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Previous studies have established a role for premotor cortex in the processing of
auditory emotional vocalizations. Inhibitory continuous theta burst transcranial magnetic
stimulation (cTBS) applied to right premotor cortex selectively increases the reaction
time to a same-different task, implying a causal role for right ventral premotor cortex
(PMv) in the processing of emotional sounds. However, little is known about the
functional networks to which PMv contribute across the cortical hemispheres. In light
of these data, the present study aimed to investigate how and where in the brain
cTBS affects activity during the processing of auditory emotional vocalizations. Using
functional neuroimaging, we report that inhibitory cTBS applied to the right premotor
cortex (compared to vertex control site) results in three distinct response profiles:
following stimulation of PMv, widespread frontoparietal cortices, including a site close
to the target site, and parahippocampal gyrus displayed an increase in activity, whereas
the reverse response profile was apparent in a set of midline structures and right IFG.
A third response profile was seen in left supramarginal gyrus in which activity was greater
post-stimulation at both stimulation sites. Finally, whilst previous studies have shown
a condition specific behavioral effect following cTBS to premotor cortex, we did not
find a condition specific neural change in BOLD response. These data demonstrate a
complex relationship between cTBS and activity in widespread neural networks and are
discussed in relation to both emotional processing and the neural basis of cTBS.

Keywords: cTBS, transcranial magnetic stimulation, emotional vocalization, emotions, premotor cortex,
functional magnetic resonance imaging, fMRI

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2018 | Volume 12 | Article 150

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/200996791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2018.00150
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2018.00150
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2018.00150&domain=pdf&date_stamp=2018-05-15
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00150/full
http://loop.frontiersin.org/people/76374/overview
http://loop.frontiersin.org/people/59248/overview
http://loop.frontiersin.org/people/33151/overview
http://loop.frontiersin.org/people/38521/overview
http://loop.frontiersin.org/people/491/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00150 May 12, 2018 Time: 15:32 # 2

Agnew et al. PMc Stimulation and Emotional Vocalization

HIGHLIGHTS

• Premotor cortex plays a causal role in auditory emotional
vocalization processing.
• We use fMRI to investigate neural activity before and after

cTBS to premotor cortex.
• cTBS elicits changes in BOLD activity in widespread regions

including the target site.
• Inhibitory cTBS results in both increases and decreases in

BOLD responses.
• No condition specific effect of cTBS on neural activity, despite

a specific behavioral effect.

INTRODUCTION

The last two decades have provided increasing evidence that
the adult brain is highly susceptible to short-term changes,
both in structure and function. Widespread changes in brain
organization can occur as a result of both damage or learning and
development, over a range of timescales. Studies in humans and
animals have demonstrated that neuroplasticity is not restricted
to any given developmental phase but remains an ongoing
process in the form of learning. In humans, the advent of
transcranial magnetic stimulation (TMS) for non-invasive brain
stimulation had rendered the human brain accessible for in vivo
investigation of the neural changes associated with behavioral
changes. Here we assess the effect of theta burst TMS on
neural activity in a previously established emotional vocalization
perception paradigm.

Understanding the emotional states of others is a pivotal
aspect of our social interactions. Vocal cues are one of several
sources of information that contribute to this ability, with
changes in a variety of acoustic cues (e.g., pitch, intensity)
providing a rich source of information about the emotional states
of others (Sauter, 2010; Sauter et al., 2010). In recent years, a
number of brain imaging studies have begun to delineate neural
regions that contribute to the perception and appraisal of affective
vocalizations, implicating a widespread brain network in this
process including the posterior superior temporal gyrus (pSTG),
posterior middle temporal gyrus (pMTG), the inferior frontal
gyrus (IFG), ventral premotor cortex (PMv), and amygdala
(Wildgruber et al., 2005; Warren et al., 2006; Meyer et al., 2007;
Paulmann et al., 2008; Wiethoff et al., 2009; Leitman et al.,
2010; Ethofer et al., 2012). In addition, lesion and non-invasive
brain stimulation studies have demonstrated that disrupting
neural activity in specific aspects of this network results in
impairments in the appraisal of vocal emotions (Hornak et al.,
2003; Rymarczyk and Grabowska, 2007; Hoekert et al., 2008;
Banissy et al., 2010). Studies have further shown that whilst TMS
can elicit plasticity, there are also a range of factors that contribute
to high variability in the neural and behavioral responses to
stimulation (Ridding and Ziemann, 2010; Hamada et al., 2013).
Thus understanding the neural basis of stimulation induced
behavioral changes is of great relevance.

We recently showed that continuous theta burst stimulation
(cTBS) targeted at right PMv (rPMv) disrupts the ability to

discriminate between emotional vocalizations, but not speaker
identity (Banissy et al., 2010). Continuous TBS is an offline form
of transcranial magnetic stimulation, in which short bursts of low
intensity, high frequency magnetic pulses leads to suppression
of cortical activity for up to 1 h (Di Lazzaro et al., 2005; Huang
et al., 2005). The method has been used in several domains
to demonstrate the involvement of specific cortical regions in
cognitive and perceptual tasks (Vallesi et al., 2007; Kalla et al.,
2009; Rounis et al., 2010; Verbruggen et al., 2010) and is
becoming a prominent tool in non-invasive brain stimulation
studies of cognition. While of clear utility in demonstrating the
degree of involvement of a brain region in a given task, the global
effects that result from cTBS are unclear, and little is known about
how stimulation to a region may influence processing across a
functional network (Walsh and Pascual-Leone, 2003).

Effects of rTMS
Recent work has shown that repetitive TMS (rTMS) can elicit
changes in a number of different ways: Zanto et al. (2013)
report that rTMS elicits changes in task-related brain regions
without affecting behavior, on the other hand, studies have
also showed that stimulation of intraparietal cortex modulates
activity in visual cortex in a context specific manner (Ruff et al.,
2008). In addition to this, others have reported changes to
activity in the contralateral homolog of stimulation site, with
interhemispheric connectivity being correlated with increased
performance (Andoh and Zatorre, 2012). Ward et al. (2010)
showed that rTMS to dorsal premotor cortex (PMd) resulted
in reduced activity at the target site, but increased task
related activity coupling with other regions. Other studies have
confirmed that repetitive TMS results in local and distributed
changes to neural processing (Binney and Ralph, 2015; Hallam
et al., 2016).

Effects of cTBS
Continuous TBS has also been shown to alter activity in
functionally connected but distinct sites from the site of
stimulation (Ott et al., 2011; Jung and Lambon Ralph, 2016). For
example, in relation to speech, cTBS has been used to suppress
activity in a focal region, which resulted in increased activity in
the right homolog region (Hartwigsen et al., 2013). These studies
have largely provided evidence that cTBS results in reduction
of activity at the site of stimulation, and an upregulation of
activity in other distinct regions, comprising homologous sites
and neighboring regions. These data have been interpreted as a
reflection of compensatory effects of a disrupted neural network
in order to attempt to maintain function.

Here, we sought to utilize and assess the network effects of
cTBS based on these previous findings, by combining it with
fMRI in order to investigate how the application of cTBS to rPMv
influences BOLD responses to emotional sounds (i) across the
whole brain, (ii) in regions activated by emotional vocalization
perception, (iii) at the target site and finally (iv) at the left
hemisphere homolog of the target site. Specifically, we compared
BOLD responses during passive listening of different emotional
vocalizations (as per Warren et al., 2006) before and after cTBS
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targeted at the rPMv or the vertex (active control stimulation
site). Given our previous findings highlighting the role of rPMv
as part of a network of regions involved in the passive perception
of emotional vocalizations (Warren et al., 2006) and the cTBS
findings of us and others (Banissy et al., 2010) (see above),
we predicted that we would see changes to activity within the
emotional sound processing network. Based on previous findings
(Jung and Lambon Ralph, 2016) and others, we expected to see
a reduction in activity at the site of stimulation and sought to
explore the nature of more disparate neural effects.

MATERIALS AND METHODS

The experimental set up required the following conditions:
Passive perception of sounds of (1) amusement, (2) triumph, (3)
fear, (4) disgust, (5) spectrally rotated versions of a mixture of all
four emotional sounds and (6) a silent rest condition (see below
for details). Subjects were required to attend two sessions on
different days. On each visit subjects underwent two 20-min fMRI
experiments which involved the six experimental conditions
as listed above. Following the first 20-min fMRI experiment,
subjects then underwent cTBS to either the rPMv or to the vertex
(the order of sessions were counterbalanced across participants),
before going back into the scanner to repeat the fMRI experiment.
On the second visit, subjects underwent the same procedure but
had cTBS applied to the other stimulation site. At least a week was
left between the active and control site stimulation sessions.

Auditory Stimuli
Four different types of emotional vocalizations were used, two
positive (amusement, triumph) and two negatively valenced (fear,
disgust) (Ekman, 1992, 2003). The stimuli were developed and
employed in a number of previous studies (Warren et al., 2006;
Banissy et al., 2010; Sauter, 2010). The baseline stimuli were
spectrally rotated versions (Blesser, 1972; Scott et al., 2000) of the
experimental stimuli. This manipulation involves equalizing each
of the stimuli with a high pass filter. This manipulation affords
the rotated signal approximately the same long-term spectrum as
the original. The equalized signal is then amplitude-modulated
by sinu-manipulation to produce unintelligible sounds that lack
the human vocal quality of the original stimuli but maintain
a comparable level of acoustic complexity (Blesser, 1972). All
auditory stimuli were scaled to the same peak amplitude. Each
rotated trial was composed of four sounds played successively.

Subjects
Sixteen healthy right-handed subjects (range 23–49 years)
participated in the study. All gave informed consent according
to the guidelines approved by UCL Ethics Committee, who
provided local ethics approval for this study.

Functional MRI
Functional imaging data were acquired on a 1.5 Tesla Siemens
Avanto system (Siemens AG, Erlangen, Germany) using a 32-
channel birdcage head coil. This type of head coil has been
shown to increase signal-to-noise for medical images acquired

in the 1.5 Tesla field without increasing the signal drop out
associated with higher field strengths (Fellner et al., 2009;
Parikh et al., 2011). T2

∗-weighted echo-planer images (EPI)
were acquired (3 mm × 3 mm × 3 mm, TR/TA/TE/flip
10,000 ms/3 s/50 ms/90◦) using BOLD contrast. On each day,
subjects were scanned twice, pre- and post- stimulation. On
each day of scanning, 250 volumes were acquired in two runs –
125 volumes in the pre-stimulation run and 125 in the post-
stimulation run. Subjects were required to come in on two
separate days for two separate scanning sessions, during which
time they received stimulation to either the vertex or right PMv.
In all cases, the first two functional volumes were discarded in
order to remove the effect of T1 equilibration. High-resolution T1
anatomical volume images (160 sagittal slices, voxel size 1 mm3)
were also acquired for each subject.

During the main experimental run, subjects lay supine in the
scanner in the dark and were asked to close their eyes and listen
to the sounds played to them. There was no task involved so as
to avoid any form of motor priming that a response, such as a
button press, or a cognitive task might entail. Functional data
were acquired using a sparse sampling protocol in which four
stimuli were presented during the quiet 7 s intervals (±500 ms
jitter) between image acquisitions. This approach allowed the
presentation of auditory stimuli in the absence of interference
from scanner noise (Hall et al., 1999). Stimuli were presented
using matlab (Mathworks, version 7.10) using the Psychophysics
Toolbox extension (Brainard, 1997).

Sounds were presented to the subjects in the scanner via
a Denon amplifier (Denon UK, Belfast, United Kingdom) and
air conduction headphones (Etymotic Inc., Elk Grove Village,
IL, United States) worn by the subjects. During each run,
subjects heard stimuli from one of each of the five experimental
conditions (four per trial). There were 20 examples of each
condition within each session (pre- and post-TBS) played in a
randomized order with ±500 ms onset jitter. The same items
were not heard more than once in each run. For the high-level
baseline condition, four spectrally rotated versions were played.
These were a combination of spectrally rotated versions of all four
classes of emotional vocalization. For the silent rest condition
subjects heard nothing during the silent period between image
acquisitions. The presentation of stimuli was pseudo-randomized
to allow a relatively even distribution of the six conditions in the
absence of order effects.

Between the two 20 min fMRI sessions, subjects were brought
out of the scanner in order to administer cTBS. Following
application of cTBS subjects were instructed not to speak unless
they had to, and were each put back into the scanner immediately.
The beginning of the second scanning session was timed such that
the functional data acquisition began 5 min after the end of the
cTBS.

TMS Parameters and Co-registration
Transcranial magnetic stimulation was delivered via a figure
of eight coil with a 70 mm diameter using a Magstim Super
Rapid Stimulator (Magstim, United Kingdom) at 40% machine
output. This intensity is in accordance with other cTBS studies
(Mochizuki et al., 2005; Koch et al., 2008; Nyffeler et al., 2008,
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2009; Mensen et al., 2014) and studies that have employed fixed
intensities above 80% motor threshold when combining cTBS
with fMRI (Pitcher et al., 2014, 2017).

An offline cTBS paradigm was used, which consisted of a
burst of 3 pulses at 50 Hz repeated at intervals of 200 ms for
20 s, resulting in a total of 300 pulses. Based upon previous
findings (Di Lazzaro et al., 2005; Huang et al., 2005) the time
window of reduced excitability following theta burst stimulation
was expected to last between 20–30 min and a 5 min rest period
after stimulation offset was implemented for each site stimulated.

Locations for cTBS were identified using Brainsight TMS-
magnetic resonance co-registration system (Rogue Research,
Montreal, QC, Canada). FSL software (FMRIB, Oxford) was
used to transform coordinates for each site to each subject’s
individual MRI scan. The coordinates for rPMv [54, −2, 44]
were the averages of neurologically normal participants in an
fMRI study of non-verbal auditory emotion processing (Warren
et al., 2006) found to be modulated by emotional category and
also active during a motor localiser. These same coordinates
were used in our prior cTBS study of emotion vocalization
discrimination (Banissy et al., 2010). The control site used
was vertex, identified as the point midway between the inion
and the nasion, equidistant from the left and right intertragal
notches.

Pre-processing and Analyses
Functional data were analyzed using SPM8 (Wellcome
Department of Imaging Neuroscience, London,
United Kingdom) running on Matlab 7.4 (Mathworks Inc.,
Sherborn, MA, United States). All functional images were
realigned to the first volume by six-parameter rigid body
spatial transformation. Functional images were normalized into
standard space using the Montreal Neurological Institute (MNI)
template using parameters elicited from a unified segmentation
of the T1 anatomical image. Functional images were then
smoothed using a Gaussian kernel of full width half medium
(FWHM) 8 mm.

Event-related responses for each condition were modeled
as a canonical hemodynamic response function. Event onsets
were modeled from the onset of auditory recording with a
4 s duration. For each run (pre- and post- stimulation) each
condition was modeled as a separate regressor in a general
linear model. Motion parameters (three translations and three
rotations) were modeled as six regressors of no interest at
the single-subject level. For each subject (first level), contrast
images were created to describe the comparisons between each
of the experimental conditions compared to silent rest and to
each other. T-tests were also generated comparing individual
conditions pre- and post-stimulation for each site of stimulation.
The contrast images generated from these t-tests were entered
into group analyses at the second level. Peak activations were
localized using the anatomy toolbox available within SPM8
(Eickhoff et al., 2005). In the case of basic contrasts (Figure 1)
with clear anatomical hypotheses that activity would be observed
in superior dorsolateral temporal cortices, statistical maps were
thresholded at p < 0.001 with a cluster extent of 30 voxels. In
the case of more exploratory comparisons (Figure 2, onward),

FDR correction for multiple comparisons was applied (q < 0.001,
k = 30).
Data were analyzed in a number of different ways:

(1) In order to investigate BOLD responses to perception of
emotional sounds, the two pre-stimulation sessions were
combined into one model, with the 2 days being modeled as
separate sessions within one design matrix. Contrasts were
then created at the first level of each of the sound categories
compared to silent rest and compared to the high-level
baseline of rotated sounds. Resulting first level contrasts
were entered into t-tests at the second level.

(2) In order to investigate the effect of stimulation
to either premotor and vertex sites on the
neural activity during perception of emotional
sounds, contrasts were generated at the first level,
comparing perception of each emotional vocalization
category post-stimulation with pre-stimulation (e.g.,
Amusement[post−stim] > Amusement[pre−stim]). This
was performed separately for premotor stimulation and
vertex stimulation data. In order to account for within
subject variation, these contrasts were then taken up
to a second level 2 × 6 fully flexible ANOVA where
the two factors were Site (Premotor and Vertex) and
Condition (Amusement[post > pre], Triumph[post > pre],
Disgust[post > pre], Fear[post > pre], Rotated[post > pre], and
Rest[post > pre]). In this way, the contrasts entered into the
ANOVA at the second level reflect the difference between
pre- and post-stimulation, and so any observed effects of
the Site and Condition factors within this model in fact
reflect the interaction of these factors with the effect of
Session (post- vs. pre-stimulation).

(3) Region of interest analyses were carried out to investigate
mean effect sizes in specific regions across all experimental
conditions post-stimulation compared to pre-stimulation
using the MarsBar toolbox that is available for use within
SPM8 (Brett et al., 2002).

First Level Contrasts of Interest
Amusement > Silent Rest/Amusement > Spectrally rotated/
Triumph > Silent Rest/Triumph > Spectrally rotated/Fear
> Silent Rest/Fear > Spectrally rotated/Disgust > Silent
Rest/Disgust > Spectrally rotated/Amusement[post−stim] >
Amusement[pre−stim]) [PMv site]/Triumph[post−stim] >
Triumph[pre−stim]) [PMv site]/Fear[post−stim] > Fear[pre−stim])
[PMv site]/ Disgust[post−stim] > Disgust[pre−stim]) [PMv site]
/Amusement[post−stim] > Amusement[pre−stim]) [Vertex site]
/Triumph[post−stim] > Triumph[pre−stim]) [Vertex site]/
Fear [post−stim] > Fear[pre−stim]) [Vertex site]/Disgust[post−stim]
> Disgust[pre−stim]) [Vertex site] (see Table 1 for anova set up).

RESULTS

Basic Contrasts (p < 0.001, k = 30)
In order to investigate BOLD responses to perception of
emotional sounds, the two pre-stimulation sessions were
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FIGURE 1 | Responses during passive perception of emotional vocalizations in dorsolateral temporal cortices. Bold responses to emotional sounds compared to
spectrally rotated versions were seen in middle and posterior superior temporal gyri in both hemispheres for all categories of emotional sound, largely lying within
cortical regions revealed by the comparison of all sounds compared to rest (depicted by solid red lines). In most cases responses were more distributed in the left
hemisphere (A–D). Perception of triumph and fear sounds was associated with an additional peak in the left inferior frontal gyrus (B,D). Thresholded at p < 0.001
uncorrected with a cluster extent threshold of 30 voxels.

combined into one model. Contrasts were then created at the
first level of each of the sound categories compared to silent
rest and compared to the high-level baseline of rotated sounds.
Perception of emotional sounds pre-stimulation, compared
to a silent rest condition was associated with widespread
significant activity in the dorsolateral temporal cortices in
both hemispheres (Figure 1, red lines). Perception of each
emotional vocalization compared to the spectrally rotated sounds
(i.e., controlling for temporal and spectral complexity) was
associated with significant BOLD responses in a more restricted
pattern comprising peaks in middle and posterior superior
temporal gyri in both hemispheres (Figures 1A–D). In the
cases of Fear and Triumph, peaks were also seen in left
inferior frontal gyrus (Figures 1B,D). These initial contrasts
were thresholded at p < 0.001 with a cluster threshold of 30
voxels.

Comparisons Post- and Pre-stimulation
(FDR q < 0.001, k = 30)
We next addressed whether post- vs. pre-stimulation differences
were significantly different between the target sites. In order
to look at the different post-stimulation compared to pre-
stimulation in the premotor site compared to the vertex site,
contrasts such as [Amusement[post−stim] > Amusement[pre−stim]]
reflecting the difference between pre- and post-stimulation, were
entered into an ANOVA at the second level. Observed effects
of the Site and Condition factors within this model in fact
reflect the interaction of these factors with the effect of Session
(pre- vs. post-stimulation). We aimed to look at how cTBS
modulated BOLD responses (i) across the whole brain, (ii) in
regions activated by emotional vocalization perception, (iii) at the
target site and finally (iv) at the left hemisphere homolog of the
target site (see Table 2 for a list of coordinates).
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FIGURE 2 | Continuous TBS to premotor cortex increases BOLD responses
in frontoparietal cortices compared to vertex stimulation. In order to look at
the effect of cTBS to right premotor cortex on perception of sounds,
compared to stimulation at the vertex, individual t-tests for the comparison of
each condition post-stimulation > pre-stimulation were calculated. These
t-tests, which reflect the difference between pre- and post-stimulation were
then entered into a 2 × 6 ANOVA, whereby the two factors were ‘Site’
(premotor and vertex) and ‘Condition’ (Amusement, Disgust, Fear Triumph,
Rotated, Rest). These t contrasts reflect the difference between pre- and
post-stimulation, and such that effects of the Site and Condition factors in fact
reflect the interaction of these factors with the effect of Session (pre- vs.
post-stimulation). A ‘Site’ × ‘Session’ interaction was observed in inferior
frontal gyri, left middle frontal gyrus and right insula cortex and finally in right
precentral gyrus. A second set of clusters lay in bilateral inferior parietal cortex
and postcentral gyrus on the right, left supplementary motor area extending
into superior frontal gyrus. Finally a set of midline clusters were seen in right
middle cingulate cortex, precuneus and parahippocampal gyrus. (A) A t-test
revealed greater activity for the comparison of PMv post-stimulation
compared to PMv pre-stimulation, than vertex post-stimulation compared to
vertex pre-stimulation, in left inferior frontal gyrus, left supplementary motor
area, cerebellar vermis, right parahippocampal gyrus, bilateral inferior parietal
lobe, bilateral superior and right middle frontal gyri and right postcentral gyrus
(B). The opposite comparison was associated with activity in left
hippocampus, right middle cingulate cortex, right precuneus, left
supramarginal gyrus, right supplementary motor area, right inferior frontal
gyrus and right rolandic operculum (C).

At the first level, contrasts were made comparing perception of
each emotional vocalization category post-stimulation with pre-
stimulation (e.g., Amusement post-stimulation > Amusement
pre-stimulation). This was performed separately for premotor
and vertex stimulation data sets. These contrasts were then taken
up to a second level 2 × 6 fully factorial ANOVA with two
factors ‘Site’ (premotor and vertex) and ‘Condition(post > pre)’
(Amusement[post > pre], Triumph[post > pre], Disgust[post > pre],

Fear[post > pre], Rotated[post > pre] and Rest[post > pre]).
A [Session × Site] interaction was seen in a network of
frontal, parietal and midline regions: one bilateral set of clusters
lay in inferior frontal gyri with peaks in pars triangularis (BA45)
and subpeaks in pars opercularis (BA44), left middle frontal gyrus
and right insula cortex and finally in right precentral gyrus (BA6)
corresponding to premotor cortex. A second set of clusters lay in
bilateral parietal cortex comprising inferior parietal cortex and
supramarginal gyrus on the left and postcentral gyrus (BA1) on
the right, left supplementary motor area extending into superior
frontal gyrus. Finally, a set of midline clusters was seen in right
middle cingulate cortex, precuneus and parahippocampal gyrus
(Figure 2A). Figure 2B displays a t-contrast that reflects the
positive difference between post- and pre-stimulation sessions
for the two sites ([PMvpost > PMvpre] > [Vertexpost > Vertexpre]).
This comprised left inferior frontal gyrus encompassing both
pars opercularis and triangularis, left supplementary motor
area, cerebellar vermis, right parahippocampal gyrus, bilateral
inferior parietal lobe encompassing the angular gyrus, bilateral
superior and right middle frontal gyri and right postcentral
gyrus (Figure 2B). The opposite comparison was associated with
activity in left hippocampus, right middle cingulate cortex, right
precuneus, left supramarginal gyrus, right supplementary motor
area, right inferior frontal gyrus (pars triangularis) and right
rolandic operculum (Figure 2C).

In order to look at how BOLD responses were modulated by
cTBS at specific cortical sites, region of interest analyses were
carried out to investigate mean effect sizes in specific regions
across all experimental conditions post-stimulation compared to
pre-stimulation. In order to look specifically in regions activated
by emotional vocalization perception we plotted mean parameter
estimates in regions revealed by the interaction [Session × Site],
mean parameter estimates were extracted for each of the clusters
and are plotted in Figure 3. Here, a value of zero would
indicate no change in activity levels between pre- and post-
stimulation. Positive values on the graph indicate that activity
was greater post-stimulation than pre-stimulation and vice
versa. Similarly, smaller values for contrasts comparing post-
to pre-stimulation following premotor stimulation (gray bars)
than following vertex stimulation (white bars) indicates that
premotor stimulation resulted in a greater reduction in activity.
These plots reveal three important factors: first, the effect of
stimulation to vertex was considerable and was variable across
regions in terms of direction and extent. In roughly half of
the regions, activity was greater post vertex stimulation and in
the other half activity was less post vertex stimulation. Given
that stimulation at the vertex did alter activity in a number of
regions, a more meaningful comparison is between the effect
post-PMv stimulation to the effect post-vertex stimulation. The
second point that is evident from these plots is the presence
of three different patterns of activity within this larger network
of clusters. A set of regions comprising bilateral IFG and
parietal cortices, left SMA, right superior frontal gyrus and
parahippocampal gyrus, displayed an increase in activity post-
stimulation to PMv but a decrease in activity post vertex
stimulation (Figures 3A–F). Secondly, the reverse response
profile is apparent in precuneus, middle cingulate cortex and
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TABLE 1 | 2 × 6 way ANOVA.

Factor 1. Condition Factor 2. Stimulation Site

Pre motor cortex (PMv) Vertex

Triumph[post−stim] > Triumph[pre−stim]) Triumph[post−stim] > Triumph[pre−stim])

Fear[post−stim] > Fear[pre−stim]) Fear[post−stim] > Fear[pre−stim])

Disgust[post−stim] > Disgust[pre−stim]) Disgust[post−stim] > Disgust[pre−stim])

Amusement[post−stim] > Amusement[pre−stim]) Amusement[post−stim] > Amusement[pre−stim])

right IFG (Figures 3H–K). Finally a single cluster lying over
the left supramarginal gyrus displayed a distinct activity profile
whereby activity was greater post-stimulation at both sites,
compared to pre-stimulation (Figure 3G). Lastly, it is evident
from these plots that the effect of cTBS to PMv is affecting
activity in these regions across all conditions, including during
listening to the high level baseline of rotated sounds and during
silent rest trials, not just during the perception of emotional
vocalizations. Thus the result that we report is not specific to
emotional vocalization perception but is a generalized neural
effect of cTBS.

Lastly, we wanted to look at BOLD responses at the target
site and the left homolog of the target site. The interaction of
[Session × Site] revealed a significant cluster of activity in right
premotor cortex lying over the post- and precentral gyri in the
right hemisphere. The peak of this cluster lay in the postcentral
gyrus [66 −10 31, Figure 3F] with a subpeak lying at [57 2
34], around 1 cm from the target site [54 −2 44] although this
cluster did not encompass precise site of targeting stimulation. In
order to investigate BOLD responses within this region further, a
6 mm spherical region of interest was created around the target
coordinate and the left homolog [−54 −2 44] and the mean
parameter estimates were extracted for each subject. There was no
significant difference between activity in this region post-vertex
stimulation and post PMv stimulation (Figure 4).

DISCUSSION

A distributed network of neural regions contribute to
the recognition and appraisal of affect from vocal cues
(Wildgruber et al., 2005; Warren et al., 2006; Meyer et al., 2007;
Paulmann et al., 2008; Wiethoff et al., 2009; Leitman et al.,
2010; Ethofer et al., 2012). One component of this network is
rPMv, which has been linked to passive perception of auditory
emotional vocalizations (Warren et al., 2006) and the ability to
discriminate between categories of vocal affect. Furthermore,
cTBS targeted at rPMv results in a selective disruption in
the ability to make a same/different choice on emotional
vocalizations but not speaker identity (Banissy et al., 2010). By
combining cTBS to the same rPMv region as Banissy et al. (2010)
with fMRI, here we extend this and provide novel evidence
related to the global effects of cTBS to rPMv on network wide
neural activity when passively listening to affective vocal cues.
Specifically, we found that cTBS to rPMv leads to secondary
effects in a distributed frontoparietal network, including a rPMv
region neighboring the target site, and a number of regions

linked to affect appraisal and regulation. These secondary effects
post rPMv stimulation were found to significantly differ to our
active control stimulation site (vertex) and separated into a set of
regions in which activity was increased or decreased post-rPMv
stimulation. These findings therefore provide evidence that
cTBS targeted at rPMv can modulate neural response to passive
perception of auditory vocalizations (both emotional and rotated
emotional vocalizations), leading to changes in widespread brain
networks involved in the appraisal of affective signals.

Increased BOLD Responses
We report that despite clear evidence to suggest that cTBS
inhibits activity in the targeted region, BOLD responses were
increased in a region lying close to the target site (compared
to post-vertex stimulation) and across wider networks that have
been linked to vocalization perception (Warren et al., 2006).
While TMS pulses may inhibit a behavioral measure, the pulse
ultimately results in cell firing at the site of stimulation, which
may activate other neurons in distinct cortical regions (Sack and
Linden, 2003). This is in contrast to our predicted findings, that
cTBS would results in local inhibited activity and suppressed
BOLD responses at the site of stimulation. However, this is
consistent with other studies reporting that depending on task
parameters, cortical suppression following brain stimulation is
sometimes linked to increased BOLD response (Ruff et al., 2006;
Bestmann, 2008; Ruff et al., 2008; Andoh and Zatorre, 2012) in
the targeted region and vice versa (e.g., Holland et al., 2011).

Increased activity post-stimulation may reflect a rebound in
cortical responsiveness following cTBS, as the site of stimulation
returns to baseline levels of cortical excitability. While we did not
see a significant effect at the target site, we did see a significant
increase in activity in a neighboring region lying within right
PMv and in a similar region in the left hemisphere. The target
site, lying on the ventral bank of the boundary between PMd
and PMv (Tomasino et al., 2008), contains a number of self-
connections and shares connections with the homologous region
in the left hemisphere, SMA, frontal regions rostral and ventral
to PMv, cingulate motor areas, inferior parietal cortex/parietal
operculum and posterior parietal cortex (Dancause et al., 2007).
In some cases the number of connections of the PMv to
the contralateral hemisphere outnumber ipsilateral connections
(Dancause et al., 2007), which may explain why we see many
changes to BOLD responses in the hemispheres contralateral
to the site of stimulation. Alternatively, suppressing one region
within the network of brain areas linked to vocalization
perception may result in additional recruitment of regions across
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TABLE 2 | Significant peaks of BOLD activity in contrasts of interest.

p z score k x y z

Main effects condition

Amusement > Rotated (p > 0.001, k = 30)

0.009 4.45 122 63 −4 −8

4.03 57 −16 1

3.88 66 −13 −2

4.34 96 −60 −13 −2

3.58 −57 −1 −5

4.14 33 45 −28 4

Disgust > Rotated (p > 0.001, k = 30)

0.004 4.29 60 48 −34 4

3.34 57 −22 −2

3.34 63 −16 −2

4.26 32 −63 −37 10

4.09 58 −60 −13 −5

3.42 −54 5 −8

Fear > Rotated (p > 0.001, k = 30)

0 4.49 99 45 −31 1

3.91 57 −40 16

3.49 45 −43 19

4.06 76 −57 −4 −2

3.94 −54 −22 −2

3.99 48 −63 −37 10

3.93 38 −48 20 4

3.49 −48 35 1

3.49 24 57 −7 −5

3.38 57 2 −8

Triumph > Rotated (p > 0.001, k = 30)

0 5.22 139 −54 −10 −2

3.93 −54 5 −8

5.05 104 −60 −34 10

4.14 −51 −49 19

4.78 70 −42 26 1

4.43 31 60 −4 −8

4.14 111 48 −31 4

3.83 57 −40 16

3.49 60 −22 -2

ANOVA

Site × Session (FDR corrected, q > 0.001, k = 30)

0 Inf 70 −30 −40 10

5.35 −24 −52 19

4.91 −27 −61 10

6.76 33 −21 −25 22

5.57 −18 −40 25

6.36 45 9 11 34

4.67 15 17 31

6.19 51 9 −46 19

4.58 15 −52 13

5.58 31 9 −16 28

3.7 −3 −19 28

5.37 69 −51 −31 31

4.42 −57 −19 31

3.49 −48 −25 25

(Continued)

TABLE 2 | Continued

p z score k x y z

5.08 33 15 −28 49

4.47 15 −46 40

4.72 101 48 20 4

4.71 42 14 7

4.63 39 5 10

4.56 176 6 −76 46

4.48 −6 −73 43

4.23 −18 −55 25

4.34 35 45 −19 19

4.3 57 −25 28

Positive effect of site (FDR corrected, q > 0.001, k = 30)

0 Inf 497 −45 26 22

6.33 −51 26 13

6.09 −48 8 28

7.19 165 −6 20 58

4.92 −18 17 49

4.78 −9 20 43

6.54 32 3 −46 −5

5.33 −9 −43 −5

3.65 −18 −40 −8

6.02 40 27 −40 −5

5.91 32 54 −64 25

5.82 243 −42 −49 46

5.74 −48 −49 58

4.76 −42 −61 55

5.31 45 −24 2 70

4.74 −18 2 55

5.29 44 39 32 16

4.95 31 −3 −88 22

4.7 55 66 −10 31

4.69 57 2 34

4.39 39 27 11 61

Negative Effect of Site (FDR corrected, q > 0.001, k = 30)

0 Inf 70 −30 −40 10

5.35 −24 −52 19

4.91 −27 −61 10

6.76 33 −21 −25 22

5.57 −18 −40 25

6.36 45 9 11 34

4.67 15 17 31

6.19 51 9 −46 19

4.58 15 −52 13

5.58 31 9 −16 28

3.7 −3 −19 28

5.37 69 −51 −31 31

4.42 −57 −19 31

3.49 −48 −25 25

5.08 33 15 −28 49

4.47 15 −46 40

4.72 101 48 20 4

4.71 42 14 7

4.63 39 5 10

(Continued)
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TABLE 2 | Continued

p z score k x y z

4.56 176 6 −76 46

4.48 −6 −73 43

4.23 −18 −55 25

4.34 35 45 −19 19

4.3 57 −25 28

Peak coordinates of significant clusters are reported in Table 1, with corresponding
z scores, cluster size and mni coordinates. Main comparisons for pre-stimulation
emotional vocalizations sessions are compared with spectrally rotated sounds, and
interactions between ‘Site’ and ‘Session,’ main positive and negative effects of
‘Site’ are shown.

the remainder of the network in order to deal with the missing
node.

The brain may actively compensate for the interference at
the site of stimulation and within a wider connected network
of regions (Bestmann et al., 2008; Siebner et al., 2009). Jung
and Lambon Ralph (2016) showed that cTBS decreased activity
at their target site, but increased activity at a contralateral site,
and that activity in the right homolog region was predictive
of task performance. This suggests that cTBS disruption to
neural processing can lead to compensation from remote cortical
regions. It has been suggested that acute adaptive reorganization
following cTBS may occur in functional networks outside of the
target network, which may compensate for suppression in other
regions (Hartwigsen and Siebner, 2012).

Frontoparietal regions, including rPMv, are known to provide
a link between the production and perception of both speech
(Watkins et al., 2003; Wilson et al., 2004) and non-speech
(Gazzola et al., 2006; Warren et al., 2006) articulatory and
gestural actions (Ferrari et al., 2003; Gazzola et al., 2006). Several
studies highlight the importance of the inferior frontal cortices
in the perception and production of auditory vocalizations, and
it has been suggested that the IFG comprises the final stage
in processing of emotional vocalizations. Recent findings also
indicate that the frontoparietal vocalization network is recruited
to a greater extent when participants experience high cognitive
load (McGettigan et al., 2011) or when perceiving degraded
auditory stimuli (D’Ausilio et al., 2012; Kellermann et al., 2012).
Continuous TBS is thought to interfere with neural function
by effectively introducing noise into the neural processing in
a focal region (Miniussi et al., 2010) and one interpretation is
that inducing noise in rPMv results in an artificial increase in
cognitive load within the network, leading to increased activity
within the frontoparietal network.

Reduced BOLD Responses
Post-stimulation
In addition to the increase of activity in frontoparietal regions,
a set of regions displayed the opposite pattern. These were the
SMG, right IFG, cingulate cortex and two peaks within the
precuneus, all of which have previously been linked with affect
processing either through mechanisms of emotion perception or
emotion regulation (Rankin et al., 2006; Shamay-Tsoory et al.,
2009; Banissy et al., 2010; Giussani et al., 2010; Leitman et al.,

2010; Lamm et al., 2011; Riem et al., 2012). The anterior cingulate
is thought to form part of an attentional network serving to
regulate both cognitive and emotional processing (Bush et al.,
2000; Hornak et al., 2003). The caudal part of the anterior
cingulate is anatomically connected to many of the regions in
which activity is modified by cTBS to PMv, including parietal,
premotor and supplementary motor cortex (Devinsky et al.,
1995) potentially providing an anatomical link between the two
networks identified here as having distinct response profiles
following cTBS to PMv.

Despite previous findings showing that the effect of cTBS to
PMv elicits condition specific behavioral effects, here we did not
find evidence of condition specific neural effects. Specifically, that
cTBS had a similar effect on BOLD responses for both emotional
vocalization perception conditions, but also to spectrally rotated
versions of those sounds, suggests a general effect of stimulation
on auditory processing. One possibility is that cTBS to PMv
serves to prime a general auditory motor network, which
behaviorally modulates the processing of biologically relevant
sounds, such as emotional vocalizations (Banissy et al., 2010).
Other studies have demonstrated a role for right PMv in the visual
processing of emotional expressions (Carr et al., 2003; Leslie et al.,
2004) but also neutral expressions (Gazzola and Keysers, 2009;
Caspers et al., 2010). Thus it is possible that stimulation of this
ventral motor site, modulates a network that serves the sensory
processing of emotional stimuli.

Given the role of each region in affect processing and
potential connectivity between the two networks reported here,
it is feasible that the regions showing decreased activation may
serve to promote the integration and evaluation of emotion
stimuli, and that suppressing rPMv results in a reduction of
the functional coupling between the frontoparietal network
and this set of regions. Previous work has shown that cTBS
modulates functional connectivity, many showing a reduction
in connectivity, both in humans (Rahnev et al., 2013; Valchev
et al., 2017), and in rat brain (Mastropasqua et al., 2014), but
some revealing the reverse pattern (Dan et al., 2016). In this
context, prior behavioral suppression effects on vocalization
discrimination seen from the application of cTBS to right PMv
(Banissy et al., 2010) may originate from not only alterations
in activity at the site of stimulation, but also from a reduction
in a network of brain regions linked to emotion evaluation.
This adds to prior concurrent TMS-fMRI work highlighting that
behavioral influences of TMS may not only be a consequence
of functional specialization, but also functional integration in
specific tasks (Ruff et al., 2009). It also highlights cTBS-fMRI as
a tool to probe the mechanisms (i.e., functional specialization vs.
functional integration) by which stimulation to a target area can
influence task performance.

Whilst it is clear than TMS can elicit neural plasticity
and behavioral changes, there are also a range of factors that
contribute to high variability in the neural and behavioral
responses to stimulation, such as such as age, circadian rhythm,
and endogenous brain oscillations (Ridding and Ziemann, 2010;
Hamada et al., 2013). The effects of TMS on motor plasticity
are known to change significantly with age (Pascual-Leone et al.,
2011). It is worth considering that the effects of cTBS on the
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FIGURE 3 | Region of interest analysis reveals three distinct response profiles in response to cTBS to premotor cortex. In order to look at the response profiles of the
regions revealed by the ‘Site’ × ‘Session’ interaction, mean parameter estimates were extracted from each cluster and are displayed in (A–K) where positive values
indicate greater activity post-stimulation compared to pre-stimulation (i.e., increased activity following cTBS) and negative values indicate a reduction in activity
following cTBS. This approach revealed one network of regions that show increased levels of activity following stimulation to right PMv including supplementary
motor area, inferior parietal cortex, bilateral inferior frontal gyrus, superior frontal gyrus and post central gyrus lying close to the PMv target site (graphs A–F). In
contrast to this, two distinct regions of the precuneus, cingulate cortex and right IFG displayed a reduction in activity following stimulation to premotor cortex (graphs
H–K) and less activity following premotor stimulation compared to following vertex stimulation. A third and final response profile was observed in a single cluster in
left supramarginal gyrus whereby activity was greater post-stimulation at both sites, compared to pre-stimulation (G).

FIGURE 4 | BOLD responses at the site of PMv stimulation, and the left homolog, were not significantly changed following cTBS. No significant whole brain effects
were seen at the exact site of simulation or the in the corresponding site in the left hemisphere. In order to look at BOLD responses within this region further, a 6 mm
spherical regions of interest were created around the coordinates the target site [54 –2 44] and the left homolog [–54 –2 44]. Mean parameter estimates were
extracted and are plotted in the lower panel. The pattern of responses is not consistent across the emotional sound categories and an ANOVA indicated that there
were no significant differences between any of the conditions post-stimulation compared to pre-stimulation following premotor or vertex stimulation in either site
(here, a value of zero indicates no change in activity levels between pre- and post-stimulation, whereas positive values indicate greater post-stimulation activity than
pre-stimulation).
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older participants in our experience may have been less than
for our younger subjects. Attention is an additional factor that
may be involved: in order to explicitly look at passive listening,
the present study did not include an active task, however, this
renders it impossible to know if subjects were paying equivalent
degrees of attention across conditions or sessions. Lastly, given
the number of conditions, there was relatively few trials per
condition. It is possible that the paucity of condition specific
effects was due to this and that further work maybe be needed to
draw conclusions on how cTBS to rPMv effects specific categories
of emotional processing.

CONCLUSION

Previous data have shown that cTBS to the rPMv selectively
disrupts the ability to perform a same/different task on emotional
vocalizations; here we demonstrate that this is due to widespread
changes in a network of regions involved in emotion perception
and regulation. These data provide the first evidence that cTBS
targeted at rPMv modulates activity in distributed cortical regions
when processing emotional vocalizations. They add to previous
studies (e.g., Andoh and Zatorre, 2012) by highlighting that TMS
does not only influence the stimulated brain region, but extends
to brain areas that are interconnected with the stimulation site.
These data suggest that behavioral suppression in vocalization
recognition following cTBS to rPMv (Banissy et al., 2010) reflects
changes in functional interactions with interconnected cortical

regions. These data therefore demonstrate the worth of using
cTBS to modulate network activity when a central node is
targeted and flag its utility to determine whether the behavioral
effects of cTBS to a target area are due to local or distributed
influences on the brain.
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