of size
512 × 512, with a Gaussian noise of σ = 0.014 on the whole domain and an additional
Gaussian noise component of σ = 0.016 on some areas which are marked in red (see Figure
4.3). The parameter values used are µ = 0, β = 10−10, γ = 100 and h = 0.002. The shape
of λ is shown in Figure 4.4.

The semismooth Newton method, on the whole domain, takes kmax = 14 iterations and
Tp = 1398.1(s) to converge. The denoised image has an SSIM = 0.791. Meanwhile, one
iteration ofMorgDDC with L = 30 takes kmax = 15 iterations and Tp = 411.7(s) to converge,
and yields SSIM = 0.769. The error with respect to λ is given by erλ = 0.97. With the same
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Figure 4.2. Using the training set in Figure 4.1 the optimally denoised images
are shown (left), surface plots of λ (center) and images of λ (right). The first row
corresponds to the result achieved without domain decomposition MNonDDC ; the
second and third row correspond to the results using domain decomposition (2 iter-
ations) without (MorgDDC) and with (MoptDDC) optimized transmission condition,
respectively. Here we used 2 subdomains with an overlap of L = 40 pixels.

Method kmax
L = 20 L = 40

(1) (2) (3) (4) (1) (2) (3) (4)
MNonDDC 10 SSIM = 0.894 Tp = 83.71

MorgDDC
(a) 11 0.851 5.3 2.71 28.11 0.861 3.1 1.76 38.01
(b) 11 0.853 5.9 3.60 10.09 0.858 3.7 2.05 19.99

MoptDDC
(a) 11 0.869 3.2 0.99 29.85 0.881 1.9 1.01 39.92
(b) 10 0.865 3.6 1.22 11.03 0.877 2.3 1.09 23.81

Table 4.1. Numerical results for the first experiment after one domain decom-
position iterations. Rows (a): 2 subdomains; (b): 4 subdomains. Columns (1):
SSIM ; (2): eru (×10−3); (3): erλ; (4): Tp.

value L = 30, theMoptDDC stops after kmax = 15 and Tp = 433.9(s). The similarity measure
is SSIM = 0.785 and the error with respect to λ is given by erλ = 0.51. The corresponding
images for all three methods are given in Figures 4.4, 4.5 and 4.6, respectively.

From Figures 4.4, 4.5 and 4.6 we can observe that the areas with higher noise level result
in smaller pointwise values of λ. Moreover, from the tabulated results, one can realize that,
in order to get good results for MorgDCC , a sufficiently large value of L is required. This
has of course an increasing effect in the total computing time.

4.3. Large training set. As can be seen in the experiments with one training image, the
spatially adapted λ does not only capture inhomogeneities in the noise, but also adapts to
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Figure 4.3. The input images for the non-uniform noise experiment: original
(left) and noisy (right) images.

Figure 4.4. Denoised image (left) and image of λ (right).

Figure 4.5. MorgDDC with L = 30: Denoised image (left) and λ (right).

Figure 4.6. MoptDDC with L = 30: Denoised image (left) and λ (right).

the scale of structures in the underlying image. Learning one fixed parameter, therefore, for
more than one image seems counterintuitive since these local adaptions will change in each
image. In the following experiment we argue, however, that if the training set features images
with sufficiently similar content as well as with similar and heterogenous noise properties,
as might be the case for MRI scans of brains, then the learned, spatially-adapted λ still
outperforms a learned λ that is constant. To verify this, we compute the optimal functional
parameter λ from a training set of 10 pairs (u†j , fj), j = 1, . . . , 10. The images (of size



OPTIMAL SPATIALLY-DEPENDENT REGULARIZATION 24

256 × 256) were taken from the OASIS online database. A Gaussian noise with σ = 0.025
was distributed on the images, and in the areas marked by red, additional noise with σ = 0.1
was imposed (to all noisy images at the same location).

The parameter values used for this experiment were γ = 50, µ = 10−15, β = 10−12 and
h = 1/256. We utilized the optimized Schwarz method MoptDDC , with overlapping size
L = 5, and stop after two iterates. A total amount of 24 subdomains were considered and
the computations were carried out in parallel. The semismooth Newton method, within
each step of MoptDDC , stops whenever err < 0.01. The results are shown in Figure 4.7.

a)

b)

c)

Figure 4.7. Results of learning the spatial parameter λ for a training set (u†k, fk):
(a) Original images, (b) Noisy images, (c) Denoised images with MoptDDC (24
subdomains).

Figure 4.8. Optimal parameter λ for the experiment in Figure 4.7 after 2 Schwarz iterations.

The performance of the overall algorithm for the cases of 4 and 24 subdomains is registered
in Table 4.2. It becomes clear from the data, that there is a significant decrease in the total
computing time, when an increasing number of subdomains is considered. This, on the other
hand, does not significantly affect the quality of the obtained image, measured by SSIM.
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We denote AV GGapλ := 1
10

10∑
i=j
‖λmj − λnj ‖

∣∣
Ωm∩Ωn

, j = 1, . . . , 10, λlj = λj
∣∣
Ωl

and Ωm,Ωn are

subdomains.

#Ωi kmax Tp SSIMmin SSIMmax SSIMavg AV GGapλ
4 17 2098.42 0.826 0.878 0.856 3.072
24 14 179.01 0.821 0.883 0.863 2.785

Table 4.2. Numerical results for MoptDDC . SSIMmin, SSIMmax, SSIMavg:
min, max and average SSIM of the optimal subdomain images with respect to u†j ,
j = 1 . . . 10.

4.4. Performance compared to other spatially-dependent approaches. In the last
experiment we compare the results of our optimal learning approach with the ones ob-
tained with the spatially adapted total variation method (SA-TV) proposed in [8]. For the
comparison, we apply the optimal spatially-dependent parameter computed in the previous
experiment (see Figure 4.8) to a different brain scan, not included in the training set.

The chosen parameters for SA-TV are µ̄ = 0 and β̄ = 10−3. We use the stopping rule
as in [8], i.e., ‖uk − f‖ ≤ σ. We should remark that the obtained results are very sensitive
with respect to the choice of the algorithmic parameters. A lot of trial and error has to be
carried out to get proper parameters. This time-consuming preprocessing step should also
been taken into account when judging the overall SA-TV performance.

We compare our optimal learning method with SA-TV by means of two well-known qual-
ity measures: the peak signal-to-noise ratio (PSNR) and the structural similarity measure
(SSIM). The results of the two approaches are reported in Table 4.3, where it can be ob-
served that our approach outperforms SA-TV for the tested image, with respect to both
quality measures.

Method PSNR SSIM
SA-TV 20.13 0.703
Learning 27.51 0.822

Table 4.3. Comparison of our optimal learning approach and SA-TV for the
brain scan image with non-uniform gaussian noise

5. Appendix

Proof of Lemma 2.1. For z, ξ, τ ∈ R2, by setting tz1 = γ
2

(
γ|z| − 1 + 1

2γ

)
, tz2 = γ|z| − 1− 3

2γ ,

χAz =

{
1 if γ|z| ≥ b
0 otherwise

;χSz =

{
1 if a ≤ γ|z| < b

0 otherwise
and χIz =

{
1 if γ|z| < a

0 otherwise

we get h′γ(z)[ξ] = χAz

[
ξ

|z|
− 〈z, ξ〉
|z|3

z

]
+ χSz

{
γ

2
ξ + γ2

(
γ|z| − 1

)(
2γ2tz1t

z
2 − 1

)〈z, ξ〉
|z|2

z

+

[
2γ − 1

4γ
− γtz1t

z
2

2
+
γ3(tz1t

z
2)2

2

](
ξ

|z|
− 〈z, ξ〉
|z|3

z

)}
+ χIz

(
γξ
)
.

Moreover, by setting φ(z, ξ) = −
{

(ξzT )
|z|3 + (zξT )

|z|3 − 3 〈z,ξ〉(zz
T )

|z|5 + 〈z,ξ〉
|z|3

}
, we get

h′′γ(z)[ξ, τ ] = χAzφ(z, ξ)τ + χSz

{
φ(z, ξ)τ

[
γ

2
tz1t

z
2

(
4γ3|z|

(
γ|z| − 1

)
− γ2tz1t

z
2 + 1

)
−
(
γ3|z|2 − γ2|z|+ 1

2
− 1

4γ

)]
+ 6γ5tz1t

z
2

〈z, ξ〉(zzT )

|z|3
τ

}
.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9. Comparison of SA-TV and the optimal learning approach: (a) Orig-
inal image, (b) Noisy image, (c) Denoised image with SA-TV, (d) Denoised image
with learned λ̄, (e) Spatially-dependent SA-TV parameter, (f) Optimal spatially-
dependent parameter.

a) We first consider the case z, ẑ, ξ, τ ∈ R2. Indeed,
(a1) If |z| < a

γ and |ẑ| < a
γ , we have |R(z, ẑ, ξ, τ)| := |h′′γ(z)[ξ][τ ]− h′′γ(ẑ)[ξ][τ ]| = 0.

(a2) If |z| > b
γ and |ẑ| < a

γ , by a straight computation, we find |z − ẑ| ≥
∣∣|z| − |ẑ|∣∣ ≥ 1

2γ2

and
∣∣R(z, ẑ, ξ, τ)

∣∣ =
∣∣φ(z, ξ)τ

∣∣ ≤ 24γ4

(2γ+1)2
|ξ||τ |. This yields (2.3).

(a3) If |z|, |ẑ| > b
γ , we have 1

|ẑ|3 ,
1
|z|3 ≤

(
1
γ + 1

2γ2

)−3 and

R(z, ẑ, ξ, τ) =

{
3

[〈z, ξ〉(zzT )
|z|5

−
〈ẑ, ξ〉

(
ẑẑT

)
|ẑ|5

]
−
[(
ξzT

)
|z|3

−
(
ξẑT

)
|ẑ|3

]
−
[(
zξT

)
|z|3

−
(
ẑξT

)
|ẑ|3

]
−
[
〈z, ξ〉
|z|3

− 〈ẑ, ξ〉
|ẑ|3

]}
τ =: (3S0 − S1 − S2 − S3)τ.
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One gets |S1| =
∣∣ 〈z,ξ〉
|z|3 −

〈ẑ,ξ〉
|ẑ|3
∣∣ ≤ [ 1

|ẑ|3 + 1
|z|3
]∣∣〈z − ẑ, ξ〉∣∣ +

∣∣|z|3〈z,ξ〉−|ẑ|3〈ẑ,ξ〉∣∣
|z|3|ẑ|3 . We find for the

first term
[

1
|ẑ|3 + 1

|z|3
]∣∣〈z − ẑ, ξ〉∣∣ ≤ 16γ6

(2γ+1)3
|z − ẑ||ξ| and for the second∣∣|z|3〈z, ξ〉 − |ẑ|3〈ẑ, ξ〉∣∣

|z|3|ẑ|3
≤ |ξ|
|z|3|ẑ|3

∣∣|z|3z − |ẑ|3ẑ∣∣
=

|ξ|
|z|3|ẑ|3

∣∣|ẑ|3(z − ẑ) + z
[
|z|3 − |ẑ|3

]∣∣
≤ |ξ|.|z − ẑ|

[ 1

|z|3
+

1

|ẑ|3
+

1

|z|.|ẑ|2
+

1

|z|2|ẑ|
]
≤ 32γ6

(2γ + 1)3
|z − ẑ||ξ|.

Hence, |S1τ | ≤ 48γ6

(2γ+1)3
|z − ẑ||ξ||τ |.

We also have |S2τ | =

∣∣(|ẑ|3z−|z|3ẑ)〈ξ,τ〉∣∣
|z|3|ẑ|3 ≤

[
1
|ẑ|3 + 1

|z|3
]∣∣z − ẑ

∣∣|ξ||τ | + ∣∣|z|3z−|ẑ|3ẑ∣∣
|z|3|ẑ|3 |ξ||τ | and

|S3τ | =
∣∣ ξ〈z,τ〉
|z|3 −

ξ〈ẑ,τ〉
|ẑ|3

∣∣ =
∣∣ξ〈 |ẑ|3z−|z|3ẑ|z|3|ẑ|3 , τ

〉∣∣ ≤ |ξ|∣∣ |ẑ|3z−|z|3ẑ|z|3|ẑ|3
∣∣|τ |.

Similarly, we have |S2τ | ≤ 48γ6

(2γ+1)3
|z − ẑ||ξ||τ |, |S3τ | ≤ 32γ6

(2γ+1)3
|z − ẑ||ξ||τ |.

We get |S0τ | ≤ |ξ||τ |
[∣∣ |ẑ|3z−|z|3ẑ

|z|3|ẑ|3
∣∣ +

∣∣ (z1z2)z
|z|5 − (ẑ1ẑ2)ẑ

|ẑ|5
∣∣], where z = (z1, z2), ẑ = (ẑ1, ẑ2).

Similar to S3τ , we have
∣∣ |ẑ|3z−|z|3ẑ
|z|3|ẑ|3

∣∣ ≤ 32γ6

(2γ+1)3
|z − ẑ|. By setting z̄ = (z̄1, z̄2) = z

|z| and

z̃ = (z̃1, z̃2) = ẑ
|ẑ| one gets

∣∣ (z1z2)z
|z|5 − (ẑ1ẑ2)ẑ

|ẑ|5
∣∣ ≤ [ 1

|ẑ|3 + 1
|z|3
]
|z − ẑ| +

∣∣ |z|3(z̃1z̃2)z−|ẑ|3(z̄1z̄2)ẑ
|z|3|ẑ|3

∣∣.
We find

∣∣ |z|3(z̃1z̃2)z−|ẑ|3(z̄1z̄2)ẑ
|z|3|ẑ|3

∣∣ ≤ |(z̃1z̃2)z−(z̄1z̄2)ẑ|
|ẑ|3 + |z − ẑ|

[
1

|z||ẑ|2 + 1
|z|2|ẑ| + 1

|z|3
]
. Without loss

of generality, we assume that |z| ≤ |ẑ|. One can verify that
∣∣(z̃1z̃2)z − (z̄1z̄2)ẑ

∣∣ ≤ |z−ẑ|
2 +

|ẑ|
2 |z̃ − z̄||z̃ + z̄| and |z̃ − z̄| ≤ 2|ẑ−z|

|z| . It follows
∣∣(z̃1z̃2)z−(z̄1z̄2)ẑ

∣∣
|ẑ|3 ≤ 5|z−ẑ|

2|ẑ|3 . Hence, we have

|S0τ | ≤ |ξ||τ ||z− ẑ|
{ 32γ6

(2γ+1)3
+ 2
|z|3 + 7

2|ẑ|3 + 1
|z||ẑ|2 + 1

|z|2|ẑ|
}
≤ 96γ6

(2γ+1)3
|z− ẑ||ξ||τ | and therefore,

|R(z, ẑ, ξ, τ)| ≤ 220γ6

(2γ+1)3
|z − ẑ||ξ||τ |.

(a4) If a ≤ γ|z|, γ|ẑ| ≤ b then 0 ≤ tz1, tẑ1 ≤ 1
γ ; −

1
γ ≤ t

z
2, t

ẑ
2 ≤ 0 and |φ(z, ξ)|, |φ(ẑ, ξ)| ≤ 24γ4|ξ|

(2γ−1)2
.

By setting q(z) = γ
2 t
z
1t
z
2

[
4γ3|z|

(
γ|z| − 1

)
− γ2tz1t

z
2 + 1

]
−
[
γ3|z|2 − γ2|z|+ 1

2 −
1

4γ

]
we have

R(z, ẑ, ξ, τ) =

{[
q(z)φ(z, ξ)− q(ẑ)φ(ẑ, ξ)

]
+ 6γ5

[
tz1t

z
2〈z, ξ〉(zzT )

|z|3
− tẑ1t

ẑ
2〈ẑ, ξ〉(ẑẑT )

|ẑ|3

]}
τ

and |q(z)|, |q(ẑ)| ≤ γ(1 + 1
2γ )(2 + 1

2γ ) + 6γ+5
4γ . We now analyze each term.∣∣[q(z)φ(z, ξ)− q(ẑ)φ(ẑ, ξ)

]
τ
∣∣ ≤ ∣∣q(z)− q(ẑ)∣∣∣∣φ(z, ξ)

∣∣|τ |+ |q(ẑ)|∣∣φ(z, ξ)− φ(ẑ, ξ)
∣∣|τ |.

Similarly for (a3), we get
∣∣[φ(z, ξ)− φ(ẑ, ξ)

]
τ
∣∣ ≤ 220γ6

(2γ−1)3
|z − ẑ||ξ||τ |. Besides,∣∣q(z)− q(ẑ)∣∣ ≤ γ

2

∣∣tz1tz2 − tẑ1tẑ2∣∣∣∣∣∣4γ3|z|
(
γ|z| − 1

)
− γ2tz1t

z
2 + 1

∣∣∣∣
+
γ

2

∣∣tẑ1tẑ2∣∣[4γ4
∣∣|z|2 − |ẑ|2∣∣+ γ3

∣∣|z| − |ẑ|∣∣+ γ2
∣∣tz1tz2 − tẑ1tẑ2∣∣]+ γ3

∣∣|z|2 − |ẑ|2∣∣+ γ2
∣∣|z| − |ẑ|∣∣.

From tz1t
z
2 = γ2|z|2− (a+ b)|z|+ab, it follows

∣∣tz1tz2− tẑ1tẑ2∣∣ ≤ γ2
∣∣|z|2−|ẑ|2∣∣+ |a+ b|

∣∣|z|− |ẑ|∣∣.
Note that

∣∣|z|2 − |ẑ|2∣∣ =
∣∣(|z| − |ẑ|)(|z| + |ẑ|)∣∣ ≤ 2γ+1

γ2
|z − ẑ|. Hence, there exists constant

m1(γ) > 0 only dependent on γ, such that
∣∣[q(z)φ(z, ξ)−q(ẑ)φ(ẑ, ξ)

]
τ
∣∣ ≤ m1(γ)|z− ẑ||ξ||τ |.

For the second term
∣∣ tz1tz2〈z,ξ〉(zzT )

|z|3 − tẑ1t
ẑ
2〈ẑ,ξ〉(ẑẑT )
|ẑ|3

∣∣ =: T2(z, ẑ, ξ), we have

T2(z, ẑ, ξ) ≤
|tz1tz2 − tẑ1tẑ2|

∣∣〈z, ξ〉(zzT )
∣∣

|z|3
+ |tẑ1tẑ2|

∣∣∣∣〈z, ξ〉(zzT )

|z|3
− 〈ẑ, ξ〉(ẑẑ

T )

|ẑ|3

∣∣∣∣.
We get again the expressions as in the first term and case (a3). Hence, there exists a constant
m2(γ) > 0 only depending in γ, such that |R(z, ẑ, ξ, τ)| ≤ m2(γ)|z − ẑ||ξ||τ |.
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(a5) If a ≤ γ|z| ≤ b and γ|ẑ| < a then h′′(ẑ)[ξ][τ ] = 0 and hence |R(z, ẑ, ξ, τ)| = |h′′(z)[ξ][τ ]|.

Similarly to cases (a3) and (a4), we have |φ(z, ξ)||τ | ≤ 24γ4|ξ||τ |
(2γ−1)2

and
∣∣〈z,ξ〉(zzT )τ

∣∣
|z|3 ≤ |ξ||τ |.

From |tz1|, |tz2| ≤ 1
γ it follows that γ

2 |t
z
1t
z
2|
∣∣4γ3|z|

(
γ|z| − 1

)
− γ2tz1t

z
2 + 1

∣∣ ≤ (γ + 3
2)|tz1| and

6γ5|tz1tz2|
∣∣∣∣〈z, ξ〉(zzT )

|z|3

∣∣∣∣ ≤ 6γ4|tz1||ξ|.

Note that 0 ≤ γ|ẑ| ≤ a ≤ γ|z|, hence 0 ≤ tz1 = γ|z| − a ≤ γ|z| − γ|ẑ| and therefore
|tz1| ≤ γ(|z|−|ẑ|) ≤ γ|z− ẑ|. Besides,

∣∣γ3|z|2−γ2|z|+ 1
2−

1
4γ

∣∣ = γ
∣∣(γ|z|− 1

2γ )(γ|z|−1+ 1
2γ )
∣∣ =

γ
∣∣γ|z| − 1

2γ

∣∣|tz1| ≤ γ2|z − ẑ|. Hence there exists constant m3(γ) > 0 only dependent on γ

such that |R(z, ẑ, ξ, τ)| ≤ m3(γ)|z − ẑ||ξ||τ |.
(a6) If a ≤ γ|ẑ| ≤ b and γ|z| > b then

R(z, ẑ, ξ, τ) =
[
φ(z, ξ)− φ(ẑ, ξ)

]
τ +

{
6γ5tz1t

z
2

〈z, ξ〉(zzT )

|z|3

+
γ

2
tz1t

z
2

[
4γ3|z|

(
γ|z| − 1

)
− γ2tz1t

z
2 + 1

]
φ(z, ξ) +

[
γ3|z|2 − γ2|z| − 1

2
− 1

4γ

]
φ(z, ξ)

}
τ.

We proceed as in case (a4) and get
∣∣φ(z, ξ) − φ(ẑ, ξ)

∣∣|τ | ≤ m4(γ)|z − ẑ||ξ||τ | for some
constant m4(γ) > 0. For the remaining terms, from γ|ẑ| ≥ b ≥ γ|z| ≥ a it follows 0 ≤
|tz2| = |γ|z| − b| = b − γ|z| ≤ γ|ẑ| − γ|z| ≤ γ|ẑ − z|. Besides, γ3|z|2 − γ2|z| − 1

2 −
1

4γ =

γ
[
γ|z|+ 1

2γ

][
γ|z| − 1− 1

2γ

]
= γ

[
γ|z|+ 1

2γ

]
tz2. We process similarly in case (a5) and have

|R(z, ẑ, ξ, τ)| ≤ m4(γ)|z − ẑ||ξ||τ |+m5(γ)|tz2||ξ||τ | ≤ m6(γ)|z − ẑ||ξ||τ |

where m4(γ),m5(γ),m6(γ) are positive constants only dependent on γ.
All other cases can be deduced from the previous ones, by an exchanging the roles of z and
ẑ. It is easy to see that the above result also holds in case z, ẑ, ξ, τ ∈ RN × RN (N ∈ N∗).

b) For u, û, w, v ∈ L2(Ω), we will verify that h′γ(u)[w] ∈ L2(Ω) and
(
[h′γ(u)−h′γ(û)]w, v

)
L2 ≤

Cγ‖u− û‖L4‖w‖L4‖v‖L2 .
(b1) We can write h′γ(u)[w] in the following form

h′γ(u)[w] =

{
χAu
|u|

+ χSu

[
γ

2
+

(
2γ − 1

4γ
− γt1(u)t2(u)− γ3(t1(u)t2(u))2

2

)
1

|u|

]
+ χIuγ

}
w

− χAu
|u|

χAu
〈u,w〉
|u|3

u+ χSu

[
γ2
(
γ|z| − 1

)(
2γ2t1(u)t2(u)− 1

)
−
(

2γ − 1

4γ
− γt1(u)t2(u)

2
+
γ3(t1(u)t2(u))2

2

)
1

|u|

]
χSu
〈u,w〉
|u|2

u

=: G1(u)w +G2(u)χAu
〈u,w〉
|u|2

u+G3(u)χSu
〈u,w〉
|u|2

u

where t1(u) = γ
2

(
γ|u|−1+ 1

2γ

)
, t2(u) = γ|u|−1− 3

2γ and χAu , χSu , χIu are defined similarly
to χAz , χSz , χIz , but for u at each point of Ω. It is easy to verify that G1(u), G2(u), G3(u) ∈
L∞(Ω). Moreover, we have

∣∣χAu 〈u,w〉|u|2 u|
2,
∣∣χSu 〈u,w〉|u|2 u|

2 ≤ M2|w|2 for a constant M > 0.
Hence, ‖h′γ(u)[w]‖L2 ≤ ‖G1(u)‖L∞‖w‖L2 +M

(
‖G2(u)‖L∞+G3(u)‖L∞

)
‖w‖L2 and therefore

h′γ(u)[w] ∈ L2(Ω).
(b2) From the Lipschitz continuity of h′′γ (from R2 to R2), it follows∣∣[h′γ(u)− h′γ(û)]w

∣∣ ≤ C̃γ |u− û||w| a. e. on Ω, C̃γ > 0.

Since [h′γ(u)− h′γ(û)]w ∈ L2, we have ‖[h′γ(u)− h′γ(û)]w‖L2 ≤ C̄γ‖u− û‖L4‖w‖L4 , and also
for v ∈ L2, we get (

[h′γ(u)− h′γ(û)]w, v
)
L2 ≤ Cγ‖u− û‖L4‖w‖L4‖v‖L2 ,

where C̃γ , C̄γ , Cγ are positive constants only dependent in γ.
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