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Abstract

Anxiety results in sub-optimal motor performance and learning through mechanisms still unknown. Here
we addressed whether state  anxiety  impairs  motor  learning  through changes in  behavioral  and neural
variability. Participants completed a reward-based motor sequence learning paradigm, with separate phases
for exploration (baseline) and learning. Anxiety was manipulated either during baseline or learning. We
show that anxiety at baseline reduces motor variability, undermining subsequent reward-based learning. By
contrast,  unconstrained baseline exploration led to successful  motor learning, even under the effect of
anxiety. The behavioral changes were driven by changes in the variability of sensorimotor beta oscillations
(13-30Hz, SBO). Moreover, bursts of SBO, a marker of physiological beta, lasted longer under the effect of
anxiety, resembling recent findings of pathophysiological beta in movement disorders. Our findings suggest
that changes in variability and burst duration in SBO represent a neural mechanism through which anxiety
constrains movement variability, with detrimental consequences for motor learning.

Introduction

Anxiety involves anticipatory changes in physiological and psychological – cognitive, emotional, behavioral –
responses  to  a  potential  and  uncertain  future  threat1-2.  Previous  work  on  the  neurobiology  of  anxiety
established that trait anxiety interferes with prefrontal control of attention in perceptual tasks, whereas
state anxiety modulates the amygdala during detection of threat-related stimuli2-3.  In the area of motor
control,  research has  shown that  stress  and anxiety  have detrimental  effects  on performance4-5.  These
results  have  been  partially  interpreted  as  the  interference  of  anxiety  with  information-processing
resources6.  However,  the effects of anxiety on motor learning are often inconsistent and a mechanistic
understanding is still lacking. Delineating mechanisms through which anxiety influences motor learning is
important to ameliorate its impact in different settings, including in motor rehabilitation programmes. 
Motor variability could be the primary component of motor learning that is affected by anxiety; it is defined
as the variation of performance across repetitions7, and is driven by various factors including sensory and
neuromuscular noise8. As a form of action exploration, movement variability is increasingly recognized to
benefit motor learning9-11. These findings are consistent with the vast amount of research on reward-based
reinforcement  learning  demonstrating  increased  learning  following  initial  exploration12.  More  recently
movement  variability  was  shown  to  benefit  motor  learning  when  it  takes  the  form  of  ‘intentional’
exploration  of  the  task  space,  not  as  motor  noise13.  Yet  contextual  factors  can  reduce  variability.  For
instance,  recent work on ritualistic behavior  reveals  that  state  anxiety leads to movement redundancy,
repetition, and rigidity to regain a feeling of control14. This finding resembles the reduction in behavioral
variability  and  exploration  that  manifests  across  animal  species  during  the  fight  or  flight  response  in
stressful  environments15.  Based  on  these  results  we  set  out  to  test  the  hypothesis  that  state  anxiety
modulates motor learning through a reduction in motor variability and action exploration.
Additionally, we posited that changes in motor exploration are driven by neural variability in premotor and
motor areas.  Support for our hypothesis  comes from recent data in animal studies demonstrating that
variability  in the primate premotor cortex tracks  behavioral  variability  during  motor planning16.  Further
evidence in rodents and primates supports that  changes in variability in single-neuron activity in motor
cortex drive motor exploration during initial learning, and reduce it following intensive training 17-18. Also, the
basal ganglia are crucial for modulating variability during learning and production, as shown in songbirds
and, indirectly, in patients with Parkinson’s disease11, 19-20. 
In the present study, we analyzed sensorimotor beta oscillations (SBO, 13-30Hz) as a candidate mechanism
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driving  motor  exploration  and  variability.  Beta  oscillations  have  been  linked  to  different  aspects  of
performance and motor learning21-23,  as  well  as  reward-based learning24.  Although amplitude or  power
changes was traditionally the primary focus of research on oscillations, there is a renewed interest towards
assessing dynamic properties of  oscillations, such as the presence of brief bursts 25, which are considered to
be  a  central  feature  of  physiological  beta  in  motor-premotor  cortex  and  the  basal  ganglia26-28.  The
assessment of variability and burst duration of SBO thus allows us to capture dynamic changes in neural
variability induced by anxiety and their link to behavioral effects.
To test our hypotheses, we recorded electroencephalography (EEG) in three groups of participants while
they  completed  a  reward-based  motor  sequence  learning  paradigm,  with  separate  phases  for  motor
exploration (baseline) and reward-based learning. Crucially, different sequences were used in each phase of
the task to exclude carry-over effects of learning from the baseline period. We manipulated anxiety by
informing participants about an upcoming public speaking task that would require them to describe an
unknown art  object  to  a panel  of  experts14.  Using  a between-subject  design,  the anxiety  manipulation
targeted either the baseline or the reward-based learning phase. Analysis of the EEG signals aimed to assess
anxiety-related changes in the variability and burst duration in SBO in relation to changes in behavioral
variability. 
Our primary finding was that  anxiety impairs reward-based learning by constraining motor variability and
action exploration during the baseline phase. Importantly, these effects were mediated by increased within-
trial variability and burst duration in SBO. A second experiment served to demonstrate that anxiety during
reward-based learning has an opposing effect on motor variability and learning rates depending on the
presence or absence of a preceding baseline exploration phase.

Results

Sixty participants completed our reward-based motor sequence learning task, consisting of three blocks of
100 trials each over two phases (Figure 1):  a baseline motor exploration (block 1) and a reward-based
learning phase (blocks 2 and 3: termed training hereafter). Prior to the experimental task, we recorded in
each participant 3 min of EEG at rest with eyes open. Next, on a  digital piano, participants played two
different sequences of seven and eight notes during the exploration and training phases respectively (Figure
1A). They  were  explicitly  taught  the tone sequences  prior  to  the  start  of  the  experiment,  yet  precise
instructions about the timing or loudness (keystroke velocity) were not provided. 

During the exploration phase, participants were informed they could freely change the rhythm and/or
the loudness  of  the performance of  sequence1 every  trial,  and that  no reward  or  feedback would be
provided. During training, however, participants received performance-based feedback in the form of a 0-
100 score at the end of each trial, and were informed that the overall average score would be translated
into monetary reward. They were directly instructed to explore the temporal or loudness dimension (or
both) and to use feedback scores to discover the unknown performance objective (which, unbeknownst to
them, was a specific rhythmic pattern). The task-related dimension was therefore timing, whereas keystroke
velocity (Kvel) was the non-task related dimension. Timing in our task referred to the pattern of inter-onset-
intervals between consecutive keystrokes (IOI, ms). The score increased when the difference between the
coefficient of variation of the performed and target rhythm patterns (IOIs) decreased (see  Materials and
Methods).

Participants were pseudo-randomly allocated to either a control group or to one of two experimental
groups (Figure 1B): anxiety during exploration (anx1); anxiety during the first block of training (anx2). The
lack of  anxiety manipulation during block3 thus allowed us to  assess the dissociable effects of  anxiety
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during baseline exploration or training on the learning rates during the last training block. We measured
changes in heart-rate variability (HRV), heart-rate (HR) and state anxiety scores four times throughout the
experimental session: resting state (3 min, prior to performance blocks); block1; block2; block3. The HRV
significantly dropped during the targeted blocks relative to the initial resting phase in each group ( Figure 1 –
figure supplement 1), confirming that the experimental manipulation succeeded in inducing physiological
responses consistent with an anxious state29. Statistical analysis of behavioral and neural measures focused
on the separate comparison between each experimental group and the control group (contrasts: anx1 –
controls, anx2 – controls). See Materials and Methods. 

Figure 1.  A Novel Paradigm for Testing Exploration and Reward-Based Learning during Sequence Performance.  (A)
Schematic of the task. Participants played sequence1 during 100 exploration trials, followed by 200 trials of reward-
based learning performing sequence2. After each reward-based learning trial, participants received a performance-
related score between 0-100. (B) Pitch content of the sequences used in the exploration (sequence1) and reward-
based learning blocks (sequence2), respectively. (C) Schematic of the anxiety manipulation. The shaded area denotes
the phase in which anxiety was induced in each group, using the threat of an upcoming public speaking task, which
took place immediately after that block was completed.

General Effects of Baseline Task-related Variability and Exploration on Reward-based Learning
All  groups of  participants  demonstrated significant improvement in the achieved scores during reward-
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based  learning,  confirming  they  effectively  used  feedback  to  approach  the  hidden  target  performance
(Figure 2: p < 0.05, after control of the false discovery rate at level q = 0.05 due to multiple comparisons 30,
termed FDR-corrected thereafter; anx1: non-parametric effect size31, PSdep= 0.80; anx2: PSdep= 0.88; controls:
PSdep=  0.90).  Detailed analysis  of  the  trial-by-trial  changes in  scores  and  performance will  be  reported
elsewhere.

Assessment of motor variability was performed separately in the task-related temporal dimension and
the non-task-related keystroke velocity dimension. Temporal variability – and similarly for keystroke velocity
– was estimated using two different measures (Figure 2B): the within-trial and across-trials coefficient of
variation of IOI (cvIOI). The within-trial cvIOI provided a total of 100 values across each experimental block.
By contrast, the across-trials cvIOI provided one single value per experimental block. Because the score
obtained during reward-based learning was explicitly related to the within-trial cvIOI, we predicted that
higher values of this parameter at baseline would be associated with higher reward during the subsequent
training phases. Of note, higher within-trial cvIOI values denote a larger departure from an isochronous
performance of the sequence. However, we also hypothesized that a higher degree of exploration across
trials at baseline (that is, playing different temporal patterns in each trial), and therefore higher across-trials
cvIOI, would improve subsequent reward-based learning. 
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Figure 2.Temporal variability within and across trials at baseline contributes to subsequent reward-based learning.
(A) Illustration of timing performance during baseline exploration (left panels) and training (right panels) blocks in two
representative participants,  s1 and s2.  X-axis represents the position of the inter-keystroke interval  (sequence1:  7
notes, corresponding to 6 inter-keystroke temporal intervals; sequence2: 8 notes, 7 inter-keystroke intervals). Y -axis
shows the inter-onset interval (IOI) in ms. Black lines represent the mean IOI pattern. (B) Task-related variability was
measured using two parameters:  the within-trial  and across-trials  coefficient of  variation of  IOI,  cvIOI.  (C)  Scores
achieved by participants during training following a median split of all 60 participants into high and low within-trial
cvIOI at baseline. Trials were split into bins of 25 trials and scores were averaged within each bin. Black bars at the
bottom indicate the bins of significant between-group differences (p < 0.05, FDR-corrected). (D) Same as C but for
keystroke velocity, using cvKvel to do a median split of participants. E-F. Same as C-D but using the across-trials cvIOI
and cvKvel, respectively. Bars around the mean display ±SEM. 
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To  first  evaluate  the  effect  of  baseline  within-trial  temporal  variability  on  subsequent  reward-based
learning, regardless of the group, we did a median split of all 60 participants based on the within-trial cvIOI,
averaged across trials. This analysis revealed that larger within-trial cvIOI at baseline was associated with
higher scores during training (p < 0.05, FDR-corrected; PSdep= 0.91;  Figure 2C).  Corresponding with this
result, there was a significant non-parametric rank correlation between the values of within-trial cvIOI at
baseline, and also later during training – as expected, and the average scores obtained (Spearman  = 0.474,
p = 0.001, at baseline; = 0.646, p = 0.00001, during training). A control analysis performed with groups of
low and high values of within-trial cvKvel demonstrated a non-significant difference in subsequent scores (p
> 0.05; Figure 2D). 

We  also  stratified  participants  based  on  the  degree  of  across-trials  cvIOI  at  baseline  exploration.
Participants whose performance exhibited a higher across-trials cvIOI at baseline achieved higher scores
during training (p < 0.05, FDR-corrected; PSdep = 0.81;  Figure 2E). Changes in across-trials cvKvel did not
influence subsequent reward-based learning (p > 0.05; Figure 2F).

Notably, the amount of within-trial variability expressed by participants in timing and keystroke velocity
was not correlated ( = 0.019, p = 0.898). Neither was the across-trials cvIOI and cvKvel ( = 0.021, p =
0.788).  This  supports that the temporal  and velocity dimensions in our task were uncorrelated and,  in
principle, participants could vary them separately. Participants, however, generally used a lower amount of
variability  in  Kvel  relative to timing at  baseline,  likely due to the higher difficulty  required to precisely
control loudness during piano performance.

Influence of Anxiety on Baseline Variability and Subsequent Reward-based Learning
Next, we assessed pair-wise differences between each experimental group (anx1, anx2), separately, and the
control group. Participants affected by state anxiety at baseline (anx1) achieved significantly lower scores in
the subsequent reward-based learning phase relative to control  participants (Figure 3A:  p < 0.05, FDR-
corrected, between-group non-parametric effect size31, PSsup = 0.78). By contrast, in the anx2 group scores
did not significantly differ from the scores in the control group (p > 0.05). Converging with the previous
analysis, the total average score (related to the amount of money received) achieved by anx1 participants
was significantly smaller than the amount received by control participants (52 [SEM 3] for anx1, 63 [3] for
controls, p = 0.02, PSsup = 0.85). Anx2 and controls did not achieve significantly different average scores than
control participants (61 [3] for anx2; p > 0.05). A planned comparison between both experimental groups
demonstrated significantly higher total average scores in anx2 (p = 0.045, PSsup = 0.67).

At baseline, anx1 used a lower degree of within-trial  and across-trials cvIOI  than the control  group
(Figure 3BC. Within-trial cvIOI:  p < 0.05, FDR-corrected; PSsup  = 0.67; Across-trials cvIOI:  p = 0.032; PSsup  =
0.67). There was no between-groups (anx1-controls) difference in within-trial or across-trials variability in
Kvel (p > 0.05, Figure 3 – figure supplement 1). Performance at baseline in anx2 did not significantly differ
from performance in the control group, both for cvIOI or cvKvel, and for within and across-trials variability
(p > 0.05). 

Performance in the Training Phase: Exploration and Exploitation
We evaluated whether the significant increase in scores found in each group from beginning to end of the
training blocks was paralleled by a significant drop in the across-trials cvIOI, reflecting exploitation of the
rewarded options (Figure 3).  A 2x2 factorial analysis of the across-trials cvIOI with factors Group (anx1,
control) and Phase of training (block2, block3) demonstrated a significant main effect Phase and interaction
effect (p < 0.05, FDR-corrected).  Further exploration of the interaction effect established that in control
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participants – not  in anx1 – the across-trials cvIOI dropped from training block2 to block3 (p < 0.05, FDR-
corrected, PSsup = 0.66). A similar 2x2 analysis comparing anx2 and control groups revealed a significant
main effect Phase (p < 0.05, FDR-corrected),  due to smaller across-trials cvIOI values in block3 in both
groups. Collectively, these findings support that during reward-based learning exclusively participants in the
anx2 and control groups went through a gradual transition from an explorative regime (characterized by
higher across-trials cvIOI) to an exploitative regime, in parallel to their achieving higher scores. 

Additional  similar  2x2  factorial  analyses  of  the  average  score  and  within-trial  cvIOI  with  the
abovementioned Phase and Group factors demonstrated significant main effects for Phase in all cases (p <
0.05, FDR-corrected: all groups had larger scores and within-trial cvIOI in the second training block), a main
effect Group for anx1 and controls (p < 0.05, FDR-corrected) and no significant interaction effects.  This
finding suggested that the transition in scores and within-trial task-related variability from the first to the
second training blocks was similar in all groups, despite anx1 having significantly overall lower within-trial
cvIOI and lower scores than control participants.

Figure 3. Effects of anxiety on behavioral variability and reward-based learning. The score was computed as a 0-100
normalized measure of proximity between the pattern of inter-onset intervals performed in each trial and the target
rhythm ([0.2, 1, 0.2, 1, 0.2, 1, 0.2] s).  (A) Scores achieved by participants in the anx1, anx2, and control groups across
bins 5:12 (bins of 25 trials: trial range 101-300), corresponding with blocks 2 and 3 and the training phase. Participants
in anx1 achieved significantly lower scores than control participants in bins 6:8 and 11:12 (trials 125-200 and 250-300,
p < 0.05, FDR-corrected, denoted by the bottom purple line). (B) Changes in within-trial cvIOI from the exploration
phase (bins 1-4) to the training phase (bins 5-12). Participants in anx1 used smaller within-trial cvIOI than controls
during  exploration  (bins  1-3)  and  at  the  end  of  the  training  blocks  (bins  11-12,  p  <  0.05,  FDR-corrected).  Anx2
participants did not differ from control participants. (C) Same as (B) but for the across-trials cvIOI, revealing a signifcant
drop in task-related exploration at baseline in anx1 relative to control participants (p < 0.05, FDR-corrected). Bars
around the mean show ±SEM.

Without Baseline Exploration, State Anxiety during Reward-based Learning Reduces Learning Rates.
Because participants in anx2 performed at  a level  not significantly  different from that found in control
participants,  we  asked  whether  the  initial  unconstrained  motor  exploration  at  baseline  might  have
counteracted  the  effect  of  anxiety  during  training.  To  that  aim,  we  performed  a  control  behavioral
experiment with new control and anx2 groups (N =13 each). Participants in each group performed the two
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training blocks 2 and 3 (Figure1), but without completing a preceding baseline exploration block. In anx2,
state anxiety was induced exclusively during the first training block, as in the original experiment. We found
that HRV and within-trial temporal variability were significantly reduced in anx2 relative to controls during
the  manipulation  phase  (p  <  0.05,  FDR-corrected,  Figure  3  –  figure  supplement  2).  Moreover,  anx2
participants achieved significantly lower scores than control participants during the first training block (p <
0.05, FDR-corrected), yet not during the second training block (p> 0.05). Importantly, however, overall anx2
participants achieved a lower average score (and monetary reward) than control participants (p = 0.0256;
PSsup = 0.64). The degree of across-trial temporal variability did not differ between both groups, yet in the
control group – not in anx2 - there was a significant transition from an explorative to an exploitative regime
(drop in across-trials cvIOI, p = 0.0001, PSdep= 1), as expected. 

Figure  4.  Sensorimotor  beta  activity  during  baseline  exploration  is  modulated  by  anxiety .  (A)  Topographical
representation of the between-group difference (anx1-controls) in normalized beta-band power spectral density (PSD)
in  dB.  A  larger  beta-band  PSD  increase  was  found  in  anx1  relative  to  control  participants  in  a  small  cluster  of
contralateral sensorimotor electrodes (white dots indicate significant electrodes, two-tailed cluster-based permutation
test,  p  <  0.025,  FWE-corrected).  (B)  Averaged  PSD  within  4-45Hz  for  each  experimental  and  control  group
corresponding to the cluster shown in (A). Beta-band power differences were additionally assessed within the broader
range 4-45Hz, revealing an effect exclusively within 17-30Hz (p < 0.05, FDR-corrected), denoted by the purple line at
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the bottom). No significant effects outside the beta range were found. Anx2 and control participants did not differ in
power modulations. Shaded areas denote mean ±SEM. (C) Same as (A) but for differences in beta-band PSD between
anx2 and control participants. No significant clusters were found. (D) Illustration of the amplitude of beta oscillations
(gray line) and amplitude envelope (black line) for one representative subject and channel. (E) Scalp topography for
between-group differences in the coefficient of quartile variation (CQV) of the beta-band amplitude envelope, as a
measure of beta-band amplitude variability. We obtained one significant cluster of left sensorimotor electrodes (white
dots, p < 0.025, FWE-corrected), due to larger beta-band variability in anx1 than in control participants. (F) Beta-band
CQV index averaged within the electrodes pertaining to the significant positive cluster shown in (E). Data shown as
mean and ± SEM. Significant differences between anx1 and control groups are indicated by the asterisk. (G) Same as
(E) but for beta-band CQV differences between anx2 and control participants. No significant differences were found. 

Variability in Beta Oscillations at Baseline is Enhanced by State Anxiety
We assessed whether the changes in motor variability found during baseline exploration are associated with
changes in sensorimotor beta-band oscillatory activity. Specifically, we tested whether within-trial variability
in the amplitude envelope of beta oscillations is influenced by state anxiety at baseline in anx1 relative to
control participants – using the coefficient of quartile variation (CQV32) as a measure of relative dispersion.
In addition, between-group differences in the averaged normalized power spectral density (PSD) of beta
oscillations  were  evaluated.  Normalization of  the raw PSD into  decibels  (dB)  was carried out  using  as
reference the average PSD from the initial rest recordings (3 min).  Results on the effects of anxiety on the
modulation of beta oscillations by feedback-locked reward processing will be reported elsewhere.

We found a significantly higher beta-band power in a reduced set of three channels in the contralateral
sensorimotor region in anx1 relative to control participants at baseline (p < 0.025, two-sided cluster-based
permutation test33; PSsup = 0.73.  Figure 4A-B). By contrast, in anx2 participants, the beta power was not
significantly different than in controls (Figure 4C, p > 0.05). No significant between-group changes in PSD
were found in lower (<13Hz) or higher (>30Hz) frequency ranges (p > 0.05). Crucially, in anx1, the CQV of
beta oscillations was significantly higher than the values in the control group across an extended set of
channels in the left sensorimotor region (p < 0.025, PSsup= 0.80 Figure 4D-E). No difference in the CQV of
beta  oscillations  was  found  between  anx2  and  control  participants  (Figure  4F).  Thus,  the  anxiety
manipulation during baseline exploration led to a pronounced enhancement of within-trial beta variability
in contralateral sensorimotor electrodes. This indicates a more irregular range of dynamic changes of beta
amplitude.  To  a  lesser  degree,  the  anxiety  manipulation  at  this  phase  also  increased  contralateral
sensorimotor beta power, although in a more locally confined set of electrodes.

A similar analysis in the training period revealed no significant between-group beta power differences
(Figure 4 – figure supplement 1). There was, however, significantly larger within-trial beta-band variability
in contralateral sensorimotor electrodes in anx1 relative to control participants (p < 0.025). Accordingly,
despite the targeted effect of the anxiety manipulation in the anx1 group, which led to changes in HRV
exclusively in the baseline phase, the larger variability of beta oscillations found during baseline extended to
the training period as well. Anx2 participants also exhibited larger beta-band CQV values relative to control
participants, albeit in a region of frontal electrodes (p < 0.025). 

State Anxiety during Exploration Prolongs Beta Bursts 
To explore further the result of anxiety-related increases in within-trial variability in beta oscillations, we
assessed the distribution and duration of beta bursts. To identify bursts of beta oscillations and assess the
distribution of their duration, we applied an above-threshold detection method, which was adapted from
previously described procedures25,27(see Figure5A and Materials and Methods). Bursts extending for at least
one cycle were selected. Using a double-logarithmic representation of the probability distribution of burst
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durations,  we  obtained  a  power  law  and  extracted  the  slope,  ,  also  termed  “life-time”  exponent25.
Modelling work has revealed that a power law in the burst-duration distribution (slope  = 1.5), reflecting
that the oscillation bursts or neuronal avalanches have no characteristic scale,  indicates that the underlying
neural dynamics operate in a state close to criticality, and thus benefitial for information processing25,34.

During  baseline  exploration,  beta  bursts  lasted significantly  longer  in  anx1  as  compared to  control
participants (Figure 5B, p < 0.025, PSsup = 0.75). This effect was most pronounced in a cluster of electrodes in
the contralateral sensorimotor area, resembling the topography of the CQV effects (Figure 4). The mean
burst duration in these electrodes was 147 (2) ms in control participants and 168 (10) ms in the anx1 group,
with  a difference of  20 ms  corresponding with  at  least  2  cycles  of  13Hz  oscillations  (5  cycles  of  30Hz
oscillations).  A  further  between-group  comparison  focusing  on  the  distribution  of  burst  duration
demonstrated that shorter bursts were significantly more frequent in control relative to anx1 participants
(130-194ms, p < 0.05, FDR-corrected; PSsup= 0.70; Figure5CD). By contrast, long bursts of 630-1130ms were
more  frequent  in  anx1  than  control  participants  (p  <  0.05,  FDR-corrected,  PSsup=  0.92).  The  life-time
exponents were smaller in anx1 than in the control group at left sensorimotor electrodes (1.43 [0.30]; 1.70
[0.15]; p < 0.05, FDR-corrected; PSsup= 0.81). No differences in mean burst duration, life-time distribution, or
exponents were found between anx2 and control participants. Regarding the distribution of beta bursts
throughout the trial, the probability in all groups increased significantly at the completion of the trial-wise
performance,  as  reported  previously28,30  (p  <  0.05  in  all  groups,  FDR-corrected;  Figure  6).  Interestingly,
between-group  comparisons  demonstrated  that,  during  sequence  performance,  the  probability  of
oscillation bursts dropped in anx1 relative to control  participants (p < 0.05, FDR-corrected),  due to the
smaller rate of brief bursts in this experimental group (Figure 6 – figure supplement 1).

During training, the mean duration of bursts in anx2 or anx1 was not significantly different from values
obtained in the control group (Figure 5E, p > 0.05). However, long bursts were more frequent in anx2 than
in control participants (Figure 5FG,  duration 630-930 and 1380-1680ms;  p < 0.05, FDR-corrected, PSsup=
0.71), supporting that each experimental group exhibited longer beta bursts relative to control participants
during the blocks affected by the anxiety manipulation. Within-group comparisons further confirmed this
outcome, demonstrating that the average burst duration was longer during baseline exploration than during
training in anx1 across left sensorimotor electrodes (p < 0.05, FDR-corrected, PSsup = 0.73) – despite anx1
also exhibiting significantly more frequent long bursts during training than controls (630-770ms, p < 0.05,
FDR-corrected, PSsup = 0.68). Also, the burst duration was significantly longer during the first block of the
training phase than at baseline in anx2 (p < 0.05, FDR-corrected, PSsup = 0.71). In control participants, the
duration of beta bursts did not change across the experimental blocks (p > 0.05). Throughout the trial, the
probability of beta bursts did not differ between groups; yet there was a significant within-group increase in
burst probability from beginning to end of the trial in all channels and all groups (p < 0.05, FDR-corrected,
Figure 6). Following the feedback presentation, the burst probability dropped significantly relative to the
end of the trial in each group (p < 0.05, FDR-corrected) and similarly in all groups. The life-time exponent, ,
did not differ between groups (p > 0.05, around 1.6 on average in all groups).

Lastly, smaller slope values  – corresponding with long-tailed distributions of burst duration due to
the more frequent long bursts, as in anx1 – were associated with higher beta-band CQV across participants,
and both during exploration and during training (Spearman  = 0.496, p = 6 x 10-4 for exploration,  = 0.413,
p = 0.0011 for training; N = 60; Figure 6 – figure supplement 2). 
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Figure 5. Anxiety during baseline exploration modulates the duration of sensorimotor beta-band oscillation bursts.
(A) Illustration of the threshold-crossing procedure to detect beta oscillation bursts25,27. A threshold of 75% of the beta-
band amplitude envelope was selected and beta bursts extending for at least one cycle were accepted. Windows of
above-threshold oscillation bursts detected in the beta-band amplitude envelope (black line) are denoted by the green
lines.  (B) Scalp topography for between-group changes in the mean burst  duration during baseline exploration. A
significant positive cluster was found in an extended cluster of left sensorimotor electrodes, due to a longer average
burst duration in anx1 than in control participants (20-30ms longer; Black dots indicate significant electrodes, two-
tailed cluster-based permutation test, p < 0.025, FWE-corrected). (C) Probability distribution of beta-band oscillation-
burst  life-times  within  range  50-2000ms  for  each  group  during  baseline  exploration.  The  double-logarithmic
representation reveals a power law within the fitted range (timesteps in logarithmic x-axis 4.09-7.62, corresponding to
time windows 59.64 – 2053ms; first timestep excluded from the fit25). For each power law we extracted the slope, ,
also termed life-time exponent. The dashed line illustrates a power law with  = 1.5. Significant differences between
anx1 and control participants in oscillation-burst durations are denoted by the purple line at the bottom (p < 0.05, FDR-
corrected). The rectangle highlights the area enlarged and displayed in the right panel (D). Data shown as mean and ±
SEM. (E) Same as (B) but for differences in mean burst duration between anx2 and control groups during training. No
significant differences were found. (F) Same as (C) but during training. Significant between-group differences were
found for long-lived oscillation bursts within 630-930 and 1380-1680ms (anx2-controls, red bar at the bottom; p <
0.05, FDR-corrected) and 630-770ms (anx1-controls, purple bar at the bottom). (G) Enlarged display of the region of
between-group significant differences highlighted by the rectangle in (F).
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Figure 6. Time course of the rate of beta-band oscillation bursts throughout trial performance.  (A) Rate of beta
bursts during sequence performance in the baseline exploration phase. Participants completed  sequence1 on average
between 600 (SEM 100) and 3600 (100) ms (non-significant differences between groups, p> 0.05). The STOP signal (red
ellipse on the monitor) was displayed 7000 ms after the GO signal.  At 11000 ms the trial ended (the red ellipse
vanished). In all groups there was a significant increase in the rate of oscillation-bursts duration following completion
of the sequence performance (0-3500ms versus 3500 – 7000s trial segments, p < 0.05, FDR-corrected). In addition,
between-group comparisons demonstrated a significant drop in the burst rate in anx1 participants relative to control
participants during sequence performance (1100-3500 ms, denoned by the purple bar at the bottom; p < 0.05, FDR-
corrected). Data display the mean and ± SEM. (B) Same as (A) but for the training period, when participants played
sequence2. At 9000 ms, 2000 ms after the STOP signal, the feedback score was displayed for 2000 ms. There was a
within-group significant increase in burst rate following completion of the sequence performance  (0-3500ms versus
3500  –  7000s  trial  segments,  p  <  0.05,  FDR-corrected)  and  a  subsequent  significant  drop  following  feedback
presentation (p < 0.05, FDR-corrected). No significant between-group effects were found.

Discussion

Our findings expand previous computational modelling and experimental work that linked anxiety levels
(trait)  and  poorer performance, albeit  in aversive  environments2-3,35.  The results  demonstrate  that  state
anxiety impaired motor variability and exploration at baseline, decreasing performance in a subsequent
reward-based learning phase. Participants with larger task-related variability and exploration at baseline
scored higher during the following training phase, extending recent findings on the faciliatory effect of
exploration on motor learning10,36. Crucially, combining evidence from both experiments, we were able to
show that reward-based learning is not affected by concurrent state anxiety if participants were given the
opportunity of unlimited exploration during a preceding baseline phase. On the neural level, state anxiety
during  baseline  exploration  increased  variability  of  beta  oscillations  in  the  contralateral  sensorimotor
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cortex;  and to a lesser degree, also enhanced average beta power.  Finally,  bursts of sensorimotor beta
oscillations, a marker of physiological beta, lasted longer under the effect of anxiety, resembling recent
findings of abnormal burst duration in movement disorders. 
These results thus provide the first evidence for changes in variability and burst duration of sensorimotor
beta oscillations mediating the effects of anxiety on motor exploration, with negative consequences for
reward-based motor learning. 

Anxiety constrains motor variability and exploration
Previous studies manipulating psychological  stress and anxiety to assess motor learning showed both a
deleterious and faciliatory effect37-38. Differences in experimental tasks, which often assess motor learning
during or after high-stress situations but not during anxiety induction in anticipation of a stressor, could
account for the previous mixed results. Here, we adhere to the neurobiological definition of anxiety as a
psychological and physiological response to an upcoming diffuse and unpredictable threat 1,2.  Accordingly,
anxiety  was  induced  using  the  threat  of  an  upcoming  public  speaking  task  reliably  shown  to  lead  to
anticipatory  changes  in  heart-rate  and  perceived  anxiety14,29..  The  analysis  of  HRV  confirmed  that  the
experimental  manipulation  succeeded  in  modulating  activity  in  the  autonomic  nervous  system  in
association with the anxiety induction during the targeted blocks. Behaviorally, state anxiety at baseline
reduced task-related variability within the trial but also exploration across trials. This converges with recent
evidence  demonstrating  that  anxiety  leads  to  ritualistic  behavior  (repetition,  redundancy,  rigidity  of
movements) to regain a sense of  control14.  Crucially,  however,  anx1 participants continued to exhibit  a
limited use of temporal variability and exploration during subsequent non-anxiety-related training – despite
this phase requiring an unrelated piano sequence performance and the HRV returning to normal levels.
Moreover, they achieved lower scores and an overall smaller monetary reward. By contrast, participants in
the control and anx2 groups who freely explored the temporal dimension during baseline achieved higher
scores during training. Our results thus extend previous work10,36 on the beneficial effect of motor variability
on motor learning to the context of anxiety. In particular, the data support that mechanistically the anxiety-
induced  reduction  in  behavioral  exploration  impairs  performance  in  successive  tasks  that  depend  on
exploration for learning. 

Significantly, the control experiment demonstrated that removal of baseline motor exploration leads to
anxiety  diminishing  reward-based  learning,  establishing  the  relevance  of  unconstrained  exploration  for
successful  motor  learning.  Our  results  thus  have  implications  for  research  on  anxiety  disorders  and
performance anxiety, by supporting that intervention programs exploring movements during a non-anxious
phase could preserve subsequent motor learning when anxiety re-emerges.

We accounted for two sources of temporal variability. Within-trial variability was directly linked to
the  computation  of  feedback  scores  during  training.  Across-trials  variability  was  higher  in  participants
exploring different performance options in successive trials. Operationally, however, higher levels of across-
trials  variability  could reflect both an intentional  pursuit  of  an explorative regime;  or,  an unintentional
higher level  of  motor noise.  Similarly,  motor variability  in previous studies reflected contributions from
motor noise and intentional exploration, and it is possible that both sources of variability could be beneficial
for  reward-based learning10-11.  A  recent  study,  however,  established that  motor  learning  (and decision-
making) is improved by the use of intended exploration, not motor noise13. Although our paradigm cannot
dissociate between intended and unintended exploration, the successful transition from an explorative to
an exploitative regime in anx2 and control participants from baseline to training blocks, and further during
the training blocks, shows they were capable of context-dependent modulation of task-related variability.
This outcome aligns well with animal studies where evidence shows a reduction in motor exploration when
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stakes are high (high-reward situations, social context)36,39-40. Furthermore, the transition was paralleled by
an increase in within-trial task-related variability to achieve higher scores, demonstrating that separately
controlling within-trial and across-trials variability was possible and necessary for success. The results are
consistent  with computational approaches to  motor control  emphasizing that  during task performance,
some variables are controlled by the central nervous system, whereas others are left unconstrained9, 41.

Variability and burst duration of beta oscillations mediate the effects of anxiety on behavior.
An important finding was that anxiety at baseline increased variability in the amplitude envelope of beta
oscillations  during  performance.  This  increase  was  observed  in  a  region  of  contralateral  sensorimotor
channels, supporting that in humans changes in sensorimotor beta variability by anxiety track the changes
in motor variability and exploration. Although EEG does not allow for a detailed anatomical localization of
the effect, the finding is consistent with the involvement  of premotor and motor cortex in driving  motor
variability and learning, as previously reported in animal studies16-18, as well as with the changes in motor
cortical excitability found in anxious individuals in clinical settings42.  Moreover,  the data suggest that an
excessive degree of variation in the amplitude of sensorimotor beta oscillations might be detrimental for
performance. 

The observed anxiety-related changes in beta variability at baseline and during training were correlated
with  the  life-time  exponents  of  the  distribution  of  oscillation  bursts  across  contralateral  sensorimotor
channels.  These  correlation  results  indicate  that  a  tendency  towards  more  frequent  long  bursts  was
associated with more variable amplitude of beta oscillations during trial performance. A similar association
has been recently  observed in work comparing beta oscillation properties in real and shuffled data28. Our
data  demonstrate  for  the  first  time  a  context-dependent  anxiety-related  modulation  of  the  burst
distribution of cortical sensorimotor beta oscillations. Although bursts of 50-100ms were the most frequent
in  all  experimental  groups,  the  most  pronounced  presence  of  long  bursts  was  found  in  anx1  during
exploration,  and  partially  also  during  training.  The  outcomes  thus  tentatively  link  the  more  frequent
presence of long-lived oscillation bursts in sensorimotor regions to reduced motor exploration and learning.

Brief bursts of alpha and beta oscillations extending from one to several cycles have been linked to the
normal  physiological  state  during  rest  and  motor  performance,  respectively25-26.  In  the  case  of  alpha
oscillations at rest, it has been suggested that bursts represent neuronal avalanches propagating in neural
networks  operating  near  a  critical  state25.  The  life-time  exponents  reported  for  sensorimotor  alpha
oscillations lies within 1.5-1.9925, in line with the values of the beta-band oscillation-burst distribution we
obtained, 1.4-1.9.  This range of exponents is consistent with neural dynamics operating in a state close to
criticality25, which would be beneficial for information processing as it supports a balance between flexibility
and  stability34.  A  link  between  beta-band  oscillation  bursts  and  information  processing  has  also  been
proposed in recent studies, which showed that the timing and distribution of beta bursts influence motor
processing on a trial-by-trial basis26,28. These brief bursts of beta oscillations emerge most prominently in the
pre- and post-movement period26,28, which converges with the time course of burst probability in our study.
Alternative hypotheses posit that beta bursts contribute to inhibitory processes 43, in line with the suggested
anti-kinetic role of beta oscillations44. This interpretation would apply to the power effects in our study, as
anxiety at baseline increased the average beta power, which could have limited the expression of motor
variability in anx1 participants.

Interestingly, during baseline the exponents in contralateral sensorimotor electrodes dropped in anx1
relative to control  participants,  corresponding with the long-tailed distribution of  burst  duration in this
experimental group. This finding at the cortical level converges with recent data from the basal ganglia in
patients with Parkinson's disease, showing that  beta bursts last  longer in association with more severe
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motor symptoms27. The link is also interesting considering the evidence for a role of basal ganglia variability
driving movement variability19-20. Previous songbird studies demonstrated that contextual cues such as the
presence of a partner alter the expression of neuronal variability during singing via modulation of dopamine
release39. In Parkinson’s disease, a condition characterized by a loss of dopaminergic cells in the substantia
nigra,  reward-based  modulation  of  movement  variability  is  limited11.  Our  data  thus  imply  that
corresponding changes in the duration of beta-band oscillation bursts in basal ganglia structures could be
driving  the  cortical  effects,  thereby  shaping  the  use  of  movement  variability.  Future  work,  combining
recordings in the human basal ganglia and cortex, should test this prediction.

In conclusion, this study provides the first evidence that contextual modulation of beta bursts and variability
by  anxiety  biases  motor  behavior,  leading  to  changes  in  motor  variability  and  exploration,  with
consequences for motor learning.

Materials and Methods

Participants and sample size estimation
In the main experiment, 60 right-handed healthy volunteers (37 females) aged 18 to 44 (mean 27 years,
standard error of the mean, SEM, 1) participated in this study. In the second, control experiment, 26 right-
handed healthy participants (16 females,  mean age:  25.8,  SEM 1, range 19-40)  took part  in the study.
Sample size estimation can be found in S.I.  Materials  and Methods.  Participants gave written informed
consent prior to the start of the experiment, which had been approved by the local Ethics Committee at
Goldsmiths University. Participants received a base rate of either course credits or money (£15) (equally
distributed across groups) and were able to earn an additional sum up to £20 during the task depending on
their performance. 

We used pilot data from a behavioral study using the same experimental paradigm (data not shown) to
estimate the minimum sample sizes for a statistical power of 0.95, with an of 0.05, using the MATLAB (The
MathWorks,  Inc.,  MA,  USA)  function  sampsizepwr.  In  the  pilot  study  we  had  one  control  and  one
experimental  group  of  20  participants  each.  In  the  experimental  group  we  manipulated  the  reward
structure  during  the first  training  block  (in  this  block  feedback scores  did  not  count  towards  the final
average monetary reward). For each behavioral measure (within-trial cvIOI and mean score), we extracted
the standard deviation (sd) of the joint distribution from both groups and the mean value of each separate
distribution (e.g. m1: control, m2: experimental), which provided the following minimum sample sizes:
Between-group  comparison  of  within-trial  cvIOI  and  mean  score  parameters  (using  2-tailed  t-test):
MinSamplSizeA = sampsizepwr('t',[m1 sd],m2, 0.95) = 18-20 participants. 
Accordingly, we recruited 20 participants for each group in the main experiment. Next, using the behavioral
data from the anx1 and control groups in this main experiment (as we found large non-parametric effect
sizes in the anx1-control comparison, PSsup in range 0.7-0.8), we estimated the minimum sample size for the
second, control experiment:
Between-group (anx1-controls) comparison of within-trial cvIOI and mean score parameters (using 2-tailed
t-test): MinSamplSizeA = sampsizepwr('t',[m1 sd],m2, 0.95) = 13 participants. 
Therefore for the second control experiment we recruited 13 participants in each group.

Apparatus and Materials
Participants were seated at a digital piano (Yamaha Digital Piano P-255, London, United Kingdom) and in
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front of a PC monitor in a light-dimmed room. They sat comfortably in an arm-chair with their forearms
resting on the armrests of the chair. The screen displayed the instructions, feedback and visual cues for start
and end of a trial. Participants were asked to place four fingers of their right hand (excluding the thumb)
comfortably on 4 pre-defined keys on the keyboard. Performance information was transmitted and saved as
Musical Instrument Digital Interface (MIDI) data, which provided time onsets of keystrokes relative to the
previous one (inter-onset-interval – IOI in ms), MIDI velocities (related to the loudness, in arbitrary units,
a.u.), and MIDI note numbers that corresponded to the pitch. The experiment was run using Visual Basic
and additional parallel port and MIDI libraries.
The sequence patterns for  the baseline  exploration and training blocks  were designed so that  the key
presses would span a range of four neighbouring keys on the piano (Figure 1A). 

Experimental design
In all blocks, participants initiated the trial by pressing a pre-defined key with their left index finger. After a
jittered interval of 1-2 s, a green ellipse appeared in the centre of the screen representing the “go” signal for
task execution. Participants had 7 s to perform the sequence which was ample time to complete it before
the green circle turned red indicating the end of the execution time. If participants failed to perform the
sequence in the correct order or initiated the sequence before the “go” signal, the screen turned yellow
(Figure 1B). In blocks 2 and 3 during training, performance-based feedback in form of a score between 0
and 100 was displayed on the screen 2 s after the red ellipse, that is, 9 s from the beginning of the trial. The
performance-based  feedback  (scores)  provided  participants  with  information  regarding  the  target
performance. The pattern of inter-onset-intervals (IOIs) was used to assess the timing or rhythm of the
performance,  whereas  the  MIDI  keystroke  velocity  was  used  to  quantify  the  dynamics  (changes  in
loudness). 

The target rhythm consisted of a pattern of alternating short and long IOIs: t≡ [0.2, 1, 0.2, 1, 0.2, 1, 0.2] s
(7 IOIs for an 8 notes-long sequence). The score was computed using a measure of proximity between the
pattern of IOIs performed in each trial (p) and the rewarded rhythm. Specifically, we computed the norm of
the  differences  between  adjacent  IOI  values  (MATLAB  function dif)  for  the  performed  pattern
normDp=‖diff (p)‖  and, separately, for the target pattern  normDt=‖diff (t)‖ . Next, the score

was calculated using this expression: 
score=100 e−|normDp−normDt|

In practice, different rhythm patterns could achieve the same reward, as any pattern of IOIs leading to the
same normDp  value obtained identical scores. The scores correlated with the difference between the
cvIOI of the performed and target patterns ( r = 0.53, p < 0.0001), and accordingly, same values of cvIOI led
to identical scores. Participants were unaware of the existence of various solutions and their performance
demonstrated that they approached a single-solution. The rationale for accepting different timing patterns
as  maximally  rewarded  solutions  was  our  aim  to  enable  a  steady  learning  rate  in  all  participants,  by
diminishing the difficulty that would be associated with requiring one single solution.

Anxiety Manipulation
Anxiety was induced during block1 performance in group anx1, and during block2 performance in the anx2
group by informing participants about the need to give a 2-minute speech to a panel of experts about an
unknown art object at the end of that block14. We specified that they would first see the object at the end
of the block (it  was a copy of Wassily Kandinsky' Reciprocal  Accords [1942])  and would have 2 min to
prepare for the presentation. Participants were told that the panel of experts would take notes during their
speech and would be standing in front of the testing room (due to the EEG setup participants had to remain
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seated in front of the piano). Following the 2-min preparation period, participants were informed that due
to the momentary absence of panel members they instead had to present in front of the lab members.
Participants in the control group had the task to describe the artistic object to themselves, not in front of a
panel of experts. They were informed about this secondary task at the beginning of the exploration phase. 

Assessment of State Anxiety 
To assess state anxiety we acquired two types of data: (1) the short version of the Spielberger  State-Trait
Anxiety Inventory (STAI, state scale X1, 20 items)45 and (2) a continuous electrocardiogram (ECG, see EEG
and ECG recording session). The STAI X1 subscale was presented four times throughout the experiment. A
baseline assessment before the start of the experiment before the resting state recording was then followed
by an assessment immediately before each experimental block to determine changes in anxiety levels. In
addition, we a continuous ECG recording was obtained during the resting state and experimental blocks to
assess  changes  in  autonomic  nervous  system  responses.  The  indexes  of  heart  rate  variability  (HRV,
coefficient  of  variation  of  the  inter-beat-interval)  and  mean  heart  rate  (HR)  were  evaluated,  as  their
reduction has been linked to changes in anxiety state due to a stressor29.

EEG, ECG and MIDI recording
EEG and ECG signals were recorded using a 64-channel (extended international 10–20 system) EEG system
(ActiveTwo, BioSemi Inc.) placed in an electromagnetically shielded room. During the recording, the data
were high-pass filtered at 0.16 Hz. The vertical and horizontal eye-movements (EOG) were monitored by
electrodes above and below the right eye and from the outer canthi of both eyes, respectively. Additional
external electrodes were placed on both left and right earlobes as reference. The ECG was recorded using
two external channels with a bipolar ECG lead II configuration. The sampling frequency was 512 Hz. Onsets
of visual stimuli, key presses and metronome beats were automatically documented with markers in the
EEG file. The performance was additionally recorded as MIDI files using the software Visual Basic and a
standard MIDI sequencer program on a Windows Computer.

EEG and ECG pre-processing
We used MATLAB and the FieldTrip toolbox46 for visualization, filtering and independent component analysis
(ICA;  runica).  The  EEG  data  were  highpass-filtered  at  0.5  Hz  (Hamming  windowed  sinc  finite  impulse
response [FIR] filter, 3380 points) and notch-filtered at 50 Hz (847 points). Artifact components in the EEG
data related to related to eye blinks, eye movements and the cardiac-field artifact were identified using ICA.
Following  IC  inspection,  we  used  the  EEGLAB toolbox47 to  interpolate  missing  or  noisy  channels  using
spherical interpolation. Finally, we transformed the data into common average reference. 
Analysis of the ECG data focused on detection of the QRS-complex to extract the R-peak latencies of each
heartbeat and use them to evaluate the HRV and HR measures in each experimental block.

Analysis of power spectral density and variability of oscillations
We first assessed the standard power spectral density (PSD, in mV2/Hz) of the continuous raw data in each
performance block and separately for each group. The PSD was computed with the standard fast Fourier
Transform  (Welch  method,  Hanning  window  of  1s  with  50%  overlap).  The  raw  PSD  estimation  was
normalised into decibels (dB) with the average PSD from the initial rest recordings (3 min). Specifically, the
log normalized PSD during the performance blocks was calculated as the natural logarithm of the quotient
between the performance-block PSD and the resting state power.
In addition, variability of cortical beta-band (13-30Hz) activity in each performance block was assessed using
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the coefficient of quartile variation (CQV32,48). The CQV is a descriptive statistic based on the first (lower) and
third (higher) quartile of the data:

CQV =
Q3−Q1

Q3+Q1

 
The difference Q3-Q1, termed interquartile range, is a measure of the dispersion of the data when ranked. To
measure the CQV of  beta oscillations, the amplitude envelope of  the instantaneous analytic signal  was
computed after applying the Hilbert  transform to the bandpass-filtered raw data  (12–35 Hz;  Hamming
windowed two-way least-squares FIR filter applied with the eegfilt.m routine from the EEGLAB toolbox. See
Figure 4D) spanning the full continuous recording in each performance block. Next, from the total beta-
band amplitude envelope we selected data epochs of 10s corresponding to each performance trial (trial of
7 s,  post-performance period of 3 s). This step provided 100 epochs during baseline exploration and 200
epochs during training. The beta-band  CQV index was computed for each of these single-trials, and was
then averaged across trials within each block.

Extraction of beta-band oscillation bursts
The  time  series  of  beta-band  amplitude  envelope  obtained  in  the  CQV  analyses  were  used  to  detect
oscillation bursts. We followed a procedure adapted from previous work on oscillation bursts25,27. In brief,
we  used  as  threshold  the  75%  percentile  of  the  amplitude  envelope  of  beta  oscillations  (after
rectification)27.  Amplitude values above this threshold were considered to be part of an oscillation burst if
they extended for at least one cycle (50ms: as a compromise between the duration of one 13 Hz-cycle [76
ms] and 30 Hz-cycle [33 ms]). Threshold-crossings that were separated by less than 25 ms were considered
to be part of the same oscillation burst. As an additional threshold the median amplitude was used in a
control analysis, which revealed similar results (significantly more frequent short bursts in control relative to
anx1 participants but less frequent long bursts, p < 0.05, FDR-corrected), as expected from previous work25.
Importantly, because threshold crossings are affected by the signal-to-noise ratio in the recording, which
could  vary  between  the  baseline  and  training  blocks,  we  selected  a  common  threshold  across  all
experimental blocks separately for each participant27. 
Distributions of the rate of oscillation bursts per duration were estimated using equidistant binning on a
logarithmic axis with 20 bins between 50-2000 ms. In all participants the double-logarithmic representation
of the distributions of burst duration followed a decaying power-law with slope values, , in the range 1.4-
1.9, in agreement with previously reported values for sensorimotor alpha bursts25.

Statistical Analysis
Between-group  comparison  focused  on  each  experimental  group,  separately,  and  the  control  group
(contrasts:  anx1  –  control,  anx2  –  control).  Differences  between  experimental  groups  anx1-anx2  were
evaluated exclusively concerning the overall achieved monetary reward. When appropriate, we tested main
effects  and  interactions  for  factors  Group  (anx,  control)  and  Phase  (baseline,  training)  using  a  2x2
synchronized permutations test49. This analysis was complemented with non-parametric permutation tests
to assess  differences  between conditions or  between groups in the statistical  analysis  of  behavioral  or
neural measures. To evaluate differences between sets of multivariate EEG signals corresponding to two
conditions or groups, we used two-sided cluster-based permutation tests33  and an alpha level of 0.025.
Control of the family-wise error rate was implemented in these tests to account for the problem of multiple
comparisons33.  When  multiple  testing  was  performed  with  permutation  tests  and  synchronized
permutations, the FDR was controlled at level q = 0.0530.
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Figure 1 – figure supplement 1. Heart-rate varibility (HRV) modulation by the anxiety manipulation.  Average HRV
measured as the coefficient of variation of the inter-beat-interval is displayed across the experimental blocks: initial
resting state recording (Pre), baseline exploration (Base), first block of training (Train1), last block of training (Train2).
Relative to Pre, there was a significant drop in HRV in anx1 participants during baseline exploration (p <
0.05, FDR-corrected,  PSdep = 0.81). In anx2 participants the drop in HRV was found during the first training
phase, which was affected by the anxiety manipulation (p < 0.05, FDR-corrected,  PSdep = 0.78). In addition, relative to
the control group, anx1 demonstrated a significantly lower HRV at baseline (p < 0.05, FDR-corrected, PS dep = 0.75). The
second experimental group, anx2, exhibited a significant drop in HRV relative to controls during the first training block
(p < 0.05, FDR-corrected, PSdep  = 0.71). These results demonstrate a group-specific modulation of anxiety relative to
controls during the targeted blocks. No changes in mean heart-rate  were found (P > 0.05). Neither was the STAI state
anxiety subscale able to dissociate between the different phases in each group or between-groups (p > 0.05; mean
values within 29-37 in all groups and experimental blocks). This is likely due to the habituation of the participants to
the questionnaire.
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Figure 3 – figure supplement 1. Non-Task related variability in keystroke velocity. Top: Within-trial variability in Kvel
across the experimental blocks (trials were split into bins of 25 trials and values were averaged within each bin). No
significant between-group differences were found (p > 0.05). Bars around the mean display ±SEM.  Data for control
participants  are  shown  in  black,  wherease  data  in  purple  /  red  indicate  values  in  the  anx1  and  anx2  groups,
respectively.  Bottom:  Same  as  in  the  upper  panel  but  for  the  across-trials  cvKvel.  No  significant  between-group
differences were found either (p > 0.05).
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Figure 3 – figure supplement 2. Control experiment: Effect of anxiety on variability and learning after removal of the
baseline exploration phase. Results of the control experiment in which new anx2 and control participants completed
the reward-based learning phases without a prior exploration phase.  Panels A/C/E are displayed as Figure 3A-C.
Significant between-group differences are denoted by the black bar  at  the bottom (p  < 0.05,  FDR-corrected).  (B)
Coefficient of variability of the average score, showing similar dispersion in both groups. (D) Same as Figure 3 – figure
supplement 1. (E) There was a significant drop in across-trials cvIOI for controls, not for anx2 participants (p < 0.05,
FDR-corrected). (F) Same as Figure 3 – figure supplement 1. 

25

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989
990
991
992
993
994
995
996
997

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/442772doi: bioRxiv preprint first posted online Oct. 14, 2018; 

http://dx.doi.org/10.1101/442772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 – figure supplement 1.  Beta power and variability during reward-based training. Displayed as Figure 4:
Power changes are shown in panels A-C. No between-group differences were found (p > 0.05). Changes in variability of
beta amplitude envelope (Beta CQV) are shown in panels D-G. Anx1 participants had larger beta CQV values than
control participants across sensorimotor electrodes (p < 0.025, two-tailed cluster-based permutation test, denoted by
the  asterisks).  Anx2 participants  also  had larger  beta  CQV than  control  participants,  albeit  in  a  region of  frontal
electrodes (p < 0.025, two-tailed cluster-based permutation test, denoted by the asterisks). 
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Figure 6 – figure supplement 1. Rate of beta bursts as a function of burst duration (range 50 – 2000ms) and time
during trial-wise performance (trial lengh 0 – 12000ms). (A) Rate of oscillation bursts in one representative subject
during exploration. (B) Same as (A) but during training.

Figure 6 – figure supplement 2. Association between the life-time exponent of the beta-bursts distribution and the
measure of variability of the beta amplitude envelope.  Non-parametric rank correlation (Spearman ) across all 60
participants between the life-time exponent,  , of the oscillation-bursts distribution and the beta CQV index during
exploration (A) and training (B). 
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	In the main experiment, 60 right-handed healthy volunteers (37 females) aged 18 to 44 (mean 27 years, standard error of the mean, SEM, 1) participated in this study. In the second, control experiment, 26 right-handed healthy participants (16 females, mean age: 25.8, SEM 1, range 19-40) took part in the study. Sample size estimation can be found in S.I. Materials and Methods. Participants gave written informed consent prior to the start of the experiment, which had been approved by the local Ethics Committee at Goldsmiths University. Participants received a base rate of either course credits or money (£15) (equally distributed across groups) and were able to earn an additional sum up to £20 during the task depending on their performance.
	Figure 1 – figure supplement 1. Heart-rate varibility (HRV) modulation by the anxiety manipulation. Average HRV measured as the coefficient of variation of the inter-beat-interval is displayed across the experimental blocks: initial resting state recording (Pre), baseline exploration (Base), first block of training (Train1), last block of training (Train2). Relative to Pre, there was a significant drop in HRV in anx1 participants during baseline exploration (p < 0.05, FDR-corrected, PSdep = 0.81). In anx2 participants the drop in HRV was found during the first training phase, which was affected by the anxiety manipulation (p < 0.05, FDR-corrected, PSdep = 0.78). In addition, relative to the control group, anx1 demonstrated a significantly lower HRV at baseline (p < 0.05, FDR-corrected, PSdep = 0.75). The second experimental group, anx2, exhibited a significant drop in HRV relative to controls during the first training block (p < 0.05, FDR-corrected, PSdep = 0.71). These results demonstrate a group-specific modulation of anxiety relative to controls during the targeted blocks. No changes in mean heart-rate were found (P > 0.05). Neither was the STAI state anxiety subscale able to dissociate between the different phases in each group or between-groups (p > 0.05; mean values within 29-37 in all groups and experimental blocks). This is likely due to the habituation of the participants to the questionnaire.
	Figure 3 – figure supplement 1. Non-Task related variability in keystroke velocity. Top: Within-trial variability in Kvel across the experimental blocks (trials were split into bins of 25 trials and values were averaged within each bin). No significant between-group differences were found (p > 0.05). Bars around the mean display ±SEM. Data for control participants are shown in black, wherease data in purple / red indicate values in the anx1 and anx2 groups, respectively. Bottom: Same as in the upper panel but for the across-trials cvKvel. No significant between-group differences were found either (p > 0.05).

