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Abstract. Discrete gradient methods are well-known methods of Geometric Numerical
Integration, which preserve the dissipation of gradient systems. In this paper we show that
this property of discrete gradient methods can be interesting in the context of variational
models for image processing, that is where the processed image is computed as a minimiser
of an energy functional. Numerical schemes for computing minimisers of such energies are
desired to inherit the dissipative property of the gradient system associated to the energy and
consequently guarantee a monotonic decrease of the energy along iterations, avoiding situations
in which more computational work might lead to less optimal solutions. Under appropriate
smoothness assumptions on the energy functional we prove that discrete gradient methods
guarantee a monotonic decrease of the energy towards stationary states, and we promote their
use in image processing by exhibiting experiments with convex and non-convex variational
models for image deblurring, denoising, and inpainting.
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1. Introduction

Variational models are employed in image processing for various tasks [13, 42], among them
image denoising, deblurring, inpainting as well as image segmentation, motion analysis and
image reconstruction from undersampled measurements of its Fourier or Radon transform, just
to name a few. The idea of a variational model is to compute a clean signal or image u defined
on a domain Ω ⊂ Rd, d = 1 or 2 from imperfect data g as a minimiser of an energy functional

(1) T (u) = αJ(u) + d(Ku, g),

where K is a forward operator that relates the image data g with the image u, quantified by
using a distance function d, J is the regularising functional that enforces appropriate regularity
on u, and α is a positive parameter that balances the fitness of the forward model to describe
g against the need for regularisation to counteract ill-posedness of K as well as imperfections
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such as noise in g. Computational methods for minimising such energies T in (1) occupy a broad
spectrum. They range from simple gradient descent (for differentiable T ) to convex optimisation
methods such as forward-backward splitting [2] and primal-dual optimisation [11], to second-
order optimisation methods such as quasi and semi-smooth Newton methods [35, 26].

In this paper we investigate the discrete gradient method – which arose in geometric
numerical integration, and is based on a specific geometric definition of a discrete gradient,
i.e. Definition 1, cf [20, 32, 39, 45] – for the numerical minimisation of energy functionals T in
(1). We consider energies T that are continuously differentiable but do not need to be convex.
The discrete gradient method is interesting as a computational method for minimising T as it
yields an iterative scheme that guarantees monotonic decrease of T towards stationary points of
the functional, compare Theorem 1. As such, it preserves the underlying geometric structure of
the associated gradient flow for the functional T , and as one consequence is certain to improve
upon the solution in every iteration.

In what follows, since we always end up with a problem in Rn after discretization, we
discuss the properties of the method in Rn with some inner product 〈·, ·〉. As a convention for
the rest of the paper, we denote by T the continuous functional and by V its discretization.
We sometimes write Tα and Vα to indicate the dependence of the functional on the positive
parameter α. The variable u either denotes a function in an infinite dimensional function space
in the continuous setting, or a vector in Rn in the discrete setting. Now, given a differentiable
functional V : Rn → R, a gradient flow is the solution of the initial value problem

(2) u̇ = −∇V (u), u(0) = u0 ,

where the dot represents differentiation with respect to time. We have the immediate consequence
that the functional is nonincreasing along the solution of the evolution equation (2). Or, more
exactly, we have the decay

(3)
d

dt
V (u(t)) = 〈∇V (u(t)), u̇〉 = −‖∇V (u(t))‖2 ≤ 0 .

Gradient systems of this type appear in many areas of image processing, for example, time-
marching schemes, nonlinear diffusion filters such as the Perona-Malik model (cf. [37]) and many
variants thereof, Sobolev gradient flows, image registration (e.g. [21, 44]) and some applications
of active contours, snakes and level sets (e.g. [14, 33, 48]). In all applications, the preservation
of the decay and the limit solution are the most important aspects. It is not so important to
solve the evolution equation as accurately as possible, but to find the equilibrium as precisely as
possible. Therefore, the preservation of the dissipative behavior of the evolution equation is very
important. This is certainly not a new observation and has been expressed by several authors.
For example, in [47], a thorough discussion of the impact of the preservation of dissipativity in a
gradient system with respect to diffusion filtering can be found. If the functional V is non-convex,
as in some image processing applications such as sparse `p regularization [34, 27] and inpainting
or data classification with the Ginzburg-Landau energy [4, 8, 5], then a decay guarantee within
a gradient flow formulation will at least guarantee monotone convergence to a critical point of
V . Structure preservation is the main topic of Geometric Numerical Integration (e.g. [23, 31]),
which has been an active research area over the last two decades. Discrete gradient methods
turned out to be especially useful to preserve the dissipative structure of a gradient system.

Our contribution: we introduce discrete gradient methods and show that they have a great
potential to be useful for image processing tasks. In particular, we prove that in the case
of a continuously differentiable energy V in (1) the iterates of the discrete gradient iteration
are guaranteed to monotonically decrease to a stationary point of the energy V (Theorem
1). If the energy is convex, the iterates will converge to a minimiser of V (Theorem 2). In



particular, we show that the discrete gradient iteration renders an iterative procedure which
is structure preserving (preserving the dissipative property of the associated gradient flow)
and unconditionally stable, i.e. converging to a stationary point for any choice of time step,
simultaneously. This is in contrast to classic gradient methods such as explicit Euler, which is
guaranteed to be dissipative but often impose a very restrictive condition on the size of the time
steps related to the space discretisation, or implicit Euler, which is unconditionally stable but
not necessarily exhibits structure preservation. We investigate the application of the discrete
gradient method to total variation regularisation for image denoising, deblurring and inpainting,
as well as for the non-convex problem of minimising the `p norm of the gradient with 0 < p < 1.
We note that discrete gradient methods allow the use of adaptive time steps. Since in most image
processing applications the accuracy with respect to the time evolution of the gradient flow is less
important than the desire for good descent directions that take the iterates to the equilibrium
fast, adaptive time steps seem particularly attractive. This in turn makes it possible to use large
time steps initially, followed by smaller time steps once one approaches the equilibrium. This
paper is meant as a first exhibition of the discrete gradient method, with no claim for rendering
the most efficient method for the presented examples. Indeed, we are aware that in particular
for the solution of variational models where R in (1) is the total variation and K is linear there
are a myriad of convex solvers in the literature which are more efficient for certain applications.
What we want to propagate in this paper, however, is that for imaging tasks in which one
desires to preserve the dissipative structure of the gradient system and for very difficult energy
minimisation problems in imaging which are nonlinear or non-convex for instance, the discrete
gradient idea could be an interesting alternative to mainstream optimisation approaches.

The paper is organized as follows: The discrete gradient method as a numerical method in
Geometric Numerical Integration is introduced in Section 2 together with some of its favourable
analytic properties in Section 3. In Section 4 several experiments with well-known gradient
systems in image processing are conducted that illustrate the importance of the preservation of
the dissipativity of a gradient system and that indicate that these methods might be useful in
image processing. Finally, a brief conclusion and outlook is given in Section 5.

2. Discrete gradient method

For simplicity, we will use Rn equipped with the standard inner product and its associated norm.
The proofs for this case can be generalized to Hilbert spaces, but for our purposes, where we
either think of a digital grayscale image taken by a digital camera, Rn where n = NxNy and
Nx and Ny correspond to the number of pixels with respect to width and height of the digitized
picture, or an RGB picture where n = 3NxNy and Nx and Ny correspond to the number of
pixels with respect to width and height of the digitized picture for the red, green, and blue color
channel will be sufficient.

Definition 1. Let V : Rn → R be continuously differentiable. The function ∇V : Rn×Rn → Rn
is a discrete gradient of V iff it is continuous and{

〈∇V (u, u′), (u′ − u)〉 = V (u′)− V (u),
∇V (u, u) = ∇V (u) ,

for all u, u′ ∈ Rn .

Note, that this definition is different from what is often understood to be a discrete gradient
in image processing where the term just refers to a discretized gradient. Definition 1 asks for
a specific condition. Discrete gradients according to this definition have been studied by many
researchers in Geometric Numerical Integration (e.g. [15, 16, 18, 20, 22, 30, 32, 39, 45]). Three
well-known discrete gradients are the midpoint discrete gradient or Gonzalez discrete gradient



(cf. [20])

(4)
∇1V (u, u′) = ∇V

(
u′+u

2

)
+

V (u′)−V (u)−
〈
∇V

(
u′+u

2

)
,u′−u

〉
‖u−u′‖2 (u′ − u) , (u 6= u′),

the mean value discrete gradient

∇2V (u, u′) =

∫ 1

0

∇V ((1− s)u+ su′) ds,

that is, for example, used in the averaged vector field method (cf. [18]), and the discrete gradient
proposed by Itoh & Abe (cf. [28]) that reads

∇3V (u, u′) =



V (u′1,u2,...,un)−V (x)
u′1−u1

V (u′1,u
′
2,u3,...,un)−V (u′1,u2,...,un)

u′2−u2

...

V (u′1,...,u
′
n−1,un)−V (u′1,...,u

′
n−2,un−1,un)

ũn−1−un−1

V (u′)−V (u′1,...,u
′
n−1,un)

u′n−un


, u′i 6= ui, i = 1, . . . , n,(5)

Note that the Itoh & Abe discrete gradient is derivative-free and hence its computational
realization relatively cheap. Besides these discrete gradients, there are many more. For the
gradient flow

(6) u̇ = −∇V (u), u(0) = u0

every discrete gradient ∇V leads to an associated discrete gradient method

(7) un+1 − un = −τn∇V (un, un+1) ,

where τn > 0 is a time step that might vary from step to step. Due to Definition 1 of a discrete
gradient, this method preserves the dissipativity of the solution of the gradient system (2), that
is we have

V (un+1)− V (un) = 〈∇V (un, un+1), (un+1 − un)〉 = −τn‖∇V (un, un+1)‖2 ≤ 0

for all steps n and arbitrary τn > 0 as a discrete analogue to the decay (3) of the continuous
solution. The solvability of the equation (7) follows by standard techniques, e.g., the Gonzalez
discrete gradient is discussed in Theorem 8.5.4 of [45].

For our numerical illustrations, we will mainly use the Gonzalez and Itoh-Abe discrete
gradient. But we would like to stress that the properties just described as well as the theoretical
results in the following sections hold for arbitrary discrete gradients - a rich family to pick from.

3. Some properties of discrete gradient methods

The preservation of the dissipativity by a discrete gradient method leads to useful consequences.
Before we can state our first result, we need to recall some definitions.

Definition 2. A functional V : Rn → R is called



• coercive iff
V (un)→∞ for ‖un‖ → ∞.

• bounded from below iff there exists a constant C such that

C ≤ V (u), for all u ∈ Rn .

• convex iff for all u,w ∈ Rn and λ ∈ [0, 1]

V (λu+ (1− λ)w) ≤ λV (u) + (1− λ)V (w) .

• strictly convex iff for all u,w ∈ Rn, u 6= w, and λ ∈ (0, 1)

V (λu+ (1− λ)w) < λV (u) + (1− λ)V (w) .

Theorem 1. Let ∇V in (6) stem from a functional V which is bounded from below, coercive and
continuously differentiable. If {un}∞n=0 is a sequence generated by the discrete gradient method
(7) with time steps 0 < c ≤ τn ≤M <∞, then

lim
n→∞

∇V (un+1, un) = lim
n→∞

∇V (un) = 0 .

There exists at least one accumulation point of the sequence {un}∞n=0. And for any accumulation
point u∗ of the sequence {un}∞n=0, we have ∇V (u∗) = 0.

Proof. Since V is bounded from below, say by C, and due to the preservation of the dissipativity,
we find

C ≤ V (un+1) ≤ V (un) ≤ · · · ≤ V (u0), n = 1, 2, 3, . . .

and hence the limit
lim
n→∞

V (un) = V∗

exists. From Definition 1 and the definition of the discrete gradient method in (7), we find

τn‖∇V (un+1, un)‖2 = −〈∇V (un+1, un), un+1 − un〉 = V (un)− V (un+1)

=
1

τn
〈−τn∇V (un+1, un), un+1 − un〉

=
1

τn
‖un+1 − un‖2 ≥ 0

for all n. By summing these equations from n to m− 1, m > n, we obtain

m−1∑
k=n

τk
∥∥∇V (uk+1, uk)

∥∥2
=

m−1∑
k=n

1

τk
‖uk+1 − uk‖2 = V (un)− V (um) ≤ V (u0)− V∗

and thus

∞∑
k=0

∥∥∇V (uk+1, uk)
∥∥2 ≤ V (u0)− V∗

c
<∞,

∞∑
k=0

‖uk+1 − uk‖2 ≤M (V (u0)− V∗) <∞

and therefore
lim
n→∞

(un+1 − un) = lim
n→∞

∇V (un+1, un) = 0 .

The sets Vt defined by
Vt := {u ∈ Rn | V (u) ≤ t}



are empty or compact. Hence the set VV (u0) is bounded and closed. In particular,∇V is uniformly
continuous on VV (u0) × VV (u0), where we have chosen the usual topology on the product space
to coincide with the norm induced by the standard scalar product on R2n. Therefore, for any
ε > 0 there exists a δ such that for ‖(un+1, un)− (un, un)‖ = ‖un+1 − un‖ ≤ δ we have

‖∇V (un+1, un)−∇V (un, un)‖ = ‖∇V (un+1, un)−∇V (un)‖ < ε.

Since limn→∞ ‖un+1 − un‖ = 0, we find, that for large enough n, we have

‖∇V (un)‖ ≤ ‖∇V (un+1, un)−∇V (un)‖+ ‖∇V (un+1, un)‖ ≤ 2ε .

Hence, altogether, we conclude

lim
n→∞

∇V (un+1, un) = lim
n→∞

∇V (un) = 0 .

Due to the boundedness of VV (u0), the sequence {un}∞n=0 has at least one accumulation point
u∗ by the Bolzano-Weierstrass theorem. For a subsequence {unl}

∞
l=0 with liml→∞ unl = u∗, we

have
0 = lim

l→∞
∇V (unl) = ∇V (u∗),

due to the continuity of ∇V .

Theorem 1 states that the sequence {un}∞n=0 generated by any discrete gradient method
satisfies limn→∞∇V (un) = 0, for any choice of time discretization. This property is very
important in the minimization of functionals. In the presence of convex functionals the statement
is stronger, that is any discrete gradient method tends to global minimizers in this case.

Theorem 2. Under the assumptions of Theorem 1.

(i) If V is in addition convex, then a minimizer exists and any accumulation point of the
sequence {un}∞n=0 is a minimizer.

(ii) If V is in addition strictly convex, then

lim
n→∞

un = u∗, V (u∗) = min
u
V (u) ,

that is, the sequence of the discrete gradient approximations converges to the unique
minimizer.

Proof. It is a standard result, that a continuously differentiable function V : Rn → R is convex,
if and only if

V (u) + 〈∇V (u), w − u〉 ≤ V (w), for all u,w ∈ Rn .
For an accumulation point u∗ of the sequence {un}∞n=0 generated by the discrete gradient method,
we have ∇V (u∗) = 0 according to Theorem 1 and therefore V (u∗) ≤ V (w), for all w ∈ Rn which
means that u∗ is a minimizer of the functional V . There is at least one accumulation point of
the sequence {un}∞n=0 according to Theorem 1 and therefore a minimizer exists.

Assume that the function V is strictly convex and that u∗ and w∗ were two different
minimizers of V , that is u∗ 6= w∗ and V (u∗) = V (w∗) ≤ V (w) for all w ∈ Rn. Since V is
strictly convex, pick λ ∈ (0, 1) and we obtain

V (λu∗ + (1− λ)w∗) < λV (u∗) + (1− λ)V (w∗) = λV (u∗) + (1− λ)V (u∗) = V (u∗) .

Since λu∗+ (1−λ)w∗ ∈ Rn, this is a contradiction to u∗ (or w∗, respectively) being a minimizer.
Hence the minimizer must be unique and therefore all accumulation points of the sequence
{un}∞n=0, which are minimizers, must be identical. Therefore, the sequence converges to the
unique minimizer.



4. Nonlinear Examples

In this section, we illustrate the positive effect of the preservation of dissipativity by a series of
numerical experiments on standard models in image processing, that involve a gradient flow. In
Subsection 4.1, we study the TV denoising (also TV cartooning) functional. In this and all other
cases with TV regularisation the TV functional is approximated by a smooth C1 functional as
given in (9) such that the theory of Section 3 is applicable. Note, that the discretized version
of (9) is strictly convex and as such the discrete gradient method is guaranteed to converge
to the unique minimiser. We illustrate numerically with the Gonzalez discrete gradient that
the discrete gradient method shows the predicted behavior. As a simple method that does not
necessarily possess the preservation of decay property, the explicit Euler method is used for
comparison. The introduction of a blurring kernel in the functional in Subsection 4.1, which
leads to a deblurring example, shows the same good effects of the preservation of the decay of
the functional. After these basic examples, we provide three more experiments that generalize
the application of discrete gradient methods in different ways. In Subsection 4.3 we apply the
discrete gradient method to solve TV image inpainting. We discuss its performance using the
Itoh & Abe gradient with a simple adaptive step size rule and compare it with the so-called
lagged diffusivity method [1], which for convex functionals V shares the dissipation property of
the discrete gradient approach [12]. A question that is always important to answer is whether
newly proposed methods are useful in actual applications. We therefore study a real-world
color denoising example in Subsection 4.4. Finally, in Subsection 4.5 we study non-convex
TVp denoising with 0 < p < 1 [27] computed with the Itoh & Abe discrete gradient method.
We include this example to demonstrate the flexibility of the discrete gradient, and its robust
structure-preserving properties, which guarantee monotonic decay of V even in the non-convex
case.

4.1. Grayscale image denoising with TV regularization

For the denoising of a grayscale image, the following gradient descent method has been proposed
in [41]. The gradient system is based on the functional

(8) Tα(u) =
1

2

∫
Ω

(u(x, y)− u0(x, y))2 d(x, y) + αTV (u),

where we use the smoothed TV functional

(9) TV (u) =

∫
Ω

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

+ β d(x, y),

with parameter 0 < β � 1 as suggested in [1]. Under the smoothness assumption u ∈W 1,1, this
leads to the gradient system

ut = α∇ ·
[
∇u
|∇u|β

]
− (u− u0)

∂u

∂n

∣∣∣∣
∂Ω

= 0

where |∇u|β =
√
|∇u|2 + β. For the computation, discretization of the continuous functional

is necessary. As in [41], we use finite differences, where the homogeneous Neumann boundary
conditions are discretized by duplicating the boundary rows and columns of the original picture
array. The discretized functional reads

(10) Vα(u) =
1

2
∆x∆y

Nx∑
i=1

Ny∑
j=1

(ui,j − (u0)i,j)
2

+ αJ(u),



with

(11) J(u) = ∆x∆y

Nx∑
i=1

Ny∑
j=1

ψ
(
(Dx

iju)2 + (Dy
iju)2

)
,

where ψ(t) =
√
t+ β and

Dx
iju =

ui,j − ui−1,j

∆x
, Dy

iju =
ui,j − ui,j−1

∆y
.

Here u ∈ RNx ×RNy is the discretized picture. As usual, we identify the matrix u ∈ RNx ×RNy
with the vector u ∈ RNxNy by running successively through the columns of u ∈ RNx ×RNy . The
gradient system in RNxNy then follows analogously to the continuous system by computing the
gradient:

u̇ = −∇Vα(u), u(0) = u0 .

This gradient system satisfies the assumption of our theorems in Section 3.

Lemma 1. The discretized functional Vα in (10) is bounded from below, coercive, continuously
differentiable and strictly convex.

Proof. Due to

J(λu+ (1 − λ)v)

= ∆x∆y

Nx∑
i=1

Ny∑
j=1

√(
Dx

ij(λu+ (1 − λ)v)
)2

+
(
Dy

ij(λu+ (1 − λ)v)
)2

+
(
λ
√
β + (1 − λ)

√
β
)2

= ∆x∆y

Nx∑
i=1

Ny∑
j=1

√(
λDx

iju+ (1 − λ)Dx
ijv
)2

+
(
λDy

iju+ (1 − λ)Dy
ijv
)2

+
(
λ
√
β + (1 − λ)

√
β
)2

≤ ∆x∆y

Nx∑
i=1

Ny∑
j=1

√(
λDx

iju
)2

+
(
λDy

iju
)2

+
(
λ
√
β
)2

+ ∆x∆y

Nx∑
i=1

Ny∑
j=1

√(
(1 − λ)Dx

ijv
)2

+
(
(1 − λ)Dy

ijv
)2

+
(

(1 − λ)
√
β
)2

= λJ(u) + (1 − λ)J(v)

for λ ∈ [0, 1] and u, v two pictures, we find, that J is convex. With two different constant
pictures, it is easy to see that J is not strictly convex. By checking that for u 6= v and t ∈ [0, 1],
we have

F (t) =
1

2
∆x∆y‖tu+ (1− t)v − u0‖2, F ′′(t) = ∆x∆y‖u− v‖2 > 0

and hence the functional 1
2∆x∆y‖u−u0‖2 is strictly convex. Therefore, Vα as a whole is strictly

convex. From this first functional, coercivity is obvious.

Form Lemma 1, we immediately conclude the following corollary of our theorems.

Corollary 1. The function Vα has a unique minimizer and the sequence generated by any discrete
gradient method with step sizes 0 < c ≤ τn ≤M <∞ converges to the minimizer.
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Figure 1. TV functional Baboon, explicit Euler method with step size τ = 0.5 (cyan dotted
line), explicit Euler method with τ = 0.4, 0.3, 0.2 (red dashed lines, top to bottom), explicit
Euler with τ = 0.1, 0.01, 0.001 (green dash-dotted lines, left to right) discrete gradient method
(blue) with step size τ = 2.5 (in all experiments: α = 0.05, β = 0.001)

In our examples below, we adopted another simplification which is common in image
processing. The domain of the picture is scaled into a rectangular region such that ∆x = 1 and
∆y = 1. Then image data is scaled to [0, 1]. In all experiments we chose α = 0.05 and β = 0.001.
A first experiment with the Gonzalez discrete gradient shows that the discrete gradient method
converges reliably to the minimizer of the total variation functional. In Figure 1 the value of the
functional is plotted against the number of steps. For the step size τ = 2.5, the discrete gradient
method converges in about 10 steps to the same minimum value of the functional as the explicit
Euler method in 40 steps with step size τ = 0.1 or in 200 steps with step size τ = 0.01 or in 2000
steps with step size τ = 0.001. The equilibrium computed by the Euler method with step size
τ = 0.001 after 10000 steps is used as reference equilibrium picture. The explicit Euler method
with step sizes τ = 0.2 and larger stagnates at a larger value of the total variation functional
and never converges to the correct value (cf. Figure 1). For these step sizes, the value of the
functional oscillates, which can not be seen in the figure due to aliasing. The discrete gradient
method cannot oscillate, since it is strictly decreasing.

In our experiment, we used the mandrill a. k. a. baboon picture of the USC-SIPI Image
Database, [46], turned into a grayscale image. The left half of the picture has been polluted with
noise. At a close inspection, the difference of the final denoised pictures shown in Figure 2 can
be seen. The denoised image computed with the Euler method with step size τ = 0.3 (Figure 2,
bottom left-hand side) shows slightly more details than the reference picture (Figure 2, top right-
hand side), while the denoised image computed with the discrete gradient method at step size
τ = 2.5 (Figure 2, bottom right-hand side) fits very well to the reference picture.

4.2. Grayscale image deblurring with TV regularization

Following [1, 10], we minimize the functional

Tα(u) =
1

2

∫
Ω

((Ku)(x)− u0(x))2 dx+ αTV (u),



Figure 2. Noisy baboon picture (top left) and TV-denoised reference picture with the explicit
Euler method, step-size τ = 0.001 after 10000 steps (top right), explicit Euler denoised image
with step-size τ = 0.3 after 10000 steps (bottom left) and discrete gradient denoised baboon
with step-size τ = 2.5 after 10 steps (bottom right).

where TV (u) is defined as in (9). Under the smoothness assumption u ∈W 1,1, this leads to the
parabolic gradient system

ut = α∇ ·
[
∇u
|∇u|β

]
−K∗(Ku− u0), with

∂u

∂n

∣∣∣∣
∂Ω

= 0.

The same procedure gives for the discretized functional

(12) Vα(u) =
1

2
∆x∆y

Nx∑
i=1

Ny∑
j=1

(Kui,j − (u0)i,j , )
2

+ αJ(u),
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Figure 3. TV deblurring functional Baboon, explicit Euler method with step size τ = 0.19
(cyan dotted line), explicit Euler with τ = 0.185, 0.18, 0.175 (red dashed lines, top to bottom),
explicit Euler with τ = 0.1, 0.01, 0.001 (green dash-dotted lines, left to right), discrete gradient
method (blue solid line) with step size τ = 2.5 (in all experiments: α = 0.05, β = 0.001).

where J is given as before in (11). We blur the image by convolution with the symmetric kernel
K, given below as point spread function (PSF), which corresponds to the resulting image of a
single bright pixel under the blurring transformation:

(13) K =
1

49



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


.

In order to ensure Neumann boundary conditions, the original image u is embedded in an image
with four times the size of the original image, by reflecting the original image over the right-
hand side and top boundaries. Then a two-dimensional convolution with the PSF in (13) is
computed via the Fast Fourier Transform (FFT) and the resulting image of the correct size
extracted. Details can be found in the nice introduction [24] to deblurring images. The original
and the blurred image can be seen at the top of Figure 4. In all experiments we used α = 0.05
and β = 0.001. In Figure 3, we first compare the value of the functional for subsequent steps
of the Euler method with step size τ = 0.19 (cyan dotted line) to the value of the functional
for subsequent steps of the midpoint discrete gradient method (4) with step size τ = 2.5 (blue
solid line). While the explicit Euler method does not produce a useful result, the image that
corresponds to the computed equilibrium by the discrete gradient method is shown in Figure 4,
the right-hand side picture in the second row. For the solution of the implicit equation in the
discrete gradient method, we have used the Newton method in the inner iteration with the exact
Jacobian. The resulting linear system is solved by the Conjugate Gradient (CG) method (cf.
[25]).

We repeat the experiment with the step sizes τ = 0.185, 0.18, 0.175 (red dashed lines, top to
bottom). The explicit Euler method converges for these step sizes. The values of the functional



Figure 4. Original picture (top left), blurred picture (top right), TV-deblurred reference
picture with the explicit Euler method, step-size τ = 0.01 after 10000 steps (bottom left),
discrete gradient deblurred baboon with step-size τ = 2.25 after 10 steps (bottom right).

of the explicit Euler method can also be seen in Figure 3. The explicit Euler method obviously
converges to an incorrect equilibrium value of the function for these step sizes. The explicit Euler
method with the step sizes τ = 0.1, 0.01, 0.001 (green dash-dotted lines, left to right) converge to
the same equilibrium value of the functional as the discrete gradient method does for the step size
τ = 2.5 (blue, solid line). But after 10000 Euler steps with τ = 0.001, the reached value of the
functional is 508.4131 and still larger than 508.4069, the value reached by the discrete gradient
method with step size τ = 2.25 in step 30 (blue, solid line). An experiment with the discrete
gradient method shows that the equilibrium picture computed by the discrete gradient method
is the same for the different step sizes τ = 2.5, 0.1, 0.185, 0.18, 0.175, 0.01, 0.001. The equilibrium
picture of the discrete gradient method after 10 steps can be seen in Figure 4 in the bottom row
on the right-hand side. The picture with step-size τ = 0.01 after 10000 steps has been used as a



reference for the correct equilibrium and can be seen at the bottom of Figure 4 on the left-hand
side. The general observation is that the minimum value of the functional (and therefore the
equilibrium image) found by the explicit Euler method clearly depends on the step size. This
is unpleasant with respect to a reliable computation of minimizers (corresponding to smoothed
images) for given smoothing parameters α. On the contrary, the discrete gradient method seems
to find the correct minimum value of the functional for a broad range of step sizes, due to the
preservation of dissipativity.

4.3. Grayscale image inpainting with TV regularization and adaptive step size

We consider the functional

Tα(u) =
1

2

∫
Ω\D

(u(x)− u0(x))2 dx+ αTV (u),

where TV is defined as in (9) and D is a subset of Ω in which no information about u0 is available.
This can be the case because either the image is damaged in D or the original scene in the image
is occluded by something else in D. The task is to recover the original image in D by minimizing
the functional above. This is called image inpainting. The associated discretized functional is
given by

(14) Vα(u) =
1

2
∆x∆y

Nx∑
i=1

Ny∑
j=1

P (ui,j − (u0)i,j)
2

+ αJ(u),

where J is given as before in (11) and P is a projection of the data fitting term onto the set of
indices (i, j) that our outside the inpainting domain D.

In the following example, we compare the minimization of the TV-inpainting functional
using the discrete gradient method with the Itoh & Abe gradient (5) and adaptive step size (as
described below) with its minimization by the lagged-diffusivity method [1, 12]. In the latter,
a minimizer of the TV-inpainting functional is characterized by a solution of the corresponding
Euler-Lagrange equation and the following fixed-point iteration is performed

(15) 0 = div

(
∇un+1√
|∇un|2 + β

)
+ 1Ω\D(u0 − un+1),

evaluating the nonlinearity in the previous time-step only, and where 1Ω\D is the characteristic
function of the set Ω \D. Here ∇u is discretized as in (11) with backward finite differences and
its negative adjoint the divergence div by forward finite differences.

For the Itoh & Abe discrete gradient approach we use a simple time step adaptation. In
every iteration we compute two trial steps with time steps τ and 2τ and choose the one that
decreases Vα most. If the chosen solution corresponds to the time step τ then we halve the time
step for the next step, otherwise we double it.

The example in Figure 5 is a gray scale image of size 493 × 869. The inpainting task is
to fill in almost 80% of the pixels of the original image (black mask) and replace them by the
TV-interpolation of the surrounding gray values. Figure 6 reports the energy decrease for the
Itoh-Abe discrete gradient method compared to the lagged-diffusivity iteration, and the evolution
of the step sizes which were adaptively chosen throughout the discrete gradient iterations. In
this experiment α = 0.00001 and β = 0.01.

Note that the equations to be solved in an Itoh & Abe update for Vα under the Euclidean
inner product as considered here uncouple to scalar equations. Yet, in Figure 6 it still appears to



choose good descent directions even for large time steps. As one can also observe in Figure 6 the
energy decrease with lagged-diffusivity is monotonic and faster than under the discrete gradient
iteration. This qualitative behavior is representative for the application of lagged-diffusivity
to convex functionals Vα. Monotonicity, however, breaks in the case of non-convex functionals
for which we will see in Subsection 4.5 the discrete gradient method still preserves monotonic
decrease.

Figure 5. Given image with 80% of all pixels missing and TV-inpainted image with DG
method and adaptively chosen τ .

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

n

Vα

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

·10−4

n

τn

Figure 6. Left: Energy decrease for TV-inpainting result in Figure 5 with the Itoh-Abe DG
method and adaptive step size (blue solid line) and lagged diffusivity with τ = 0.1 (red dashed
line). Right: Adaptive step sizes for the Itoh-Abe discrete gradient.

4.4. Multichannel image denoising with TV regularization

We check the fitness of the discrete gradient method for an application in the real world by
an experiment with the discrete gradient method applied to an image processing task in macro
photography. We use the multichannel model as described in [13] and first introduced in [6],
which uses the TV -functional:

TV2[u] =

(
p∑
i=1

(TV [ui])
2

)1/2

=

(
p∑
i=1

(∫
Ω

|Dui| dx
)2
)1/2



where TV (ui) is defined as in (9) for p channels ui, i = 1, . . . , p, in the denoising functional

Tα(u) = αTV2[u] +
1

2

∫
Ω

‖u− u0‖2 dx .

With the global constants

ci[u] =
TV [ui]

TV2[u]
≥ 0, i = 1, . . . , p ,

the Euler-Lagrange equilibrium system reads

−αci[u]∇ ·
[
∇ui
|∇ui|β

]
+ (ui − u0,i) = 0,

∂ui
∂n

∣∣∣∣
∂Ω

= 0, i = 1, . . . , p .

Time-marching leads to the gradient system

d

dt
ui = α · ci[u]∇ ·

[
∇ui
|∇ui|β

]
− (ui − u0,i) = 0,

∂ui
∂n

∣∣∣∣
∂Ω

= 0, i = 1, . . . , p .

The discretized system is just given by using the discretized TV-functionals in TV2. The
corresponding equations are then solved. The situation is analogous to the case of grayscale
image denoising.

Proposition 1. The functional Vα corresponding to the discretized multichannel TV denoising
functional possesses a unique minimizer and the sequence generated by any discrete gradient
method with step sizes 0 < c ≤ τn ≤M <∞ converges to the unique minimizer.

Proof. With the help of Lemma 1, one can check that the discretized functional is bounded from
below, coercive, continuously differentiable and strictly convex. The statement then follows from
Theorem 1.

Encouraged by the results for the smaller test images before, we apply the discrete gradient
method with the midpoint discrete gradient to a real world denoising problem. The picture at
the top of Figure 7 is an original photography of some plant lice. The picture has been taken
with a strong macro lens, the Canon MP-E 65mm macro lens, that exhibits an extremely low
depth-of-field, ranging from 2.24mm at f/16 at 1x magnification, and a minimum of 0.048mm
at f/2.8 at 5x magnification. As a camera, a Canon EOS 550D camera has been used, hand-
held in full sunlight, with an exposure time of 1/250 and f-stop number 14 at 3x magnification.
The film speed has been set to ISO 6400, which was needed due to make an exposure time of
1/250 possible. The drawback of this approach to take macro photos without flash is that the
high film speed produces a lot of noise due to the necessary amplification of the signal from the
charge-coupled device (CCD) image sensor. This real-life noise can clearly be seen in the picture
at the top of Figure 7 and in the picture detail on the left-hand side in Figure 8. The image size
in width × height is 5184 × 3456. The overall denoising gradient system for an RGB picture
therefore is of dimension n = 3 × 5184 × 3456 = 53747712.

Despite the size of the system, the discrete gradient method preserves the dissipativity and
converges in 10 steps with step size τ = 0.2 to the equilibrium picture. The image has been
rescaled to pixel size ∆x = ∆y = 1, the image data has been in the interval [0, 255], and the
constants have been chosen as β = 1 and α = 100. In Figure 7 and in the detail in Figure 8, one
can see that the discrete gradient method successfully removes the noise from the original lice
photography.



Figure 7. Original (left) and denoised (right) lice picture, c©Volker Grimm

Figure 8. Zoom of original image (left) and denoised image (right), c©Volker Grimm

4.5. A non-convex example: grayscale image denoising with TVp regularization, 0 < p < 1

To motivate this regularization, we consider first `0-minimization, where for u ∈ Rn

‖u‖0 = the number of non-zero entries in u,

which is designed to promote sparsity in u. Solving the `0 problem problem is in general
NP-hard and therefore its convex relaxation, namely `1-minimization, is considered in most
sparse reconstruction approaches [9]. In this context, TV regularization can be seen as a
convex approximation to a regularization which promotes sparsity of the gradient. Several
papers indicate, however, that interesting regularization effects can be observed when studying
regularizers that are `p norms in between `0 and `1, namely penalties of the form

‖u‖pp =
∑
|ui,j |p, with 0 < p < 1,

compare [34] for instance. Recently this consideration has been extended to the case of the
gradient in [27] where the authors study TVp regularization, that is

TV p(u) = ‖∇u‖pp =

∫
Ω

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)p/2

d(x, y), with 0 < p < 1,



Analogous to before, for discrete u we consider the discretized and smoothed TVp functional

(16) J(u) = ∆x∆y

Nx∑
i=1

Ny∑
j=1

ψ
(
(Dx

iju)2 + (Dy
iju)2

)
,

with Dx, Dy given as in Section 4.1 and ψ(t) = (t+ β)p/2 with 0 < p < 1, and its corresponding
denoising functional

Vα(u) =
1

2
∆x∆y

Nx∑
i=1

Ny∑
j=1

(ui,j − (u0)i,j)
2

+ αJ(u).

As in Subsection 4.3 we employ the Itoh & Abe discrete gradient with adaptive step size selection.
In Figure 9 we show a de-noising result with TVp regularization (16) and p = 0.8 and p = 0.2.
Since Vα is non-convex this time, we consider the behavior of the discrete gradient flow for two
different initializations. We initialize the discrete gradient flow once with the noisy image u0 and
once with a random initialization (randomly choosing the intensity in every pixel of the initial
state). For both initializations the discrete gradient flow seems to converge to a decent critical
point of Vα, where α was chosen 0.001 for p = 0.8 and α = 0.01 for p = 0.2. In fact, in both
cases both critical points seem to converge to a similar energy level, compare Figure 10. Note
also, as p decreases, the gradient of the image at the computed minimum becomes sparser.

5. Conclusion

We discussed discrete gradient methods, well-known in Geometric Numerical Integration for the
preservation of dissipation in variational equations, with respect to their use in image processing.
We assumed that V is smooth which is sufficient when it comes to actual computations. However,
preliminary considerations by the standard techniques suggest this assumption may be weakened
significantly. Let us also note that the analysis of the discrete gradient method is done in this
paper for the exact solution of every step in the discrete gradient algorithm. What would be
interesting is to introduce inexact numerical solutions into this analysis. Note also, that in this
paper we consider gradient flows of V with respect to the Euclidean inner product only. This
can be however generalized, cf. [18], to gradient flows with respect to other inner products as
they appear in image processing such as H−1 gradient flows [8, 36] or Wasserstein gradient flows
[3, 7, 17, 19, 29, 38, 40, 43], just to name a few. We believe that the presented theory, that
guarantees the convergence to the equilibrium of any discrete gradient method for a wide range
of functionals and gradient flows used in image processing, as well as the conducted experiments
indicate that discrete gradient methods could be very interesting for image processing tasks.
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Figure 9. TVp denoising with the Itoh & Abe discrete gradient for p = 0.8 (first column) and
p = 0.2 (second column). First row: Original and noisy image; second row: TVp denoising
result with noisy image u0 as initial condition; third row: TVp denoising result with random
initial condition.
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[43] B. Schmitzer and Ch. Schnörr. Object segmentation by shape matching with Wasserstein modes. In Energy

Minimization Methods in Computer Vision and Pattern Recognition, pages 123–136. Springer, 2013.
[44] R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regularized gradient flow. A streaming

implementation in DX9 graphics hardware. Computing, 73(4):373–389, 2004.
[45] A. M. Stuart and A. R. Humphries. Dynamical Systems and Numerical Analysis, volume 2 of Cambridge

Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 1996.
[46] The USC-SIPI Image Database, available at: http://sipi.usc.edu/services/database/Database.html.
[47] J. Weickert. Anisotropic Diffusion in Image Processing. European Consortium for Mathematics in Industry.

B. G. Teubner, Stuttgart, 1998.
[48] Ch. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing,

7(3):359–369, 1998.


