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With experimental quantum computing technologies now in their infancy, the search for efficient
means of testing the correctness of these quantum computations is becoming more pressing. An
approach to the verification of quantum computation within the framework of interactive proofs
has been fruitful for addressing this problem. Specifically, an untrusted agent (prover) alleging to
perform quantum computations can have his claims verified by another agent (verifier) who only
has access to classical computation and a small quantum device for preparing or measuring single
qubits. However, when this quantum device is prone to errors, verification becomes challenging
and often existing protocols address this by adding extra assumptions, such as requiring the noise
in the device to be uncorrelated with the noise on the prover’s devices. In this paper, we present
a simple protocol for verifying quantum computations, in the presence of noisy devices, with no
extra assumptions. This protocol is based on post hoc techniques for verification, which allow for
the prover to know the desired quantum computation and its input. We also perform a simulation
of the protocol, for a one-qubit computation, and find the error thresholds when using the qubit
repetition code as well as the Steane code.

I. INTRODUCTION

There is now substantial evidence that quantum
computers cannot be simulated efficiently by their
classical counterparts. Shor’s factoring algorithm is
one example where an efficient (polynomial time) so-
lution to a problem can be found with a quantum
computer, but the best classical algorithm that we
know runs in superpolynomial time (in the worst
case) [1]. While the inability to be efficiently classi-
cally simulated can be of great use in computing, it
does raise other problems. In particular, how can we
check that the device is producing the correct answer
if it is hard to simulate with a classical computer?
For the case of factoring, we can just multiply the
factors, but for other problems (such as simulating
a quantum system) there is no a priori classically
efficient means of verifying whether a quantum com-
putation was carried out [2].

To be a bit more explicit, the scenario is that of
a verifier that can do probabilistic classical com-
putation, and an untrusted prover who is limited to
universal quantum computation. The verifier wishes
to use the prover’s quantum computer, but might
not be able to trust the prover’s output, and so the
verifier will perform some sort of verification. In
full generality, the prover and the verifier can ex-
change multiple rounds of classical communication
with each other (as the verifier has no quantum ca-

pabilities). Both parties’ computations have a run-
ning time that is, at most, a polynomial in the size
of the input to the computation (hence efficient by
standard notions in computational complexity). The
verifier would like to be able to perform any efficient
quantum computation by delegating the task to the
untrusted prover. Clearly, if the prover is honest and
actually has a quantum computer, they can perform
the task for the verifier. On the other hand, if the
prover is dishonest then they could lie or deviate in
any manner they deem fit. The goal of verification
of quantum computation is to catch (with high prob-
ability) when a prover is being dishonest and reject
his output.

There has been a lot of progress in the develop-
ment of verification protocols (see [3] for a survey
paper). It is still an open problem whether verifica-
tion is possible in this setting, with no extra com-
putational assumptions [4]. Two main modifications
of the classical client, single server setting have been
considered: give the verifier some quantum device
and allow some quantum communication between
the prover and verifier, or introduce multiple non-
communicating quantum provers that share entan-
glement. In the former approach – the approach
we take in this paper – this quantum device could
prepare particular quantum states or make measure-
ments in a particular basis, and this quantum pro-
cess becomes an integral part of the prover’s quan-
tum computation. In this approach, existing proto-
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cols typically assume an ideal setting in which the
only “errors” that can occur are a result of malicious
behaviour of the prover. But realistically, quantum
devices are highly susceptible to noise, and so a ver-
ifier could introduce noise into a computation im-
plemented by an honest prover. Reducing this noise
and controlling it is one of the great challenges in de-
veloping scalable quantum computers. The thresh-
old theorem shows that as long the error rate per
quantum gate is below a constant threshold, it is
always possible to perform a fault tolerant quantum
computation with only a polylogarithmic increase in
overhead [5–7].

We would like to avoid the verifier’s quantum de-
vice becoming too powerful, since even being poly-
logarithmic in the size of the input to the computa-
tion would be too powerful [8]. Therefore, we want
to restrict it to having a quantum register that is
constant-size. Even if the errors of the verifier’s de-
vice can be suppressed, it still needs to be proven
that this is not detrimental for the verification of a
quantum computation. To wit, we want that a mali-
cious prover does not exploit these errors in order to
successfully trick the verifier into accepting incorrect
results.

For protocols in which the verifier is fully classical,
fault tolerance is not a concern since one can assume
that the provers are performing their quantum op-
erations on top of a quantum error correcting code.
Since provers are assumed to have universal quan-
tum computing power, we naturally have to assume
that they are capable of fault tolerant quantum com-
putation between themselves. We emphasise that
discussions about fault tolerance only make sense in
the setting in which the verifier possesses a quantum
device.

Thus, we are faced with the following problem:

Problem statement: Can a verifier with a
constant-size and imperfect quantum device verifi-
ably delegate a quantum computation to a single
prover?

We show that this is indeed possible. Further-
more, it is possible even if the verifier’s device is
an imperfect single-qubit measurement device. Our
approach is based on that of post hoc verification
[9–11], where a prover sends quantum systems to a
verifier that should be the ground state of a Hamil-
tonian. This ground state encodes the desired quan-
tum computation and can be used to “read off” the
outcome of that computation. If the verifier can in-
deed certify that this is the ground state, then the
computation is verified. In our protocol we encode
the qubits of this ground state into a logical ground
state where each qubit of the original state is en-
coded into a larger number of physical qubits via a
quantum error correction code. This logical state is

then the ground state of a logical Hamiltonian de-
scribed by the quantum computation. In the proto-
col, the physical qubits in this logical state are then
measured one at a time, and appropriate classical
corrections are made on the outcomes of these mea-
surements in post-processing if errors are detected.
An honest prover’s probability of successful compu-
tation will be boosted by this error correction, but
importantly we can still verify if the logical ground
state was indeed prepared by the prover.

Finally, we consider a simple example of this pro-
tocol in the honest prover scenario. That is, using
the repetition code and the Steane code [12], we can
simulate and characterise the protocol’s behaviour
under bit-flip errors and depolarizing noise.

Paper outline — In Section II we give some ba-
sic complexity theoretic notions to formalize what
we mean by verifying efficient quantum computa-
tions. We also outline post hoc quantum verifica-
tion, which is the basis for our approach. Next, in
Section III we give our protocol for fault tolerant
verification of quantum computation, and also prove
its correctness; we also describe our simulation of the
protocol, with various degrees of noise and outline
the obtained results. We then conclude, in Section
IV, with some discussions and open problems.

Let us first comment on approaches that have also
addressed the aforementioned problem of fault tol-
erant verification.

Related work — For protocols in which the veri-
fier has a small quantum device, the question of fault
tolerance has been addressed in [13–17]. In [13–16]
the authors proposed protocols in which a classical
client possessing either a single qubit preparation or
measurement device, susceptible to noise, could ver-
ifiably delegate quantum computations to a prover.
All these protocols are computationally blind, mean-
ing that the delegated computation is kept secret
from the prover. We will return to this issue in de-
tail in Section IV. Moreover, blindness is required for
achieving verifiability. However, this requirement of
blindness introduces new difficulties when consider-
ing fault tolerant computation. To circumvent these
difficulties, extra (potentially unrealistic) assump-
tions were made about the noise, which rule out the
possibility of the prover utilising the noise to deceive
the verifier. A discussion of the general difficulty in
realizing a verifiable, blind, fault tolerant protocol is
provided in [17].
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II. PRELIMINARIES

A. Complexity theory

Complexity theory classifies computational prob-
lems as sets of “yes/no” decision problems that are
solvable by a particular model of computation, under
certain constraints. Decision problems are modeled
as sets of binary strings, known as languages. The
input to the problem is a bit string and the output is
yes or no, depending on whether the string belongs
to the language or not. The primary class that is of
interest to us, is that of decision problems decidable
efficiently by a quantum computer, which is denoted
BQP. By “efficiently” we always mean in a number
of time steps that scales as some polynomial in the
size of the input to the problem. For completeness
we reproduce the definition of this class.

Definition 1. A language L ⊆ {0, 1}∗ belongs to
BQP iff there exist a polynomial p, and a uniform
quantum circuit family {Cn}n, such that for any x ∈
{0, 1}n the following is true:

• when x ∈ L, Cn(x) accepts with probability at
least a, and

• when x 6∈ L, Cn(x) accepts with probability at
most b,

where a− b ≥ 1/p(n) and |Cn| ≤ p(n).

If we replace quantum circuits with classical
boolean circuits, having access to random bits, we
obtain the class BPP, of problems that can be de-
cided efficiently on a classical computer. We will
frequently refer to machines that can solve either
BPP problems or BQP problems as BPP machines
or BQP machines, respectively.

Another class of interest is MA which consists of
decisions problems for which the “yes” instances can
be checked by a BPP machine, when given access to
a polynomial-sized bitstring known as a proof. More
formally, MA is defined as follows:

Definition 2. A language L ⊆ {0, 1}∗ belongs to
MA iff there exist a polynomial p, and a BPP ma-
chine V (known as verifier), such that for any x ∈
{0, 1}n the following is true:

• when x ∈ L, there exists a string w ∈
{0, 1}≤p(n) such that V(x,w) accepts with prob-
ability at least a, and

• when x 6∈ L, for all strings w ∈ {0, 1}≤p(n),
V(x,w) accepts with probability at most b,

where a− b ≥ 1/p(n).

Essentially, one can view problems in MA as those
for which a computationally powerful prover can
convince a BPP verifier that the answer is “yes”,
with high probability, by providing a proof string
that the verifier can check. There is a quantum
analogue of this known as QMA, in which the proof
string is a quantum state. Specifically:

Definition 3. A language L ⊆ {0, 1}∗ belongs to
QMA iff there exist a polynomial p, and a BQP
machine V (known as verifier), such that for any
x ∈ {0, 1}n the following is true:

• when x ∈ L, there exists a quantum state |ψ〉
having at most p(n)-many qubits, such that
V(x, |ψ〉) accepts with probability at least a,
and

• when x 6∈ L, for all quantum states |ψ〉 hav-
ing at most p(n)-many qubits, V(x, |ψ〉) ac-
cepts with probability at most b,

where a− b ≥ 1/p(n).

Clearly, BQP ⊆ QMA, since the BQP verifier can
simply ignore the proof state from the prover. It
is believed that the containment is strict, since, in
principle, the prover can produce proof states that
cannot be generated by the poly-time quantum veri-
fier. In fact, it was shown in [18] that the “quantum
overhead” of the verifier can be reduced to simply
performing single-qubit measurements, while main-
taining the ability to correctly decide all problems
in QMA. This is achieved by instructing the prover
to prepare special states that satisfy two properties:

• Any BQP computation can be performed
through suitable single-qubit measurements of
these states.

• Any such state of a given size can be tested
through single-qubit measurements.

If one adds a further condition, namely that these
special states can be prepared by a BQP machine
(essentially restricting the prover to BQP), then
one obtains a scheme for verifying an arbitrary
BQP computation using only single-qubit measure-
ments. This is precisely what Fitzsimons, Hajdušek
and Morimae have done in their post hoc verifica-
tion protocols [9–11]. One could ask whether this
merely allows the verifier to check the “yes” in-
stances of BQP problems, however BQP is closed un-
der complement[19] meaning that the “no” instances
can also be verified.

B. Post hoc verification

As mentioned, the core idea of post hoc verifica-
tion is to have a BQP prover (or provers) prepare a
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quantum proof state that the verifier can check using
single-qubit measurements. To explain how the pro-
tocol works, we first define a problem known as the
k-local Hamiltonian problem, which was introduced
by Kitaev in [20]. A k-local Hamiltonian, acting on
a system of n qubits, is a hermitian operator H that
can be expressed as H =

∑
iHi, where each Hi is

a hermitian operator which acts non-trivially on at
most k qubits. The k-local Hamiltonian problem,
for which we have taken the definition from [21], is
then the following:

Definition 4 (The k-local Hamiltonian (LH) prob-
lem).

• Input: H1, . . . ,Hm, a set of m Hermitian ma-
trices each acting on k qubits out of an n-qubit
system and satisfying ‖Hi‖ ≤ 1. Each matrix
entry is specified by poly(n)-many bits. Apart
from the Hi we are also given two real num-
bers, a and b (again, with polynomially many
bits of precision) such that a− b > 1/poly(n).

• Output: Is the smallest eigenvalue of H =
H1 + H2 + ... + Hm smaller than b or are all
its eigenvalues larger than a?

Kitaev showed that this problem is complete for
the class QMA. In other words, the problem is in
QMA and any problem in QMA can be reduced to
it, in (classical) polynomial time [20]. The idea is
essentially this: for some language L ∈ QMA, and
given a and b, one can construct a k-local Hamilto-
nian such that, whenever x ∈ L, its smallest eigen-
value is less than b and whenever x 6∈ L, all of its
eigenvalues are greater than a. The proof state, |ψ〉,
when x ∈ L, is the eigenstate of H corresponding
to its lowest eigenvalue (or a state that is close, in
trace distance, to this state), known as the ground
state. The verifier receives the state from the prover
and measures one of the local terms Hi (which is
an observable) on that state. One can prove that
this can be done with a polynomial-sized quantum
circuit. This yields an estimate for measuring H
itself. Therefore, when x ∈ L and the prover sends
|ψ〉, with high probability the verifier will obtain the
corresponding eigenvalue of |ψ〉 which will be smaller
than b.

If the prover is malicious then it would have to
convince the verifier to accept when x 6∈ L. However,
when this is the case, all the eigenvalues of H will
be larger than a and so, no matter what state the
prover sends, when the verifier measures the local
term Hi it will, with high probability, obtain a value
greater than a and will therefore reject. We will refer
to a−b as the promise gap of the local Hamiltonian.

The constant k in the definition of the k-local
Hamiltonian problem is not arbitrary. In the ini-
tial construction of Kitaev, k had to be larger than

5 for the problem to be QMA-complete. Subsequent
work showed that for k = 3 and k = 4 the problem
remains QMA-complete [22]. Then, in 2006, Kempe
et al. proved that even with k = 2 the problem is still
QMA-complete, whereas it is known that for k = 1
the problem can be decided in classical polynomial
time [23]. For our purposes, the value of k itself
is not important (as long as the problem is QMA-
complete). What is important, however, is the form
of the Hamiltonian. As is mentioned in [9, 11, 24] it
is possible to have a QMA-complete k-local Hamil-
tonian, in which the local terms consist exclusively
of tensor products of identities, Pauli X’s and Pauli
Z’s. We will refer to this as an XZ-Hamiltonian.

To be a bit more precise, let us introduce some
helpful notation. Consider an n-qubit operator S,
which we shall refer to as XZ-term, such that:

S =

n⊗
j=1

Pj (1)

with Pj ∈ {I,X,Z}, where X and Z are the Pauli
X and Z operators and I is the identity. Denote
wX(S) as the X-weight of S, representing the total
number of j’s for which Pj = X. Similarly denote
wZ(S) as the Z-weight for S. A k-local Hamiltonian
is an XZ-Hamiltonian if it can be expressed as:

H =
∑
i

aiSi (2)

where the ai’s are real numbers and the Si’s are XZ-
terms having wX(Si) + wZ(Si) ≤ k. Essentially,
as the name suggests, an XZ-Hamiltonian is one
in which each local term has at most k operators,
acting on the n qubits, which can be either Pauli X
or Z operators.

We can now explain the post hoc protocol of
[11]. The protocol relies on the observation that
BQP ⊆ QMA. This means that any problem in
BQP can be viewed as an instance of the k-local
Hamiltonian problem. Therefore, for any language
L ∈ BQP there exists an XZ-Hamiltonian, H, and
a polynomial-time quantum verifier which can mea-
sure a local term of H on the quantum witness sent
by the prover and decide the problem correctly, with
high probability. But since the local terms of anXZ-
Hamiltonian have at most k operators that are either
X or Z, the verifier will essentially have to measure
at most a constant number of k qubits. Each qubit
is measured in the standard basis (|0〉, |1〉) or the
Hadamard basis (|+〉, |−〉).

We now restrict attention to L ∈ BQP. As
mentioned, when x ∈ L, the proof state that the
prover should send to the verifier should be close
to the ground state of the XZ-Hamiltonian. When
L ∈ BQP, the Hamiltonian can be chosen so that
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the ground state is close to a particular type of state
known as a Feynman-Kitaev clock state (also known
as history state), which can be prepared by a BQP
prover [20]. To describe this state, consider a quan-
tum circuit C = UTUT−1...U1, with classical input
|x〉, where T = poly(|x|), for testing whether x ∈ L.
Denoting U0 = I, the Feynman-Kitaev state associ-
ated to C and |x〉 is the following:

|ψ〉 =
1√
T + 1

T∑
t=0

UtUt−1...U0|x〉
∣∣1t0T−t〉 (3)

There exists anXZ-Hamiltonian, H, such that when
x ∈ L, we have that 〈ψ|H|ψ〉 ≤ b, and when x 6∈ L
we have that for any |φ〉, 〈φ|H|φ〉 ≥ a, for some a, b
such that a − b > 1/poly(|x|). The exact form of
H is not important for understanding the protocol.
What is important is that for any L ∈ BQP, the
verifier can efficiently compute the description of H.

The post hoc protocol then works as follows:

1. The verifier computes the terms ai and Si of
the XZ-Hamiltonian, H =

∑
i aiSi, corre-

sponding to L and input x. They then send
the description of H and x to the prover.

2. The prover responds by preparing the ground
state of H (the Feynman-Kitaev state, de-
scribed above), denoted |ψ〉, and sends it to the
verifier. This constitutes the quantum proof
state for the statement that x ∈ L (if x 6∈ L,
the same procedure is performed for the com-
plement of L, denoted Lc, which is also in
BQP).

3. The verifier chooses one of the XZ-terms Si,
according to the normalized probability distri-
bution {|ai|}i, and measures it on |ψ〉. They
accept on outcome −sgn(ai) of the measure-
ment.

The protocol is correct, in that when the prover aims
to convince the verifier that x ∈ L (or x ∈ Lc,
respectively) and sends the correct state (for the
Hamiltonian corresponding to L or to Lc, respec-
tively), the verifier will accept with probability:

pacc ≥
1

2

(
1− b∑

i |ai|

)
(4)

Additionally, the protocol is sound in that when the
prover aims to convince the verifier that x 6∈ L (or
x 6∈ Lc, respectively), irrespective of the state that
the prover sends, the verifier will accept with prob-
ability:

pacc ≤
1

2

(
1− a∑

i |ai|

)
(5)

Since
∑
i |ai| is a constant and a − b > 1/poly(|x|),

the gap between the two probabilities is inverse poly-
nomial in the size of the input.

III. FAULT TOLERANT VERIFICATION
OF QUANTUM COMPUTATION

The protocol described above works assuming an
ideal setting in which the quantum devices of both
the prover and the verifier are perfect. Of course,
this is an unrealistic assumption since any imple-
mentation of the protocol will be subject to noise
stemming from an imperfect isolation of the quan-
tum systems from the environment, and the use of
faulty devices. It is straightforward to show that
a constant rate of noise on these devices will lead
to the failure of the protocol for sufficiently large
computations. This is because the gap between ac-
ceptance and rejection, defined by a − b, is inverse
polynomial in the size of the input. As a result of
noisy devices, the acceptance threshold is shifted to
a− c, and the rejection threshold is shifted to b+ c,
where c is some positive constant that depends on
the noise rate of the devices. We can see that as long
as c < (a− b)/2, the verifier can still distinguish re-
liably between acceptance and rejection. However,
it is clear that for a sufficiently long input, we will
have that c ≥ (a− b)/2. At this point, the protocol
no longer satisfies the correctness nor the soundness
criteria. In fact, this is common to all other verifi-
cation protocols in the single-prover setting [3]. To
address this issue we now give a fault tolerant version
of the post hoc protocol that works in the presence
of quantum devices subject to local noise having a
constant error-rate.

A. The fault tolerant protocol

Our construction is simple: we ask the prover to
encode the history state in a CSS (Calderbank-Shor-
Steane) error-correcting code [25] and send it to the
verifier. The verifier will then perform a transversal
measurement of the X and Z operators. Transver-
sality results in the logical operators being expressed
as tensor products of physical X and Z operators,
i.e.:

X̃ =

m⊗
i=1

Xi Z̃ =

m⊗
i=1

Zi (6)

where X̃ and Z̃ are the logical (or encoded) X and Z
operators. In effect, the original Hamiltonian is re-
placed with an encoded Hamiltonian by substituting
each XZ-term with its corresponding logical form.
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The idea of encoding the history state in a CSS code
is briefly mentioned in the independent work of [26],
and CSS codes are also considered in [16], though
not for post hoc verification.

CSS codes are transversal and this ensures that
the verifier needs to perform only single-qubit mea-
surements. We also require an additional property,
that is possessed by CSS codes, namely that the out-
comes for the transversal measurements (of the X
and Z operators) are encoded in a classical error-
correcting code. This is because the verifier will not
perform any quantum correction on the state sent
by the prover. Instead, this state will be measured
and the measurement outcomes are classically post-
processed.

To clarify, consider the following simple example.
Assume that the CSS code is a repetition code in

which ˜|0〉 = |0〉⊗m and ˜|1〉 = |1〉⊗m, for some odd
m > 1. This code can correct bm2 c bit-flip errors.

If the verifier wishes to measure the Z̃ observable
on an encoded state, they will instead measure the
single-qubit Zi observables, with i ranging from 1 to
m. The m-bit outcome corresponds to the outcome
of Z̃ encoded in a classical repetition code. Thus,
the verifier will simply take the majority bit as the
outcome of Z̃.

For our protocol, the verifier will measure a lo-
cal term of the encoded Hamiltonian, in a transver-
sal way, and perform the classical post-processing of
the results in order to extract the corrected mea-
surement outcome. With this corrected outcome,
the acceptance condition is the same as in the “un-
encoded” case (i.e. if the outcome for the measure-

ment of term S̃i is −sgn(ai)).
To guarantee that this construction works, we

show the following:

(1) The encoded Hamiltonian preserves the a − b
promise gap of the original Hamiltonian. This
is equivalent to showing that the encoded
ground state of the original Hamiltonian is a
ground state of the encoded Hamiltonian hav-
ing the same energy.

(2) A polylogarithmic number of concatenations
of the CSS code is sufficient to maintain an
inverse polynomial acceptance-rejection gap in
the presence of noise.

Having these properties guarantees that the fault
tolerant post hoc protocol is both correct and sound,
even in the presence of noisy devices. Before stat-
ing this as a theorem we first need to describe the
noise model we are considering. The verifier makes
X and Z measurements, but with probability εm the
measurement outcome is erroneous. The probability
of error is assumed to be independent between uses

of the measurement devices, i.e. there are no cor-
related errors. To be a bit more precise, for ideal
measurement operator Mx for outcome x, we ap-
ply a unital map E to Mx, where with probability
1 − εm, Mx is unchanged, and with probability εm,
Mx is changed to something else. Alternatively, if
we measure an n-qubit state ρ one qubit at a time,
the noisy measurement is equivalent to transform-
ing ρ to (E†)⊗n(ρ), and then making an ideal mea-
surement on each qubit individually, where E† is the
channel that is dual to E . This error model of the
measurement device is exactly how errors are tra-
ditionally modelled in quantum computation, where
they are identically and independently distributed
on the qubits. We can now state the result:

Theorem 1. The post hoc protocol of Morimae and
Fitzsimons can be made fault tolerant by encoding
the XZ-Hamiltonian of the protocol in a CSS code
and having the verifier perform the X and Z mea-
surements in a transversal fashion.

Proof. Let X̃ and Z̃ be the logicalX and Z operators
in the chosen CSS code. We have that {X̃, Z̃} =
0 and we will assume that these operators act on
m > 0 qubits. Since these are operators for an error
correcting code, there exists an encoding unitary,
denoted E, such that:

E(X ⊗ I⊗m−1)E† = X̃ (7)

E(Z ⊗ I⊗m−1)E† = Z̃ (8)

Now let H =
∑
i aiSi be an XZ-Hamiltonian acting

on n > 0 qubits, and let H ′ = H⊗ In(m−1). Clearly,
H and H ′ have the same eigenvalues. But note that
using Equations 7 and 8 we have that:

E⊗nSi ⊗ In(m−1)E⊗n = S̃i (9)

where S̃i is obtained by replacing X, Z and I by X̃,
Z̃ and I⊗m, respectively. This then implies that:

E⊗nH ′E⊗n = H̃ (10)

where H̃ =
∑
i aiS̃i is the encodedXZ-Hamiltonian.

Thus, since H̃ and H ′ are unitarily related, they
will also have the same eigenvalues. Moreover, if∣∣∣ψ̃〉 = E⊗n|ψ〉|anc〉 is the encoded version of some

n-qubit state |ψ〉, for a suitably chosen ancilla state
|anc〉, it is clear that for any such |ψ〉 we have that:

〈ψ|H|ψ〉 =
〈
ψ̃
∣∣∣H̃∣∣∣ψ̃〉 (11)

Therefore, if |ψ〉 is a ground state of H,
∣∣∣ψ̃〉 will be

a ground state of H̃.



7

This proves property (1), since it shows that the
encoded Hamiltonian will have the same promise gap
as the original Hamiltonian.

We now move on to property (2). As mentioned,
when measuring an n-qubit state ρ one qubit at a
time, the noisy measurement is equivalent to trans-
forming ρ to (E†)⊗n(ρ), followed by an ideal mea-
surement on each qubit. Thus, if each qubit in
the Hamiltonian is encoded in a block of qubits,
then due to the error-correcting code, the probabil-
ity of obtaining an incorrect outcome (after classi-
cal post-processing) has been suppressed from εm
on the original qubit to at most αε2m on the whole
block, for some constant α (determined by the code).
Here we have implicitly used the fact that the mea-
surement outcome for the logical qubit in one block
is obtained through classical error correction (post-
processing) of the outcomes of measuring the block
qubits. Concatenating k times then results in prob-

ability α(2k−1)ε2
k

m of there being an error upon mea-
suring an encoded qubit.

The verifier will make two logical qubit measure-
ments, so to achieve a final error rate η, we must
have the error for each logical qubit after k concate-

nations be α(2k−1)ε2
k

m ≤
η
2 . Provided that εm is be-

low the threshold probability pth = α−1 of the code,
then if each block consists of b qubits with k levels
of concatenation, for each qubit we have

bk =

(
log(2/αη)

log(1/αεm)

)logb

, (12)

which is O(polylog( 2
η )). So if the total number of

qubits in the ground state of the original Hamilto-
nian is n, after k levels of encoding in blocks of size
b, the total number of qubits in the encoded ground
state is O(n polylog( 2

η )).

If the probability of acceptance (rejecting) in the
original protocol (without noisy measurements) is
pacc (prej) and we have that pacc − prej ≤ 1

poly(n) .

Now with noisy measurements, we have that the new
probability of acceptance (with error correction) is
p̃acc ≥ pacc − η and p̃rej ≤ prej + η. Therefore,
to maintain a polynomial gap between acceptance
and rejection we must have that η is sufficiently
smaller than an inverse polynomial, which only in-
curs a polylogarithmic overhead. Note that only a
polynomial overhead is required if we wish for η to
be exponentially small.

The idea of encoding the proof state in an error-
correcting code while maintaining a single-qubit
measurement device for the verifier has also been
considered, in the context of general QMA problems,
in [27]. In that case, however, the proof state is a
graph state that is used by the verifier to perform a

fault tolerant measurement-based quantum compu-
tation. The verifier is also required to test that this
state corresponds to the correct graph state and this
is achieved through a stabilizer test.

In our case, by restricting to BQP computations,
we simply require the verifier to measure the his-
tory state associated to the quantum computation.
By showing that the encoded Hamiltonian has the
same promise gap as the original Hamiltonian it is
therefore sufficient to request that the prover encode
the history state in a CSS code.

B. Example

Let us consider a toy example of our protocol in
the case of an honest prover, for which we will give
numerical results when using the repetition code and
the Steane code, respectively. To start with, we
should consider a quantum computation for which
we want to construct a history state. Given that
the Steane code will encode one logical qubit as 7
physical qubits, this computation needs to be small
enough so that we are able to perform multiple runs
of the protocol, in a reasonable amount of time. For
this reason, we will choose the following one-qubit
computation:

|x〉 X D(π/8)

FIG. 1. Example computation.

where:

D(φ) = cos(φ)Z + sin(φ)X (13)

Note that D(φ) is universal for single-qubit quantum
computations[28]. The computation has two time
steps, hence T = 2. Consider the case x = 0. The
input state starts out as |0〉, it is then flipped to |1〉
and upon application of the D(π/8) gate it becomes
sin(π/8)|0〉 − cos(π/8)|1〉. If we designate output
|1〉 as acceptance, then this circuit will accept x = 0
with probability cos(π/8)2. The history state, for
x = 0, will be:

|ψx=0〉 =
1√
3

(|0〉|00〉+ |1〉|10〉+

(sin(π/8)|0〉 − cos(π/8)|1〉)|11〉)

where we have separated the computation register
from the clock register. For the x = 1 case, the
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history state will be:

|ψx=1〉 =
1√
3

(|1〉|00〉+ |0〉|10〉+

(cos(π/8)|0〉+ sin(π/8)|1〉)|11〉)

We now need to consider anXZ-Hamiltonian such
that the ground state is close to |ψx=0〉. We will
consider a 3-local Hamiltonian. Following the works
of [22, 24], the Hamiltonian will have the following
form:

H = Hin +Hclock +Hprop +Hout

where:

• Hin penalizes terms in which the input is not
of the correct form, at the start of the compu-
tation (T = 0).

• Hclock penalizes terms in which the clock reg-
ister is not of the correct form, throughout the
computation.

• Hprop penalizes terms that do not correspond
to the chosen computation.

• Hout penalizes terms for which the output of
the computation register is not |1〉 (i.e. non-
accepting computations).

In our case, we have:

Hin = (I − |x〉〈x|)⊗ |0〉〈0| ⊗ I

Hclock = I ⊗ |01〉〈01|

Hprop = Hprop1 +Hprop2

where:

Hprop1 =
1

2
(I⊗|0〉〈0|⊗ I−X⊗X⊗ I+ I⊗|10〉〈10|)

Hprop2 =
1

2
(I⊗I⊗|1〉〈1|−D(π/8)⊗I⊗X+I⊗|10〉〈10|)

and finally:

Hout = |0〉〈0| ⊗ I ⊗ |1〉〈1|

It should be noted that |ψx〉 is the ground state of
Hin+Hclock+Hprop, but not the ground state of H.
It is the Hout term that singles out |ψx=0〉 and makes
the ground state of H be close, in trace distance, to
the history state for the x = 0 case. This is because

in that case, the output of the computation will be
|1〉, with high probability.

We now write H in XZ form:

H =
7

4
III +

1

4
(1− (−1)x)ZII − 1

4
(−1)xZZI

− 1

4
IZZ − 1

2
XXI − 1

2
XXZ − 1

2
sin(π/8)XIX

+
1

2
sin(π/8)XZX − 1

2
cos(π/8)ZIX

+
1

2
cos(π/8)ZZX − 1

4
ZIZ (14)

The protocol proceeds as follows. The verifier will
inform the prover that they wish to perform the com-
putation from Figure 1, for input x = 0. The prover
reports that the computation accepts (with high
probability) and prepares the history state |ψx=0〉,
encoded in a CSS code. This state is sent qubit by
qubit to the verifier. The verifier, will choose one
of the terms from Equation 14, with its correspond-
ing probability, and perform the transversal mea-
surement of the state. For instance, the term XZX
will be chosen with probability 1

2K sin(π/8), where
K =

∑
i |ai| ≈ 4.8. The verifier measures the X

and Z operators, performs classical post-processing
on their results and combines them so as to recover
the outcome of measuring XZX. She accepts on
outcome −1 for this measurement, since 1

2sin(π/8)
is positive.

For the x = 1 case, the situation is similar. In
this case, the prover will inform the verifier that the
computation rejects (with high probability) and so
the verifier will change the Hout term of the Hamil-
tonian to:

Hout = |1〉〈1| ⊗ I ⊗ |1〉〈1| (15)

and otherwise proceed as in the x = 1 case.

C. Numerical results

To simulate the above protocol, we considered
two error-correcting codes: the repetition code and
the Steane code. In both instances, we wanted to
compare how the verifier’s probability of acceptance
changes as we increase the amount of noise applied
to the history state. Before showing the results, we
should first ask: what is the probability of accep-
tance, for x = 0, when there is no noise in the sys-
tem? One can show that:

pacc =
1

2

(
1− 〈ψx=0|H|ψx=0〉∑

i |ai|

)
(16)

and in our case 〈ψx=0|H|ψx=0〉 ≈ 0.0488. We there-
fore find that pacc ≈ 0.4949.
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The first case we considered is the repetition code,
with 3 physical qubits per logical state. This code
can only correct for X errors. We therefore consid-
ered the noise channel:

F(ρ) = (1− p)ρ+ pXρX

acting independently on each individual qubit. The
results are shown in Figure 2.
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FIG. 2. Comparison between encoded and unencoded
states for the 3-qubit repetition code.

As we can see, the point where the encoded state
yields the same acceptance probability as the unen-
coded state is p = 0.5. The acceptance probabilities
for the unencoded state were determined by apply-
ing the channel F to each qubit in |ψx=0〉, resulting
in a state ρ, and then computing:

pacc =
1

2
− Tr(Hρ)

2
∑
i |ai|

(17)

The same is true for the encoded state, except that
logical Z operators are replaced with:

ZM = M0 −M1

where:

M0 = |000〉〈000|+|001〉〈001|+|010〉〈010|+|100〉〈100|

M1 = |111〉〈111|+|110〉〈110|+|101〉〈101|+|011〉〈011|

Essentially, the +1 eigenspace of ZM is spanned
by states containing a majority of |0〉 and the −1
eigenspace is spanned by states containing a major-
ity of |1〉. Measuring ZM is the same as performing a
transversal Z measurement and taking the majority
outcome.
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FIG. 3. Comparison between encoded and unencoded
states for the 5-qubit repetition code.

If we increase the size of the encoded state to 5
qubits, we obtain the results from Figure 3. As ex-
pected, the noise threshold increases and is around
p ≈ 0.72.

We now consider the Steane code, which can de-
tect and correct for arbitrary errors on a single qubit,
while encoding one logical state in 7 physical qubits.
This means that the encoded state will comprise of
21 qubits. For this case, we will assume that each
qubit is subject to depolarizing noise, characterised
by the channel:

D(ρ) = (1− 3p/4)ρ+ p/4(XρX + Y ρY + ZρZ)

Probability of depolarization error
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FIG. 4. Comparison between encoded and unencoded
states for Steane’s code.

Due to the large number of entries for the density
matrix of the encoded state, we were unable to di-
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rectly apply the channel D. Instead, for each qubit

in
∣∣∣ψ̃x=0

〉
, we chose to either leave it unchanged,

with probability (1− 3p/4) or, with probability p/4,
apply either X, Y or Z. This process is repeated
multiple times, and in each case the probability of
acceptance is computed using Equation 17. The
overall probability of acceptance is then estimated
by taking the average over all of these runs. The
results are shown in Figure 4.
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FIG. 5. Threshold for the Steane code.

We considered 12 data points, spread equally in
the interval [0, 1], and for each we performed 1000
repetitions of applying noise in order to estimate
pacc. The error bars represent confidence intervals
for the computed values, assuming a confidence of
95%. Additionally, the orange curve represents the
best fit interpolation of the given samples, when as-
suming a Gaussian model. As we can see, the thresh-
old point appears to be between 0.1 and 0.2. By con-
sidering 12 samples in the range between 0.05 and
0.15, and 4000 repetitions per sample, in Figure 5,
we find that the threshold point is between 0.12 and
0.13.

The simulations were performed in MATLAB, on
the Eddie Mark 3 cluster of The University of Edin-
burgh. The code for our simulations is available on
Github [29].

It should be emphasized that these numerical re-
sults are a demonstration of the proof-of-concept and
not a rigorous numerical analysis of the typical im-
provement one can obtain with our method. Indeed,
we only considered a specific single-qubit quantum
circuit, and a more in-depth analysis would consider
a general family of multi-qubit quantum circuits.

IV. CONCLUSIONS

We have given a simple construction for a fault
tolerant quantum verification protocol. In a nut-
shell, the construction involves taking the original
post hoc verification protocol of Morimae and Fitzsi-
mons and encoding it in a CSS error-correcting code.
Since the original protocol was not blind, neither is
its fault tolerant counterpart. A protocol being blind
means that the delegated computation is kept secret
from the prover, and they only learn at most the
size the computation. A major open problem that
remains to be addressed is whether one can achieve
fault tolerant verification of blind quantum compu-
tation without resorting to additional assumptions,
as in [13–15]. Specifically, the protocols from [13–
15] assumed (either implicitly or explicitly) that the
noise on the verifier’s device is independent of the se-
cret parameters that are used to achieve blindness.
Additionally, the noise, on that device, should be
uncorrelated with the prover’s private system.

Following the discussion in [17], the authors stress
that, so far, there is no protocol that simultaneously
achieves all of the following properties:

(1) The verifier has a preparation or measurement
device whose size is at most polylogarithmic
in the size of the delegated quantum computa-
tion.

(2) The noise rate for each quantum operation is
below some constant threshold. Additionally,
the noise on the verifier’s device can depend on
whatever operations the verifier performs and
can be correlated with the prover’s quantum
system.

(3) The protocol is unconditionally blind. In other
words, throughout the interaction with the
verifier, the prover only learns the size of the
delegated quantum computation.

As mentioned, previous approaches achieved con-
ditions 1 and 3 but not 2. The protocol we proposed
achieves conditions 1 (with a constant size device)
and 2 but not 3.

Recently, a protocol has been proposed in which a
classical client can delegate and verify the computa-
tions performed by a quantum server [30]. This pro-
tocol, however, relies on certain computational as-
sumptions about whether a quantum computer can
solve a particular problem. Therefore, the verifier
would not need to worry about introducing errors
into the prover’s quantum computation, as was the
concern in our work, but this comes at the cost of
making these computational assumptions. Interest-
ingly, the protocol in [30] also uses post hoc verifica-
tion as a primitive, except now the prover measures
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the qubits in the history state and relays the out-
comes to the verifier. The preparation of the history
state is slightly more complex than in our case since
it uses cryptographic one-way functions which intro-
duce some overhead.

Returning to our results, the simulations are en-
couraging. Given that the obtained thresholds are
higher than the error rates observed in current ex-
perimental implementations [31–33], a demonstra-
tion of the protocol in the near future is likely. The
major obstacle to such a demonstration would be the

production of these highly entangled history states.
The use of CSS codes, however, means that one can
encode these states in codes having even higher noise
thresholds than the Steane code, such as surface
codes [34].
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