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Conflict Diagnostics in Directed Acyclic
Graphs, with Applications in Bayesian
Evidence Synthesis
Anne M. Presanis, David Ohlssen, David J. Spiegelhalter and Daniela De Angelis

Abstract. Complex stochastic models represented by directed acyclic
graphs (DAGs) are increasingly employed to synthesise multiple, imperfect
and disparate sources of evidence, to estimate quantities that are difficult to
measure directly. The various data sources are dependent on shared parame-
ters and hence have the potential to conflict with each other, as well as with
the model. In a Bayesian framework, the model consists of three components:
the prior distribution, the assumed form of the likelihood and structural as-
sumptions. Any of these components may be incompatible with the observed
data. The detection and quantification of such conflict and of data sources
that are inconsistent with each other is therefore a crucial component of the
model criticism process. We first review Bayesian model criticism, with a
focus on conflict detection, before describing a general diagnostic for detect-
ing and quantifying conflict between the evidence in different partitions of
a DAG. The diagnostic is a p-value based on splitting the information con-
tributing to inference about a “separator” node or group of nodes into two
independent groups and testing whether the two groups result in the same
inference about the separator node(s). We illustrate the method with three
comprehensive examples: an evidence synthesis to estimate HIV prevalence;
an evidence synthesis to estimate influenza case-severity; and a hierarchical
growth model for rat weights.
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1. INTRODUCTION

Bayesian evidence synthesis methods combining
multiple, imperfect and disparate sources of data to
estimate quantities that are challenging to measure di-
rectly are becoming widespread (e.g., Spiegelhalter,
Abrams and Myles, 2004; Ades and Sutton, 2006).
Although little data may be available from which to
directly estimate such quantities, there may be plenty
of indirect information on related parameters that can
be expressed as functions of the key parameters of in-
terest. The synthesis of both direct and indirect data
usually entails the formulation of complex probabilis-
tic models, where the dependency of the data on the
parameters is represented by a directed acyclic graph
(DAG). Recent examples can be found in the fields
of ecology (Clark et al., 2010), biochemical kinet-
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ics (Henderson, Boys and Wilkinson, 2010), environ-
mental epidemiology (Jackson, Richardson and Best,
2008), health technology assessment (Welton et al.,
2012), mixed treatment comparisons (Lu and Ades,
2006) and infectious disease epidemiology (Birrell
et al., 2011).

With modern software it has become reasonably
straightforward to draw inferences and make proba-
bilistic predictions from such complex models. How-
ever, with complexity also comes a vital requirement
that the conclusions of the model can be explained and
justified, both for the “owners” of the model and any
audience they wish to convince. There are two main
issues: First, to identify the essential drivers of infer-
ence, assessing sensitivity to data or assumptions. Sec-
ond, to judge whether the data are consistent with each
other or with model assumptions. This assessment is
crucial in syntheses of multiple sources of evidence,
where these sources are dependent on shared param-
eters of interest and hence have the potential to con-
flict with each other (Lu and Ades, 2006; Presanis
et al., 2008). The evidence arising from (i) prior dis-
tributions, (ii) the assumed form of the likelihood and
(iii) other structural/functional model assumptions also
has the potential to conflict with the different sources
of data or with each other. The existence of such in-
consistency and/or sensitivity to model assumptions
would naturally lead to careful reexamination of the
model and data sources, and a further iteration of the
inference and model-criticism cycle recommended by
Box (1980). O’Hagan (2003) reviews the connection
between model checking and conflict detection in the
context of complex stochastic systems.

This paper focusses on the issue of detecting and
measuring conflict, particularly on diagnostics that are
effective in the type of complex DAG-based models
that evidence synthesis requires for substantive prob-
lems. Bayesian predictive p-values, in various guises,
have been widely employed as a natural measure to as-
sess the consistency of the components driving infer-
ence [e.g., Box, 1980; Gelman, Meng and Stern, 1996;
Bayarri and Castellanos, 2007]. Marshall and Spiegel-
halter (2007) proposed the idea of “node-splitting” to
compare prior and likelihood in a hierarchical DAG-
based model. A general framework that unifies these
various approaches has been proposed (Dahl, Gåse-
myr and Natvig, 2007; Gåsemyr and Natvig, 2009), but
exploration of how to apply these ideas in real-world
complex problems remains limited (Dias et al., 2010;
Scheel, Green and Rougier, 2011). We review in Sec-
tion 2 the literature on Bayesian model checking, with

a focus on conflict detection. In Section 3 we describe
a generalisation of Marshall and Spiegelhalter (2007)
to any node in a DAG, with the aim of demonstrat-
ing how, in practice, such a diagnostic may be use-
fully employed to detect and measure different types
of inconsistency in substantive problems. We give rec-
ommendations for strategies to construct the diagnostic
in different contexts and to treat nuisance parameters.
In Section 4 we then consider three detailed examples:
an evidence synthesis to estimate HIV prevalence from
many indirect data sources (4.1); an evidence synthesis
to estimate influenza severity (4.2); and a bivariate nor-
mal random effects model for rat weights, illustrating
multivariate conflict assessment (4.3). We end with a
discussion in Section 5.

2. BACKGROUND

2.1 DAGs

It is now a standard procedure to use directed acyclic
graphs to represent the qualitative conditional inde-
pendence assumptions of a complex stochastic model;
see, for example, Lauritzen (1996) for a full descrip-
tion. The crucial idea is that each node in the graph
represents a stochastic quantity, related to other nodes
through a series of “parent-child” relationships to form
a DAG. Using an intuitive language in terms of famil-
ial relationships, the basic assumption represented is
that any node is conditionally independent of its non-
descendants given its parents. “Founder” nodes, that is,
nodes with no parents, are assigned a prior distribu-
tion. Given the directed graphical structure, the joint
distribution over all nodes is given by the product of
all the conditional distributions of each child given its
direct parents. Inference on DAGs is conducted when
some nodes are observed as data and the resulting joint
and marginal posterior distributions of the remaining
nodes are needed. Substantial research has led to ef-
ficient exact and simulation-based algorithms imple-
mented in various software (see Cowell et al., 1999, for
a review), such as Markov chain Monte Carlo [MCMC
Gamerman and Lopes, 2006].

Figure 1(a) shows a simple example of a DAG rep-
resenting a model H for data y with parameters θ .
The double circles represent the founder node assigned
a prior p(θ |H); the square represents observations y,
a child node of θ ; and the solid arrow represents a
distributional assumption y ∼ p(y|θ ,H). Figure 1(b)
shows a slightly more complex hierarchical model,
where within units i ∈ 1 :k, the ni observations yij , j ∈
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FIG. 1. Examples of DAGS showing (a) a simple model H ; (b) a hierarchical model; (c) prior-likelihood comparison via a node-split in
model (b); and (d) cross-validatory mixed-predictive replication in model (b).

1 :ni are assumed drawn from a distribution with unit-
specific parameters θi and global parameters γ (e.g.,
variances). At the next level of hierarchy, the θi are
drawn from distributions with hyper-parameters β:

yij ∼ p(yij |θi, γ ), i ∈ 1 :k, j ∈ 1 :ni,

θi ∼ p(θi |β),

β, γ ∼ p(β, γ ).

Repetition over and within units is represented by the
dashed rectangles, and the hyperparameters β and γ

are the founder nodes. Continuing the analogy of a
family, γ and θi are co-parents of the data yi and within
groups i, the data yi are siblings.

2.2 Node-Splitting

Marshall and Spiegelhalter (2007) propose separat-
ing out the contributions of prior and likelihood to a
unit-level parameter θi in a hierarchical model such as
Figure 1(b), to compare their consistency. They do so
by splitting the DAG into two independent partitions
[Figure 1(c)]. The partition representing the likelihood
of the ith unit’s data is formed by drawing a replicate
θ lik
i |yi from a uniform reference prior, updated with

the observations yi , that is, from the posterior distri-
bution generated by yi alone. This distribution is in

effect the “data-translated” likelihood (Box and Tiao,
1992). For the partition representing the prior contri-
bution to θi , a replicate θ

rep
i |y\i is drawn from the

“predictive-prior” p(θi |y\i ) where y\i denotes the re-
maining data aside from unit i. The authors propose
comparison of the posterior distributions [represented
by the double-headed arrow in Figure 1(c)] of the two
replicates θ lik

i and θ
rep
i by defining a difference func-

tion, δi = θ
rep
i − θ lik

i , then calculating the “conflict p-
value”

cMS1,i = Pr(δi ≤ 0|y)

in the case of a one-sided hypothesis test of departures
towards smaller θi than suggested by yi , or

cMS2,i = 2 min
(
Pr(δi ≤ 0|y),1 − Pr(δi ≤ 0|y)

)
if testing the null hypothesis δi = 0 against δi �= 0. In
the first case, values of cMS1,i close to either 0 or 1 in-
dicate conflict. In the more general second case, a small
value represents a high level of conflict, so the “conflict
p-value” is possibly a misnomer: cMS2,i actually mea-
sures consistency. However, since the term has already
been introduced in the literature, we continue to refer
throughout to the conflict p-value.

Finally, note also that this example is one where
in order to completely split the DAG into two inde-
pendent partitions would require splitting a vector of
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nodes, {θi, γ }. However, if, for example, γ is a vari-
ance parameter in a normal hierarchical model, we may
not actually be directly interested in examining conflict
around γ , particularly if it is not strongly identifiable
from a unit i alone. Marshall and Spiegelhalter (2007)
therefore propose treating such parameters as nuisance
parameters, and “cutting” feedback from unit i to γ

to prevent the data yi from influencing γ [e.g., using
the “cut” function in the OpenBUGS software (Lunn
et al., 2009)]. A cut in a DAG stops information flow
in one direction, as opposed to a node-split which pre-
vents information flow in both directions. This cut is
represented by the diode shape between yij and γ in
Figure 1(c). The two replicates θ

rep
i and θ lik

i are there-
fore not entirely independent, since γ may still influ-
ence θ lik

i ; however, the authors believe any such influ-
ence will be small.

2.3 Bayesian Predictive Diagnostics

Bayesian predictive diagnostics to assess consis-
tency are based on comparison of a discrepancy statis-
tic with a reference distribution. The general setup is
that of Figure 1(a), assuming a model H for y with pa-
rameters θ :

y ∼ p(y|θ ,H),

θ ∼ p(θ |H).

To assess whether the observed data could have been
generated by the assumed model H , we compare the
observed data y, via a test statistic T (y), to a refer-
ence distribution pT {T (Yrep)|H } of the test statistic
for hypothetical (replicated) data Yrep under the as-
sumed (null) model H . The p-value defined by where
the observed value of the test statistic is located in
the reference distribution measures the compatibility
of the model with the data. The reference distribu-
tion depends on the way we assume the replicated data
are generated from the null model and therefore on
the exact components of inference we wish to com-
pare. Various proposals have been made, broadly cate-
gorised into prior-, posterior- and mixed-predictive ap-
proaches. Note that to be able to interpret p-values in a
meaningful way, the distribution of the p-values under
the null prior model H is required.

The prior-predictive distribution (Box, 1980), in
which the parameters are integrated out with respect
to the prior, is a natural choice for the reference, as
the p-values Pr{T (Yrep) ≥ T (y)|H } are uniformly dis-
tributed under the null prior model H . The approach
assesses prior-data conflict, most usefully in the case

of informative priors. However, in the case of im-
proper priors, prior-predictive replication is not de-
fined. In practice, many analysts use very diffuse but
proper priors to express noninformativeness, in which
case prior-data comparison is not particularly useful,
since almost any data will be plausible under such
priors. Other related approaches to assessing prior-
data conflict include: the adaptation by Evans and
Moshonov (2006, 2007) of Box (1980) to minimally
sufficient statistics; the use of logarithmic scoring rules
(Dawid, 1984; Spiegelhalter et al. 1993, 1994) to as-
sess conflict; and, more recently, the use of ratios of
prior-to-posterior distances under different priors, us-
ing Kullback-Leibler measures (Bousquet, 2008).

The posterior-predictive distribution [e.g., Rubin,
1984; Gelman, Meng and Stern, 1996] was proposed
as an alternative to the prior-predictive distribution for
use when improper priors are employed. It results from
integrating the parameters out with respect to the pos-
terior rather than prior distribution, thereby assess-
ing model-data rather than prior-data compatibility.
Posterior-predictive checks have become widespread
(Gelman et al., 2003). However, the p-values may
not be uniformly distributed, since the data are used
twice, in obtaining both the posterior and the posterior-
predictive distribution (Bayarri and Berger 1999, 2000;
Robins, van der Vaart and Ventura, 2000). Sugges-
tions have therefore been made to avoid the conser-
vatism of posterior-predictive p-values, including al-
ternative p-values that are closer to uniform, but often
difficult to compute, such as the conditional and par-
tial posterior-predictive p-values (Bayarri and Berger,
1999, 2000; Robins, van der Vaart and Ventura, 2000;
Bayarri and Castellanos, 2007). The predictive distri-
butions in these approaches are defined by integrating
out the unknown parameters θ with respect to posterior
distributions that are, respectively, (i) conditional on a
sufficient statistic for θ ; and (ii) constructed from the
prior and from a likelihood defined to be conditional
on the observed value of a test statistic, T (y), so that
the information in T (y) contributing to the posterior is
“removed” before integrating out θ . Alternative “dou-
ble simulation” approaches, post-processing posterior-
predictive p-values such that their distribution is uni-
form (Hjort, Dahl and Steinbakk, 2006; Johnson, 2007;
Steinbakk and Storvik, 2009), require proper priors and
are computationally demanding.

The mixed-predictive distribution (Gelman, Meng
and Stern, 1996; Marshall and Spiegelhalter, 2007), in
the context of hierarchical models such as Figure 1(b)
with hyperparameters β , integrates out the parameters
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θ = {θi, i ∈ 1 :k} with respect to what Marshall and
Spiegelhalter (2007) term the “predictive-prior” distri-
bution, namely, pM(θ |y,H) = ∫

p(θ |β,H) ·
p(β|y,H)dβ . This distribution is not the marginal
posterior distribution of θ , but the distribution obtained
by drawing replicates θ rep from the marginal posterior
distribution of β . The parameters θ are then integrated
out, resulting in a mixed-predictive p-value that is still
conservative, but less so than the posterior-predictive
p-value.

Posterior- and mixed-predictive approaches are often
carried out in a cross-validatory framework to avoid
the double use of the data. Marshall and Spiegelhal-
ter (2007) showed that under certain conditions, their
conflict p-value is equivalent to the cross-validatory
mixed-predictive p-value when this exists [Fig-
ure 1(c,d)]. In the mixed-predictive approach, com-
patibility between the observations y and the predic-
tive distribution arising from both likelihood p(y|θ)

and prior p(θ |β,H) is measured. In the conflict ap-
proach, the prior is compared with the posterior arising
from the likelihood alone. Although the tests are math-
ematically the same under the conditions described
by Marshall and Spiegelhalter (2007), the mixed-
predictive approach tests model/data compatibility,
whereas the conflict approach tests prior/likelihood
compatibility. Other cross-validatory approaches for
model checking include the observed relative sur-
prise (Evans, 1997) and a Bayesian influence statistic
(Jackson, White and Carpenter, 2012).

2.4 Node-Level Conflict Measures

The predictive diagnostics of the previous section in
general assess a particular aspect of the whole model
in comparison to the data. The node-splitting idea
of Marshall and Spiegelhalter (2007) is, by contrast,
a method of assessing prior-likelihood conflict locally
at a particular node in the DAG. Other node-based di-
agnostics have been proposed also, including that of
O’Hagan (2003). He proposed contrasting two sets of
information informing a single node θ , where each
set is summarised by a unimodal density or likelihood
with parameters λa and λb respectively. The author
proposes first normalising both densities/likelihoods to
have unit maximum height, then considering the height
z = pa(xz|λa) = pb(xz|λb) at the point of intersection
xz of the two curves between the two modes. Taking
cOH = −2 log(z) as the measure of conflict, this will
be high if the two densities/likelihoods have little over-
lap. Bayarri and Castellanos (2007) extend the partial
posterior predictive approach of Bayarri and Berger

(1999, 2000) to hierarchical models and, in doing
so, compare their method to several others, including
O’Hagan’s (2003) conflict measure and Marshall and
Spiegelhalter’s (2007) conflict p-value. They conclude
that only their method and the conflict p-value consis-
tently detect conflict, noting that O’Hagan’s measure
may be sensitive to the prior used and conservative, due
to double use of the data.

Dahl, Gåsemyr and Natvig (2007) raise the same ob-
jection as Bayarri and Castellanos (2007) to the double
use of data in O’Hagan’s measure, and therefore pro-
pose a variation on this measure, for the simple normal
hierarchical analysis of variance. They propose both a
data-splitting approach and a conflict measure at an in-
ternal node θ of the DAG of the model, based on means
and variances of cross-validatory “integrated posterior
distributions” (IPDs). These IPDs are constructed by
taking the information contribution to θ from one par-
tition λa of the DAG (either a prior or likelihood), nor-
malizing it to a density, and integrating it with respect
to the posterior distribution of the parameters λb in
the other partition (analogous to posterior- or mixed-
predictive distributions for θ , see next section for de-
tails). This is in contrast to O’Hagan, who normalizes
to unit height instead of to a density. The authors de-
rive the distributions of their conflict measure for vari-
ous data splittings under fixed known variances. They
perform an extensive simulation study for the case of
unknown variances assigned prior distributions, com-
paring their approach to O’Hagan’s for various data
splittings and prior distributions.

2.5 Unifying Approaches to Node-Level Conflict
Diagnostics

The models of Figure 1 can be seen to be special
cases of the generic DAG in Figure 2(a). The figure
shows a generic model H , with an internal “separator”
node or set of nodes θ . The evidence informing θ is
partitioned into two groups, λa and λb. The set λa con-
tains θ ’s parents pa and a subset of child nodes cha ,
with corresponding co-parents cpa and siblings si. The
partition λb contains the remaining child nodes chb and
corresponding co-parents cpb. The observed data y are
split into ya and yb, that are contained within the re-
spective vectors of child and/or sibling nodes {cha, si}
and chb. Each of the predictive diagnostics of Sec-
tion 2.3 are special cases of Figure 2(a). Figure 2(b)
shows the same generic model as (a), but with the
node(s) θ split into two copies, so that the evidence
that the two partitions λa and λb provide about θ may
be compared. This figure represents a generalisation of
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FIG. 2. DAG (a) shows a generic model H , with the evidence in-
forming an internal “separator” node or set of nodes θ partitioned
into two groups, λa and λb , as in Gåsemyr and Natvig (2009). DAG
(b) shows the same generic model as (a), but with the node(s) θ split
into two copies, so that the evidence that the two partitions λa and
λb provide about θ may be compared.

Marshall and Spiegelhalter’s (2007) node-splitting ap-
proach to any internal node(s) in a DAG.

The generic setup of Figure 2(a) is described by
Gåsemyr and Natvig (2009), who generalise their ear-
lier work in Dahl, Gåsemyr and Natvig (2007). They
use the same cross-validatory IPDs as reference distri-
butions, but consider p-values based on tail areas of
the distributions, rather than a conflict measure based
on means and variances. The authors consider first con-
flict at a data node, in which case the reference IPD is a
posterior- or mixed-predictive distribution of one par-
tition of data conditional on the remaining data, that is,
in the cross-validatory setting of Figure 2(a). Gåsemyr
and Natvig (2009) show that: for symmetric, unimodal
IPDs, their tail area conflict measure is equivalent to
the measure based on means and variances of Dahl,
Gåsemyr and Natvig (2007); if the data are normally
distributed, their measure is equivalent to the cross-
validatory mixed-predictive p-value of Marshall and
Spiegelhalter (2007); and if the IPDs are symmetric,

unimodal and the data in the two partitions are con-
ditionally independent, their measure is equivalent to
the partial posterior predictive p-value of Bayarri and
Berger (2000).

Gåsemyr and Natvig (2009) next consider conflict
between two partitions λa and λb of a DAG at an inter-
nal node θ which is scalar. The IPDs are then predictive
distributions for θ , conditional on the data in each par-
tition:

pa(θ |ya) =
∫

f (θ;λa)p(λa|ya) dλa,

pb(θ |yb) =
∫

f (θ;λb)p(λb|yb) dλb,

where f (θ;λa) and f (θ;λb) are densities propor-
tional to the likelihood factors informing θ in each
of the two partitions, expressed as functions of θ .
As in Dahl, Gåsemyr and Natvig (2007), Gåsemyr
and Natvig (2009) propose normalising the likelihood
terms to densities of θ conditional on the nodes in the
partition, λa or λb. The authors take a pair of indepen-
dent samples (θ∗

a , θ∗
b ) from the two predictive distribu-

tions pa(θ |ya) and pb(θ |yb), and define δ = θ∗
a − θ∗

b .
Their proposed conflict measures are tail area proba-
bilities:

cGN3 = 1 − 2 min
{
Pr(δ ≤ 0),1 − Pr(δ ≤ 0)

}
,

cGN4 = Pr
{
pδ(δ|ya,yb) ≥ pδ(0|ya,yb)

}
,

where pδ is the posterior density of δ. Gåsemyr and
Natvig (2009) demonstrate that the data-data conflict
tail areas they first considered are special cases of cGN3
and cGN4. More generally, they also show that if the
cumulative distribution functions of θ (corresponding
to the predictive densities pa and pb, resp.) are normal,
both cGN3 and cGN4 are uniform pre-experimentally
and are equivalent to each other. The authors also ex-
tend their results to the general normal linear model
when the covariance matrix is fixed and known. Note
that cGN3 should be straightforward to obtain via sim-
ulation, using MCMC, for example, whereas cGN4 is
much more computationally demanding, requiring, for
example, a kernel estimate of pδ . Gåsemyr and Natvig
(2009) note that cGN3 is closely related to the conflict
p-value of Marshall and Spiegelhalter (2007): by tak-
ing the function f (θ;λb) to be proportional to the like-
lihood of the data yb, Gåsemyr and Natvig (2009) are
implicitly assuming a uniform reference prior for θ ,
whereas Marshall and Spiegelhalter (2007) explicitly
do so for the copy θb [Figure 2(b) versus (a)]. Finally,
Gåsemyr and Natvig (2009) extend their framework to
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multivariate node-splits θ , although their theoretical re-
sults are restricted to cases where the two predictive
distributions are multivariate normal, and to general
normal linear models with known covariances.

In a slightly different approach, that complements
and is related to the conflict measures summarised
here, Scheel, Green and Rougier (2011) propose a di-
agnostic plot to visualise conflict at any particular node
θ in a DAG. The authors define a “local prior” for
θ conditional on its parents and a “lifted likelihood”
coming from θ ’s children, conditional on both θ and
the co-parents of θ ’s children. The “local critique plot”
then examines where the marginal posterior of θ lies,
relative to both the local prior and the lifted likelihood.

3. EXTENDING THE CONFLICT p-VALUE TO ANY
NODE

While the conflict measures summarised in the pre-
vious section are useful tools, the general framework
introduced by Dahl, Gåsemyr and Natvig (2007) and
Gåsemyr and Natvig (2009) uses idealised examples,
such as normal models or general normal linear mod-
els with fixed covariances, to demonstrate uniformity
of p-values. Furthermore, many of the other measures,
such as post-processed p-values, are computationally
expensive. In the context of complex evidence synthe-
ses, a diagnostic for conflict is required that is both easy
to compute and applicable in the more complex prob-
abilistic models typical of evidence synthesis. We em-
phasise that in presenting a generalisation of the con-
flict p-value of Marshall and Spiegelhalter (2007) to
any “separator” node(s) θ in a DAG [Figure 2(b)], we
are not aiming to prove uniformity of p-values in spe-
cific cases. Instead, we aim to present a framework for
conflict detection in practice, demonstrating the utility
of such methods in substantive, realistic examples.

In the context of Figure 2(b), the evidence informing
θ is comprised of the information coming from each of
θ ’s neighbours in the DAG. This information is gener-
ally in the form of either: (i) a (potentially predictive)
prior distribution from θ ’s parents and siblings, that
may include likelihood terms from si; or (ii) likelihood
contributions from θ ’s children combined with priors
for the co-parents. Note that Figure 2(b), although gen-
eral, could be generalised even further if, for example,
the co-parents have other children that are not children
of θ , but also contain likelihood terms, indirectly in-
forming θ .

The evidence surrounding θ is split into two inde-
pendent groups, and we compare the inferences about

θ resulting from each of the two partitions by com-
paring the two (independent) posterior distributions
p(θa|ya) and p(θb|yb). We assess our null hypothe-
sis that θa = θb. Our measure of conflict can be de-
signed to reflect differences between data and a model,
between different data sources, or between a prior and a
likelihood. Simple examples of different types of node-
splits are given in Figure 3, each of which is a special
case of Figure 2(b). The examples include comparison
between a likelihood and the remaining combined prior
and likelihood, appropriate when questioning part of
the data contributing to a node [Figure 3(b)] and a like-
lihood vs likelihood comparison [Figure 3(c)], directly

FIG. 3. Examples of node-splits contrasting (a) (i) data and pre-
dictive distribution or (ii) prior and likelihood; (b) a likelihood term
and the remaining combined prior and likelihood; and (c) two like-
lihood terms, assuming a reference prior for each θ . In each exam-
ple, the original model is on the left and the node-split is shown on
the right.
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contrasting sources of evidence without taking into ac-
count a prior.

3.1 Choice of a Reference Prior

The question of how to create the two posterior dis-
tributions to compare depends on the precise compari-
son we wish to make, and hence the specific node-splits
we construct. In particular, the creation of posterior dis-
tributions depends partly on the choice of a reference
prior to use for θb or, indeed, for both θa and θb in
the case of node-splits of a form such as Figure 3(c).
The aim is to choose a prior that turns what is effec-
tively a likelihood term [p(yb|cpb, θb), where cpb is
a vector of θb’s co-parents] into a posterior distribu-
tion, without the prior itself influencing the posterior.
We therefore follow Box and Tiao (1992) and Kass
(1990) in adopting uniform priors for a transformation
h(θb) of θb to a scale such that the uniform prior is ap-
propriate. The posterior distribution is then effectively
the “data-translated likelihood” (Box and Tiao, 1992).
As noted previously, Marshall and Spiegelhalter (2007)
showed that under certain conditions, choosing a uni-
form prior results in the conflict p-value and the cross-
validatory mixed-predictive p-value coinciding when
the latter exists. They note also that in other situations,
Box and Tiao (1992) showed that the Jeffreys’ priors
widely used as “noninformative” priors are equivalent
to a uniform prior on an appropriate transformation of
θb. We therefore recommend use of a Jeffreys’ prior in
general, although note that for some node-splits, choice
of a “noninformative” prior may not be so straightfor-
ward. For some comparisons, we may not be able to
assign a Jeffreys’ prior or there may not be a natural
choice of reference prior. We then rely on the likeli-
hood in a specific partition dominating any prior cho-
sen for founder nodes in that partition, though this
assumption should be assessed, for example, through
sensitivity analyses to the prior (see Section 5 for fur-
ther discussion of this).

3.2 Comparison of Two Posterior Distributions

Considering for now scalar θ , to test the point-null
hypothesis that θa = θb, Bayes factors could be em-
ployed. However, the approach is known to be difficult
because of the high dependence on the precise form of
the reference priors, as well as hard to evaluate using
MCMC. Instead, we prefer to consider the plausibility
of the hypothesis either directly if θ takes discrete val-
ues or using a p-value if the support of θ is continuous.

3.2.1 Conflict at a discrete node. If θ takes values
in 0,1, . . . ,K , then we can directly evaluate

c = p(θa = θb|ya,yb)

=
K∑

k=0

p(θa = k|ya)p(θb = k|yb).

As a simple example, consider a disease with known
prevalence π and denote the event of having the disease
by θ = 1 and of no disease by θ = 0. The prior proba-
bility of having the disease is therefore p(θ = 1) = π .
A diagnostic test Y has sensitivity s and specificity t ,
so that p(Y = 1|θ = 1) = s and p(Y = 0|θ = 0) = t .
If a positive test result y = 1 is observed, then the pos-
terior probability of the disease is p(θ = 1|y = 1) =
πs/{πs + (1 − π)(1 − t)}.

If we wish to assess the conflict between the prior
θ ∼ Bernoulli(π) and the likelihood of observing a
positive test result given θ , p(y = 1|θ), then, in this
case, K = 1, θa is the copy representing the prior, θb

is the copy representing the likelihood, ya is the empty
set and yb = y [see also Figure 3(a)(ii)]. We assume a
reference prior p(θb = 1) = 0.5, and so obtain a refer-
ence posterior p(θb = 1|y = 1) = s/{s + (1 − t)}. The
conflict measure is then

c = {
πs + (1 − π)(1 − t)

}
/
{
s + (1 − t)

}
.

For example, if a diagnostic test has sensitivity and
specificity 0.9, then the conflict when observing a posi-
tive test result is c = 0.1+0.8π , which has a minimum
of 0.1 for very rare diseases.

3.2.2 Conflict at a continuous node. For θ with con-
tinuous support, we can no longer calculate p(θa =
θb|ya,yb) directly. Instead, we consider the posterior
probability of δ = h(θa) − h(θb), where h is the func-
tion (Section 3.1) we choose that turns θ into a parame-
ter for which it is reasonable to assume a uniform prior.
To judge whether the null hypothesis δ = 0 is plausible,
and as do Gåsemyr and Natvig (2009), we adapt Box’s
(1980) suggestion of calculating the probability that a
predictive density is smaller than the predictive density
at the observed data, to calculating the probability that
the posterior density of δ is smaller than that at 0, that
is,

c = Pr
{
pδ(δ|ya,yb) < pδ(0|ya,yb)

}
.

This can also be interpreted as adopting a log scor-
ing rule (Spiegelhalter et al., 1993, 1994; Gneiting and
Raftery, 2007) for δ:

c = Pr
{− logpδ(δ|ya,yb) > − logpδ(0|ya,yb)

}
,
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which we can think of as the predictive probability of
getting a higher penalty than if we believe the null hy-
pothesis that δ = 0.

A problem is the need for evaluation of the posterior
density pδ(δ|ya,yb), which is not available analytically
in any but the simplest of examples. However, the Jef-
freys’ transformation h(·) to a location parameter on
the real line may also ensure that the posterior distri-
bution of δ is symmetric and unimodal. In this case,
the conflict measure is simply double the tail-area be-
yond 0:

c = 2 × min
{
Pr(δ > 0|ya,yb),1 − Pr(δ > 0|ya,yb)

}
,

which is easily implemented using MCMC by count-
ing the number of times θa exceeds θb in the sam-
ple. As Gåsemyr and Natvig (2009) have shown, if
h(θa), h(θb)—and hence δ if θa and θb are indepen-
dent—are normally distributed, then the p-value is uni-
formly distributed a priori. A value of c close to 0
therefore indicates a low degree of consistency be-
tween the posterior distributions of θa and θb.

If the distribution is not symmetric, a one-sided tail
area may be more appropriate. As we will see in some
of the examples of Section 4, we may in any case be
interested in one-tailed tests δ ≥ 0 or δ ≤ 0, in which
case asymmetry is not a problem. Clearly, if the dis-
tribution is multi-modal, the tail area is not an appro-
priate measure of where 0 lies in the posterior distri-
bution of δ (Evans and Jang, 2010). Then (Gåsemyr
and Natvig, 2009) we may consider using a kernel den-
sity estimate of MCMC samples from the posterior dis-
tribution to empirically obtain c = Pr{pδ(δ|ya,yb) <

pδ(0|ya,yb)}, though this will clearly be dependent on
the choice of bandwidth and kernel. We defer further
discussion of these issues to Section 5.

3.2.3 Conflict at multiple continuous nodes. As
seen from the example in Marshall and Spiegelhalter
(2007) and Figure 1(c) of this paper, to obtain com-
pletely independent partitions of evidence in a DAG,
often (particularly in hierarchical models) a vector of
nodes would need to be split. How the DAG should be
split will be context-dependent: either we are interested
in comparing what we can infer about all the separator
nodes in the vector from the two partitions of evidence
or some of the separator nodes are nuisance parameters
[such as the variance γ in Figure 1(c)] in which we are
not directly interested. If the latter is the case, we can
impose a cut such as the one shown in Figure 1(c) to
prevent information from one partition influencing the
nuisance parameters. In the former case, we can split

each node in the vector and examine the posterior dis-
tribution of δ = ha − hb = {h1(θa1), . . . , hk(θak)}T −
{h1(θb1), . . . , hk(θbk)}T , where k is the length of the
vector and the functions h1, . . . , hk are the appropri-
ate Jeffreys’ transformations. The key question is then
how to calculate a multivariate p-value to test δ = 0.
We consider three options, dependent on the posterior
distribution of δ:

(i) If we are willing to assume multivariate nor-
mality for the posterior pδ(δ|ya,yb), and denoting the
posterior expectation and covariance of δ by Ep and
Covp , respectively, then (Gåsemyr and Natvig, 2009)
the standardised discrepancy measure

� = Ep(δ)T Covp(δ)−1
Ep(δ)

may be compared with a X 2 distribution with k de-
grees of freedom to obtain a conflict measure c =
1 − Pr{X 2

k ≤ �}.
(ii) If we are not willing to assume multivariate nor-

mality, but the posterior density pδ(δ|ya,yb) is still
symmetric and uni-modal, we can sample points from
the posterior (e.g., using MCMC) and for each sam-
ple δi , calculate its Mahalanobis distance from their
mean

�i = {
δi − Ep(δ)

}T Covp(δ)−1{
δi − Ep(δ)

}
.

Then a conflict measure is c = Pr{�i > �}, the propor-
tion over the MCMC sample of points that are further
away from the mean than is 0. This is a means of calcu-
lating the multivariate tail area probability, analogous
to counting the number of times in the MCMC sample
δ is greater than 0 in the univariate case.

(iii) Finally, if the posterior distribution is skew
and/or multi-modal, we could, as in the univariate case,
obtain a kernel density estimate of the posterior based
on the MCMC samples and use the estimate to calcu-
late the probability that the posterior density at δ is less
than (at a lower contour than) at 0:

c = Pr
{
pδ(δ|ya,yb) < pδ(0|ya,yb)

}
,

that is, that 0 lies in the tail of the distribution.

Note that the third approach will again be dependent
on the choice of bandwidth and kernel.

4. EXAMPLES

We now illustrate the use of conflict p-values to de-
tect conflict in a series of three increasingly complex
evidence syntheses. All analyses were carried out in
OpenBUGS 3.2.2 (Lunn et al., 2009) and R 2.15.0
(R Development Core Team, 2005).
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FIG. 4. The HIV example: probability tree showing the epidemio-
logical model from Ades and Cliffe (2002). “SSA” denotes women
born in sub-Saharan Africa and “IDU” denotes injecting drug us-
ing women.

4.1 HIV Example

Ades and Cliffe (2002) proposed a Bayesian synthe-
sis of multiple sources of evidence to examine alter-
native strategies for screening HIV in prenatal clinics,
with the specific aim of deciding whether to universally
screen or to use targeted screening of high risk groups.
Figure 4 shows the epidemiological part of their model,
with the “basic parameters” a to h to be estimated.
These letters represent the probabilities of women in
prenatal clinics being in a particular risk group [a, b

and 1 − a − b, representing, respectively, women born
in sub-Saharan Africa (SSA), women injecting drugs
(IDU) and the remaining women]; being HIV infected
(c, d and e, respectively, for the three risk groups); and
being already diagnosed prior to clinic visit (f,g and
h, resp., for HIV positive women in each of the three
risk groups). Direct evidence is only available for a
limited number of these parameters, but there is also
indirect evidence informing functions (“functional pa-
rameters”) of a to h as well as of an extra basic pa-
rameter w. Direct evidence is defined as a study with
the aim of measuring a basic parameter. Indirect evi-
dence is provided by the other studies through the log-
ical functions that link the basic parameters. Table 1
shows the available data and the parameters, both ba-
sic and functional, that these inform, while Figure 5

shows a DAG of part of the model, demonstrating both
the distributional and functional relationships. The ba-
sic parameters are the founder nodes to which prior dis-
tributions are assigned, whereas the functional parame-
ters p1, . . . , p12 are the probabilities informed directly
by each of the 12 data sources.

The effect of the direct and indirect evidence on in-
ference may be compared using two different types of
node-splits: one at the level of the basic parameters
and the second at the level of the probabilities pi, i ∈
1, . . . ,12. The two types of node-splits are shown in
Figure 6. The first node-split is carried out for each of
the six basic parameters θ ∈ {a, b, c, d, g,w} for which
direct data are available (studies 1 to 4, 10 and 11). The
indirect evidence comprises all the remaining studies
and the functional relationships assumed. The second
type of node-split compares, for each i ∈ 1, . . . ,12, the
direct evidence on pi provided by study i with the in-
direct evidence provided by the remaining studies, that
is, a data-level cross-validation.

We adopt Jeffreys’ prior for the nodes representing
direct evidence in each case: θb ∼ Beta(1/2,1/2) for
each θ ∈ {a, b, c, d, g,w} in the first set of node-splits;
and pib ∼ Beta(1/2,1/2) in partition b in the second
set of node-splits [Figure 6(b)]. In both node-splits, the
conflict p-values are two-tailed since we are testing for
nonequality. Since the posterior densities of each dif-
ference function δ appear symmetric and uni-modal,
the p-values are defined by taking twice the proportion
of MCMC samples where δ ≥ 0 or δ < 0, whichever is
smaller. The results are based on two chains of 20,000
MCMC iterations each, after discarding a burn-in of
20,000 iterations.

Comparison of the direct and indirect evidence in-
forming each θ ∈ {a, b, c, d, g,w} is shown in Fig-
ure 7, together with the conflict p-values. The plots and
the p-values indicate that the direct evidence informing
b and d , that is, studies 2 and 4, appear to be in con-
flict with the rest of the model. This is confirmed by
the second type of node-split, as shown in Figure 8: the
difference function δi = pia − pib is plotted, and the
line δi = 0 is shown together with the conflict p-value.
Again, studies 2 and 4 are clearly in conflict with the
rest of the model.

4.2 Influenza Example

In Presanis et al. (2011), the severity of the first two
waves of the 2009 pandemic influenza outbreak ex-
perienced by England was estimated via a Bayesian
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TABLE 1
HIV example: data sources and the parameters they inform. “SSA” denotes sub-Saharan Africa and “IDU” denotes injecting drug using.

“Seroprevalence” is the prevalence of HIV antibodies in blood samples from a “sero-survey”

Data
Source Description of data Parameter y n y/n

1 Proportion of women born in SSA,
1999

p1 = a 11,044 104,577 0.106

2 Proportion of women who are IDU
in the last 5 years

p2 = b 12 882 0.014

3 HIV prevalence in women born in
SSA, 1997–1998

p3 = c 252 15,428 0.016

4 HIV prevalence in IDU women,
1997–1999

p4 = d 10 473 0.021

5 HIV prevalence in women not born
in SSA, 1997–1998

p5 = db+e(1−a−b)
1−a

74 136,139 0.001

6 HIV seroprevalence in pregnant
women, 1999

p6 = ca + db + e(1 − a − b) 254 102,287 0.002

7 Diagnosed HIV in SSA-born
women as a proportion of all
diagnosed HIV, 1999

p7 = f ca
f ca+gdb+he(1−a−b)

43 60 0.717

8 Diagnosed HIV in IDU women as
a proportion of diagnosed HIV in
non-SSA-born women, 1999

p8 = gdb
gdb+he(1−a−b)

4 17 0.235

9 Overall proportion of HIV diag-
nosed

p9 = f ca+gdb+he(1−a−b)
ca+db+e(1−a−b)

87 254 0.343

10 Proportion of infected IDU women
diagnosed, 1999

p10 = g 12 15 0.800

11 Proportion of infected SSA-born
women with serotype B, 1997–
1998

p11 = w 14 118 0.119

12 Proportion of infected non-SSA-
born women with serotype B,
1997–1998, assuming that 100% of
infected IDU women have serotype
B and that infected non-SSA-born
non-IDU women have the same
prevalence of serotype B as infected
SSA-born women

p12 = db+we(1−a−b)
db+e(1−a−b)

5 31 0.161

evidence synthesis. Severity was measured by “case-
severity ratios”, the probability that an infection will
lead to a more severe event such as hospitalisation
(case-hospitalisation ratio CHR), intensive care (ICU)
admission (case-ICU ratio CIR) or death (case-fatality
ratio CFR). Restricting attention to the first wave only,
Figure 9 is a DAG of the model, shown for a single
age group (with the age index dropped for clarity). At
the top, we have the three case-severity ratios, which
can each be expressed as a product of component con-
ditional probabilities pi|j of being a case at severity
level i given severity level j . The severity levels are
infection Inf, symptomatic infection S, hospitalisation
H , ICU admissions I and death D, with Pop denot-

ing the total (age-group specific) population of Eng-
land. The case-severity ratios are functional parame-
ters, whereas the probabilities pi|j are basic parame-
ters assigned prior distributions. At the third layer of
the DAG, the number of infections at each severity
level Ni, i ∈ {Inf, S,H, I,D} is a function of the con-
ditional probabilities pi|j and the number at the less
severe level j , Nj : Ni = pi|jNj .

The authors synthesised data, yi , from surveillance
systems monitoring influenza at different levels of
severity, i (Figure 9), as well as serial sero-prevalence
data indirectly informing the cumulative incidence of
infection pInf |Pop. Some of the observed data were
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FIG. 5. The HIV example: DAG showing part of the model. Note
the functional relationships represented by the dashed arrows.

recognised to under-ascertain the true number of in-
fections at different severity levels, so were modelled
as

yi ∼ Binomial(Ni, di),

FIG. 6. The HIV example: DAG showing the two types of node
splits, one example of each. In (a), the node a is split to reflect
direct (ab) versus indirect (aa ) evidence. In (b), the node p1 is split
to reflect prior (all the indirect evidence on p1a ) versus likelihood
(direct evidence on p1b) in a cross-validation approach.

where the probability parameters di represent the
under-ascertainment or bias parameters. Estimates N̂B

of the number symptomatic were produced by the
Health Protection Agency (HPA) from data on primary
care consultations for influenza-like-illness and viro-
logical testing for the pandemic strain, adjusted for the
proportion of symptomatic cases contacting primary
care. Early on in the pandemic, these estimates were
thought to be underestimates (B here stands for bias).
The HPA estimates were therefore incorporated in the
synthesis by modelling them as

N̂B ∼ Binomial(NS, dS).

Informative Beta priors were given to the probabil-
ities pH |S and pS| Inf, representing estimates from a
cure-rate model fitted to data on the first few thou-
sand confirmed cases and estimates from the litera-
ture on seasonal influenza, respectively. The remaining
probabilities pi|j were assigned Beta(1,1) priors. An
informative Beta prior representing estimates from a
capture-recapture study was adopted for the ascertain-
ment probability for death, dD . The other ascertain-
ment probabilities, dH and dS , were given Beta(1,1)

priors.
Given uncertainties over possible biases in both

the sero-prevalence data and the HPA estimates N̂B ,
Presanis et al. (2011) carried out a number of sensi-
tivity analyses to the inclusion of these “denomina-
tor” data, making different assumptions about which
source, if any, is biased. An alternative approach is to
split the DAG at the node NS , having dropped from
the model for now the bias parameter dS , to assess the
consistency of the different groups of evidence. De-
note the full model of Figure 9 but with dS removed by
Model 1. We wish to compare the sero-prevalence data
combined with the informative prior for the propor-
tion symptomatic pS| Inf (the “parent” model 2) against
the HPA estimates N̂B , combined with all the severe
end data and priors (the “child” model 3). Figure 10
shows this node-split. In the child model, log(N3

S )

is assigned the Jeffreys’ prior (uniform on the real
line). The difference function we are interested in is
δ = log(N2

S ) − log(N3
S ) and the tail probability we as-

sess is the one-sided probability c = Pr{δ < 0}, since
the HPA estimates are recognised underestimates. The
p-values are calculated as the proportion of MCMC
samples where δ < 0.

Three chains of a million MCMC iterations each,
with the first 200,000 discarded as burn-in, were
thinned to every 10th iteration to obtain 240,000 poste-
rior samples on which to base results. Figure 11 shows,
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FIG. 7. The HIV example: posterior distributions reflecting direct (solid lines) vs indirect (dashed lines) evidence at the 6 basic parameters
with direct evidence available, a, . . . , d, g,w. The conflict p-value (c), calculated as twice the proportion of MCMC samples where δ ≥ 0 or
δ < 0, whichever is smaller, is given in each plot. The bandwidth (bw) of the kernel density estimate used to plot the posterior distributions
is also shown.

for each of seven age groups, the posterior distribu-
tions of log(NS) in each of the three models: the full
model 1, the parent model 2 and the child model 3.
Two facts are immediately apparent from these plots:
first, that the estimates provided by the sero-prevalence
data in the parent model are very uncertain, particu-
larly in the adult age groups, where sample sizes were
small; and second, the resulting influence of the more
severe end data, including the HPA estimates, is seen
in the closeness of the full model estimates to the child
model estimates. What is less apparent from these plots
is the extent of conflict between the two sets of infor-
mation, except in the age group < 1 where the con-
flict is clear to see. The plots of the difference func-
tion δ in Figure 12, together with the conflict p-values
shown, are required to assess the conflict in other age
groups. From these, we see p-values less than 0.1 in
the child age groups, providing evidence of conflict in
these groups. By contrast, in the adult age groups, the
uncertainty in the estimates of N2

S in the parent model 2
is so large that there is no conflict.

If we had not already suspected the HPA estimates
were underestimates and wished to assess potential
conflict using a two-sided test, then in this example
calculation of the two-sided p-value would not be so
straightforward. Particularly in the over-65 age group,
the posterior difference function is skewed (Figure 12).
We could therefore, as suggested in Section 3.2, use
kernel density estimation to calculate the two-sided p-
value. Figure 13 compares the one-sided to the result-
ing two-sided p-value for the 65+ group, using a band-
width of 0.5.

4.3 Multivariate Example: Growth in Rats

A simpler example that nevertheless demonstrates
the complexity of multivariate node-splitting is pro-
vided by data from a population growth experiment
considered by Gelfand et al. (1990). The data comprise
the weight yij of each of 30 rats (i ∈ 1, . . . ,30) at ages
8, 15, 22, 29 and 36 days, indexed by j ∈ 1, . . . ,5. The
authors’ null model H0 assumes a normal error and
random coefficient linear growth curves with time tj
measured in days centred on 22. The intercept and gra-
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FIG. 8. The HIV example: the posterior distribution of the difference function δ (solid lines) at each functional parameter pi, i ∈ 1, . . . ,12
(data-level cross-validation). δ = 0 is shown by the dashed vertical line. The conflict p-value (c), calculated as twice the proportion of MCMC
samples where δ ≥ 0 or δ < 0, whichever is smaller, is given in each plot. The bandwidth (bw) of the kernel density estimate used to plot the
posterior distributions is also shown.

FIG. 9. The influenza example: DAG for a single age-group (age index dropped for clarity) of the model reported in Presanis et al. (2011).
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FIG. 10. The influenza example: the node split at NS . On the right is model 2, the “parent” model. On the left is model 3, the “child”
model. The double-headed arrow represents the comparison between the two.

FIG. 11. The influenza example: the posterior distribution of the number symptomatic NS on the log-scale, by age group and model. The
bandwidth (bw) of the kernel density estimate used to plot the posterior distributions is shown in the top left of each plot.
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FIG. 12. The influenza example: the posterior distribution of the difference function δ = log(N2
S )− log(N3

S ). The vertical dashed line gives
δ = 0. The one-sided conflict p-value (c), calculated as the proportion of MCMC samples where δ < 0, is given in each plot. The bandwidth
(bw) of the kernel density estimate used to plot the posterior distributions is also shown.

FIG. 13. The influenza example: one- (c1) and two-sided (c2) p-values for the 65+ age group, calculated using kernel density estimation
with bandwidth bw. The two vertical dashed lines show where δ = 0 and the corresponding value δ = k = 4.44, such that the density at 0
and at k is equal, lie in the posterior distribution of δ.
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dient are given a bivariate normal prior, so that

yij ∼ N
(
μij , σ

2)
,

μij = φi1 + φi2tj ,(1)

φi ∼ MVN2(β,�),

where φi = (φi1, φi2)
T and β,�, σ 2 are given proper

but very diffuse prior distributions:

β ∼ MVN2

((
0
0

)
,

(
10−6 0

0 10−6

))
,

W ∼ Wishart
((

200 0
0 0.2

)
,2

)
,

� = W−1,

τ ∼ �
(
10−3,10−3)

,

σ 2 = τ−1.

We wish to examine the suitability of the bivariate ran-
dom effects distribution for each rat, which in this case
requires assessing a multivariate node-split, at the vec-
tor of parameters φi (Figure 14). For each rat i (i.e.,
each cross-validation), in one partition, we fit a fixed
effects model to the data yi to estimate the nodes de-
noted φlik

i , which are assigned independent (improper)
Jeffreys’ priors. In the other partition, we predict the
nodes φ

rep
i from the random effects model fitted to the

data on the remaining rats, denoted by y\i . As with
the example from Marshall and Spiegelhalter (2007),
to form a complete split in the DAG would require also
splitting the variance parameter σ 2. Since our primary

FIG. 14. The rats example: DAG showing the comparison of the
fixed effect model for rat i (φlik

i ) with the random effects prediction

from the remaining rats (φrep
i ).

interest is in assessing the random effects distribution
for φi rather than for the rat-specific data yi , and as
a rat-specific variance σ 2

i may not be well identified
from the data on one rat alone, we treat σ 2 as a nui-
sance parameter. We therefore place a “cut” in the DAG
to prevent feedback from rat i’s data to σ 2.

A multivariate difference function was defined for
each rat i: δi = φ

rep
i − φlik

i and MCMC samples from
the posterior distribution of δi were obtained based on
two chains of 20,000 iterations each, following a burn-
in of 20,000 iterations. Plots for each rat of the sam-
ples from the joint posterior distribution of δi suggest
that at least uni-modality and symmetry hold approxi-
mately, and possibly bivariate normality also (see, e.g.,
rat 9 in Figure 15). We therefore calculate a conflict p-
value based on each of the first two suggestions in Sec-
tion 3.2.3, shown in Figure 16. Both methods of defin-
ing the p-value give similar results and suggest that
rat 9 is discrepant, with p-values of 0.003 and 0.006
for the χ2- and Mahalanobis-based methods, respec-
tively. Figure 15 shows the joint posterior distribution
of δ9, with crosses denoting samples that are further
away (in terms of Mahalanobis distance) from the pos-
terior mean (the white star) than is the point (0,0).

A parallel literature exists on model diagnostics to
identify unit-level outliers for classical multilevel mod-
els (Langford and Lewis, 1998). The basic idea of
this diagnostic is to add extra fixed effects or dummy
variables for the unit under consideration and com-
pare this model and the null by comparing the change
in deviance between the two, evaluated at the maxi-
mum likelihood estimate, to a χ2

1 distribution. For ex-
ample, in the rats study, an extra fixed effect could
be added for the slope and intercept of rat i and this
model (the alternative) could be compared with the null
model (1). Ohlssen, Sharples and Spiegelhalter (2007)
show that this method is equivalent to the Bayesian
cross-validatory mixed-predictive p-value of Marshall
and Spiegelhalter (2007) in balanced one-way random
effects models with uniform priors.

5. DISCUSSION

We have described a generic simulation-based tech-
nique that can be used as a diagnostic for conflict-
ing information at any node(s) θ in a DAG, general-
ising the conflict p-value first proposed by Marshall
and Spiegelhalter (2007). We have presented a frame-
work focussed on a conflict diagnostic that is both use-
ful and straightforward to construct for complex, typi-
cally nonstandard, evidence synthesis models. We have
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FIG. 15. The rats example: joint posterior distribution of δ9. Points more extreme than (0,0) (i.e., further from the mean in terms of
Mahalanobis distance and therefore lying in the tail of the distribution) are shown as crosses. The white star denotes the posterior mean
Ep(δ9).

FIG. 16. The rats example: on the x-axis, cχ2 is the p-value using the χ2 approach; on the y-axis, cMah is the p-value using the Maha-
lanobis approach. Rats 9 and 25 have p-values less than 0.05.
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given recommendations, via three substantive exam-
ples, for how to perform node-splits to assess different
types of conflict. In particular, we have demonstrated
different methods of handling multivariate node-splits,
dependent on the context. If a “separator” parameter
is not of primary interest, but a nuisance parameter,
we suggest making use of the “cut” function in soft-
ware such as OpenBUGS, to prevent information flow
to the nuisance parameter from one partition. For mul-
tivariate “separator” nodes that are of importance, we
recommend a hierarchy of options for defining a mul-
tivariate conflict p-value, dependent on the normality,
uni-modality and symmetry or otherwise of the poste-
rior distribution of the difference function. In focussing
on nonstandard but realistic situations, our framework
goes beyond that so far proposed in the literature [e.g.,
Bayarri and Castellanos, 2007; Gåsemyr and Natvig,
2009].

There are still practical and theoretical considera-
tions raised by the analysis of conflict that require fur-
ther investigation. For large complex models, a sys-
tematic examination of every potential conflict at every
node in a DAG may induce a large computational cost,
since—as with cross-validation—every node-split re-
quires a new model run. Furthermore, such a system-
atic conflict assessment would result in the multiple
comparison problem. To address these issues, differ-
ent approaches may be taken. In practice, approxima-
tions to full cross-validation as suggested by Marshall
and Spiegelhalter (2007) may be employed. Or it may
be prudent to be selective about node-splits to exam-
ine, based on the context of the problem, as we were
in the influenza example and to some extent in the
HIV example. One strategy may be to employ a di-
agnostic such as comparison of posterior mean de-
viance to the number of data items (Dempster, 1997;
Spiegelhalter et al., 2002) to detect lack of fit to partic-
ular items, which may then be an indicator of conflict-
ing evidence (Ades and Cliffe, 2002; Presanis et al.,
2008). Then the choice of node-splits to examine may
be guided by the locations in the DAG of lack of fit.
However, the posterior mean deviance has its own lim-
itations as a diagnostic (Presanis et al., 2008) and, in-
deed, conflicting evidence may not necessarily mani-
fest as lack of fit. This was the case with the influenza
example (results not shown), where instead an informa-
tive prior for the proportion of infections which were
symptomatic was shifted in the posterior to an im-
plausibly low range. If systematic conflict assessment
is indeed an aim of the analyst, then the problem of

multiple testing may be addressed by combining node-
splitting with methods for controlling the false discov-
ery rate [FDR, Benjamini and Hochberg, 1995; Jones,
Ohlssen and Spiegelhalter, 2008]. A further compli-
cation is the possibility of correlated hypothesis tests,
since the different node-splits assessed may have nodes
in common with each other. FDR methods do extend
to correlated tests (Benjamini and Yekutieli, 2001), but
such methods may have an impact on the power to
detect conflict or identify the network of nodes in a
DAG that are conflicting (Hothorn, Bretz and Westfall,
2008; Bretz, Hothorn and Westfall, 2011). A possibil-
ity for further investigation is to account for correla-
tion through the general framework for multiple com-
parisons of Hothorn, Bretz and Westfall (2008), Bretz,
Hothorn and Westfall (2011), although this requires
asymptotic multivariate normality.

In models where flat improper priors are employed
and the likelihood dominates the prior, the posterior
will be approximately normal, so that the conditions
of the framework of Gåsemyr and Natvig (2009) hold,
and the conflict p-values will therefore be uniformly
distributed under the null hypothesis that θa = θb.
However, in practice, analysts modelling complex phe-
nomena rarely use improper priors, perhaps instead us-
ing either (i) proper priors with very large variances;
or (ii) informative priors to represent previous knowl-
edge or to ensure identifiability. In case (i), approxi-
mate normality of the posterior difference function δ

will again ensure the p-values are uniform under the
null, though sensitivity analyses should be employed
to check the prior is dominated by the likelihood. Fur-
thermore, our recommendation of the use of Jeffreys’
priors for appropriate transformations of θb should, we
hope, result in a posterior difference function that is at
least approximately (multivariate) normal. Sensitivity
analysis may again be employed to assess our choice of
reference prior (Jeffreys’ or some other uniform prior)
and transformation function h(·) for the split node.
In case (ii), where informative priors are assigned to
nodes other than θb, the posterior distribution of θa and
hence the difference function δ are not guaranteed to be
even approximately normal. This potential nonnormal-
ity may be exacerbated by small sample sizes, as was
the case in our influenza example, where in some age
groups the posterior difference function was somewhat
skewed. Our suggestion is to then use kernel density
estimation to obtain a conflict p-value, though clearly
more work would be required to understand the dis-
tribution of such a p-value. Kernel density estimation
also raises its own questions of how to choose a kernel
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and a bandwidth with which to smooth, suggesting the
need for sensitivity analyses to these choices. Kernel
density estimation is also computationally demanding,
particularly for multivariate surfaces, and may result in
p-values that are not invariant to transformation. More
generally, a conflict measure defined as the probability
that a density function is smaller than a given thresh-
old is preferable in cases where the distribution of δ

is not symmetric and unimodal, since it would iden-
tify regions of surprise not only in the tails, but also in
shallow anti-modes. However, the question of how to
obtain such a p-value, that is also invariant to transfor-
mation, requires further investigation (Evans and Jang,
2010).

Our case studies in assessing conflict have demon-
strated the great importance of visualisation, with plots
of, for example, the posterior difference function or the
posterior distributions corresponding to different parti-
tions of a DAG adding to our understanding of what
and where conflict is occurring. The influence of dif-
ferent partitions of evidence on estimation can also be
visualised from such plots. It is important to note that
node-splitting is a diagnostic, one step in the inference-
criticism cycle and a pointer to where in a DAG fur-
ther analysis is required. The next step is to understand,
within the context of the specific problems under anal-
ysis, the reasons for the inconsistencies, and therefore
to resolve the conflict. There are many possibilities for
accommodating conflict, including: the exclusion of
sources of evidence; the addition of extra variation to
account for potential bias (e.g., Andrade and O’Hagan,
2006; Evans and Jang, 2011); and model elaboration
to explicitly model biases or account for unexplained
heterogeneity (e.g., DuMouchel and Harris, 1983; Lu
and Ades, 2006; Greenland, 2009; Presanis et al., 2008;
Welton et al., 2009; Turner et al., 2009; Higgins et al.,
2012; White et al., 2012). Any such model develop-
ment will then lead to the next iteration of inference
and criticism, in the spirit of Box (1980) and O’Hagan
(2003). Clearly, also, in any Bayesian analysis, sen-
sitivity analyses, both to prior distributions, whether
vague or informative, and in the case of evidence syn-
thesis, to the sources of information included, are an
important part of the model criticism process.
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