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Abstract 

The growing adoption of Electronic Health Record (EHR) systems has resulted in an 

unprecedented amount of data. This availability of data has also opened up the opportunity to 

utilize EHRs for providing more customized care for each patient by considering individual 

variability, which is the goal of precision medicine. In this context, patient similarity (PS) 

analytics have been introduced to facilitate data analysis through investigating the similarities 

in patients’ data, and, ultimately, to help improve the healthcare system.  

This dissertation is presented in six chapters and focuses on employing PS analytics in 

data-rich intensive care units. Chapter 1 provides a review of the literature and summarizes 

studies describing approaches for predicting patients’ future health status based on EHR and 

PS. Chapter 2 demonstrates the informativeness of missing data in patient profiles and 

introduces missing data indicators to use this information in mortality prediction. The results 

demonstrate that including indicators with observed measurements in a set of well-known 

prediction models (logistic regression, decision tree, and random forest) can improve the 

predictive accuracy. 

Chapter 3 builds upon the previous results and utilizes these missing indicators to reveal 

patient subpopulations based on their similarity in laboratory test ordering being used for 

them. In this chapter, the Density-based Spatial Clustering of Applications with Noise 

method, was employed to group the patients into clusters using the indicators generated in 

the previous study. Results confirmed that missing indicators capture the laboratory-test-
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ordering patterns that are informative and can be used to identify similar patient 

subpopulations. 

Chapter 4 investigates the performance of a multifaceted PS metric constructed by utilizing 

appropriate similarity metrics for specific clinical variables (e.g. vital signs, ICD-9, etc.). The 

proposed PS metric was evaluated in a 30-day post-discharge mortality prediction problem. 

Results demonstrate that PS-based prediction models with the new PS metric outperformed 

population-based prediction models. Moreover, the multifaceted PS metric significantly 

outperformed cosine and Euclidean PS metric in k-nearest neighbors setting.  

Chapter 5 takes the previous results into consideration and looks for potential 

subpopulations among septic patients. Sepsis is one of the most common causes of death in 

Canada. The focus of this chapter is on longitudinal EHR data which are a collection of 

observations of measurements made chronologically for each patient. This chapter employs 

Functional Principal Component Analysis to derive the dominant modes of variation in septic 

patients’ EHR's. Results confirm that including temporal data in the analysis can help in 

identifying subgroups of septic patients. 

Finally, Chapter 6 provides a discussion of results from previous chapters. The results 

indicate the informativeness of missing data and how PS can help in improving the 

performance of predictive modeling. Moreover, results show that utilizing the temporal 

information in PS calculation improves patient stratification. Finally, the discussion identifies 

limitations and directions for future research. 
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Introduction 

The growing amount of Electronic Health Record (EHR) data has provided the opportunity 

to utilize it for improving healthcare systems and patient outcomes. A recent initiative for 

fulfilling these objectives is precision medicine, the goal of which is to provide treatment and 

prevention strategies that take individual variability into consideration (Collins et al. 2015). 

Patient Similarity (PS) analytics, a novel approach to precision medicine, focuses on 

investigating the similarities in patients’ data so as to provide more customized care 

(Parimbelli et al. 2018). This dissertation is concerned with the application of PS analytics 

among Intensive Care Unit (ICU) patients. It first demonstrates the informativeness of 

missing data among the heterogeneous populations of ICU patients particularly with respect 

to predictive modeling. It then utilizes the proposed data representation to identify patient 

subpopulations based on the similarities in laboratory tests ordered for each patient. After 

that, it shifts its focus to defining a multifaceted PS metric in which similarity scores from 

various metrics—specific to the variable under examination—are aggregated to build the 

final score. Finally, this dissertation takes the findings from previous sections into 

consideration and looks for potential subpopulations among septic patients, with a special 

focus on the longitudinal data collected for this patient cohort. 
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The purpose of this chapter is three-fold: first it presents an overview of the background 

concepts used throughout the dissertation, and then lays out the dissertation’s organization.  

The background section begins with a discussion of the availability of EHR data and their 

potential secondary uses, followed by their challenges in practice. Then, the discussion is 

narrowed down to the application of EHR data in health analytics in population-based and 

personalized applications. With personalized health analytics in mind, PS analytics and its 

promise are introduced. Then, the focus is brought to ICUs, where PS analytics can play an 

important role. After establishing the background for this thesis, a comprehensive review of 

the literature on PS analytics is provided, which forms the core of this thesis. Finally, the 

rationale, arching objectives, and the outline for the rest of this thesis are discussed.  

1.1 Background 

1.1.1 Electronic Health Records and their Secondary Uses 

Along with strategies that have been employed to develop and adopt health information 

technology and EHRs (Coiera 2009; Morrison et al. 2011), billions of dollars of investments 

in this field, such as the nearly 2 billion dollar funding allocated by the Health Information 

Technology for Economic and Clinical Health (HITECH) Act in the United States 

(Blumenthal 2010), have accelerated the adoption of EHR systems and resulted in an 

unprecedented amount of data. According to the International Organization for 

Standardization (2005), an EHR is a “repository of information regarding the health status of 

a subject of care, in computer processable form, stored and transmitted securely and 
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accessible by multiple authorized users, having a standardized or commonly agreed logical 

information model that is independent of EHR systems and whose primary purpose is the 

support of continuing, efficient and quality integrated health care.” This availability of data 

has also opened up the opportunity to utilize EHR for secondary uses like assessing the 

efficiency of health care systems, research for expanding knowledge about diseases and 

treatments, improving public health and health services, etc. According to the American 

Medical Informatics Association (Safran et al. 2007), “Secondary use of health data can 

enhance health care experiences for individuals, expand knowledge about disease and 

appropriate treatments, strengthen understanding about effectiveness and efficiency of health 

care systems, support public health and security goals, and aid businesses in meeting 

customers' needs.”  Studies have also demonstrated that EHR can help in improving the 

quality of care (Kern et al. 2013; Cebul et al. 2011; Campanella et al. 2016) and reducing 

medical errors (Ammenwerth et al. 2008; Devine et al. 2010; Campanella et al. 2016).  

1.1.2 EHR Data Challenges 

EHR data consist of structured/coded and unstructured data. Each category also includes 

various data types for different purposes (Hayrinen et al. 2008). This wide range of data 

types highlights the challenges in EHR secondary uses (Jensen et al. 2012). Moreover, since 

EHR data have not been collected particularly for research purposes, the task of mining these 

data is not trivial due to the following challenges.  
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Incomplete data: EHR data comprise a variety of incomplete information and 

measurements. Since most standard analytical methods require complete data, missing data 

can be problematic. 

Volume and dimensionality: EHRs include enormous amounts of administrative data, 

ancillary clinical data and clinical text reported as numerous variables (Jensen et al. 2012). 

The amount of the data gets even bigger with continuous-monitoring systems. Mining this 

amount of data can be complex and computationally challenging. 

Data complexity:  EHR data consist of information about thousands of variables and their 

underlying relations; therefore, EHR data are highly complex. 

Data quality: Administrative data often refers to billing codes, which will then be used for 

financial reimbursement and sometimes suffer from biases since the amount of 

reimbursement depends on the assigned codes (Jensen et al. 2012). For instance, it has been 

observed that using a diagnosis-related group patient classification system for payment 

system increases secondary diagnoses (Serden et al. 2003). Ancillary clinical data also suffer 

from errors in measurement, collection and data entry processes (Koppel 2009). Clinical text 

has its own sources of imprecision, including lack of normal grammar, and is rich in spelling 

and typing errors (Meystre et al. 2008). 

Temporal data: The temporal nature of EHR data holds the promise to provide more-

detailed data (Singh 2015). However, longitudinal EHR data mining is still in its early stages, 
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and exploring patient trajectories can be complex and computationally demanding (Jensen et 

al. 2012). 

Irregular sampling: EHR data are only recorded when a patient visits a hospital or during 

a healthcare period, which causes varying time intervals between measurements. When using 

non-temporal methods to analyse EHR data, this challenge is well-handled by aggregating 

data over the time window of interest (Singh et al. 2015). However, longitudinal analysis of 

the data can be challenging and requires accounting for dependency of repeated measures 

within the same individual.  

1.1.3 Precision and Population-based Analytics  

With the emergence of the ever-growing amount of EHR data, it is becoming much more 

demanding for clinicians to examine that data in depth and derive actionable insights from 

the overlapping biomedical structures and body-system interactions. Therefore, in recent 

decades, health analytics has been widely utilizing EHR data in the following applications to 

achieve the goals of secondary uses of EHR data. 

Predictive modeling: In the past, medicine was largely a reactive field—a disease is 

treated, when it has been diagnosed (Miner et al. 2014). However, a move toward proactive 

medicine has been initiated (Hood et al. 2009). One particular pathway to proactive medicine 

employs predictive analytics, for instance, to attempt to accurately derive insights from 

available health data to predict disease progression and provide recommendations to optimize 

patient outcomes. Predictive modeling utilizes statistical and machine learning methods to 
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learn from clinical data and subsequently to predict patients’ future health outcomes. Among 

the areas for prediction are graft survival in heart-lung transplants (Oztekin et al. 2009), 

cancer survival (Delen et al. 2005; Zolbanin et al. 2015; Gupta et al. 2014) and future 

hospital admissions (Peck et al. 2013; Li et al. 2009).  

Patient stratification: Many clinical research studies and clinical trials largely rely on the 

identification of a homogeneous study population (Jensen et al. 2012). Moreover, patient 

stratification has been widely used to study risk factors, outcomes and prognoses within 

population groups to uncover underlying attributes (Hu et al. 2016a; Bose et al. 2018). 

Patient stratification analytics employs clustering methods to group patients based on their 

characteristics and similarities (Jensen et al. 2012).  

Care pathway exploration: After disease diagnosis, clinicians come up with a care 

plan—which is a sequence of medical interventions known as a care pathway— using their 

knowledge and the available evidence to control or improve the patient’s health status (Hu et 

al. 2016a). Although effective care plans hold the promise to provide best-care scenarios, 

developing and optimizing them is a challenging task. Care pathway analytics has been used 

to identify the most desirable and effective care plan by deriving and exploring care 

pathways and their associated outcomes, based on EHR data. This approach has been used to 

analyze pediatric asthma care (Basole et al. 2015), congestive heart failure care plans (Perer 

et al. 2013; Gotz et al. 2012a), and vasopressor intervention (Wu et al. 2017). 



 

 

7 

In general, there are two major streams in the aforementioned health analytics: population-

based analytics and precision medicine analytics. 

1.1.3.1 Population-Based Analytics 

Many evidence-based studies have been done on large populations to answer a wide range of 

health-related questions, including the second version of the Acute Physiology and Chronic 

Health Evaluation (APACHE-II) (Knaus et al. 1985), the Framingham heart failure risk 

assessment (McKee et al. 1971), and a study done in southern England to devise a diabetes 

risk score for predicting undetected type 2 diabetes (Griffin et al. 2000). These studies 

provide statistically rigorous results for an average patient. However, they are also relatively 

expensive, time-consuming and prone to population selection bias (Miner et al. 2014). For 

instance, most of these studies are mainly concerned with patients who seek care. 

Additionally, one of the major challenges in evidence-based medicine is multimorbidity, 

which limits generalizing a study to many patients (Campbell-Scherer 2010; Gotz et al. 

2012b).  

Typically, evidence-based medicine utilizes guidelines derived from studies on a large 

population and provides “the average best choice” (Bellazzi et al. 2011). Therefore, 

physicians cannot solely rely on the evidence from the mean of the population when facing 

an individual with special conditions; instead, they must base their recommendations on the 

characteristics of that particular patient. For instance, many patients have been placed on 

Statins, even though only one patient among 50 may benefit (Mukherjee et al. 2002), and 
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certain types of patients may actually be harmed by the drug (Schork 2015; Currie et al. 

2006). If medical researchers can sub-divide the general population into more homogeneous 

sub-groups, they should be able to find similarities among people and tailor their treatments 

accordingly. In other words, clinicians should be able to take individual characteristics into 

consideration. 

1.1.3.2 Precision Medicine Analytics 

Today, personalized medicine, which can be defined as “the tailoring of a treatment to an 

individual based on their unique characteristics” is gaining a lot of attention (Miner et al. 

2014). The treatments may be a medication, an exercise, or any other intervention within the 

field of health. According to the National Research Council, precision medicine is a newer 

term for personalized medicine. The National Institutes of Health defines precision medicine 

as “an emerging approach for disease treatment and prevention that takes into account 

individual variability in genes, environment, and lifestyle for each person.” In fact, there is a 

considerable overlap between the terms precision medicine and personalized medicine. 

Personalized medicine implies the design of a unique treatment for an individual. In order to 

avoid the misinterpretation, that treatment must be developed uniquely for an individual. In 

the US, the President’s Council of Advisors on Science and Technology clarified this 

definition, by stating that precision medicine “does not literally mean the creation of drugs or 

medical devices that are unique to a patient, but rather the ability to classify individuals into 

sub-populations that differ in their susceptibility to a particular disease or their response to a 
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specific treatment” (PCAST 2008 ). Therefore, precision medicine may lead to non-

personalized treatment (Khoury 2016). Another term often used in these discussions is 

genomic medicine; that is, “the use of information from genomes and their derivatives (RNA, 

proteins, and metabolites) to guide medical decision making.” (Ginsburg et al. 2009). 

Unfortunately, personalized medicine, precision medicine, and genomic medicine have 

frequently been used interchangeably in the literature. However, the first two terms are 

broader than genomic medicine (Snyderman 2012). Although genomic medicine has 

undeniable advances and offers the promise to facilitate the move toward personalized 

medicine, more time is needed to translate these advances into health benefits and overcome 

the challenges in the practical implementation of this promise (Conti et al. 2010). One 

approach toward precision medicine is to consider the clinical similarity of patients, then 

tailor health analytics based on a cohort of such similar patients to one index patient by 

utilizing existing EHRs. Therefore, PS analytics can be embedded in health analytics to make 

personalized predictions. This approach can best manage a real-world patient with a complex 

health status and comorbidity. 

1.1.4 Intensive Care Units and ICU Databases 

ICUs provide care to acutely and severely ill patients and were primarily introduced in the 

1950s, with a basis in World War II (Rodriguez 2001b) and a poliomyelitis epidemic in 

Denmark (Reisner-Senelar 2011). Recent studies have shown that these units target diverse 

critically ill patient populations and that close monitoring of these patients has generated an 
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enormous amount of data (Johnson et al. 2016a). Although ICUs have a higher number of 

staff in comparison to other departments (Johnson et al. 2016a), analysis and interpretation of 

this amount of data is challenging for clinicians and must be handled by data analysis 

methods. Therefore, ICU clinicians have adopted EHR systems for collecting and storing 

data (Ghassemi et al. 2015), resulting in ICU databases such as the APACHE Outcomes 

database (Celi et al. 2013), the Philips eICU database (Pollard et al. 2018) and the 

Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) database—recently, 

renamed the Medical Information Mart for Intensive Care (Saeed et al. 2011; Johnson et al. 

2016b). 

In this thesis, the freely accessible MIMIC-III database (Johnson et al. 2016b)—an update 

of the MIMIC-II database—is used. This database, which was released in 2015, has detailed 

information on 53,423 distinct hospital admissions to the critical care units at the Beth Israel 

Deaconess Medical Center in Boston, between 2001 and 2012 (Johnson et al. 2016b). The 

records in this database contain data from various sources, from temporal physiological 

measurements to free-text hospital discharge summaries. The out-of-hospital death dates 

were also collected from the Social Security Administration Death Master File. The data in 

this database were de-identified according to the Health Insurance Portability and 

Accountability Act (HIPPA) standards. MIMIC-III is a relational database and has 26 tables 

that are linked by various identifiers. In this database, the top primary ninth version of the 

International Classification of Disease (ICD-9) discharge codes are: 414.01 (“Coronary 
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atherosclerosis of native coronary artery”, 0.39.9 (Unspecified septicemia’) and 419.071 

(“Subendocardial infarction, initial episode of care”), accounting for 7.1%, 4.2% and 3.6% of 

all hospital admissions, respectively. Overall, there are three classes of tables in this 

database: (i) tables that track patient stays in the hospital, e.g. ADMISSION; (ii) dictionary 

tables, which are look-up tables that map codes to their definitions; (iii) tables that store 

information about patient care, such as clinical measurements and billing information.  

1.2 Patient Similarity Literature Review 

In recent years, the amount of literature on PS analytics has grown enormously. Three recent 

review studies (Parimbelli et al. 2018; Sharafoddini et al. 2017; Brown 2016) point out PS 

analytics’ position as a core topic in precision medicine, stress its potential to fulfill its 

promise, and note its likelihood of remaining a trending topic in this area. Application of PS 

analytics has not been limited to a particular medical problem; various approaches have been 

taken on different EHR databases to improve medication targeting, subgroup discovery, and 

patient outcome prediction. However, some areas such as treatment targeting, missing patient 

data treatment, and longitudinal EHR data analysis have received only limited attention from 

the research community. Therefore, future research efforts in these areas are required to 

accelerate the impact of PS analytics on healthcare. In the next two subsections, a more in-

depth review of the literature in terms of the preprocessing techniques (particularly predictors 

extracting and missing data treatments) and PS modelling is provided to identify potential 

gaps in this research area. 
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1.2.1  Predictor Extraction and Missing Data Treatment in PS Analytics 

Studies 

Predictor extraction from raw EHR data has been one unavoidable component of PS 

analytics research. The variety in raw EHR formats (such as recorded signals, textual reports 

and laboratory measurement) has resulted in many approaches in predictor extraction. While 

for cross-sectional variables such as age and gender the actual value has been used, different 

transformation techniques have been employed to represent longitudinal/time series data. 

These techniques range from simple summary statistics from longitudinal data within a 

particular time window (such as minimum, average, maximum) (Henriques et al. 2015; Lee 

et al. 2015; Panahiazar et al. 2015) to more-complex transformations such as wavelets (Sun 

et al. 2010b; Sun et al. 2010a; Henriques et al. 2015; Lee et al. 2015a; Panahiazar et al. 

2015). For instance, Sun et al. and Saeed et al. ( 2010b; 2006b), respectively, utilized 

Daubechies-4 and Harr wavelet transformations for representing patient vital signs, and 

concluded that wavelet coefficients are better in representing temporal data. Sun et al. (Sun et 

al. 2010b), derived two sets of predictors: Daubechies-4 wavelet coefficients and statistical 

coefficients (mean and variance) from two-hour measurements of vital signs. They defined a 

Mahalanobis distance by solving an optimization problem aiming at minimizing the within-

class squared distances and maximizing between-class squared distances. This similarity 

metric was used to retrieve the three most-similar patients in their k-NN Classifier. This 

study showed that wavelet predictors are better representations of temporal measurements. 
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Recently, natural language processing techniques for extracting predictors from raw EHR 

have received attention from researchers in PS analytics (Saeed et al. 2006a; Wang et al. 

2012a; Wang et al. 2015). In particular, the Term Frequency-Inverse Document Frequency 

(TF-IDF) technique has repeatedly been utilized to produce predictors. This method extracts 

the predictors in three steps: first, a list of the entire observed predictors with a certain value 

in the whole training data set is prepared and named the bag of predictors. For instance, a 

diagnosis code and a discrete glucose serum level can both be considered members in the bag 

of predictors. Then, the ratio of the number of times a predictor appears in a given patient 

profile, 𝑛𝑝 (where p is the predictor), to the total number of predictors in the patient profile, 

𝑛, will be calculated: 

 𝑇𝐹 =
𝑛𝑝

𝑛
 (1.1) 

For TF calculation, a normal clinical event such as a heart rate between 60 to 100 beats 

may be very common in a patient’s profile during a stay in the hospital, and consequently has 

a fairly high TF value. Therefore, IDF is defined as follows to overcome this challenge: 

 𝐼𝐷𝐹 = log2

𝑁

𝑁𝑝
 (1.2) 

where 𝑁 is the number of patient profiles in the training set, and 𝑁𝑝 is the number of patient 

profiles that contain the predictor 𝑝. Again, a normal clinical observation arguably appears in 

every patient’s profile during his or her stay, and consequently the ratio (𝑁/𝑁𝑝) would be 
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close to one, and the IDF value would be close to zero for that particular predictor. 

Therefore, the IDF value is low for common clinical observations and high for rare 

observations. Finally, the TF-IDF value is defined as the simple product of TF and IDF as 

shown below: 

 𝑇𝐹_𝐼𝐷𝐹 =
𝑛𝑝

𝑛
× log2

𝑁

𝑁𝑝
 (1.3) 

Applying this technique to derive predictors could help boost the accuracy of similarity 

assessment for patients with rare conditions; that is, the IDF coding favours patients with rare 

conditions. Wang et al. (2012a) represented patient profiles using the TF-IDF method and 

utilized three bags of predictors: diagnosis codes, medication codes and lab tests. 

Additionally, Saeed et al. (2006a) employed IDF to identify patients with rare conditions. 

While feature extraction has been of interest in PS analytics, missing data in EHR, which is 

one of the most-common challenges in this area to date, has received scant attention in the 

research literature. Most studies choose to omit patients’ data entirely when missingness 

(some missing records) is a feature, and a few studies simply imputed the missing data with 

the average value for that particular variable (Sharafoddini et al. 2017). Sun et al. (2010a) 

took this challenge more seriously and used linear regression to predict missing values based 

on the available values. Since missing data in clinical contexts are considerable and 

inevitable (Weiskopf et al. 2013a; Wells et al. 2013; Little et al. 2012), this lack of evidence 

on missing data treatment in PS analytics highlights a research gap in this area and indicates 
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a need to address the missing data challenge so as to establish an appropriate ground for PS 

analytics. 

1.2.2 The PS Modelling Algorithms 

1.2.2.1 Neighbourhood-based methods 

While various modelling techniques have been used in PS analytics, neighbourhood-based 

methods have received more attention in recent years. The very first study on these methods 

goes back to 1998 (Jurisica et al.). Neighbourhood techniques refer to studies in which a 

group of patients similar to a new patient is retrieved and a prognosis, diagnosis or 

recommendation is provided by a model trained on the data from those similar patients. This 

category of techniques is comparable to memory-based techniques in collaborative filtering, 

in which a new product or a movie is suggested to the customer based on the history of 

similar consumers (Su et al. 2009). One of the most common methods in this category is k-

nearest neighbors (KNN). The overall structure of these techniques is demonstrated in Figure 

1-1. 
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Figure 1-1 An overview of neighbourhood-based PS analytics. 

As can be seen in Figure 1-1, the similarity metric is one of the main components in these 

methods. Various types of similarity metrics including absolute distance (Chattopadhyay et 

al. 2008), Euclidean distance and its family (Bobrowski 2006; Henriques et al. 2015; David 

et al. 2011; Park et al. 2006; Hielscher et al. 2014), Mahalanobis distance and its family (Sun 

et al. 2010b; David et al. 2011; Wang et al. 2012a; Wang et al. 2015; Lowsky et al. 2013; 

Han et al. 2015; Sun et al. 2010a), correlation-based similarity metric (Saeed et al. 2006a) 

and cosine similarity metric (Lee et al. 2015a) have been employed in the literature which 

will be discussed in more detail in this section. 

An early example of research into neighbourhood-based PS modeling is the study by 

Bobrowski (2006) in which a linear data transformation mapped patients to a space in which 

similar patients are closer to each other, and the distance between different patients is greater. 

Then, a KNN model with the Euclidean distance was employed on the mapped data. This 
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two-level PS analytics procedure outperformed the classic KNN. However, the optimal 

number of similar patients (k) remained unanswered in this study. Around the same time, 

Park et al. (2006) investigated the optimal number of similar patients for an index patient. 

The proposed statistical case-based reasoning technique in this study consists of two major 

steps. First, the distribution of pair-wise distances in the training set was derived, and then an 

optimum cut-off which defined a distance threshold was found using a grid search. These 

techniques not only outperformed the one-size fits-all logistic regression (LR), decision tree 

(DT) and KNN, but also the conventional case-based reasoning technique. David et al. 

(2011) employed the Euclidean distance metric in their PS analytics. They first assigned 

random weights to their predictors, then mapped the data to a weighted space. In the next 

step, the Euclidian distance was used to identify patients similar to an index patient within a 

particular threshold. Last, they mapped the data to a lower-dimensional space using singular 

value decomposition (SVD) and examined the discriminative power of the weights. These 

steps were repeated several times to achieve a set of discriminative weights. Unfortunately, 

no comparison method was used in this study, and they only reported the level of agreement 

between their algorithm results and data labeled by a reviewer. 

While some studies utilized only a simple distance metric such as absolute difference 

(Chattopadhyay et al. 2008), other researchers focused on more-complex distance/similarity 

calculation techniques. Sun et al. (2010b) defined a Mahalanobis distance optimized to 

minimize within-class distances and maximize between-class distances. The proposed metric 
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outperformed the conventional Euclidean metric. When they tested the proposed 

Mahalanobis distance on a lower dimensional space mapped by Principal Component 

Analysis (PCA) (Sun et al. 2010b) and linear discriminant analysis (Sun et al. 2010a), it 

outperformed the other models. 

Recently, a number of researchers have started working on integrating multiple PS metrics 

learned separately without the need to share the data that have been used to calculate them. In 

other words, in these methods each care facility requires to share the output labels from the 

identified neighborhood for an index patient not the raw data used for similarity calculations. 

These techniques are very helpful when a number of health facilities want to share insights 

without sharing their patient data. Wang et al. (2011) used this approach and defined a 

quadratic optimization problem aiming to minimize in-class scatterness and maximize 

between-class distances for the weighted sum of the similarity matrices. In another study, 

they proposed a Mahalanobis PS metric learned from a human expert’s ideas (Wang et al. 

2012a). In this study, they first calculated the pair-wise Euclidean distances and then applied 

the expert’s idea on these PS scores by using a similarity matrix and dissimilarity matrix. To 

incorporate expert’s knowledge, two matrices are defined based on the expert’s opinion: 

similarity matrix and dissimilarity matrix. The (𝑖, 𝑗)-th entry of these matrices will be -1, if 

patient 𝑖 and 𝑗 are similar/dissimilar. Otherwise, the entry is equal to the number of patients 

that are similar/dissimilar to the patient 𝑖 based on the expert opinion. If expert knowledge is 

available, these matrices are considered in the global optimization problem. In the same vein, 
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Wang et al. (2015) introduced a two-fold objective function for PS learning: a part focused 

on humans’ expert knowledge and the other based on the available EHR data. In this study, 

the proposed two-fold PS metric outperformed the one based only on patient data. Similarly, 

Huai et al. (2018) considered the idea of learning PS without directly accessing the EHR data 

in their uncorrelated PS learning method. In this study, PS learning was formulated as a 

maximum likelihood problem in which two regularization terms were considered for assuring 

the selection of the most relevant and uncorrelated features. The proposed PS metric 

outperformed all competing metrics, including cosine and Euclidean in a KNN setting. 

Unlike previous studies, that by Lowsky et al. (2013) demonstrated that in survival 

probability prediction using a Kaplan-Meier survival curve, neighbourhood-based PS 

analytics based on the Mahalanobis distance do not show a consistent advantage over the 

Cox model as the baseline. They also found that more-complex models such as Random 

Survival Forest (Ishwaran et al. 2008) outperformed the proposed PS analytics in all 

scenarios.  

A number of authors have considered using PS analytics in feature selection and predictive 

modelling. Hielscher et al. (2014) utilized a two-step PS analytics. They first split the 

training data set into two data sets based on gender. Then, after performing correlation-based 

feature selection to identify the most important features for each group, they used KNN and 

weighted KNN to predict liver fat concentration level for new patients. In this study, 

weighted KNN outperformed the conventional KNN, and it was found that feature selection, 
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by reducing dimensionality, helps predictive modelling performance. Moreover, the fact that 

only a few of the most-predictive predictors within each subgroup were common highlights 

the efficiency of PS analytics and customized predictors. Han et al. (2015) followed the same 

approach for diabetes. They first retrieved a cohort of similar patients using a Mahalanobis 

distance and then selected a subset of predictors common between the new patient and the 

cohort of similar patients. Then, an LR model was trained on the cohort of similar patients to 

make predictions for the new patients. They acknowledged that personalized predictive 

modeling can perform better than conventional models. In their further exploration using 

clustering analysis on the risk factors, they found that patients with similar risk factors were 

grouped together and also that a large number of risk factors were not identified by their 

global model, whereas the PS-based model highlighted them. These results acknowledged 

the importance of using PS analytics in feature selection and modeling in clinical 

applications. 

A Mahalanobis distance metric has also been used in unsupervised settings for finding 

similar patient subpopulations. Panahiazar et al. (2015) utilized this method for 

recommending medication to patients with a history of heart failure. Hierarchical clustering 

was used to find a subpopulation of similar patients, and the cluster was labeled by the most 

commonly used medication in that group. Then, for a new patient, the medication of the most 

similar cluster was recommended. 
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Besides PS measures such as Mahalanobis that have been widely used in the literature, 

some researchers have focused on similarity metrics such as correlation-based (Saeed et al. 

2006a) and cosine similarity metrics. Lee et al. (2015a) examined the performance of PS-

based predictive modelling in comparison to one-size fits-all methods in a systematic set of 

experiments using cosine similarity metrics. They compared the performance of personalized 

and global KNN, LR, and DT models. In all experiments, the PS settings not only 

outperformed the global setting but also the well-known medical scoring systems. It was also 

demonstrated that the size of the cohort of similar patients matters; a very small cohort can 

suffer from small sample size effect and decrease the performance. This study did not 

compare the performance of cosine metric to other metrics. 

1.2.2.2 Other methods 

Other non-conventional PS metrics have also been introduced in the literature. For instance, 

one study (Houeland 2011b) devised a PS metric by combining Euclidean distance and 

random forest. A random forest with decision trees with the height of five (16 terminal 

nodes) was trained first. Then, in the first stage of PS calculation, a cohort of similar patients 

(half of the size of the training set) to an index patient was retrieved using Euclidean 

distance. In the second stage, PS was further investigated using the random forest. Patients 

were sorted based on the number of trees in which they were assigned to the same node as 

the index patient. Then the data from the most similar patients in the second stage were used 

for prediction. This method outperformed the simple Euclidean distance. 
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While some researchers argue that the computational burden of neighbourhood-based PS 

analytics increases as the number of patients increases and requires more memory, a group of 

researchers have introduced the idea of implementing all steps of PS analytics ranging from 

predictor extraction to PS calculation in a database using Structured Query Language (SQL), 

which will be independent of Random Access Memory (RAM) size (Wiese et al. 2018; 

Tashkandi et al. 2018). In a comprehensive evaluation framework, this study demonstrated 

that PS calculation is more time-efficient in the database systems than the data mining tools 

(ELKI and Apache Mahout). Investigating the performance of cosine similarity and 

Euclidean distance, it was shown that Euclidean distance calculation is more time-consuming 

in the databased systems. 

Although the literature (Perlman et al. 2011) suggests using various similarity metrics for 

different variables (for instance an ECG similarity metric, age similarity metric, and gender 

similarity metric)—because using just one similarity metric for all predictors may miss 

information relevant to prediction—only one study (Gottlieb et al. 2013) has taken this into 

consideration and defined eight similarity metrics between hospitalizations and two for ICD 

codes. All these similarity scores then formed the hospitalization-discharge code 

associations. Then, the researchers combined these measures into 16 hospitalization-

discharge code associations.  

PS has also been used with other types of similarity. Zhang et al. (2014b) combined PS 

analytics with drug similarity analytics to provide personalized drug recommendations on 
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hypercholesterolemia treatment. Three sets of Jaccard similarities were considered in this 

study: a) patient-patient similarity based on ICD-9 codes b) drug-drug similarity based on 

chemical structure and c) patient-drug similarity based on the ICD-9 diagnosis codes of 

patients and ICD-9 format drug indications from the MEDI database. Then, a label-

propagation algorithm was employed to measure the efficiency of each of the available four 

drugs for a given patient in three settings: employing PS, drug similarity, and a combination 

of both similarities. The latter setting outperformed the others, suggesting that combining PS 

with drug similarity can help achieve personalized medicine. 

Some studies have used predictive modeling for PS calculation. Wang (2015) introduced 

an Adaptive Semi-Supervised Recursive Tree Partitioning (ART) method to calculate 

pairwise PS with less computational burden. In this method, the tree is constructed based on 

two objective functions: a term based on expert knowledge and a term based on information 

from EHR data. This study also provided a kernelized tree-construction framework. The 

proposed method performed better than all methods they compared it with. 

Zhang et al. (2018) utilized a Gaussian process in which a kernel function measured the 

similarity between the available patient data and that of new patients and reported a weighted 

average of all retrieved diagnoses. In this study, the inverse of similarity scores was used as 

the weights. The proposed method outperformed not only linear regression and DT, but also 

ranked the highest in the Alzheimer’s Disease Big Data DREAM Challenge. 
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With the availability of big EHR databases, PS analytics has received attention from 

researchers in the deep learning field. To date, several researchers have investigated the idea 

of measuring PS via a deep neural network. Zhu et al. (2017) employed medical concept 

embedding (word2vec) to demonstrate the medication events, and then a convolutional 

neural network (CNN) was modified to derive pair-wise PS scores. In their network, patients’ 

features are filtered through the convolutional layer, and then feature maps demonstrating 

patients’ clinical characteristics are used for measuring PS. Suo and colleagues (Suo et al. 

2017) also employed CNNs for PS calculation from ICD-9 codes. Their time-fusion CNN 

also learned the local temporal relationships between the codes and accounts for the time 

intervals between the codes. The proposed method outperformed the conventional PS metrics 

in KNN, weighted sampling, and personalized LR settings. 

The evidence reviewed in this section suggests that PS analytics can often outperform one-

size fits-all models. The contradictory evidence to this hypothesis suggests the need 

for further investigation of PS analytics' performance compared to population-based 

analytics. Together these studies provide insights into how PS can be employed in various 

stages of modelling. There remain several domains in PS that would benefit from further 

research, such as PS visualization, missing data treatment, and longitudinal data processing. 

1.3 Thesis Rationale 

As described in sub-section 1.1 Background, PS analytics is an emerging field and has 

repeatedly been used in various applications. While many studies have been done in this area, 
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most of them still suffer from poor handling of missing data and longitudinal data, and lack 

of interpretability in their PS calculation. There has been some research on missing data 

treatment in EHR databases; however, in-depth research is lacking on the potential 

informativeness of this missingness and how it can be converted to useful information. 

Therefore, a move away from traditional missing data treatment toward more-informative 

methods is needed. Moreover, studies on PS calculation have shown remarkable results in 

predicting outcomes; however, such predictive performance has been achieved at the expense 

of trading off the explainability of the method. In particular, studies in which deep learning 

has been used to calculate PS suffer from lack of interpretability and transparency.  Although 

researchers in the field of explainable artificial intelligence are working on making these 

networks more interpretable, we should bear in mind that one of the PS analytics promises is 

to help clinicians in their decision making. Therefore, any PS calculation must be able to 

answer at least one question for clinicians: “why are these two patients similar?”. Besides 

interpretability of PS calculation, there is also a need for more research on methods for 

including longitudinal data in PS analytics. Therefore, the overall goal of this thesis is to 

learn more from missing data in EHRs and use this information to identify patient 

subpopulations, introduce an explainable multifaceted PS metric, and take PS analytics into 

application, with a special focus on longitudinal data processing. Moreover, this thesis 

utilizes data from ICU patients, since there is a wealth of high-resolution data available in 
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many ICUs and PS analytics can be helpful in deriving insights from these complex and 

heterogenous ICU patient data. 

1.4 Thesis Organization 

1.4.1 Thesis Outline 

The six chapters of this thesis comprise this introduction; four studies, all written in the form 

of journal or conference papers; and a general conclusion. To date, the first two studies have 

already been published, and the other two are very close to being submitted. The first study 

(Chapter 2) focuses on missing data, one of the main challenges in working with EHR data. 

This study, by utilizing a new data representation method (missingness indicators), 

investigates the informativeness of missing data in ICU EHR and how we can learn from 

missing data and use them in predictive modeling (Sharafoddini et al. 2019). The second 

study (Chapter 3) builds upon the first and utilizes the missingness indicators to capture 

laboratory-test-ordering patterns in ICU and uses this information to find subpopulations of 

similar patients in the ICU (Sharafoddini et al. 2018). The third study (Chapter 4) takes PS 

analytics further and introduces a multifaceted PS metric by which the PS is explainable. The 

proposed metric considers ICU PS from different aspects and investigates whether PS 

analytics is always a better alternative to population-based analytics. This study focuses on 

30-day ICU mortality prediction. The last study (Chapter 5) applies all findings 

from the previous studies to a specific application, with a special focus on longitudinal 

data, and investigates the possibility of having subpopulations in septic patients. 
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Finally, Chapter 6 summarizes the findings from the four studies and discusses their 

limitations. This chapter also provides some possible future directions for interested 

researchers.   

1.4.2 Overarching Objectives 

Although each of the aforementioned studies had its own distinct objectives, the overarching 

goals of this thesis are to: 

1. Explore the informativeness of missing data in an ICU database and introduce a new 

data representation that can measure PS in terms of missingness (Chapter 2). 

2. Utilize missingness similarity in the context of PS analytics to identify 

subpopulations of ICU patients with similar laboratory test ordering patterns (Chapter 

3). 

3. Aggregate various aspects of PS in one PS metric to capture the similarity of ICU 

patients from different perspectives (vital signs, laboratory tests, etc.) in order to 

improve 30-days post-discharge mortality prediction (Chapter 4).  

4. Utilize the multifaceted PS to investigate the heterogeneity of a cohort of ICU septic 

patients and identify groups of similar patients while including the vital signs 

trajectories in PS calculation (Chapter 5). 
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A New Insight Into Missing Data in Intensive Care Unit Patient 

Profiles: Observational Study 

This chapter investigates the informativeness of missing data in patient profiles and 

introduces a new data representation technique that can be used in PS similarity calculations 

for evaluating similarity in terms of missingness. This chapter was originally published in 

January 2019 and revisions have been made to the current copy based on the thesis 

committee’s reviews. The full citation is as follows: Sharafoddini, A., Dubin, J. A., Maslove, 

D. M., & Lee, J. (2019). A New Insight Into Missing Data in Intensive Care Unit Patient 

Profiles: Observational Study. JMIR Med Inform, 7(1), e11605. doi:10.2196/11605 

 

2.1 Abstract 

Background: The data missing from patient profiles in intensive care units (ICUs) are 

substantial and unavoidable. However, this incompleteness is not always random or because 

of imperfections in the data collection process. 

Objective: This study aimed to investigate the potential hidden information in data missing 

from electronic health records (EHRs) in an ICU and examine whether the presence or 

missingness of a variable itself can convey information about the patient health status. 
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Methods: Daily retrieval of laboratory test (LT) measurements from the Medical 

Information Mart for Intensive Care III database was set as our reference for defining 

complete patient profiles. Missingness indicators were introduced as a way of representing 

presence or absence of the LTs in a patient profile. Thereafter, various feature selection 

methods (filter and embedded feature selection methods) were used to examine the predictive 

power of missingness indicators. Finally, a set of well-known prediction models (logistic 

regression [LR], decision tree, and random forest) were used to evaluate whether the absence 

status itself of a variable recording can provide predictive power. We also examined the 

utility of missingness indicators in improving predictive performance when used with 

observed laboratory measurements as model input. The outcome of interest was in-hospital 

mortality and mortality at 30 days after ICU discharge. 

Results: Regardless of mortality type or ICU day, more than 40% of the predictors 

selected by feature selection methods were missingness indicators. Notably, employing 

missingness indicators as the only predictors achieved reasonable mortality prediction on all 

days and for all mortality types (for instance, in 30-day mortality prediction with LR, we 

achieved area under the curve of the receiver operating characteristic [AUROC] of 

0.6836±0.012). Including indicators with observed measurements in the prediction models 

also improved the AUROC; the maximum improvement was 0.0426. Indicators also 

improved the AUROC for Simplified Acute Physiology Score II model—a well-known ICU 



 

 

30 

severity of illness score—confirming the additive information of the indicators (AUROC of 

0.8045±0.0109 for 30-day mortality prediction for LR). 

Conclusions: Our study demonstrated that the presence or absence of LT measurements is 

informative and can be considered a potential predictor of in-hospital and 30-day mortality. 

The comparative analysis of prediction models also showed statistically significant prediction 

improvement when indicators were included. Moreover, missing data might reflect the 

opinions of examining clinicians. Therefore, the absence of measurements can be informative 

in ICUs and has predictive power beyond the measured data themselves. This initial case 

study shows promise for more in-depth analysis of missing data and its informativeness in 

ICUs. Future studies are needed to generalize these results. 

Keywords: Electronic Health Records; Clinical Laboratory Tests; Imputation Methods; 

Feature Selection Methods; Machine Learning; Mortality Prediction. 

2.2 Introduction 

2.2.1 Background 

The increased adoption of electronic health record (EHR) systems has boosted interest in the 

secondary use of EHR data (Weiskopf et al. 2013c). Although the literature has introduced 

various dimensions for EHR data quality, completeness and correctness have been reported 

as the fundamental dimensions (Weiskopf et al. 2013c; Chan et al. 2010). Although these 

issues can also be observed in paper-based records, EHR brought us the opportunity to 
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identify them faster and helped us with addressing them. The data missing from clinical 

contexts are substantial (Weiskopf et al. 2013a; Wells et al. 2013) and unavoidable (Little et 

al. 2012); many studies have focused on resolving this issue (Sterne et al. 2009; Haukoos et 

al. 2007; Newgard et al. 2007). Although many researchers treat missing data as a challenge 

(Pringle et al. 1995; Thiru et al. 2016; Forster et al. 2008; Jones et al. 1986; Porcheret et al. 

2004; Soto et al. 2002; Tang et al. 1999; Jensen et al. 2009; Botsis et al. 2010; Sharafoddini 

et al. 2017), others continue to debate whether lack of completeness also provides useful 

information (Wells et al. 2013; Rusanov et al. 2014; Weiskopf et al. 2013b; Agniel et al. 

2018). Researchers do agree that a part of this incompleteness is not random or because of 

imperfections in the data collection process (Kuhn et al. 2013; Agniel et al. 2018). Recently, 

Angiel et al. (2018) demonstrated that the laboratory ordering time (ie, the interval between 2 

orders of a laboratory test; LT) for some LT is more informative than the actual values in 

predicting 3-year survival. Our study focuses on systematically investigating the implications 

or possible value of lack of data, particularly in intensive care units (ICUs) and proposes a 

representation method for missing data to capture hidden information. In general, two 

reasons are given for missing data in EHRs: 

• No intention to collect: the clinical variable was never measured because there was no 

clinical indication to do so—the patient was not suffering from a relevant symptom or 

comorbidity (Wells et al. 2013), or it could not be measured (Rusanov et al. 2014). 
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• Intention to collect: records are missing although the variables were measured (Wells 

et al. 2013). 

Therefore, the health care process (e.g., clinicians’ decision to order a test and nurse data 

entry) affects the recorded EHR and can cause incompleteness in data. 

Incomplete EHR data can complicate or prohibit the data analysis process, as many 

machine learning (ML) algorithms assume that there are no missing data in the dataset or 

require users to clean the data in the preprocessing stage and so provide a complete dataset. 

Therefore, from a research perspective, the ideal situation is to increase the amount and 

accuracy of EHR documentation by employing approaches that focus on intention to collect, 

such as reducing the error in data entry or increasing data documentation in terms of 

resolution. Although the current amount of testing and bloodwork has been reported as 

actually redundant in ICUs (Lee et al. 2015b; Oliveira et al. 2014; Cismondi et al. 2013) and 

requires extra time and work from clinicians (Wells et al. 2013), these approaches suffer 

from their own shortcomings. Besides analytical methods that can handle missing data (that 

are missing at random) such as decision trees (DTs) or mixed-effects models for longitudinal 

data, other approaches usually assume missing data are missing completely at random. In 

general, the literature proposes 3 analytical approaches: complete case analysis (CCA) or 

deletion, available case analysis (ACA), and imputation. 

CCA starts with the list of variables included in the analysis and discards records with 

missing data on any of the variables. However, this subsample might not be a random sample 
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of the population. Although researchers argue that sample selection based on the predefined 

eligibility criteria in randomized clinical trials can limit the external generalizability of these 

studies (Rothwell 2005), CCA in studies using EHR data can also potentially threaten the 

external validity of a study (Rusanov et al. 2014) and cause bias as the literature shows a 

statistically significant relationship between severity of illness and data completeness 

(Weiskopf et al. 2013b). For example, a study (Rusanov et al. 2014) on 10,000 EHRs from 

patients receiving anesthetic service showed that patients with an anesthesiologists physical 

status (ASA) (Delegates 2014) class 4 fitness rating had 5.05 more days with laboratory 

results and 6.85 more days with medication orders than patients with ASA class 1, suggesting 

more data are recorded for sicker patients than healthier patients. Thus, imposing complete 

case requirements when using EHR data for secondary use can cause bias toward selecting 

patients with more severe conditions (or several comorbidities). Despite this drawback, CCA 

has been identified as the leading approach in studies on ICU data (Vesin et al. 2013). That 

said, CCA provides valid inference only when data are missing completely at random 

(MCAR), which is unlikely in practice (Fitzmaurice et al. 2011). 

The ACA (or pairwise deletion) utilizes all available data for a given analysis. In other 

words, it maximizes the availability of data by an analysis-by-analysis basis (Baraldi et al. 

2010). The advantage of this method is that more data are included in each analysis than with 

CCA. It also allows for valid inference by likelihood-based models when missing data are 

ignorable—often the case when the data are missing at random (MAR) (Fitzmaurice et al. 
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2011). In each analysis, the ACA method utilizes the data points that are needed for that 

particular analysis. For instance, in correlation analysis to measure the correlation for each 

pair of variables, ACA uses the data points that have the information for those variables in 

each analysis resulting in varying samples. Although ACA is an improvement to CCA 

(Baraldi et al. 2010), it also has limitations. As different samples are being used in each 

analysis, not only is comparison of various analyses impossible (Stockdale et al. 2016) but 

also, using different samples for estimating the parameters of interest has occasionally led to 

biased or mathematically inconsistent results (Myers 2011; Pigott 2010; Roth 1994). 

Imputation methods, which try to draw inferences from incomplete data, rely on knowing 

the mechanism of missingness, which cannot be validated from the available data. Single 

imputation methods suffer from 2 problems. First, an inference based on imputed data can be 

biased if the underlying assumptions are not valid. Second, because imputed data are 

assumed to be true, the model’s statistical precision is overstated. Multiple imputation 

methods, in spite of their promising performance, rely on parametric assumptions that, if not 

valid, can lead to incorrect imputation. Due to these limitations, imputation methods should 

be used with caution, and checking underlying assumptions with clinicians is highly 

recommended (Little et al. 2012). However, Gorelick (2006) in a simulation study, 

demonstrated that either CCA or imputation could cause bias in predictive modeling, and that 

assuming missing values to be normal when missingness rates are high and substituting them 

with normal values would also cause substantial bias. In brief, if primary assumptions are not 
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fully satisfied, neither considering complete or available cases nor imputing missing data is 

likely to yield reliable results. Furthermore, these statistical methods on their own are not 

sufficient to capture the hidden information about the patient health status and care process in 

the complex EHR data. Alternatively, we can try to learn from what is missing rather than 

only dealing with missingness as a deficiency. 

2.2.2 Objectives 

This case study provides evidence that ‘missing data’ in ICU might be missing because of the 

patient’s health status or health care process and introduces a new method for representing 

patient profiles. In this representation, auxiliary variables, called indicators, are used to 

represent the presence or absence of a measurement and might convey the possible hidden 

information in the missing data. Then, by employing various analytical methods, this study 

attempts to demonstrate the informativeness of missing data. In the rest of the study, the 

term missing data is used to describe not-at-random missing information in patient profiles. 

In other words, the potential informativeness of data that has not been recorded by choice is 

of interest. 

2.3 Methods 

2.3.1 Measurement Protocol and Data Collection 

As patient monitoring strongly relies on clinical needs, no universal standards for ICU data 

completeness have been established (Schulman et al. 2010; Asiimwe et al. 2014; Cardona-
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Morrell et al. 2015). However, a study by Frassica in 2005 published a list of the top 80% of 

LTs common to all ICU patients within a university teaching hospital. We revised this list 

based on the presence of these tests in our database and updated it with input from an ICU 

clinician to reflect current practices (Table 2-1). 

Table 2-1 Thirty six laboratory tests used in investigating informativeness of missing 

data. 

Variable Category Variables 

Top 80% laboratory tests and 

profiles common to all ICUs 

(Frassica 2003) reviewed and 

revised by domain expert 

Alanine Aminotransferase (ALT); Alkaline Phosphatase (ALK);  Aspartate 

Aminotransferase (AST); Arterial blood gases: pH, PCO2, PO2, Base Excess 

(BE); Basic metabolic panel: Sodium (Na), Potassium (K), Chloride (Cl), 

Bicarbonate (HCO3), Anion Gap (AG), Blood Glucose (BG), Blood Urea 

Nitrogen (BUN), Creatinine (Cr); Complete blood count: White blood 

cells (WBCs), red blood cells (RBCs), Hemoglobin (HGB),  

Hematocrit (HCT), Mean corpuscular volume (MCV),  

Mean corpuscular hemoglobin(MCH), Mean corpuscular hemoglobin 

concentration (MCHC), Red cell distribution width (RDW), Platelet count 

(PLT), Absolute Monocytes (MO), Absolute Eosinophils (EO), Absolute 

Basophils (BA), Absolute  Lymphocytes (LY), Absolute Neutrophils (NE); 

Lactate (Lac); Calcium (Ca); Magnesium (Mg); Phosphorus/ Phosphate (Phos); 

Partial Thromboplastin Time (PTT); Prothrombin Time (PT); Total Bilirubin 

(TBil). 

 

The data for this study were collected from the Medical Information Mart for Intensive 

Care III (MIMIC-III) (Johnson et al. 2016b) database which contains data from 38,597 
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distinct adult patients admitted to the Beth Israel Deaconess Medical Center in Boston, 

Massachusetts, between 2001 and 2012. For patient cohort selection, a tailored version of the 

generalized cohort selection heuristics for retrospective EHR studies introduced by Harrell et 

al. (2016) was used. The data for first admission to 1 of the 5 ICUs—medical ICU, surgical 

ICU, cardiac care unit, cardiac surgery recovery unit, and trauma surgical ICU—were 

extracted for adult patients (aged 15 years or older). Included patients must have had at least 

one data point in any of the variable categories during the first, second, and third days of 

their ICU stay. 

2.3.2 Data Preprocessing and Missing Data Representation 

Each day’s extracted data were mapped into a matrix with columns for measurements and 

rows for patients. Therefore, we had a column for each daily measurement of LTs, resulting 

in 36 columns for LTs.  An auxiliary matrix was generated to store binary values reflecting 

the presence (0) or absence (1) of measurements. Since many well-performing ML 

algorithms are designed to work with a complete data matrix, two methods—Predictive 

Mean Matching (PMM) (Little 1988) and Hot Deck (HD)—were used to impute missing 

laboratory test measurements. PMM is a commonly used and well-accepted imputation 

method in public health research (Zhou et al. 2001) and is also robust against model 

misspecification (Buuren 2012). HD imputation is used commonly in applied data analysis 

when missing data exist (Andridge et al. 2010). 
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Given that imputed values are indistinguishable to the ML algorithm from true values, we 

combined the original matrix and auxiliary matrix to form an augmented matrix that directly 

indicates where values were imputed. This was done to mitigate the risk of treating imputed 

values the same as actual values, in a setting where the underlying reason for missing data is 

not fully known (Figure 2-1). Missing data indicators in this augmented matrix might also 

provide extra information about the reliability of the values (actual and imputed values) and 

potentially preserve any meaningful missing data patterns. Missingness indicators have been 

used as a method of handling missing data in epidemiological and clinical studies. However, 

in the current use of indicators, missing values are set to a fixed value (0 or the normal value 

for the variable) and the indicators are used as dummy variables in analytical models to 

indicate that a value was missing (Abraham et al. 2004; Groenwold et al. 2012). Studies have 

shown that this method causes bias as the missing values are imputed with a single value 

(Knol et al. 2010). In our study, we are not using indicators as dummy variables; instead, we 

are introducing them as a source of information to be used besides imputation methods. 
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Figure 2-1 An example of the augmented data matrix, the imputed data matrix 

(imputed values are underlined and italicized) and the auxiliary matrix (containing the 

missingness indicators: 0-present, 1-absent). 
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2.3.3 Validation 

Several validation techniques are available in medical research. In this study, for all 

experiments where applicable, we used cross-validation technique (10-fold cross-validation). 

We also repeated the cross-validation procedure several times (20 times) to acquire more 

stable results as suggested in the literature (Steyerberg 2009). 

2.3.4 Assessments 

2.3.4.1 Exploratory Analysis 

First, the trends of missingness among LTs were visualized for comparison. Afterward, 

pairwise correlation among indicators, using Phi coefficient, was done to explore the general 

behavior of missingness. The Elixhauser (1998) and the Charlson (1987) comorbidity indices 

are the most common comorbidity scores in clinical applications. The literature has shown 

that the Elixhauser Comorbidity Index (ECI) in general has the best performance in 

predicting mortality (Menendez et al. 2014; Southern et al. 2004; Farley et al. 2006; 

Sharabiani et al. 2012). This better performance can be the result of (1) including new 

comorbidities in ECI, (2) the differences in the coding of variables common between both 

indices, or (3) a combination of the first and second factors (Southern et al. 2004). The 

Simplified Acute Physiology Score II (SAPS-II) (Le Gall et al. 1993) scoring system that has 

been widely used by most ICUs for predicting illness severity was also chosen. Therefore, 

the association of missingness rates with ECI and SAPS-II was investigated using Spearman 
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correlation. Besides the clinical information, SAPS-II also has the information about type of 

admission (scheduled surgical, medical, or unscheduled surgical) and presence of 3 chronic 

diseases (metastatic cancer, hematologic malignancy, and AIDS). 

2.3.4.2 Feature Selection 

After exploratory analyses, we assessed the importance of the indicators as potential 

predictors. First, we used feature selection methods, which are widely used to determine 

which predictors should be used in a model, particularly for high-dimensional data (Kuhn et 

al. 2013). Two copies of the augmented matrix (derived from HD and PMM imputation) 

were fed to various feature selection methods. Our study considered in-hospital and 30-day 

post-discharge mortality as outcomes. Overall, we used 2 categories of supervised feature 

selection methods described below. 

 First, filter techniques evaluated the importance of a predictor by looking at data 

properties. Filter methods, in general, use a metric to identify irrelevant features and filter out 

the redundant predictors form the data matrix (Saeys et al. 2007). We selected 3 different 

metrics: LR beta value, Relief algorithm (Robnik-Šikonja et al. 2003), and Information Gain 

(InfGain) (Peng et al. 2005). The Relief algorithm examines the relevance of predictors based 

on their power to distinguish between similar patients with the same and different outcome. 

InfGain measures the reduction in entropy of the class variable achieved by partitioning the 

data based on the index predictor; relevant predictors receive a high InfGain value (Mitchell 

1997). This ensemble of the scoring methods was then used to determine the normalized 
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informativeness of all predictors. Aggregating these methods in one score provides a tool for 

comparing predictors from different aspects.  

Second, we used embedded techniques to search for the optimal set of predictors. In these 

techniques, feature selection is embedded in the model’s construction and interacts with the 

classifier. Least absolute shrinkage and selection operator (LASSO), used in this study, is a 

penalizing method in this category. LASSO regression in its objective functions considers a 

penalty that equals to the sum of the absolute values of the coefficients. As absolute function 

(L1 norm) is not differentiable, the estimated coefficients are close to 0, and some will be 

exactly 0 resulting in an automatic variable selection. For this and the next experiments, 10-

fold cross-validation with 20 repeats was used (leading to 200 repetitions in total). This 

number of repetitions is recommended to achieve desired accuracy for prediction 

performance estimation (Steyerberg 2009). 

2.3.4.3 Predictive Modeling 

In the last assessment, we first trained group of classification models, including DT, logistic 

regression (LR), and random forest (RF), on the indicator and imputed data matrices and 

evaluate their performance for predicting desired outcomes using the area under the curve of 

the receiver operating characteristic (AUROC) validation metric. Thereafter, new models 

were trained using the augmented data matrix and their performance was compared with that 

of the original to determine whether the indicators have predictive power and can boost the 

models’ predictive accuracy. We also investigated the predictive performance of SAPS-II 
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score, and then we added indicators to these scores to examine the impact of indicators 

beyond SAPS-II score. It is worth mentioning that in this assessment, the absolute accuracy 

of the models is not of our interest, instead, the relative improvement in the performance 

when including indicators as input. That is, achieving the best possible mortality prediction 

AUROC is not the objective of this study. 

2.4 Results 

2.4.1 Population 

The analyses of the first 24 hours after admission to ICU included 32,618 patients but 

decreased to 20,381 for the second 24-hour interval, as many patients were discharged after 

24 hours. The third 24-hour period included 13,670 patients. Of these groups, 10.99% 

(3586/32,618), 13.59% (2769/20,381), and 16.19% (2213/13,670) experienced death in-

hospital and 15.12% (4933/32,618), 18.26% (3722/20,381), and 21.32% (2915/ 13,670) 

experienced death within 30 days of discharge, respectively. Figure 2-2 demonstrates the 

retrospective study design. 
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Figure 2-2 The retrospective cohort study design. LOS: length of stay. 

2.4.2 Exploratory Analysis 

Missingness rates for LTs range from 1.36% (445/32,618) to 88.27% (12066/13,670) in the 

first 72 hours after admission. Figure 2-3 shows the missingness rate for LTs over 3 days. 

Absolute basophils (BA), absolute eosinophils (EO), absolute monocytes (MO), absolute 

lymphocytes (LY), absolute neutrophils (NE), alanine aminotransferase (ALT), alkaline 

phosphatase (ALK), aspartate aminotransferase (AST), total bilirubin (TBil), and lactate 

(Lac) were among the less-common LTs and were missing in the profiles of more than 60% 

of patients. 
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Figure 2-3 The average missingness rate among patients for laboratory tests in the 

first 72 hours of admission. 

We calculated the association between each indicator and the mortality flag. Although 

association values were small, on day 1, ALT, ALK, AST, and TBil stand out as the top LTs 

associated with both types of mortality. On days 2 and 3, partial pressure of carbon dioxide 
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(PCO2), partial pressure of oxygen (PO2) and base excess (BE) were the top LTs associated 

with both mortality types. Lac also joined the top tests on day two for 30-day mortality. 

Detailed association values are provided in Appendix C. 

Figure 2-4 visualizes the pairwise correlations among indicators. In total, 7 major groups 

of highly correlated (ρ ≥.95) indicators were observed in the results using Phi coefficient: (1) 

BA, MO, NE, EO, and LY; (2) mean corpuscular hemoglobin concentration (MCHC), red 

cell distribution width (RDW) mean corpuscular volume (MCV), red blood cell (RBC), and 

mean corpuscular hemoglobin (MCH); (3) BE, PCO2, and PO2; (4) TBil, ALT, AST, and 

ALK; (5) Blood urea nitrogen (BUN) and creatinine (Cr); (6) chloride (Cl) and bicarbonate 

(HCO3); (7) partial thromboplastin time (PTT) and prothrombin time (PT). 



 

 

47 

 

Figure 2-4 Visualization of the correlation matrix for variable indicators in first 72 

hours. 

The Spearman correlation between missingness rates and ECI was also calculated daily. 

Results show a statistically significant correlation between these variables (day 1: ρ=–.233; 

day 2: ρ=–.196; day 3: ρ=–.184; P<.001). The same assessment was done using SAPS-II. The 

results were in line with the previous one and demonstrate higher correlation (day 1: ρ=–
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.315; day 2: ρ=–.277; day 3=–.234; P<.001). These findings are interesting as they confirm 

that the missingness of data is associated with patient severity of illness. 

2.4.3 Feature Selection: Missing Data Indicators as Important Predictors 

Each of the imputation methods was applied to the original dataset, and the potential 

informativeness of missingness indicators in comparison with actual variables was 

investigated using an ensemble of the most representative filter selection methods (Aggarwal 

2014): LR beta value, relief, and InfGain. Table 2-2 shows the top 18 variables selected on 

each day based on the PMM-generated imputed matrix predicting 30-day mortality. BUN, 

RDW, and anion gap (AG) were among the top variables in all 3 days. Indicators for TBil, 

phosphate (Phos), calcium (Ca), and Lac were selected on the first day, whereas indicators 

for Lac, BE, PO2, and PCO2 were among the top features on the second and third days. PTT 

and pH indicators were also among the important indicators on the third day. 
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Table 2-2 The top 18 variables selected on each day after employing predictive mean 

matching imputation with regard to 30-day mortality. The ‘I’ at the beginning of the 

variables’ names means indicator. Numbers represent the ranking after aggregating the 

ranking results from the 3 different feature selection methods. 

Day 1 Day 2 Day 3 

Variable Score Variable Score Variable Score 

BUN 0.762397 AG 0.795419 RDW 0.748997 

RDW 0.680087 HCO3 0.783337 BUN 0.666667 

MCHC 0.668965 BUN 0.77677 HCO3 0.544964 

AG 0.540484 BE 0.609532 BE 0.540542 

I-Ca 0.436429 RDW 0.608711 pH 0.488433 

Cr 0.436071 I-PO2 0.587151 AG 0.450426 

HCO3 0.416741 I-PCO2 0.585947 I-Lac 0.418716 

PO2 0.404289 I-BE 0.585592 I-pH 0.40463 

MCV 0.386964 Cl 0.53158 Cr 0.400008 

I-Phos 0.374431 PT 0.462085 Phos 0.387661 

PTT 0.353913 Lac 0.461869 I-PCO2 0.387019 

HGB 0.342786 Cr 0.451999 I-PO2 0.386739 

pH 0.32767 PTT 0.424956 I-BE 0.385935 

Lac 0.320339 Na 0.422474 PCO2 0.367257 

BE 0.320299 Phos 0.419171 NE 0.360791 

I-Lac 0.318216 I-Lac 0.415475 MCV 0.351266 

PCO2 0.316668 MCV 0.368343 I-PTT 0.338352 

I-TBil 0.31277 MCHC 0.363146 Lac 0.331205 
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Similar results were observed when using the HD imputation method, except that ALT and 

Phos were also selected on the first and second day, respectively. Moreover, PTT and pH 

indicators were not among the important indicators on the third day. Detailed results of this 

assessment can be found in Appendix C. 

Results for in-hospital mortality were slightly different (Table 2-3). Although the selected 

indicators were almost the same as for 30-day mortality, more indicators were selected on the 

first day for in-hospital mortality, implying that indicators are more associated with in-

hospital mortality than 30-day mortality. Detailed results are available in Appendix C. 
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Table 2-3 The top 18 variables selected on each day after employing predictive mean 

matching imputation with regard to in-hospital mortality. The ‘I’ at the beginning of the 

variables names means indicator. Numbers represent the ranking after aggregating the 

ranking results from the 3 different feature selection methods. 

Day 1 Day 2 Day 3 

Variable Score Variable Score Variable Score 

BUN 0.825715 BUN 1 RDW 0.75246 

AG 0.668918 RDW 0.711852 BUN 0.635729 

RDW 0.573188 HCO3 0.684191 BE 0.633926 

HCO3 0.531746 AG 0.664339 HCO3 0.62367 

MCHC 0.507343 BE 0.528778 I-BE 0.595553 

PCO2 0.489483 MCHC 0.503805 I-PCO2 0.595238 

Cr 0.480181 PT 0.453111 I-PO2 0.594924 

BE 0.452599 Cl 0.429405 pH 0.556242 

I-LAC 0.436382 I-LAC 0.425279 Phos 0.494694 

LAC 0.415773 Cr 0.395266 AG 0.492864 

HGB 0.414263 I-PO2 0.382404 I-pH 0.470007 

pH 0.402466 I-PCO2 0.381737 I-LAC 0.469215 

I-TBil 0.399363 I-BE 0.381448 Cr 0.415249 

I-Ca 0.395278 PTT 0.357339 LAC 0.396136 

I-ALT 0.376004 Phos 0.352738 NE 0.338372 

I-AST 0.375944 Na 0.345109 PT 0.326491 

LY 0.375163 I-PT 0.333936 LY 0.319146 

I-ALK 0.366346 BG 0.320947 MCV 0.314868 
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To validate our previous results, we assessed the predictive power of the indicators using 

embedded feature selection methods. Each day, a LASSO model was trained on the 

augmented data from HD and PMM imputation using 10-fold cross-validation with 20 

repeats. In general, the AUROC of mortality prediction (in-hospital and 30-day 

postdischarge) and number of selected variables decreased from days 1 to 3 (Table 2-4). 

Moreover, prediction of in-hospital mortality resulted in higher AUROCs than 30-day 

mortality. Regardless of mortality type, on all days, more than 40% of the predictors selected 

by the best-performing model were indicators. Moreover, more than 61% of selected 

predictors were indicators on the third day. Sliding lambda to compromise the predictor 

number and model performance led to almost the same results. Generally, more than 40% of 

the selected predictors were indicators, and on the third day, this number increased to 61%. 
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Table 2-4 Results from feature selection by least absolute shrinkage and selection 

operator (LASSO) for 3 days (area under the curve of the receiver operating characteristics 

are reported with the SE). The best performing model refers to the model with a lambda 

value associated with minimum cross-validation error. The adjusted model refers to a 

LASSO model with the largest value of lambda such that the error remains within 1 SE of the 

minimum. 

Outcome Imputation 

method 

Day 1 Day 2 Day 3 

AUROC for best performing model 

30-day mortality HD 0.7858 (0.0033) 0.7685 (0.0041) 0.7302 (0.0043) 

PMM 0.7876 (0.0039) 0.7708 (0.0046) 0.7391 (0.0053) 

In-hospital 

mortality 

HD 0.7983 (0.0040) 0.7804 (0.0046) 0.7476 (0.0042) 

PMM 0.8007 ( 0.0047) 0.7838 ( 0.0049) 0.7582 (0.0054) 

Indicators among selected predictors by the best performing model, n (%) 

30-day mortality HD 43% (23/53) 48% (24/50 ) 70% (19/27 ) 

PMM 45% (26/58) 47% (26/55 ) 68% (17/25 ) 

In-hospital 

mortality 

HD 46% (28/61) 48% (29/61) 60% (21/35) 

PMM 47% (29/62) 49% (27/55) 62% (24/39) 

AUROC for adjusted model 

30-day mortality HD 0.7826 ± 0.0034 0.7646 ± 0.0043 0.7262 ± 0.0041 

PMM 0.7840 ± 0.0038 0.7667 ± 0.0045 0.7339 ± 0.0044 

In-hospital 

mortality 

HD 0.7944 ± 0.0043 0.7762 ± 0.0047 0.7439 ± 0.0041 

PMM 0.7961 ± 0.0049 0.7793 ± 0.0050 0.7536 ± 0.0045 
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Indicators among selected predictors by the adjusted model, n (%) 

30-day mortality HD 45% (20/44) 48% (16/33) 67% (22/33) 

PMM 45% (19/42) 52% (16/31) 62% (31/50) 

In-hospital 

mortality 

HD 47% (20/43) 42% (13/31) 64% (16/25) 

PMM 50% (18/36) 41% (11/27) 62% (16/26) 

 

Results in this section once more confirm the informativeness of missing data as 

missingness indicators have been selected by various feature selection methods. The high 

percentage of selected indicators also implies that the actual value of an LT is not always 

required in outcome prediction; instead, knowledge about whether the test was performed 

would suffice. 

2.4.4 Predictive Modeling: Missing Data Indicators in Predictive Modeling 

In the second assessment, we compared the performance of a set of 3 classification models 

(DT, LR, and RF) using the indicators, imputed and augmented data matrices, and SAPS-II 

score with or without indicators with 10-fold cross-validation over 20 repeats. We 

investigated whether including indicators can improve prediction and whether indicators 

alone have predictive power. For our LR, the iteratively reweighted least square method was 

used to fit the model. The complexity parameter (CP) for DT was tuned based on the model 

performance. On the basis of some preliminary model fitting, we set the CP value to vary 

from 0 (including all variables and having a large tree) to .02 for each model and then we 

picked the best performance model. In all models, the best-tuned model had a CP greater 
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than 0. Figure 2-5 shows the AUROC with 95% CI for all 3 days with regard to 30-day 

mortality (Appendix C provides the AUROC values for 30-day mortality and in-hospital 

mortality). 

 

 

Figure 2-5 The 95% confidence intervals of the AUROC for LR, DT and RF models 

on missingness indicators, SAPS-II score and actual variables with and without the 

missingness indicators. 
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Including indicators improved the AUROC in all modeling techniques, on average by 

0.0511; the maximum improvement was 0.1209 (Figure 2-5). AUROC has been 

demonstrated as an insensitive metric, for which an increase of 0.01 suggests meaningful 

improvement and is clinically of interest (Martens et al. 2016; Cook 2007; Pencina et al. 

2012). Although using only indicators demonstrated reasonable performance in all scenarios 

(AUROC=0.6019 [0.0862]>0.5), conventional scores such as SAPS II perform better 

(AUROC=0.6390 [0.0853]) on their own. Therefore, models trained only on indicators are 

not sufficient. However, including indicators with conventional scores can improve the 

performance (AUROC=0.7263 [0.0578]). The SAPS-II score has information for age, heart 

rate, systolic blood pressure, Glasgow coma scale, temperature, mechanical ventilation 

administration, partial pressure of oxygen in the arterial blood (PaO2), fraction of inspired 

oxygen (FiO2), urine output, BUN, sodium (Na), potassium (K), HCO3, TBil, white blood 

cells (WBCs), presence of chronic diseases, and type of admission. These results demonstrate 

that indicators have information beyond that included in SAPS-II. 

Figure 2-6 demonstrates the AUROC curves for LR 30-day mortality prediction on day 1. 
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Figure 2-6 The ROC curves for LR 30-day mortality prediction on day one. 

This combination of findings provides more support for the informativeness of missing 

data. Employing the missing indicators in mortality prediction modeling can improve the 

results in comparison to not including them. 

2.5 Discussion 

2.5.1 Principal Findings 

We used missingness indicators to represent missing information in patient profiles in ICU. 

The informativeness of these indicators was demonstrated in 3 sets of assessments. First, our 

exploratory analysis confirms that the missingness of data is associated with patient severity 

of illness or comorbidities. Afterward, by means of feature selection methods, the predictive 

power of the presence of an LT in the patient profile was found to be more than the actual 
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measured value. Finally, missingness indicators noticeably improved the performance of 

mortality prediction models. The high correlation observed among some of the variable 

indicators suggests that all the variables in a set are typically measured or ordered together. 

Therefore, if a patient is missing 1 variable of a set, he or she will likely be missing the 

others as well. This fact is well represented in all 7 groups. The first group comprises the 

differential WBC counts (BA, MO, NE, eosinophil; EO, and LY), which itemizes the number 

of basophils, monocytes, neutrophils, eosinophils, and lymphocytes among present WBCs. 

The second group (RDW, MCHC, MCV, RBC, and MCH) comprises tests that are used to 

measure the actual number of RBCs and their physical characteristics. The third group (BE, 

PCO2, and PO2) consists of blood gas components and focuses on oxygen and carbon 

dioxide pressure as well as excess or deficit of base levels in the blood. Tbil, ALT, AST, and 

ALK in the fourth group are liver enzymes (Gowda et al. 2009) that are ordered when a 

patient is suffering from or showing symptoms of a liver-related comorbidity. BUN and Cr 

mainly focus on kidney function. Bicarbonate; HCO3 and chloride; Cl are the primary 

measured anions in the blood. PT along with PTT are used for investigating hemostasis and 

are the starting points for looking into potential bleeding or clotting complications. 

Therefore, the presence of a clinical variable in a patient profile can represent a comorbidity 

in the patient. Although LTs are mainly ordered for diagnostic and prognostic reasons, 

studies have shown widely diverse test-ordering behavior among clinicians for similar 

symptoms (Wennberg 1984; Daniels et al. 1977; Solomon et al. 1998). Therefore, indicators 
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could also reflect the opinions, preconceptions, and biases of the treating clinicians. In other 

words, by using the missingness indicators, we are learning from practice patterns rather than 

physiologic patterns. Therefore, indicators as introduced in this study can then be used for 

modeling health care process in various applications such as clinical care, clinical research, 

health care economics, and health care policy (Agniel et al. 2018; Sharafoddini et al. 2018). 

Filter methods verified the importance of some indicators with regard to our outcomes. 

Results also demonstrated that indicators become more and more important on ICU days 2 

and 3 (Tables 2-2 and 2-3). This observation aligns with clinical practice in which ICU 

clinicians might try to get a complete dataset on day 1 to fully investigate the patient and 

understand the situation but are likely to be more selective with LT ordering on subsequent 

days. The Lac indicator was associated with 30-day and in-hospital mortality on the second 

and third day. Lactate is usually used as a biomarker for shock states. The literature has 

constantly reported an association between lactate levels and mortality rates among critically 

ill patients (Zhang et al. 2014c). Our study demonstrated that just the presence of this 

information could represent the severity of a patient’s illness, as patients with profound shock 

have a very high mortality rate in hospitals and ICUs (Levinson et al. 2011). Moreover, BUN 

(Beier et al. 2011; Cauthen et al. 2008; Kajimoto et al. 2015), RDW (Bazick et al. 2011; 

Hunziker et al. 2012; Patel et al. 2010; Purtle et al. 2014; Senol et al. 2013) and AG (Ahn et 

al. 2014; Kim et al. 2017; Lee et al. 2016; Sahu et al. 2006) have been repeatedly determined 

as a risk factor of all-cause mortality and their indicators received a high score in our 
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analysis. These results are consistent with those of Agniel et al’s (2018) who demonstrated 

that the presence of these tests have significant association with odds of 3-years survival. 

The LASSO model selected indicators among the clinical predictors of in-hospital 

mortality and 30-day mortality, implying the predictive power of indicators. More indicators 

than clinical variables were selected on the third day (60%-70% of selected predictors were 

indicators); the assessment demonstrates that indicators from the third day are more 

informative than those from the first, again supporting the idea that the practice patterns 

diverge later during ICU stays, so there is more variability in what gets measured. In other 

words, care on the first day is likely to be highly protocolized—all patients get the same tests 

regardless of their condition because their trajectory is still unclear. As time goes on, the 

patterns become more evident and ordering and prescribing practices change according to 

clinical need. This high percentage of selected indicators suggests that clinical variables are 

not always required in outcome prediction; instead, information about their presence would 

suffice. 

The last assessment demonstrated that models trained on indicators alone in some 

scenarios have reasonable performance (for instance, in 30-day mortality prediction with LR, 

we achieved AUROC of 0.6836 [0.012]). Reasonable performance in this study was defined 

as the AUROC above 0.6. These results imply that by considering missing data as noise or a 

random artifact, we can lose valuable information about patient outcomes. Moreover, 

indicators improved the AUROCs in most scenarios. Researchers in this field are looking for 
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predictors that can be included in the models to improve the prediction results. Having a low-

dimensional set of typical predictors plus these missing data indicators can actually lead to 

performance comparable with that achieved using typical predictors plus other potentially 

useful predictors identified a priori by medical researchers: First, in comparison with 

including extra numeric predictors, the computational load for performing mathematical 

calculations on binary values such as indicators is usually less. Second, binary data require 

less computational memory than numbers when performing data mining techniques. Finally, 

for some important clinical variables, storing the missing data indicators instead of the actual 

value better protects patient privacy while preserving predictive power. In other words, less 

privacy concern is expected in a situation when the type of test is disclosed rather than the 

actual test result. The comparative analyses on the predictive models showed that missing 

data indicators could improve the prediction models’ performance (please refer to Tables C4 

and C5 in Appendix C). Although literature considers a small increase (0.01) in AUROC 

meaningful and of clinical interest (because of insensitivity of AUROC) (Martens et al. 2016; 

Pencina et al. 2012), including the indicators in our study could improve the average 

AUROC by 0.0511. Thus, missing data indicators can be introduced as informative 

predictors and be used to learn from. In other words, these indicators can be representative of 

physicians’ and patients’ opinions during the health care process. Furthermore, the overall 

model performance decreased over time perhaps implying that patients’ data on the first 24-

hour has the highest level of information. The same pattern was also observed in the previous 
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assessment. According to these observations, we can infer that presence or absence of a 

variable can be used in predicting patients’ severity of illness. 

2.5.2 Strengths and Limitations of the Project 

A significant strength of this study is its new insight on missing data in a real-world ICU 

database. The results confirm the predictive power of some indicators and their advantage 

over actual values in predictive modeling. The findings further clarify the factors associated 

with lack of data collection such as the healthier status of a patient or practice patterns of 

clinicians. These insights, in turn, can be used to design models that consider missing data 

and benefit from the hidden information. On the basis of our results, missingness indicators 

can be introduced as potential predictors of ICU patients’ outcomes. 

Despite the strength, significance, and novel nature of this study, there also exist 

limitations that cannot be overlooked. First, because of the nature of ICUs, the amount of 

missing data in MIMIC is less than that from a general ward. Therefore, our study may not 

fully demonstrate the informativeness of these indicators. Moreover, adding the indicators of 

interest to the actual data matrix increases the dimension of the matrix and may become 

computationally burdensome. Using other imputation methods, the power of missing data 

indicators may vary but this was beyond the scope of our study, which focused on providing 

evidence on missing data informativeness. 
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2.5.3 Perspectives for Future Work 

Although our study demonstrates that missingness indicators are informative and have 

predictive power in mortality prediction in ICU, further studies are required to investigate 

their power in predicting other clinical outcomes. Future researchers can investigate the 

association between missingness patterns and patient diagnosis. They can also consider more 

sensitive criteria such as net reclassification or integrated discrimination improvements while 

preserving improvement in the AUROC as the first criterion. Moreover, as this study looked 

at the 3 days in the ICU independently, one can investigate if the missing data on a particular 

day are still informative given all the clinical and indicator variables from previous days. 

These future studies should also investigate the effect of missing rate on the predictive power 

of indicators. Another area of future work is examining the test-ordering behavior among 

clinicians, by using missingness indicators.  

While prediction uses data to guess a value, estimation utilizes data to guess parameters. This 

study focused on capabilities of missing indicators in prediction, however, they can result in 

bias in parameter estimation. Therefore, an open area of research is to investigate approaches 

for incorporating missing indicators in a way that better prediction performance can be 

achieved while minimizing bias in parameter estimation. Last but not least, future researchers 

can incorporate administrative data into their analyses. These data cover information about 

physician services, hospital services and can be used with missing indicators to understand 

the care practices in the hospital. 
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2.5.4 Conclusions 

Our study has demonstrated that the missingness of data itself might be informative in ICU 

and might have added predictive value beyond observed data alone. Moreover, indicators for 

variables with higher missingness rates had more predictive power. In practice, the lack of a 

set of symptoms might lead health professionals to conclude that a particular set of tests is 

not required at the current stage. Therefore, these missing data are not a random occurrence. 

This study showed that the number of comorbidities is associated with a decreased rate of 

missing data. Therefore, rudimentary treatments of missing data (eg, CCA) can cause bias 

toward sicker patients. The study is also notable because it provided new insight about the 

informativeness of missing data and described how this information could be used in 

predicting mortality. 
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Finding Similar Patient Subpopulations in the ICU Using 

Laboratory Test Ordering Patterns 

 

This chapter utilizes the missing indicators introduced in Chapter 2 to capture the laboratory 

test ordering patterns in ICU. Then these patterns are utilized to identify patient 

subpopulations in ICUs. This chapter was originally published in June 2018 and revisions 

have been made to the current copy based on the thesis committee’s reviews. The full citation 

is as follows: Sharafoddini, A., Dubin, J. A., & Lee, J. (2018). Finding Similar Patient 

Subpopulations in the ICU Using Laboratory Test Ordering Patterns. Paper presented at the 

Proceedings of the 2018 7th International Conference on Bioinformatics and Biomedical 

Science, Shenzhen, China.  

 

3.1 Abstract 

In this paper, we focus on phenotyping critically ill patients in intensive care units (ICUs). 

Various data types have been used to cluster patients. We introduce laboratory-test-ordering 

patterns as a source of information for finding clinically similar patients. We employed 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method 

to find patient subpopulations based on the first 24 hours of laboratory test ordered. The 
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DBSCAN identified 25 clusters, and we utilized t-Distributed Stochastic Neighbor 

Embedding (t-SNE) to visualize the subpopulations. Then, we evaluated the clinical 

interpretability of the clusters by using cluster characteristics and two outcomes: in-hospital 

mortality and 30-days post-discharge mortality. Our results demonstrate that laboratory-test-

ordering patterns are informative and can be used to identify patient subpopulations. 

Keywords: Phenotyping; Intensive Care Unit (ICU); DBSCAN clustering; t-SNE 

3.2 Introduction 

Intensive care units (ICUs) provide care to acutely ill patients and were primarily introduced 

in the 1950s (Rodriguez 2001a; Reisner-Senelar 2011). These units target diverse critically ill 

patient populations and that close monitoring of these patients has generated an enormous 

amount of data (Johnson et al. 2016a). Although ICUs have a higher number of staff than 

other departments (Johnson et al. 2016a), analysis and interpretation of this amount of data is 

challenging for clinicians and must be handled by data analysis methods. ICUs have a 

heterogeneous population with various health status dynamics and similar needs for constant 

care (Prin et al. 2012; 'Critical Care Statistics'). This heterogeneity adds to the importance of 

finding similar patients and detecting the underlying phenotypic groups. Recently, efforts 

have been made to phenotype patients, a term widely used in the literature with various 

meanings (Robinson 2012). We focus on phenotyping as in the study of identifying 

subpopulations of patients, suggested in (Shivade et al. 2014). Finding precise phenotypes 

from population-scale electronic health records is a core task in developing precision 
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medicine (Lasko et al. 2013). Traditionally, the task of phenotype discovery was based on 

one specific question using supervised learning; for instance, stratifying patients into five 

predefined heart failure risk levels. Although these methods were successful for decades, 

they are limited to only a set of predefined phenotypes and cannot help when the goal is new 

phenotype discovery (Lasko et al. 2013). Recently unsupervised learning methods 

(clustering) have been used to discover phenotypes from data. Many research groups have 

utilized these methods on varied information in EHRs data, such as demographics, vital signs 

(Pimentel et al. 2013), laboratory test results, and discharge summaries (Dai et al. 2017b), to 

identify patient subpopulations (Shivade et al. 2014). Owing to the sensitive nature of patient 

data, most of these groups have developed their own methods, resulting in a lack of standard 

tools (Shivade et al. 2014). 

Laboratory testing is a fundamental part of day-to-day practice in ICUs and it supports 

70% of the decision making in medicine (either for diagnosis or treatment) (Cadogan et al. 

2015). Laboratory tests may be ordered for various purposes, including diagnosis, treatment 

monitoring or severity scoring. However, the decision to order a test is influenced by many 

hospital-, caregiver-, patient- or disease-related factors. For instance, it has been observed 

that older and younger patients received less testing in comparison to middle-age patients in 

ICUs (Zimmerman et al. 1997) or more complete laboratory testing was performed for 

severely ill patients (Weiskopf et al. 2013b; Rusanov et al. 2014). In this work, we propose a 

data-driven framework for discovering patient subpopulations, using the laboratory test 
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ordering patterns from the EHR data. The presence or absence of a laboratory test may be a 

valuable indicator of patients’ characteristics (age group or ethnicity) or health status 

(symptoms or severity of illness). Therefore, such phenotype discovery can shed light on 

some characteristics, possibly even latent characteristics, of each subpopulation. Moreover, 

these phenotypes can help in customizing predictive modeling by training a model for each 

subpopulation instead of using a one-size-fits-all model. 

3.3 Methodology 

3.3.1 Data and Data Representation 

This study utilizes the freely accessible MIMIC-III (Medical Information Mart for Intensive 

Care) database (Johnson et al. 2016b)—an update of the MIMIC-II database—which was 

released in 2015. This database has detailed information on 38,597 distinct patients in the 

critical care units at the Beth Israel Deaconess Medical Center in Boston, between 2001 and 

2012 (Johnson et al. 2016b). Adult patients (age>=15 years) admitted to one of the five 

following ICUs were included in this study: medical ICU (MICU), surgical ICU (SICU), 

cardiac care unit (CCU), cardiac surgery recovery unit (CSRU), and trauma surgical ICU 

(TSICU). Therefore, we focused on the top 80% laboratory tests and profiles common to all 

ICUs (Frassica 2003) which were available in our database. Data for patients having at least 

one measurement for any of the following 36 laboratory tests in the first 24 hours of 

admission was extracted: Alanine Aminotransferase (ALT); Alkaline Phosphatase (ALP); 

Aspartate Aminotransferase (AST); Arterial blood gases: pH, PCO2, PO2, Base Excess (BE); 
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Basic metabolic panel: Sodium (Na), Potassium (K), Chloride (Cl), Bicarbonate (HCO3), 

Anion Gap (AG), Blood Glucose (BG), Blood Urea Nitrogen (BUN), Creatinine (Cr); 

Complete blood count: WBC, RBC, HGB, HCT, MCV, MCH, MCHC, RDW, Platelet count 

(PLT), Absolute MO no., Absolute EO no., Absolute BA no., Absolute LY no., Absolute NE 

no.; Lactate (Lac); Calcium (Ca); Magnesium (Mg); Phosphorus/ Phosphate (Phos); Partial 

Thromboplastin Time (PTT); Prothrombin Time (PT); Total Bilirubin (TBil). Therefore, 

whether a laboratory test was performed at least once in the first 24 hours constructs the 

laboratory ordering test patterns. 

3.3.2 Clustering 

Various clustering methods have been widely used to find subpopulations. However, many of 

these methods focus only on spherical-shaped clusters and are sensitive to the presence of 

noise or outliers (Ester et al. 1996). However, these limitations are more highlighted when 

working with EHR data in which information inaccuracy is frequently observed (Botsis et al. 

2010). DBSCAN (Ester et al. 1996), one of the most common clustering methods, utilizes the 

idea that the clusters are located where data have a high density and are separated by regions 

with a lower density of data (the density is evaluated based on two user-defined parameters). 

Unlike in other methods, clusters in DBSCAN can have any arbitrary shape and the 

algorithm is not sensitive to noise. DBSCAN received the ACM SIGKDD Test of Time 

Award due to its outstanding influence in data mining. 



 

 

71 

In this study, we will use DBSCAN to cluster the laboratory test ordering patterns, as it 

does not require the number of clusters to be set. However, it is important to acknowledge 

that the DBSCAN algorithm fails to identify clusters if density varies. Since DBSCAN uses a 

single global parameter epsilon (ɛ) to identify clusters, it is impossible to detect clusters with 

varied densities simultaneously. The only two parameters that must be tuned for DBSCAN 

are ɛ and minimum points (MinPts). MinPts (the minimum number of neighbors required to 

consider a point as a core point) is usually set to the dimensionality of data pulse one or 

higher. After setting MinPts, epsilon (the radius of the neighbourhood) can be set using k-

distance tuning method. In this method, first, the distance of each point from its k’th nearest 

neighbor is calculated. This distance is called kdist. After calculating and sorting kdists for 

all data points, the distance values will be plotted in a k-distance graph for a particular value 

of k. Then, the value for which the graph shows a strong bend—the knee point—will be 

chosen for epsilon.  

The DBSCAN algorithm also requires a distance metric to cluster patients.  Since our data 

are binary, we use the Jaccard distance (Deza et al. 2009) to calculate the similarity between 

points. 

3.3.3 Graphical Representation 

To visualize the data set, a dimensionality reduction algorithm, which creates two-

dimensional visualization of all data points is required. We have chosen t-Distributed 

Stochastic Neighbor Embedding (t-SNE) (Maaten et al. 2008), a dimensionality reduction 
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technique that is used for mapping high dimensional datasets into two-dimensional space in 

order to see the data structure. Numerous nonlinear dimensionality reduction methods have 

been introduced for data visualization while preserving the structure of data. However, t-SNE 

has been shown to perform better in preserving the structure of data than other widely used 

techniques (Maaten et al. 2008) such as Sammon mapping, curvilinear components analysis, 

Stochastic Neighbor Embedding, Isomap, Maximum Variance Unfolding, Locally Linear 

Embedding, and Laplacian Eigenmaps. 

Here, t-SNE starts with converting the pair-wise Jaccard distances (d) of a data point into 

probabilities (pji) that represent the probability that a data point (xi) will choose (xj) as its 

neighbor. For close data points, this probability is relatively high. Therefore, first, it centers a 

Gaussian distribution over xi and measures the density of other points under this Gaussian 

distribution. The joint probability of pji is calculated using pji = (pj|i + pi|j)/2N, where 

 Pj|i =

exp (−
𝑑(𝑥𝑖 − 𝑥𝑗 )2

2σi
2 )

∑ exp (−
𝑑(𝑥𝑖 − 𝑥𝑘 )2

2σi
2 )k≠i

 (3.1) 

Similar conditional probability can be defined for the low-dimensional mappings of xi and 

xj, denoted as yi and yj. This probability measures the similarities of data points in low-

dimensional space. t-SNE utilizes a heavy-tailed Student-t distribution with one degree of 

freedom for low-dimensional spaces since it wants the dissimilar points to be too far apart in 

the map. 
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 qj|i =
(1 + 𝑑(𝑦𝑖 − 𝑦𝑗 )2)

−1

∑ (1 + 𝑑(𝑦𝑖 − 𝑦𝑘  )2)−1
k≠i

 (3.2) 

The goal is for qj|i to reflect pj|i as well as possible. t-SNE uses Kullback-Leiber 

divergence to measure the difference between these probabilities. Therefore, it moves the 

data points to minimize KL(P||Q) = ∑ ∑ pij log
pij

qij
j≠ii . Using gradient descent, the result is a 

map that reflects data points in a low-dimensional space while preserving their local 

structure. 

3.3.4 Evaluation Design 

One of the most challenging parts in cluster analysis as an exploratory analysis is the 

evaluation of results. In this work we employed two evaluation methods: (i) exploring the 

clinical characteristics of the clusters; and (ii) the silhouette index (Rousseeuw 1987), which 

evaluates the suitability of assigning a patient to a group rather than to another by 

considering cluster cohesion and cluster separation. Therefore, we employed silhouette 

index, which is a number between -1 and 1, to evaluate our clustering. Besides the total 

silhouette value for our proposed method, we calculated the silhouette index for each cluster 

by averaging the silhouette widths for the patients in that cluster. Silhouette values close to 

one indicate precise clustering, while small values close to zero represent observations that 

lie between two clusters. Negative values represent wrong patient assignment. 
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3.4 Results 

Based on the inclusion criteria, 32618 patients were retrieved from the MIMIC-III ICU 

database described in Section 3.3.1. To determine the parameters of DBSCAN, after testing 

various values for MinPts (including 37, 50, 100, 150, 200, 300, 400, 500) and observing 

little variation in clustering, we set MinPts to 37, which equals the dimensionality of data 

plus one. Then using the k-distance graph the radius associated with the sharp change was 

chosen as ɛ. Figure 3-1 shows the k-distance graph for k=37. The value of ɛ determined from 

this graph was 0.125.  

Utilizing DBSCAN with tuned parameters on the laboratory test ordering data resulted in 

25 clusters, with some data points as outliers (cluster 0). 

We represented each of the 32618 critically ill patients in a two-dimensional space using t-

SNE. Although the author of t-SNE has claimed that this algorithm is not very sensitive to 

the perplexity parameter (Maaten et al. 2008), there is evidence showing otherwise 

(Wattenberg et al. 2016). Therefore, first, we tested representing data with various values for 

perplexity: changing perplexity from 5 to 50 (as suggested by (Maaten et al. 2008)) and then 

testing it for higher values of 100, 150, and 200. Robust behaviors were observed from the 

topological aspect. However, the relative size of clusters and distance between them were 

unstable and meaningless, as was expected from literature (Wattenberg et al. 2016). 
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Figure 3-1 k-Distance graph (k=37) for tuning epsilon in DBSCAN. 

Figure 3-2 demonstrates the two-dimensional representation of patient data points with 

colored cluster assignment. The cluster populations range from 39 to 10486 patients. The in-

hospital mortality rate was from 0.83 to 27.95 while the 30-days hospital mortality rate was 

higher ranging from 1.65 to 33.29. The highest mortality rate was in cluster number 2 (light 

green), in which 92% of patients had an emergency admission. 

This cluster had the highest 30-days post-discharge mortality rate as well. We employed 

the Simplified Acute Physiology Score (SAPS-II) (Le Gall et al. 1993)—a well-known and 

widely-used ICU severity scoring system—to report the illness severity in each cluster. In 

Cluster #2, 49.2% of the patients received a SAPS-II score of 49, which equals the maximum 

SAPS-II score observed in the whole dataset. Interestingly, all the 36 laboratory tests listed 

above were ordered for all patients in this cluster, implying the severity of illness in this 
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cohort which resulted in higher mortality rate. Cluster #19 had the lowest mortality rates. The 

average number of tests per patient for this cluster was 3.4 (median=2, sd= 3.78). The second 

and third clusters with highest mortality rates were clusters #7 and 11, for which the average 

numbers of tests per patient were 35 and 31, respectively. The average age in clusters ranges 

from 49.21 to 67.44. The mortality rate in the younger cohort was approximately half of the 

mortality rate in the older cohort. Length of stay (LOS) ranges from 6.62 to 16.42, with a 

higher mortality rate associated with long LOS.  
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Figure 3-2 Clustering critically ill patients using laboratory test ordering patterns. 

DBSCAN clustering method with MinPts=37 and ɛ =0.125 was used. Data were mapped 

to a two-dimensional space using t-SNE with perplexity=30 and 1000 iteration. 

For each cluster, the population, gender distribution, average age, mortality rates, average 

number of tests performed per patient and the dominant primary ICD-9 codes for cluster are 

shown in Table 3-1. 
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Table 3-1 Population characteristics for each cluster. 

# Size Gender (%M) Age Mortality (%) LOS Average 

number 

of tests 

per 

patient 

Dominant ICD-9 diagnosis 

code In-Hospital 30-

days 

0 1096 54.74 63.42 13.78 18.89 12.13 28.16 41401 - Coronary 

atherosclerosis of native 

coronary artery 

1 8754 54.31 63.54 5.37 9.71 8.03 22.47 41071 - Subendocardial 

infarction, initial episode 

of care 

2 2472 55.66 61.53 27.95 33.29 14.52 36 0389 - Unspecified 

septicemia 

3 10486 60.91 64.73 8.27 11.18 10.98 25.27 41401 - Coronary 

atherosclerosis of native 

coronary artery 

4 1065 52.49 63.85 15.4 20.19 13.11 32 0389 - Unspecified 

septicemia 

5 237 48.95 64.75 10.13 21.52 9.9 32 0389 - Unspecified 

septicemia 

6 260 63.85 65.38 7.31 8.85 12.14 28.32 41401 - Coronary 

atherosclerosis of native 

coronary artery 

7 436 54.82 62.69 22.02 26.83 13.48 35 51881 - Acute respiratory 

failure 

8 346 52.89 61.13 11.27 14.45 10.5 28.5 0389 - Unspecified 

septicemia 
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9 146 43.15 64.73 13.7 20.55 11.12 30 0389 - Unspecified 

septicemia 

10 1444 52.29 65.9 5.89 12.12 8.36 26.84 0389 - Unspecified 

septicemia 

11 2301 59.76 60.95 21.82 25.9 15.47 31 0389 - Unspecified 

septicemia 

12 90 50 64.5 13.33 22.22 12.75 34 0389 - Unspecified 

septicemia 

13 1015 56.65 62.45 9.36 15.86 9.52 31 41071 - Subendocardial 

infarction, initial episode 

of care 

14 590 57.8 61.96 19.66 24.58 12.98 30 41071 - Subendocardial 

infarction, initial episode 

of care 

15 377 53.85 63.88 9.81 13.26 9.37 14.66 41071 - Subendocardial 

infarction, initial episode 

of care 

16 370 46.22 65 15.95 20.54 11.41 31 51881 - Acute respiratory 

failure 

17 39 61.54 49.21 7.69 7.69 6.62 10.28 41519 - Other pulmonary 

embolism and infarction 

18 121 63.64 66.44 0.83 1.65 9.36 28.87 41401 - Coronary 

atherosclerosis of native 

coronary artery 

19 467 51.18 62.75 19.49 23.34 7.26 3.4 41401 - Coronary 

atherosclerosis of native 

coronary artery 

20 70 42.86 61.63 4.29 8.57 11.08 33 03842 - Septicemia due to 

escherichia coli 
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21 145 75.86 66.76 2.07 4.14 9.69 30 41401 - Coronary 

atherosclerosis of native 

coronary artery 

22 53 58.49 59.95 16.98 22.64 12.14 32 20500 - Acute myeloid 

leukemia, without 

mention of having 

achieved remission 

23 103 41.75 64.49 18.45 20.39 8.78 28.85 51881 - Acute respiratory 

failure 

24 94 55.32 61.53 5.32 8.51 9.33 28.83 486 - Pneumonia, 

organism unspecified 

25 41 60.98 67.44 12.2 12.2 16.42 30 41401 - Coronary 

atherosclerosis of native 

coronary artery 

 

The total silhouette value was 0.81. Evaluating individual clusters, we observed that except 

for the group of outliers which received a silhouette value of -0.56, the average silhouette 

value for all clusters were positive. Figure 3-3 demonstrates the average silhouette values for 

all clusters. The interpretations of silhouette values are color coded based on the ranges 

proposed in (Kaufman et al. 2009). Green indicates that a strong structure has been found for 

that particular cluster. Yellow and red indicate reasonable and weak structures, respectively. 

Based on this interpretation, only three clusters had weak structure and alternative methods 

are suggested for them (cluster #6, 15, 18). Other clusters had acceptable structures. These 

results support the applicability of test-ordering patterns for patient phenotyping. 
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Figure 3-3  The average silhouette values for each cluster. Green, yellow and red 

respectively represent strong, reasonable and weak structures. 

3.5 Discussion 

Our results strongly support the introduction of lab ordering test as a source of information 

for phenotyping patients. Our approach can cluster patients into subpopulation following two 

rationales. 

First, lab ordering patterns are informative about physician’s opinion and biases. Various 

factors affect physicians’ decisions to order a test. One of these factors is whether a patient is 
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showing a symptom or not (Litchfleld et al. 2014; Wells et al. 2013). Therefore, these binary 

data can easily be used as an indicator of patients’ symptoms.  

Second, lab ordering patterns are informative about patient illness severity. Intensive care 

physicians tend to order more tests for patients who are severely ill, as they need to monitor 

them closely and comprehensively. Therefore, the number of tests being ordered can be 

associated with the severity of illness. 

These facts are well represented in our results. Clusters #2, 7 and 11 had higher mortality 

rates as an implication of severe health conditions. In these clusters, more than 30 lab tests 

(out of 36) were performed on average per patient.  

Our results are of interest from two aspects. While many phenotyping methods use huge 

amounts of data to find subpopulations, our method works in a 36-dimensional binary space. 

This will result in less computation burden and ease of implementing the method on personal 

computers. One trending research area is predicting modeling in health care. While many 

researchers are investing on one-fits-all models, a hierarchical approach where patients are 

first grouped into subpopulations and then models are trained on each group has been studied 

and showed promising results. Our approach can also contribute to this field as a fast and 

memory efficient way of subgrouping patients for predictive modelling. 

There are some limitations to this study. First, we limited our laboratory tests to the most 

common ones in ICUs and their availability in our database; therefore, abundant room 

remains for considering more-comprehensive lists. Second, this study focused on the 
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laboratory-test patterns of the first 24 hours of ICU admission; however, including data from 

all days of an ICU stay can provide information about the evolution of patient health status.  

3.6 Conclusion 

In this paper, we used laboratory test ordering patterns to discover subpopulations among 

critically ill patients. We used DBSCAN to reveal these subpopulations. t-SNE was utilized 

to represent results in a low-dimensional space. Our results demonstrate that lab ordering 

patterns are able to reveal information about patient health status and can be used to identify 

clinically meaningful subpopulations. Future researchers can focus on employing weighted 

distance for eliminating the effect of the lab tests that are routinely ordered as part of hospital 

protocols and highlighting laboratory tests that are more patient-specific and representative 

of their special health condition. These patterns can also be used with other methods to 

increase the performance of phenotyping patients. 
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Multifaceted Patient Similarity Metric 

This chapter builds upon the previous chapters and introduces a multifaceted PS metric that 

accounts for various EHR data and integrate different similarity metrics. This metric also 

considers the similarity in terms of missing data using the indicators introduced in Chapter 2. 

Various experiments are performed to evaluate the performance of the proposed metric in 

comparison to the conventional methods in mortality prediction application.  

4.1 Introduction 

In the past decade, with the emergence of precision medicine, patient similarity (PS) 

analytics has received special attention and become the core component of health analytics 

in, among other areas, predictive modeling, patient stratification, and clinical pathway 

analytics (Hu et al. 2016a). EHR data are present in a plethora of formats, including 

demographic data, vital signs, lab results, diagnosis/symptom/procedural codes, and 

clinicians’ notes, and reflect information about different aspects of patient health status. The 

volume of existing EHR data makes it difficult for physicians to assess the similarity of two 

patients. Therefore, health analytics has focused on devising similarity metrics, using various 

approaches (Jurisica et al. 1998; Bobrowski 2006; Park et al. 2006; Saeed et al. 2006a; 

Chattopadhyay et al. 2008; Han et al. 2015; Sun et al. 2010b; Sun et al. 2010a; David et al. 

2011; Wang et al. 2011; Campillo-Gimenez et al. 2013; Lowsky et al. 2013; Hielscher et al. 
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2014; Henriques et al. 2015; Lee et al. 2015a; Wang et al. 2015). Although studies have 

shown the utility of using PS in health analytics, assessing PS using one similarity metric for 

all the various clinical variables/predictors may not sufficiently capture the similarities.  

The ICD coding system is a widely used coding system for classifying diagnoses and 

procedures. MIMIC-III contains the ninth version of ICD codes (ICD-9 codes) for diagnosis 

and procedures. The ICD-9 coding system consists of a set of trees that represent the 

hierarchical relation between the codes. Whereas, higher-level nodes represent more general 

concepts, lower-level nodes are more detailed. Figure 4-1 shows a snippet of a hierarchy tree.  

427 Cardiac 

dysrhythmias

427.0 Tachycardia, 

paroxysmal 

supraventricular

427.3 Atrial 

fibrillation and 

flutter

427.4 Ventricular 

fibrillation and 

flutter

427.31 Atrial 

fibrillation
427.32 Atrial flutter

427.41 Ventricular 

fibrillation

...

 

Figure 4-1 A snippet of an ICD-9 hierarchy tree. 

ICD-9 codes have been used in healthcare analytics for various applications, including 30 

days post-discharge mortality prediction (Lee et al. 2015a). However, the ICD-9 codes are 

usually treated as a categorical variable, and the hierarchal nature of the codes is ignored. 
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The hierarchical nature of the ICD-9 code can be a potentially valuable source of 

information. For instance, considering the hierarchical nature of ICD-9 codes has led to 

better automated ICD-9 code assignment from discharge summaries (Perotte et al. 2014). 

Moreover, leveraging the hierarchy in the feature construction or model building or both 

significantly improved predictive modeling for chronic kidney disease and heart failure 

applications (Singh et al. 2014). Although Gottlieb et al. (Gottlieb et al. 2013) considered the 

hierarchy in their similarity assessment, the superiority of it over conventional methods 

remained undetermined. A recent study has also investigated the effect of leveraging the 

hierarchy in the similarity assessment. Girardi et al. (Girardi et al. 2016) proposed a new 

semantic similarity metric for ICD-10 codes in which the hierarchical characteristic was 

taken into consideration. They proposed the following measure for assessing the distance 

between two ICD codes in a hierarchy tree: 

 𝑑𝑖𝑠𝑡𝐼𝐶𝐷(𝐼𝐶𝐷1, 𝐼𝐶𝐷2) =
𝑀𝑖𝑛𝐸𝑑𝑔𝑒(𝐼𝐶𝐷1, 𝐼𝐶𝐷2)

𝑝(𝐼𝐶𝐷1) + 𝑝(𝐼𝐶𝐷2)
 (4.1) 

where MinEdge is the minimum number of edges between two ICD codes, and 𝑝(𝐼𝐶𝐷1) +

𝑝(𝐼𝐶𝐷2) denotes the longest path between the codes in the tree. They compared the proposed 

method to the Jaccard distance—a measure of the distance between sets—and Haase-Li 

(Haase et al. 2004; Yuhua et al. 2003) distance—a measure of the distance between 

individual hierarchical codes—, and it demonstrated better performance at detecting 

similarities.  
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Therefore, constructing a similarity score by utilizing appropriate similarity metrics for 

specific clinical variables can contribute to more accurate PS assessment and data retrieval in 

clinical care.  

4.1.1 Literature review 

Overall, various types of similarity metrics can be used in computing the similarity between 

patients. 

• Distance-based similarity metrics: Absolute distance (Chattopadhyay et al. 2008), 

Euclidean distance and its family (Bobrowski 2006; Henriques et al. 2015; David et al. 

2011; Park et al. 2006; Hielscher et al. 2014), Mahalanobis distance and its family (Sun et 

al. 2010b; David et al. 2011; Wang et al. 2012a; Wang et al. 2015; Lowsky et al. 2013; 

Han et al. 2015; Sun et al. 2010a). 

• Correlation-based similarity metrics (Saeed et al. 2006a) 

• Cosine-based similarity metrics (Lee et al. 2015a) 

• Model-based similarity metrics (Houeland 2011a; Zhu et al. 2017; Wang 2015; Zhang et 

al. 2018; Suo et al. 2017) 

Most of the current studies in PS analytics utilize one universal metric to assess the 

similarities among patients. However, researchers have recently focused on capturing 

multiple aspects of drug similarity (Zhang et al. 2014a; Gottlieb et al. 2011; Li et al. 2012; 

Moghadam et al. 2016; Yan et al. 2014)—including genetic (target proteins), phenotypic 
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(side effects) and chemical aspects—and disease similarities (Zhang et al. 2014a; Gottlieb et 

al. 2011; Li et al. 2016; Moghadam et al. 2016; Yan et al. 2014)—inclusive of disease 

symptom, ontology and gene aspects—by employing various metrics (Zhang et al. 2014a; 

Gottlieb et al. 2011) and combining the similarity scores to achieve one unified score.  

Although this kind of multifaceted similarity assessment is gaining attention in drug and 

disease similarities, only a very few studies exist on multifaceted PS assessment using EHR 

data. Gottlieb et al. (2013) utilized various similarity metrics for different variables: 

• ICD codes:  

o ICD similarity: 

 𝑆𝑖𝑚(𝐼𝐶𝐷1, 𝐼𝐶𝐷2) =
𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐶𝑜𝑚𝑚𝑜𝑛 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝐼𝐶𝐷1, 𝐼𝐶𝐷2)

#𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑖𝑛 𝐼𝐶𝐷 ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦
 (4.2) 

This metric uses the levels of ICD codes in the ICD coding hierarchy to calculate 

the similarity. For instance, for ICD codes 427.31 and 427.41 the nearest common 

ancestor is 427 (level 3) and the number of levels in the ICD-9 hierarchy is five. 

Therefore, the similarity between these two codes is 3/5. 

o Empirical co-occurrences between ICD codes 

This metric computes the number of co-occurrences of an ICD pair in patient 

profiles across the dataset as a measure of similarity between two codes. 

o Bipartite graph over ICD codes 
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To calculate the similarity score for two sets of ICD codes, this method constructs 

the bipartite graph over the codes in the two profiles in which an edge represents 

the similarity of two codes calculated based on one of the above methods. Then, 

the final similarity between two sets is calculated using maximal matching in 

graph theory.  

• Blood test and ECG records: Euclidean distance and absolute difference 

• Age: 

 𝑆𝑖𝑚(𝐴𝑔𝑒1, 𝐴𝑔𝑒2) =
|𝐴𝑔𝑒1 − 𝐴𝑔𝑒2|

max(𝐴𝑔𝑒1, 𝐴𝑔𝑒2)
 (4.3) 

• Sex: XOR distance (returns zero for patients of the same gender and one otherwise) 

The authors then used these scores to construct a feature vector for a regression model. 

Although their study considered various similarity metrics, they did not justify their use of 

various metrics. In addition, the advantage of this approach was not investigated in 

comparison to conventional methods. Moreover, regardless of the nature of the variables and 

frequency of measurement for blood test measurements and ECG timeseries, only the 

Euclidean distance between the first measurement of each variable was used for similarity 

calculation. Thus, the unique characteristics of each variable were not the main focus of the 

study. Using a variable-specific similarity metric can overcome the limitations of using only 

one particular similarity metric (utilizing just one similarity metric for all predictors may 

miss information relevant to clinical similarity assessment). The work most relevant to this 
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study is a system called Advanced Analytics for Information Management (AALIM), devised 

by the IBM Almaden Research Center for cardiac diagnosis (Syeda-Mahmood et al. 2007; 

Amir et al. 2010). AALIM computes cardiac PS in each of the following modalities: 

electrocardiogram (ECG or EKG), heart auscultation sounds and cardiac echo videos. In this 

study, the authors employed a weighted linear combination method to fuse all the similarity 

scores into one. However, published evidence on this work covering more details about the 

methodology is very limited.  

4.1.2 Study Objectives 

The study presented here is motivated by the need to use the various types of information in 

EHR data more effectively. The purpose of this study is to devise a multifaceted PS metric in 

which the characteristics of individual clinical variables are considered. Moreover, in the 

context of predictive modeling, this study compares the performance of the multifaceted PS 

metric with that of conventional methods (specifically, cosine and Euclidean distance). 

4.2 Materials and Methods 

4.2.1 Data and Analytical Dataset Preparation 

Data for this study were extracted from the MIMIC-III database since it has a rich variety of 

EHR data. To manage computational time for the pair-wise similarity calculations and at the 

same time preserving the heterogeneity of the ICU patients, only adult patients admitted to 

the medical ICU and surgical ICU were included in this study. To be included, patients must 
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have had at least one measurement for any of the variables in Table 4-1. PMM imputation 

were used to address missing data. While imputing a missing value, an indicator was 

generated to distinguish between an imputed value and an actual measurement (missing 

measurement indicators). In case of multiple ICU admissions, only the first ICU admission 

was considered. Moreover, patients must have stayed in the ICU for at least 24 hours, and 

data for laboratory tests, vital signs, urine output and therapeutic interventions were extracted 

only from the first day of stay in the ICU. Data extraction was performed using Structured 

Query Language (SQL) in PostgreSQL. In the MIMIC III database, the birthdate for patients 

older than 89 years old are shifted to obscure their true age. These patients appear in the 

dataset with ages of over 300 years, therefore, the age value for these patients was treated as 

missing data. Moreover, min-max normalizer was used to linearly rescale each predictor to 

the [0,1] interval.   
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Table 4-1 Data types in a patient profile. 

Category Variables 

Demographics and Admission 

Information 

Age, Gender, Admission type (Emergency, Elective, Urgent), The 

first ICU type in which the patient was cared for (MICU, SICU) 

Laboratory Tests and Urine Output Albumin, Anion Gap, Bicarbonate, Bilirubin, Creatinine, Chloride, 

Glucose, Hematocrit, Hemoglobin, Lactate, Platelet, Potassium, 

PTT, INR, PT, Sodium, Bun, WBC, Urine Output 

Vital Signs Heart Rate Systolic Blood Pressure, Diastolic Blood Pressure, 

Respiratory Rate, Temperature, SpO2, Glasgow Coma Score 

Discharge code ICD-9 

Therapeutic interventions Dialysis (Yes/No), Mechanical Ventilation (Yes/No), Fluid (Colloids 

and Crystalloid) Administration (Yes/No) 

Missing Measurement Indicators Albumin, Anion Gap, Bicarbonate, Bilirubin, Creatinine, Chloride, 

Glucose, Hematocrit, Hemoglobin, Lactate, Platelet, Potassium, 

PTT, INR, PT, Sodium, Bun, WBC, Urine Output 

 

4.2.2 Methodology 

4.2.2.1 Multifaceted PS Metric 

Figure 4-2 shows the overall structure of the methodology of this study. For each new patient 

profile, its similarity to the profiles of other patients is assessed from different perspectives. 

In other words, a similarity score is generated for each variable in the profile. Besides the 

variables’ values, the similarity of the patient to others, in terms of missing measurements, is 
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calculated using the representation introduced in Chapter 2 (Sharafoddini et al. 2019). Then, 

all these similarity scores are aggregated to build a multifaced PS score.  

• Age
• Laboratory Tests
• Vital Signs
• ICD-9 codes
• Medications
•  ...

New patient profile

Hospital Database

Multimodal Patient 
Similarity 

Assessment Module

Fusion 
Module

Vital signs similarity scores

Age similarity score

Laboratory tests similarity score

•  
•  
• K most-similar 

patients

 

Figure 4-2 The overall structure of the proposed method. 

4.2.2.1.1 Individual Similarity Metrics 

4.2.2.1.1.1 Demographics and Admission Information 

For categorical demographic data the well-known Simple Matching Coefficient (SMC) is 

used to measure PS (Sokal 1958). SMC is a statistic for calculating the similarity of two sets.  
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 𝑆𝑀𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠
 (4.4) 

For age, simple absolute difference was used.  

4.2.2.1.1.2 Therapeutic Interventions 

Since therapeutic interventions in ICUs are very broad, this study focused only on the 

presence of the following significant interventions in a patient’s profile: mechanical 

ventilation, fluid administration, and dialysis. These interventions are among the ones that 

require special nursing service—based on the Simplified Therapeutic Intervention Scoring 

System (Reis Miranda et al. 1996)—and also have been used in scoring systems for critically 

ill patients as a marker of their health status (Vincent et al. 2010; Rao et al. 2008). For this 

category of variables, SMC was used to calculate pair-wise PS. 

4.2.2.1.1.3 Laboratory Tests and Urine Output 

While in general wards, phlebotomy (the taking of blood samples) is performed on average 

once a day for each patient, in ICUs this number increases to nearly three to four blood 

samples drawn per day (Smoller et al. 1986; Low et al. 1995). Therefore, the maximum and 

minimum values of all laboratory tests in Table 4-1 were extracted per day—since they can 

represent the worst conditions (Lee et al. 2015a). For urine output, the total amount during 

the first 24 hours was extracted. Then, the Mahalanobis distance was employed to calculate 

the similarity of patients in terms of laboratory results and urine output.  
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4.2.2.1.1.4 ICD-9 Code 

This study employed the hierarchical distance introduced by Gottlieb et al. (2013) for 

calculating the distance between ICD-9 codes. 

 𝑆𝑖𝑚(𝐼𝐶𝐷1, 𝐼𝐶𝐷2) =
𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐶𝑜𝑚𝑚𝑜𝑛 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝐼𝐶𝐷1, 𝐼𝐶𝐷2)

5
 (4.5) 

4.2.2.1.1.5 Vital Signs 

Vital signs are collected more frequently for patients than other data. Thus, the maximum and 

minimum of each vital sign were extracted during non-overlapping 6-hour periods—which 

exceed the longest acceptable gap between charting vital signs (Cahill 2010) and the 

commonly-accepted frequency of charting vital signs (Schulman et al. 2010; Miltner et al. 

2014; Johnson et al. 2014). Then, the Mahalanobis distance was used to calculate the 

similarity of patients in terms of vital signs.  

4.2.2.1.1.6 Absence Indicators 

Absence indicators are binary data, and the literature has introduced many distances for 

comparing the similarity of two sets of binary values of the same or different lengths (Deza et 

al. 2009; Choi et al. 2010). In this study, SMC was used for comparing patients in terms of 

their missing measurements. 
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4.2.2.2 Combining Similarity Scores 

After calculating the individual, variable-specific similarity scores, the next step is to fuse all 

the scores into one. Similarity scores are based on multiple sources of information and can be 

seen as distinct pieces of evidence. In this study, after normalizing each metric, simple 

averaging was used for aggregating all the scores.  

Figure 4-3 demonstrates an example of PS calculation by multifaceted PS metrics in the 

dataset. The similarity of the new patient (ICUStay_Id: 210282) from test set is compared to 

the profile of a patient in the training set (ICUStay_Id: 243452). The similarity is measured 

from different perspectives and then all the scores are aggregated into one similarity score. 

Based on the outcome of the patient on the right and its similarity to the new patient, same 

outcome is expected for the new patient. Data confirm a negative value for the 30-days post-

discharge mortality flag for the new patient. 
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Figure 4-3 A visual representation of multifaceted PS metric calculation.  

Table 4-2 shows a summary of calculations performed in Figure 4-6. All numerical 

variables were normalized and categorical variables were one-hot encoded before 

calculation. 
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Table 4-2 An overview of individual PS calculation methodologies and example input 

vectors with similarity calculations. 

Category PS calculation methodology Input vectors and similarity calculations 

Demographics and 

Admission 

Information 

 

1- (SMC+ 

Absolute Difference)/2 

1-(SMC([MICU1, ..., Female1],[MICU2, ..., 

Female2])  

+ (|Age1-Age2|))/2 

ICD-9 𝑆𝑖𝑚(𝐼𝐶𝐷1, 𝐼𝐶𝐷2) =

𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐶𝑜𝑚𝑚𝑜𝑛 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝐼𝐶𝐷1,𝐼𝐶𝐷2)

5
  

0/5 

Laboratory Tests 1-Mahalanobis distance 1-Mahalanobis ([min_Glucose1, 

max_Glucose1, ..., max 

Albumin],[ min_Glucose2, max_Glucose2, ..., 

max Albumin2]) 

Vital Signs 1-Mahalanobis distance 1-Mahalanobis ([min_GCS1_6hr, 

max_GCS1_6hr1, ..., 

max_HR1_6hr4],[ min_GCS2_6hr, 

max_GCS2_6hr1, ..., max_HR2_6hr4]) 

Indicators 1-SMC 1-SMC([0,0,...,0,0],[0,0,...,0,0]) 

Intervention 1-SMC 1-SMC([no_Dialysis,no_MV, ...,no_crystalloids ], 

[ no_Dialysis,no_MV, ...,crystalloids]) 

 

4.2.2.3 Experiments 

To benchmark the following experiments, the predictive performance of SAPS-II and SOFA 

scores were investigated in a 10-fold cross-validation set-up.  
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4.2.2.3.1 Evaluating the Validity of the Multifaceted PS Calculation 

Quantifying the accuracy and correctness of a PS metric in an unsupervised problem is 

challenging, since subjective evaluation for such a huge number of pair-wise similarity 

scores seems impossible. This study utilizes the objective evaluation method introduced by 

Keogh et al. (2003). The idea is to use a nearest neighbor classifier on labelled data to 

evaluate the accuracy of a PS metric. It has been repeatedly demonstrated that the 

performance of  k-nearest neighbor (KNN) critically depends on the distance metric (Hu et 

al. 2016b; Wang et al. 2012b; Keogh et al. 2003); therefore, the accuracy of classification is a 

proxy of metric accuracy.  Here, this methodology is performed over various values of K to 

eliminate the effect of number of similar patients. For each new patient, data from a cohort of 

similar patients in the training set were retrieved using the proposed multifaceted PS metric; 

then a prediction was made for a new patient based on a majority vote of the k most similar 

patients. An equivalent approach was used to investigate the performance of the following 

conventional metrics 

• Euclidean distance  

 𝑑𝑖𝑠𝑡(𝑋, 𝑌) = √
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑚
𝑖=1

𝑚

2

 (4.6) 

• Cosine similarity 
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 𝑠𝑖𝑚(𝑋, 𝑌) =
𝑋⃗. 𝑌⃗⃗

|𝑋⃗||𝑌⃗⃗|
 (4.7) 

In calculating the similarities, all numerical predictors were rescaled to the [0,1] interval 

and one-hot encoder was used for categorical variables. 

4.2.2.3.2 Multifaceted PS metric in predictive modelling 

In this experiment, after retrieving a cohort of similar patients, a logistic regression (LR) and 

decision tree (DT) were trained on the retrieved cohort, and a prediction was made for the 

new patient. The same procedure was followed using a cosine PS metric. AUROC was used 

for analyzing the performance of the prediction models in each scenario. Once overall 

performances are revealed, PS-based scenarios are also compared to a population-based 

approach, in which prediction models are trained on the whole training dataset without using 

PS. In all scenarios, 10-fold cross validation was performed. 

4.3 Results 

4.3.1 Data 

From 38,597 distinct adult patients in MIMIC III database, 33,276 patients have LoS1 for 

their first ICU admission. 15,017 patients were excluded since the first ICU type to which 

they were admitted was not medical ICU or surgical ICU. Finally, after excluding patients 

who did not have at least one measurement for any of the variables in Table 4-1, 17,547 

patients were included in this study. Of these patients, 11,963 were admitted to medical ICU 
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and 5,583 were admitted to surgical ICU. Moreover, 2,927 patients (16.68%) experienced 

death within 30 days of discharge.  

4.3.2 Evaluating the Validity of the Multifaceted PS Calculation 

SAPS-II and SOFA achieved a mean AUROC of 0.764 (sd=0.014) and 0.681 (sd=0.024), 

respectively. 

Figure 4-4 illustrates the AUROC of KNN as a function of K (the number of similar 

patients from the training set). The results confirm our hypothesis that a multifaceted PS 

metric is more accurate in retrieving similar patients than the conventional PS metrics. The 

maximum AUROC of 0.69 (SD=0.016) and 0.699 (SD=0.018) for the Euclidean and cosine 

PS metrics was achieved with 200 and 130 similar patients, respectively. For the multifaceted 

PS metric, the maximum AUROC of 0.789 (SD=0.015) was achieved with 870 patients. 

Although the maximum AUROC for the multifaceted PS metric was achieved with a higher 

value of K, this method outperforms the conventional metrics in all values of K. Appendix D 

reports more detailed AUROC results. The best AUROC was significantly better than the 

AUROC associated with k=5000 (the maximum number of similar patients) for the 

Euclidean (p<10-4), cosine (p<10-4) and multifaceted (p= 0.031) PS metrics. 
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Figure 4-4 Accuracy evaluation of PS Metrics using KNN. The bands demonstrate 

the 95% confidence intervals. 

The predictive performance worsened rapidly as the number of similar patients increased 

for the cosine and Euclidean metrics and more gradually for the multifaceted metric. 

4.3.3 Multifaceted PS Metric in Predictive Modelling 

Figure 4-5 demonstrates the predictive performance of PS-based LR as a function of a similar 

patient-cohort size. Table 4-2 summarizes the detailed results. 
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Figure 4-5 Mortality prediction performance of PS-based LR. The bands 

demonstrate the 95% confidence intervals. 
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Table 4-3 Detailed mortality prediction performance of PS-based LR. 

Number of Similar Patients Multifaceted PS 

AUROC (Mean [95% CI]) 

Cosine PS 

AUROC (Mean [95% CI]) 

2000 0.764 [0.758, 0.758] 0.772 [0.768, 0.777] 

3000 0.776 [0.77, 0.77] 0.78 [0.775, 0.785] 

4000 0.784 [0.778, 0.778] 0.784 [0.779, 0.789] 

5000 0.788 [0.782, 0.782] 0.787 [0.782, 0.792] 

6000 0.788 [0.783, 0.783] 0.789 [0.784, 0.794] 

7000 0.788 [0.782, 0.782] 0.79 [0.785, 0.795] 

8000 0.789 [0.783, 0.783] 0.792 [0.786, 0.797] 

9000 0.79 [0.784, 0.784] 0.792 [0.787, 0.797] 

10000 0.79 [0.785, 0.785] 0.792 [0.787, 0.797] 

11000 0.791 [0.786, 0.786] 0.792 [0.787, 0.797] 

12000 0.79 [0.785, 0.785] 0.792 [0.787, 0.797] 

13000 0.79 [0.785, 0.785] 0.791 [0.786, 0.796] 

14000 0.79 [0.784, 0.784] 0.791 [0.786, 0.796] 

15000 0.788 [0.783, 0.783] 0.789 [0.784, 0.794] 

15792 0.788 [0.783, 0.783] 0.788 [0.783, 0.793] 

 

The maximum AUROC of 0.792 (SD=0.008) and 0.791 (SD=0.009) were achieved when 

using data from 10000 and 11000 similar patients in training based on cosine and 

multifaceted PS metrics. None of the PS metrics outperform the others in this setting, and 

their results were not significantly better than that resulting from a population-based setup 

(AUROC of 0.788 [SD=0.008]). 
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Figure 4-6 shows the predictive performance of PS-based DT as the number of similar 

patients increases for cosine and multifaceted PS metrics. Table 4-4 summarizes the detailed 

results.  

 

Figure 4-6 Mortality prediction performance of PS-based LR. Detailed mortality 

prediction performance of PS-based LR. 
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Table 4-4 Detailed mortality prediction performance of PS-based DT. 

Number of Similar Patients Multifaceted PS 

AUROC (Mean [95% CI]) 

Cosine PS 

AUROC (Mean [95% CI]) 

2000 0.7204 [0.7078, 0.7078] 0.7099 [0.694, 0.7257] 

3000 0.7039 [0.6949, 0.6949] 0.6931 [0.6849, 0.7013] 

4000 0.6827 [0.6762, 0.6762] 0.6804 [0.6721, 0.6887] 

5000 0.6728 [0.6664, 0.6664] 0.6759 [0.6682, 0.6835] 

6000 0.6637 [0.6577, 0.6577] 0.6687 [0.6628, 0.6747] 

7000 0.6604 [0.6555, 0.6555] 0.6663 [0.6602, 0.6724] 

8000 0.6584 [0.653, 0.653] 0.6608 [0.6538, 0.6678] 

9000 0.6551 [0.6501, 0.6501] 0.6553 [0.6492, 0.6615] 

10000 0.6566 [0.6509, 0.6509] 0.6525 [0.6473, 0.6577] 

11000 0.6568 [0.6523, 0.6523] 0.6516 [0.6468, 0.6563] 

12000 0.6528 [0.648, 0.648] 0.6512 [0.6463, 0.6561] 

13000 0.6525 [0.6484, 0.6484] 0.6506 [0.6463, 0.6549] 

14000 0.6506 [0.6477, 0.6477] 0.6499 [0.6469, 0.653] 

15000 0.6533 [0.6499, 0.6499] 0.6501 [0.6467, 0.6535] 

 

Results demonstrate that a smaller number of more-similar patients in the training set can 

result in better performance than when all patients are included. The maximum AUROC of 

0.72 (SD= 0.02) and 0.71 (SD= 0.026) were achieved with 2000 similar patients for the 

multifaceted and cosine PS metrics, respectively. The maximum performances were 

significantly better than those for the model that used 15792 patients (p<10-5). 
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4.4 Discussion 

While precision medicine aims to provide more accurate and personalized treatment for 

patients, a PS metric is a fundamental component for identifying patients who are clinically 

similar. Physicians generally utilize their knowledge, available research, and experience from 

previous patients to make a decision for new patients, and PS analytics can help them in this 

information-retrieval process. Recently, many researchers have introduced various PS 

measurement techniques. However, a challenge in this area is how to define a PS metric that 

can best capture the search intent (Wongsuphasawat et al. 2009). This study introduced a 

multifaceted PS metric in which the similarities of patients are investigated from various 

aspects and then combined to provide one similarity score. The multi-layer nature of the 

multifaceted PS metric provides physicians with the opportunity to customize their similarity 

measure definition. If the similarity in terms of demographics is not of interest or if the 

search intent is to find all similar patients regardless of their gender, the associated part can 

easily be removed from a multifaceted PS metric without changing the system pipeline. In 

other words, the multifaceted PS metric has a modular design, thus, each part can perform 

independently. 

In the current study, comparing a multifaceted PS metric with conventional PS metrics 

(i.e., cosine and Euclidean) showed that the former is more accurate in measuring the 

similarity between patients in KNN setting. Although the proposed method outperformed the 

conventional methods in every value of K, the best performance was achieved by including a 
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higher number of patients in the training set in comparison to conventional metrics. 

Moreover, the advantage of multifaceted PS metric was not observed in the DT and LR 

settings. This can be due to the fact that DT and LR are more invariant to the training set in 

comparison to KNN. Therefore, it may be the case that using different PS metrics resulting in 

different training sets does not significantly change the prediction performance of LR and 

DT. 

The results of this study did not show that the performance of predictive models always 

significantly improves when PS analytics was utilized in defining the training set. Although 

the results from including only similar patients in training a DT demonstrate statistically 

significant improvement in AUROC in comparison to a situation when a DT is trained on the 

whole training dataset, results from the LR model did not strongly support this fact. The best 

AUROC for LR was achieved when 11000 similar patients were included in the training set 

rather than when all the training set was used; however, the AUROC was not significantly 

higher than the population-based setting. This outcome is contrary to that of Lee et al. 

(2015a), who found that PS-based LR significantly outperformed the population-based LR on 

their cohort of patients from MIMIC-II. Although our results are in line with those of Lee et 

al. (2015c), a possible explanation for this lack of strong evidence for the LR model might be 

the difference between the groups of patients included in the studies. The aforementioned 

study used data from patients in the MIMIC-II database who did not have data missing from 

their profile, whereas the present work focused on MICU and SICU units in MIMIC-III and 



 

 

109 

did not limit itself to data from patients with complete profiles.  A recent case study on the 

reproducibility of studies on mortality prediction using the MIMIC database demonstrated 

how subtle differences in the inclusion/exclusion criteria can impact results (Johnson et al. 

2017). 

The current study found that various predictive models can show different behaviours 

when only similar patients are being used for their training. For instance, when fewer but 

more similar patients were included in training a DT, the performance improved. However, 

LR was more invariant to changes in the training set. These results match those observed in 

the earlier study by Lee et al. (2015a) in which improvement in AUROC for DT was three 

times greater than that for LR (the improvements in AUROC for LR and DT were 0.02 and 

0.062, respectively). 

It is important to mention that although the PS analytics often lead to better prediction in 

comparison to population-based techniques, the reduced sample size in this approach leads to 

greater variation in model estimation and prediction accuracy measures. The most clinically 

important finding was the interpretability of the multifaceted PS metric and its suitability for 

visualization analytics. Via a multifaceted PS metric, physicians will have the ability to 

identify the drivers of similarity. 

Our study has limitations. First, the scope was limited to two ICU units, and only from an 

ICU database coming from a single (albeit large) research hospital. Second, since the focus 

was on introducing a new multifaceted PS metric, only averaging was used to fuse the 
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similarity scores. Therefore, further research is needed to investigate the effect of fusion 

methods on the accuracy of the multifaceted PS. Moreover, the pair-wise similarity 

calculation comes at the expense of high computational time, however, future researchers can 

benefit from big data technologies such as Spark and Hadoop or cloud computational 

resources to minimize the computation time. Last but not least, this study investigated the 

performance of PS analytics being used with DT and LR. To investigate the performance of 

PS-based predictive modeling in comparison to population-based methods, a more-

comprehensive list of models, such as random forest and gradient boosting, must be included.   

Several questions still remain to be answered. A natural progression of this work would be 

to analyze the effect of other fusion methods on the accuracy of the multifaceted PS metric. 

A further study could investigate PS variation over time and monitor patient progression over 

time. Last but not least, future researchers can focus on tuning the multifaceted PS metric in 

terms of the metrics used for each variable. 
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Identifying Subpopulations of Septic Patients: A Temporal Data-

Driven Approach 

This chapter utilizes the multifaceted PS metric introduced in previous chapter to identify 

septic patient subpopulations. It also investigates the extra information in the temporal aspect 

of EHR data for phenotyping patient similarity. The identified subpopulations can provide 

insights into customizing care for septic patients. 

5.1 Introduction 

In ICUs, it is very important to monitor patient health status over time. This necessity results 

in multiple measurements of a particular clinical variable across a given patient’s stay. Due 

to the time varying nature of these measurements, they are usually referred to as temporal 

EHR. Since temporal EHR data have valuable information about the evolution of patient 

health status, researchers have been able to detect improvements in predictive modeling (Sha 

et al. 2016; Sun et al. 2010b; Sun et al. 2010a) and patient stratification (Singh et al. 2015) 

through using this information. However, analyzing longitudinal data is accompanied with 

multiple challenges such as irregular sampling rates and varying lengths of available 

measurements, as well as the inherent correlation of repeated measurements of a variable 

over time within the same patient.  
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This chapter focuses on using the information in temporal vital signs data in our 

multifaceted PS metric through functional data analysis (Ramsay 2005). Then, cluster 

analysis will be employed for identifying a subpopulation of septic patients with similar 

clinical needs and trajectories. This information may be used to design customized care 

platforms for patients who share similar needs. 

5.1.1 Literature Review 

Longitudinal data are an important part of EHR data and have initiated interest among 

researchers, many of whom agree that the time-varying aspect of EHR data may contain 

additional information about patient health status (Lehman et al. 2014; Lehman et al. 2015b; 

Lehman et al. 2015a; Singh et al. 2015; Agarwal et al. 2016; Pimentel et al. 2013). ICUs have 

a heterogeneous population with various health status dynamics and similar needs for 

constant care ('Critical Care Statistics'  ; Prin et al. 2012). This heterogeneity adds to the 

importance of finding similar patients and detecting the underlying phenotypic groups. 

Recently, efforts have been made to employ the temporal information of heterogeneous EHR 

data to reveal subpopulations. 

A large and growing body of literature has investigated vital-sign trajectories to discover 

patient subpopulations in order to identify the underlying pathophysiology of diseases and 

suggest customized care pathways. Pimentel et al. (2013) focused on the evolution of vital 

signs in post-operative patients using an unsupervised Gaussian process model. Their study 

revealed four dominant underlying physiological behaviors in their population.  
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Lehman et al. (2014) investigated the discriminative bivariate dynamics of heart rate and 

blood pressure in 450 ICU patients, using a switching vector autoregressive process 

approach. Their study demonstrated that the temporal evolution of the vital signs has 

additional predictive value for sepsis detection beyond the non-temporal approaches. 

Moreover, their study revealed ten prevalent underlying physiological modes for patient 

health status, each of which was correlated with different sepsis risk levels. In addition, their 

exploratory analysis revealed that high-risk modes have less variability in their trajectories. 

Building on this study, they suggested that the observed patterns are due to a patient’s health 

status, undergoing clinical intervention, and possible artifacts. Therefore, similarity can be 

investigated based on the underlying dynamics of vital signs and help healthcare providers 

manage short- and long-term outcomes with appropriate interventions (2015a).  

Lehman et al. (2015b) extended their work and compared the changes in vital signs 

dynamics before and after applying vasopressor treatment. The study demonstrated 

distinguishable differences in the dynamics among survivors and non-survivors. However, 

they did not elaborate on the potentially discriminative nature of vasopressor treatment 

patterns. Agarwal et al. (2016) used a functional clustering model to find sub-populations in a 

cohort of patients with chronic kidney disease, based on creatinine measurement trajectories. 

They found two sub-populations, each with a dominant creatinine trajectory. Exploratory 

analysis of the clusters revealed various discriminative factors between the clusters, including 

the presence of comorbidities and adherence to medication.  
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Along with previous studies, the Latent Class Mixed Models (LCMMs) have been widely 

used for analysis of change over time and for uncovering subpopulations in a heterogeneous 

patient population (Gill et al. 2010; Maggs et al. 2004; Proust-Lima et al. 2009b; Proust-

Lima et al. 2009a; McCulloch et al. 2002; Quantin et al. 1999; Rubin et al. 1997; Muthén et 

al. 1999) for various clinical applications related to hospital reimbursement (Quantin et al. 

1999), schizophrenic behaviour (Rubin et al. 1997), alcohol dependence in youth (Muthén et 

al. 1999) and prostate cancer (Gill et al. 2010; Maggs et al. 2004; Proust-Lima et al. 2009b; 

Proust-Lima et al. 2009a; McCulloch et al. 2002). In these models, two sub-models based on 

the predictors are defined: the probability function of latent class membership and the class-

specific trajectory function. LCMM refers to models that have an unobserved subpopulation 

structure.  

Lin et al. (2000), applying LCMM on data from the Nutritional Prevention of Cancer 

study, focused on the binary outcome of prostate cancer and the prostate-specific antigen 

(PSA) as the predictor. In this study, the longitudinal sub-model was the Linear Mixed Model 

(LMM), and the Expectation Maximization (EM) algorithm was used for coefficient 

estimation. The fitted model uncovered sub-populations, and the PSA trajectories were 

explicitly different between these classes. Building on the previous study, they extended the 

similar model to predict a survival outcome (prostate cancer onset) (Lin et al. 2002). 

McCulloch et al. (2002) reviewed the utility of these models in a health context. Moreover, 

they extended the previous studies and proposed a model for binary (incidence of prostate 
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cancer after 7 years), continuous longitudinal (PSA readings over time), and survival (the 

time until prostate cancer diagnosis) outcome. Considering all this evidence, it seems that 

longitudinal EHR is a valuable resource for finding PS in order to customize care delivery.  

The Third International Consensus Definitions for Sepsis and Sepsis Shock (Sepsis-3) 

defined sepsis as “life threatening organ dysfunction caused by a dysregulated host response 

to infection,” which respectively costs Canada and the United States more than $300 million 

and $20 billion annually, respectively (Singer et al. 2016). Along with this definition, Sepsis-

3 introduced criteria to detect septic cases with the goal of facilitating clinical care. However, 

there are various sepsis guidelines available that may be more helpful for other purposes 

(Rhee et al. 2019). Overall, there are six widely-used criteria for identifying septic patients. 

1. Sepsis-3 criteria: suspected infection with sequential organ failure assessment (SOFA) 

score of greater or equal to two (Singer et al. 2016) 

2. Explicit sepsis: having at least one of the following ICD-9 codes: 

a. 785.52: septic shock 

b. 995.92: severe sepsis 

3. Angus criteria: having at least one of the ICD-9 codes proposed by Angus et al. (2001). 

4. Martin criteria: having at least one of the ICD-9 codes proposed by Martin et al. 

(2003). 
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5. The Centers for Medicare & Medicaid Services (CMS) criteria: uses a combination of 

ICD-9 codes, Systemic Inflammatory Response Syndrome (SIRS) criteria and specific 

thresholds for organ dysfunction (Medicare et al. 2012). 

6. The Centers for Disease Control and Prevention (CDC) complete surveillance criteria:  

suspected infection with organ dysfunction criteria similar to SOFA (Seymour et al. 

2016). 

A number of interventions are used for treating sepsis. The antibiotics treatment usually 

starts immediately after diagnosis. Moreover, patients often receive intravenous fluid. If the 

low blood pressure persists, patients may also receive vasopressor medications, which make 

blood vessels constrict and helps to increase blood pressure. Understanding the various 

interventions for sepsis, and the administration and outcomes, has been a trending topic (Wu 

et al. 2017; Fialho et al. 2013). However, there is still considerable heterogeneity in the 

outcomes of sepsis treatments, a phenomenon known as “treatment effect heterogeneity” 

(Kravitz et al. 2004). Even after many attempts to explain this heterogeneity, there is no 

consensus for much of the variability in outcome of a particular treatment. Many researchers 

have focused on investigating sepsis-related research questions by using EHR data. Johnson 

et al., in their comprehensive study, demonstrated that even in one hospital, there are various 

groups of patients with a diagnosis of “sepsis” who have highly variable outcomes. 

Fialho et al. (2013) suggested the idea of disease-specific models instead of one-size-fits-

all models in ICUs. They focused on fluid resuscitation therapy and attempted to predict the 
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need for vasopressor therapy after failed fluid resuscitation. This study demonstrated that the 

response of fluid resuscitation of each predefined population—pneumonia and pancreatitis 

patients in an ICU—led to a different model. Salgado et al. (2016) used fuzzy ensemble 

models to predict vasopressor dependence. They first found sub-populations in the dataset 

using an unsupervised clustering method and then trained a fuzzy model on each sub-

population. Researchers have also focused on leveraging temporal data in answering sepsis-

related questions. One study utilized the longitudinal measurement of heartrate, mean blood 

pressure and respiratory rate for predicting the onset of septic shock with coupled hidden 

Markov models (Ghosh et al. 2017). They also compared their method to conventional 

approaches such as SVMs. According to their results, methods that account for the temporal 

aspect of data tend to perform better than conventional methods. On the same application, 

Khoshnevisan et al.(2018) demonstrated that using recent temporal patterns with various 

classification methods consistently outperform atemporal approaches. These results support 

the idea of leveraging temporal data when considering septic patients. 

5.1.2 Objectives 

Building on the previous studies, in this research, multifaceted PS is employed to investigate 

the presence of similar subpopulations among septic patients, with a special focus on taking 

the trajectory of their vital signs into consideration. Identifying subpopulations of septic 

patients with similar clinical needs, trajectories, and health status is the main objective of this 
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study. The results may provide a framework for more customized care for each subgroup of 

septic patients. 

5.1.3 Materials and Method 

5.1.3.1 Study Sample 

This study utilized the data from patients admitted to the critical care units of the Beth Israel 

Deaconess Medical Center between 2008 and 2012 (MIMIC III database) provided in 

(Johnson et al. 2018a) and data extraction was done using the code provided by the authors 

(Johnson et al. 2018b). From 23,620 ICU admissions that were initially included, three 

nonadult patients were excluded. 7,536 admission were excluded to only focus on the first 

admission of patients with multiple admissions. Patients who admitted to the cardiothoracic 

surgical service were also excluded since their postoperative physiologic disorders do not 

have the same mortality risk as the other ICU patients (2,298 patients). Moreover, 18 

admissions were removed because they had no charted data. Patients suspected of infection 

more than 24 hours after or before ICU admission were excluded to only focus on patients 

who admitted to ICU with sepsis (824 patients). Moreover, 2270 patients who stayed in the 

ICU for less than 24 hours and 209 patients who had less than two measurements for their 

vital signs in 24 hours were excluded.  Finally, 9321 adult septic patients based on any of the 

following sepsis criteria were included in the study: Sepsis-3 criteria, explicit sepsis, Angus 

criteria, Martin criteria, CMS and CDC criteria. 
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5.1.3.2 Feature Extraction 

For each patient, the following sets of predictors from the first 24 hour of the ICU admission 

were extracted: 

1. Admission and demographic data: ICU service type (MICU, SICU, TSICU, CCU), 

admission type (emergency, elective, urgent), gender (female, male) and age 

2. Minimum and maximum of the following variables: blood urea nitrogen (BUN), 

hematocrit, creatinine, bicarbonate, lactate, potassium, sodium, glucose, platelets, 

white blood cells, and Glasgow Coma Scale 

3. Hourly measurement of vital signs: mean blood pressure (MBP), systolic blood 

pressure (SysBP), heartrate (HR), respiratory rate (RR), SpO2 and body temperature 

(Temp) 

4. Daily total urine output 

5. Interventions: Duration and dosage of each of the following vasopressor 

administration: norepinephrine, epinephrine, phenylephrine, vasopressin, dobutamine 

and dopamine, presence of mechanical ventilation and dialysis. 

To include the temporal aspect of vital signs, in addition to the simple statistical 

characteristics (including maximum, minimum, median, mode, mean, standard deviation and 

number of measurements) that can capture magnitude and variability of variables, functional 

principal components were used to identify the dominant modes of variation in vital signs. In 

the last decade, functional principal component analysis (FPCA) has been widely used in the 
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statistics and machine learning (ML) community for various application, including public 

health and biomedical applications, to reduce the dimensionality of data while preserving the 

information on variability over time (Ullah et al. 2013). The FPCA was applied for sparsely 

or densely observed vital signs via the Principal Analysis by Conditional Estimation (PACE) 

algorithm provided in the R package fdapace (Dai et al. 2017a). In the PACE, functional 

principal components are defined as conditional expectations. The expectation for the 

trajectory 𝑋𝑖(𝑡) for the 𝑖th patient when using only the first 𝑝 eigenfunctions (𝜙̂𝑘(𝑡)) is 

 𝑋̂𝑖
𝑝(𝑡) = 𝜇̂ + ∑ 𝜉̂𝑖𝑘  𝜙̂𝑘(𝑡)

𝑝

𝑘=1

 (4.8) 

where 𝜇̂ is the estimate of the mean function 𝐸(𝑋(𝑡)) = 𝜇(𝑡) , and 𝜉̂𝑖𝑘 represents the 

functional principal component scores. The first 𝑝 functional principal components were 

extracted for vital signs in such a way that the components cumulatively explain 98% of the 

total variation in the trajectory. 

For laboratory tests, the maximum and minimum measurement during 24 hours was used. 

For vasopressor administration, the duration and total amount of each variable was extracted 

for the first 24 hours. For mechanical ventilation and dialysis only the presence of the 

administration (a binary variable) was utilized. 
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Vital signs in this study were considered as sparse data, therefore, no missing data 

treatment was performed for them. However, for laboratory tests, predictive mean matching 

(PMM) imputation method was employed to address missing data. 

5.1.3.3 Cluster Analysis 

A common practice when clustering datasets with large numbers of variables is to reduce 

dimensionality. This study utilized t-SNE to map patients to a two-dimensional space. The 

conventional t-SNE method utilizes Euclidean distance to map data into a two-dimensional 

space. In this study, the Mahalanobis distance and multifaceted PS were used instead of 

Euclidean distance in mapping data points in the following experiments. Then, DBSCAN 

clustering was used to find subpopulations in the cohort of septic patients. The parameters of 

DBSCAN (epsilon [ɛ] and minimum points [MinPts]) were tuned using the k-distance tuning 

method discussed in Section 3.4. MinPts were set to dimensionality of data pulse one. Then, 

the distance of each point from its k’th (k=MinPts) nearest neighbor was calculated (kdist). 

After calculating and sorting kdists for all data points, the k-distance graph was plotted and 

the value for which the graph showed a strong bend—the knee point—was selected for 

epsilon.  

The silhouette index (Rousseeuw 1987), which evaluates the suitability of assigning a 

patient to a group rather than to another was utilized to evaluate the clustering method. The 

silhouette index is a number between -1 and 1, where a high value means the patient is 

strongly matched to its own cluster and weakly matches other clusters. The silhouette index 
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was calculated for each cluster by averaging the silhouette indices of the patients in that 

cluster.  

For each of the following two scenarios, the same approach was utilized.  

5.1.3.3.1 Investigating the informativeness of temporal data over cross-sectional data 

In the first scenario, statistical characteristics (including maximum, minimum, median, mode, 

mean, standard deviation and number of measurements) and the functional principal 

component scores of vital sign measurements were utilized to calculate the pair-wise 

Mahalanobis distances. The resulting distance matrix was used as the input to our cluster 

analysis pipeline. Then, only the average over 24 hours for the vital sign measurements was 

used, in which the variability over time was lost. The pair-wise Mahalanobis distances were 

then used as the input. The results of both analyses were compared to identify the 

informativeness of temporal data over cross-sectional data. 

5.1.3.3.2 Finding subpopulations in the septic patient cohort 

In the second scenario, the focus was on finding septic patient subpopulations using the 

multifaceted PS metric introduced in Chapter 4. For the vital sign distance calculation, the 

Mahalanobis distance was applied to the Euclidean vector of statistical characteristics and 

functional principal component scores. After evaluating the clusters using the Silhouette 

method, the clusters were compared in terms of the patient and hospitalization characteristics. 

Then, the average severity of illness and prevalence of comorbidities were examined in each 
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cluster using Logistic Organ Dysfunction Score (LODS) (Le Gall et al. 1996), SOFA, SIRS 

and Elixhauser scores (Elixhauser et al. 1998). Moreover, correlation analysis was employed 

to investigate potential association between overall patient outcome (in-hospital and 30-days 

mortality rates, and ICU and hospital length of stays [LOSs]) and average age in clusters. 

The same analysis was performed for investigating the association between average severity 

of illness and patient outcomes in clusters. Moreover, the three most-common diagnoses in 

each cluster were reported. 

5.2 Results 

5.2.1 Data 

This study was not limited to septic patients identified only by Sepsis-3 guidelines, as it was 

of interest to observe how a machine-learning driven approach can identify different groups 

of septic patients. However, the ML-driven clusters were compared with those derived by 

various sepsis definitions. Table 5-1 displays the descriptive characteristic of the included 

patients. 

Table 5-1 Descriptive characteristics of the study cohort. 

Patient Characteristics  

Age (yrs) 63.31  18.42 

Gender 

Female 

 

4211 (45.22%) 
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Male 5101 (54.78%) 

Admission Type 

Elective 

Emergency 

Urgent 

 

657 (7.06%) 

8552 (91.84%) 

103 (1.11%) 

First Care Unit 

MICU 

SICU 

TSICU 

CCU 

 

4247 (45.61%) 

1954 (20.98%) 

1491 (16.01%) 

1293 (13.89%) 

30-day Mortality Count 1211 (13%) 

In-hospital Mortality Count 920 (9.88%) 

Hospital Length of Stay (day) 8.67   8.66 

ICU Length of Stay (day) 3.96  5.09 

 

5.2.2 Functional Principal Component Score Extraction 

The estimate of mean function using local linear smoothing is shown in Figure 5-1, revealing 

the overall decreasing trend for HR, MBP, SysBP and SpO2, and the increasing trend for RR 

and body temperature. 
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Figure 5-1 Smooth estimate of the mean functions for vital signs. 

In Figure 5-2, the first estimated eigenfunction for each vital sign is provided.  
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Figure 5-2 Estimate of the first eigenfunction for various vital signs in the entire 

cohort. 
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Figure 5-3 provides the scree-plots for each vital sign, demonstrating the fraction of total 

variance in data as explained by each functional principal component. The first eigenfunction 

for HR, SysBP and MBP explains more than 80% of the total variation of the data, and for 

SpO2 and Temp accounts for 78.41% and 67.98% of the total variation, respectively. Overall, 

more than 98% of the variation in HR and RR can be explained by the first three 

eigenfunctions. For MBP, SysBP and SpO2 this number increases to four. The first five 

eigenfunctions for Temp explains more than 98% of the variation. The scores for these 

eigenfunctions were extracted for each patient to be used as features for the clustering phase. 
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Figure 5-3 The scree plots show the portion of variance explained by each functional 

principal component. 
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5.2.3 Cluster Analysis 

5.2.3.1 Investigating the informativeness of temporal data over cross-sectional data 

Figure 5-4 demonstrates clustering results when only the average of vital signs is used. As 

can be seen, all patients are considered in one cluster and similar to each other, with a few 

patients labeled as outliers.  

 

Figure 5-4 Clustering septic patients using the average value of vital signs during the 

first 24 hours of admission to ICU. DBSCAN clustering method with MinPts=25 and ɛ 

=2.25 was used. Data were mapped to a two-dimensional space using t-SNE with 

perplexity=25 and 1000 iteration. 

By including the functional principal component scores, small clusters start emerging, 

while excluding them resulted in one cohort. Figure 5-5 demonstrates five clusters identified 
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by DBSCAN after including the information about the trajectories of vital signs. Moreover, 

there is another small cluster emerging at the left end in Figure 5-5, which was not identified 

by DBSCAN clustering method. 

 

Figure 5-5 Clustering septic patients using hourly vital signs during the first 24 

hours of admission to ICU along with the functional principal component scores. 

DBSCAN clustering method with MinPts=25 and ɛ =2.25 was used. Data were mapped 

to a two-dimensional space using t-SNE with perplexity=25 and 1000 iteration. 

For a fair comparison, all the parameters were kept the same and only changed how vital 

signs are represented. These results posit that the temporal aspect of vital signs has additive 

information and can be helpful in clustering septic patients. 
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5.2.3.2 Finding subpopulations in the septic patient cohort 

Cluster analysis was implemented using the multifaceted PS metric on a comprehensive list 

of information from patients provided in Section 5.1.3.1. After tuning the parameters of 

DBSCAN, 9 main clusters and cluster 0 representing outlier samples were identified.  

 

Figure 5-6 Clustering septic patients using multifaceted PS metric on patient 

profiles. DBSCAN clustering method with MinPts=103 and ɛ =1.4 was used. Data were 

mapped to a two-dimensional space using t-SNE with perplexity=100 and 1000 

iteration. 
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The clusters were evaluated using the silhouette statistics. It was observed that except for 

the group of outliers which received a silhouette value of -0.63, the average silhouette value 

for all clusters were positive. Figure 5-7 demonstrates the average silhouette values for all 

clusters in which only one cluster had a weak structure, all other clusters had reasonable and 

strong structures. The silhouette values are color coded based on the ranges proposed in 

(Kaufman et al. 2009). Green ([0.71,1]) indicates that a strong structure has been found for 

that particular cluster. Yellow ([0.51,0.70]) and red (0.50) indicate reasonable and weak 

structures, respectively. 

 

Figure 5-7 The average silhouette values for each cluster. Green, yellow and red 

respectively represent strong, reasonable and weak structures. 
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The distribution of cluster memberships, patient and hospitalization characteristics are 

shown in Table 5-2. The smallest cluster size is 97 and the biggest is 4522. In hospital 

mortality ([3.45%, 24.43%]) and 30-days mortality ([6.9%, 28.24%]) rates varied 

significantly between clusters, implying the various outcomes of septic patients. Clusters # 2, 

8, and 9 had the lowest mortality rates. 

Table 5-2 Patient and hospitalization characteristics in each cluster. 

# Size Age 

(y) 

Male 

(%) 

In-hospital mortality 

(%) 

30-day mortality 

(%) 

Hospital LoS 

(d) 

ICU LoS 

(d) 

0 916 62.94 55.13 19.76 22.05 11.13 5.1 

1 2417 60.41 56.76 13.53 15.72 10.24 5.15 

2 4522 64.01 54.14 3.78 7.41 6.79 2.61 

3 461 68.5 50.54 19.31 24.08 11.56 6.79 

4 131 73.85 52.67 24.43 28.24 7.95 5.73 

5 220 61.48 57.73 12.73 13.18 12.21 5.31 

6 354 65.34 56.78 17.51 19.77 11.56 5.99 

7 136 71.94 50.74 17.65 25.74 8.51 3.12 

8 97 60.87 53.61 4.12 8.25 4.64 2.28 

9 58 47.68 43.10 3.45 6.9 5.57 2.41 

 

It was also observed that the average age was positively correlated with 30-day mortality. 

This association was not as significant for in-hospital mortality. This result may imply that 

death after discharge is more likely among older age groups (Figure 5-8).  
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Figure 5-8 The association between mortality rates and age groups. 

Table 5-3 demonstrates the average Elixhauser comorbidity score in each cluster. The 

average scores of SOFA, LODS and SIRS are also presented for each cluster. The 30-days 

mortality rate was significantly correlated with average SOFA (=0.76, p-value<0.02), 

LODS (=0.87, p-value<0.005) and SIRS (=0.72, p-value<0.02). The same results were 

observed for in-hospital mortality, hospital LoS, and ICU LoS. These results are in line with 

the fact that sicker patients are more vulnerable and, hence, more likely to experience death. 

  

R R= 0.73 , p=0.016 R= 0.8 , p=0.0057 
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Table 5-3 A summary of comorbidities and severity of illness scores in each cluster. 

# Average Elixhauser SOFA LODS SIRS 

0 3.61 6.03 5.53 2.95 

1 2.33 4.11 4.3 2.91 

2 2.14 2.68 2.86 2.53 

3 5.49 8.25 6.23 3.16 

4 3.25 7.07 6.17 2.79 

5 4.18 7.29 5.95 2.73 

6 3 4.61 5.13 3.08 

7 5.85 5.26 5.56 2.76 

8 1.34 2.26 2.37 2.3 

9 1.64 2.36 2.59 2.47 

 

Table 5-4 presents the top three most-common diagnoses assigned by the admitting 

clinicians in each cluster. Clusters number 0 and 3, which have patients with a sepsis 

diagnosis also have very high rates of mortality 
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Table 5-4 Top three most-common diagnoses assigned by the admitting clinicians in 

each cluster (#: number of patients with a particular diagnosis in each cluster). 

Cluster 0 # Cluster 1 # Cluster 2 # 

Sepsis 45 Intracranial hemorrhage 145 Pneumonia 203 

Pneumonia 33 Pneumonia 101 Upper GI bleed 129 

Altered mental status 25 Altered mental status 99 Chest pain 93 

Cluster 3 # Cluster 4 # Cluster 5 # 

Sepsis 77 Congestive heart failure 9 Acute renal failure 9 

Pneumonia 35 Bradycardia 8 Congestive heart failure 8 

Hypotension 23 Chest pain 5 Sepsis 7 

Cluster 6 # Cluster 7 # Cluster 8 # 

Intracranial hemorrhage 13 Stroke, telemetry,  

transient ischemic attack 

15 Stemi 3 

Chest pain 12 Altered mental status 10 Alcohol withdrawal 3 

Chest pain\cardiac cath 9 Pneumonia 10 Bradycardia 3 

Cluster 9 # 

Diabetic ketoacidosis 30 

Hyperglycemia 2 

Upper gi bleed 2 

 

Table 5-5 presents the distribution of sepsis diagnosis based on six sepsis definitions 

(explicit, Angus, Martin, CMS, CDC and Sepsis-3 methodologies) in each cluster. Except for 

cluster numbers 3 and 6, Sepsis-3 criteria identified a higher number of septic patients in 

each cluster. For the two aforementioned clusters, CDC method covered most of the patients. 
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Table 5-5 The distribution of sepsis diagnosis based on six sepsis definitions in each 

cluster. 

# Angus (%) Martin (%) Explicit (%) CDC (%) CMS (%) Sepsis-3 (%) 

0 44.1 29.37 22.82 55.13 25 64.08 

1 37.98 11.17 5.79 37.9 6.41 61.11 

2 20.63 11.26 5.04 20.17 7.7 37.13 

3 78.96 63.77 56.62 94.58 59.65 94.36 

4 44.27 24.43 17.56 64.12 20.61 62.6 

5 45.91 30 18.18 46.82 23.64 70.45 

6 34.18 17.23 12.99 80.23 13.84 71.75 

7 40.44 26.47 13.97 31.62 22.06 56.62 

8 17.53 6.19 3.09 10.31 5.15 20.62 

9 20.69 8.62 6.9 12.07 6.9 25.86 

 

Table 5-6 shows the percentage of patients in each cluster that underwent dialysis or 

mechanical ventilation. It also includes the average administration duration of various 

vasopressor administration. No statistically significant correlation was observed between the 

level of medication that patients received and their outcomes. 
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Table 5-6 Statistical description of medications (average duration in minutes) and 

interventions (percentage of patients who received the intervention) utilized in each cluster. 

# Mechanic

al 

Ventilatio

n (%) 

Dialys

is (%) 

Norepinephri

ne Duration 

(m) 

Epinephri

ne 

Duration 

(m) 

Phenylephri

ne duration 

(m) 

Vasopress

in 

Duration 

(m) 

Dobutami

ne 

Duration 

(m) 

Dopami

ne 

Duration 

(m) 

0 45.52 3.93 4.46 0.64 3.63 4.71 0.5 0.44 

1 100 0 0.21 0 0.3 0.03 0 0.02 

2 0.04 0 0.12 0 0.06 0.01 0 0.02 

3 60.52 0.87 22.4 0.03 1.22 0.35 0.01 0.38 

4 45.8 6.11 3.15 0.15 1.85 1.29 0 21.06 

5 39.55 100 3.06 0.02 0.53 0.08 0 0.15 

6 80.23 1.13 0.42 0 19.61 0.11 0 0.03 

7 2.94 0.74 0.88 0 0.52 0.8 0 0.02 

8 1.03 0 0.43 0.01 0.11 0.15 0.01 0 

9 0 0 0.1 0 0 0 0 0 

 

Table 5-7 represents the average dosage of vasopressors for each cluster. 
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Table 5-7 The average dosage of vasopressors utilized in each cluster. 

# Norepinephrine 

Dosage (mg) 

Epinephrine 

Dosage 

(mg) 

Phenylephrine 

Dosage (mg) 

Vasopressin 

Dosage 

(mg) 

Dobutamine 

Dosage (mg) 

Dopamine 

Dosage 

(mg) 

0 4.77 0.16 41.87 10.86 10.76 18.35 

1 0.1 0 1.2 0.05 0.02 0.72 

2 0.06 0 0.37 0.01 0.06 0.48 

3 13.76 0.01 8.86 0.81 0.26 11.87 

4 3.15 0.06 15.78 2.94 0 683.35 

5 1.82 0.01 2.78 0.17 0 3.63 

6 0.25 0 76.04 0.19 0 0.66 

7 0.69 0 3.21 1.84 0 0.31 

8 0.5 0 1.14 0.36 0.13 0 

9 0.01 0 0 0 0 0 

 

Finally, Figure 5-9 presents the first eigenfunction for each vital sign in each cluster. It can 

be clearly seen that some clusters have completely different trends for their first 

eigenfunctions. This observation highlights the importance of including the variation 

explained by temporal data to capture different evolutions of patient health status. 
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Figure 5-9 First eigen function estimates for HR, SysBP, MBP, SpO2, Temp RR data 

in each cluster. 
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5.3 Discussion 

In this study the focus was on leveraging temporal data in clustering septic patients. 

Summarizing vital sign measurements by their average not only eliminates the information 

on patient health status changes over time, it cannot be helpful in phenotyping septic patients. 

Moreover, incorporating the information on the vital sign trajectories using functional data 

analysis can help in finding distinction among septic patients. 

 The results suggest that although septic patients share similar underlying physiological 

condition, grouping them as one cohort results in a loss of information about their unique 

characteristics. It was demonstrated that clustering analysis enabled identification of nine 

clinically distinguishable subpopulations from a cohort of septic patients. The results also 

showed that the dominant mode of variation for each vital sign differs from one 

subpopulation to another. For instance, the first eigenfunction for SpO2 in cluster #8 shows 

high variation over time while cluster #3 has a near-flat first eigenfunction. It is worth 

mentioning that cluster #8 is among subpopulations with low mortality rates (30-day 

mortality: 8.25%, in-hospital mortality: 4.12%) while cluster #3 has high mortality rates (30-

day mortality: 24.08%, in-hospital mortality: 24.43%). Thus, the variations in vital signs 

trajectories can be informative of patient future outcome.  

 The characteristics of identified clusters were in line with clinical outcomes such as 

increased mortality rates in groups with a higher average age. These results were in line with 

the cluster analysis done by Vranas et al. (2017) that focused on clustering ICU patients and 
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identified clinically distinguishable clusters with sepsis as their most-common admitting 

diagnoses, and thus highlights the potential heterogeneity among septic patients. 

The results also demonstrated that septic patients have different care needs; however, a 

higher level of care was not correlated with poorer outcome. This observation is supported by 

the fact that there are precisely predefined care plans for septic patients at various levels of 

severity of illness, and they are usually effective in controlling the disease. However, 

understanding why therapeutic efficiency differs between subpopulations is critically 

important in caring for septic patients. For instance, cluster #8 has low mortality rates (30-

day mortality: 8.25%, in-hospital mortality: 4.12%) while cluster #7 with similar therapeutic 

patterns has much higher mortality rates (30-day mortality: 25.74%, in-hospital mortality: 

17.65%). A further study with more focus on treatment effectiveness in each subpopulation is 

therefore suggested. 

 In addition, the results showed that the Sepsis-3 criteria are more inclusive than the others, 

except for two clusters for which CDC was more inclusive. Both Sepsis-3 and CDC criteria 

use treatments as proxy of organ failure. This result is supported by that of Johnson et al. 

(2018a) in which Sepsis-3 criteria identified a higher number of patients, followed by CDC. 

However, this finding also suggests more studies are needed on the characteristics of septic 

patients based on Sepsis-3 and its inclusiveness. 

This study has some limitations. First, the data used in this work was from only a single 

medical center (albeit a large one) in the analysis.  Second, the vital signs trajectories were 
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examined in a 24-hour window; however, data from a longer period would better capture 

patient health changes over time. 

In this study we identified groups of septic patients with similar characteristics and needs 

which can facilitate the move toward precision medicine by considering the differences 

between subpopulations to support customized therapy approaches. Therefore, future 

research should focus on investigating the key differences between these subpopulations 

using medical expert opinion and identifying the best practice for each group. Another future 

direction is to use these latent sepsis phenotypes for PS-based predictive modeling by 

training a model for each subpopulation instead of using a one-size-fits-all model.  
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Conclusions and Discussion 

 

The goal of the work presented in this thesis was to introduce new approaches to employing 

PS for more-efficient prediction and clustering of ICU data in order to fulfill the promise of 

precision medicine. To that end, it was demonstrated that missing data in EHR are 

informative and can be used to improve prediction performance. Moreover, this information 

can help in finding similar patients in the ICU. The PS metric itself was one of the focuses of 

this work. A new multifaceted PS metric was introduced that is not only more accurate than 

conventional methods, but is also more interpretable and adaptive to the different use cases. 

Last but not least, it was showed that the temporal information in longitudinal EHR data can 

be used to improve the performance of clustering methods and identify patient 

subpopulations in a focused application of sepsis patients. 

In Chapter 2, it was showed that the hidden information in missing data has implications 

for patient health status and outcomes and that this information can be employed to improve 

the performance of predictive modeling. The performance of different predictive models 

(DT, LR and RF) was investigated when missingness indicators are added to the feature set. 

It was showed that models in which the hidden information of missing data was included 
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outperformed not only SAPS-II but also similar methods without missing data information in 

predicting in-hospital mortality and 30-day mortality. 

In Chapter 3, an unsupervised study was performed to better understand the 

informativeness of missingness indicators and how they can be used to identify similar 

patients. Missingness indicators were used as representative of lab-test ordering and used 

them for phenotyping patients. Results demonstrated that these indicators capture physicians’ 

opinions about patient needs and symptoms. In the results of clustering, it was observed that 

clusters with higher rates of mortality had higher numbers of performed laboratory tests. 

These results were in line with the fact that ICU physicians tend to order more tests for 

patients who are severely ill, as they need to be monitored closely and comprehensively.  

Chapter 4 focused on introducing a multifaceted PS metric in which the similarity of every 

aspect of the EHR data is considered individually and then various similarity scores are 

combined to make a unified score for two patients. The proposed method significantly 

outperformed the conventional and most-commonly-used metrics, including the cosine PS 

metric, in terms of similarity accuracy, with focus on 30-day mortality. The performance of 

this metric was also investigated when used with other prediction models, including DT and 

LR. Although the multifaceted PS metric outperformed the cosine metric when used with 

DT, similar results were not observed for LR. These results highlight the need for in-depth 

investigation of the performance of various predictive models in a PS-based framework on 

different databases. 
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Finally, in Chapter 5, the results from previous chapters were utilized to identify 

subpopulations among septic patients with special focus on temporal EHR. The results 

demonstrate that temporal data have additive information and can be helpful in clustering 

patients.  

Notwithstanding the contributions that this thesis work has provided, it is important to 

acknowledge the known shortcomings of the research. First, this work has resulted in 

findings that are limited to only one large research healthcare facility, with a special focus on 

its ICU. This focus is largely a consequence of the unavailability of other publicly available 

EHR databases. Moreover, the findings from the study in Chapter 4 were limited to a simple 

averaging combining method. Investigations into the impacts of other fusion methods on the 

accuracy and predictive power of the multifaceted PS metric would be of interest, though 

were beyond the aim of the current study.  

Overall, each of the five studies in this thesis contributes to current knowledge about 

missing data in EHR, PS analytics in patient stratification, PS metric in predictive modeling 

and informativeness of temporal EHR. Chapter 2 provided a new insight into missing data in 

EHR and was novel in that it is the first study comprehensively examining the 

informativeness of missing data in ICU EHRs. Chapter 3 built on the previous study by 

exploring ICU patient subpopulations using the information in missing data. The findings 

supported the informativeness of missing data and promoted the new insight into missing 

data. Chapter 4 introduced the idea of multifaceted PS and investigated its validity. Finally, 
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Chapter 5 provided evidence on additive information of temporal EHR and how this 

information can help in identifying subpopulations of septic people.  

The methods provided in this dissertation can easily be implemented in the back-end of the 

various interactive data visualization products at care facilities to help clinicians better 

understand the data. Moreover, these techniques can easily be implemented on the cloud as 

an application programming interface (API) and be employed by a simple call to the API at 

any time for various applications.” 

Despite these promising contributions, questions remain. Although much knowledge exists 

on imputation methods, as evidenced in Chapter 2, more research is needed to explore the 

additive information of missing data in various care units and particularly general wards 

where missing data is more substantial than ICUs. The findings from the exploratory work in 

Chapter 3 provided only insights into phenotyping ICU patients using missing data. Future 

research should be undertaken to examine the test-ordering behavior among clinicians using 

missing data information. Moreover, to develop a full picture of the multifaceted PS 

introduced in Chapter 4, additional studies will be needed to investigate its capabilities on 

various datasets in predicting other clinical outcomes than mortality. Last but not least, while 

Chapter 5 demonstrated the informativeness of temporal EHR data in phenotyping septic 

patients, there is abundant room for further analysis of these subpopulations and identifying 

more efficient care plan for patients who demonstrate similar trajectories. Moreover, in this 

work, we used AUROC discrimination measure to evaluate the performance of the predictive 
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models. Besides other discrimination measure such as area under the precision recall curve, 

future researchers can also perform evaluation from calibration perspective (Steyerberg 

2009). 
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Appendix A 

An Overview of Prediction Models 

Generally, prediction models can be broadly grouped into two categories: classification and 

regression. Although both groups aim to discover the underlying relationship between 

predictors and outcomes, they differ in types of outcomes. Discussed below is the set of 

commonly used machine learning algorithms that were named in this dissertation. 

• Logistic Regression (LR): LR is a type of regression analysis that seeks the relation 

between predictors and a binary outcome. In other words, this model predicts the 

probability of an outcome occurring. 

• Decision Tree (DT): DT model is a non-parametric method used for classification and 

regression. A DT algorithm recursively splits data set into smaller homogenous 

subdivisions based on a set of criteria. In DT, each node represents a test on a 

predictor, and the derived branches relate to the possible values for the predictor. 

Then, instances are classified by starting from the root node and following the 

branches based on their predictor values. 

• Linear Discriminant Analysis (LDA): This algorithm searches for a linear 

combination of predictors that separates instances in different classes. LDA assumes 

Gaussian distribution density within each class. 

• Support Vector Machine (SVM): An SVM algorithm finds a separating hyperplane or 

set of hyperplanes in predictors’ space that has the maximum distance from instances 
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on each side. In other words, SVM tries to maximize the margins between the 

instances in each class. 

• Naive Bayes (NB): This classification method is based on Bayes’ rule and assumes 

that predictors are independent of one another. The basic model has been modified, 

and various versions have been introduced to improve performance. 

• k-Nearest Neighbors (KNN): This method is based on the assumption that similar 

instances have similar characteristics. For each instance, KNN finds a cohort of k 

nearest instances based on a distance metric and classifies the new instance based on 

the majority vote of the cohort. 

• Random Forest (RF): This algorithm constructs a set of DT models on different sub-

samples of the data, and the output class will be the aggregation of the classes of all 

trees. In other words, RF is an ensemble of DTs. 
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Appendix B 

An Overview of Clustering Algorithms 

Below, a brief description of the clustering algorithms discussed in this dissertation is 

provided. 

• Partition-based clustering algorithms: the core idea of this type of method is to 

consider the center of data points in each cluster as the representative (center) of the 

cluster. K-means is one of the most famous clustering methods. K-means iteratively 

updates the representatives of the clusters until some criteria of convergence are 

satisfied. This method is timely and computationally efficient. However, it is sensitive 

to the number of clusters and outliers. 

• Hierarchical clustering algorithms: hierarchical algorithms successively construct 

clusters by merging or splitting previously built clusters. These algorithms are further 

categorized into agglomerative (bottom-up) or divisive (top-down) algorithms, and 

are suitable for datasets that have clusters with arbitrary shapes.  

• Fuzzy clustering algorithms: in fuzzy clustering, an instance can be a member of 

more than one clusters. A set of membership degrees is assigned to each data point 

and used to determine to which degree it belongs to each cluster. This group of 

methods is suitable for datasets with overlapping clusters. 



 

167 

• Density-based clustering algorithms: the idea of these algorithms is that the clusters 

are located where data has a high density and are separated by regions with a lower 

density of data.  
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Appendix C 

Detailed Results of Chapter 2 

Table C1 The association between indicators (missing=1 and not missing =0) and 

mortality flag (deceased=1, alive=0) using Phi coefficient. 

 In-hospital Mortality 30-days Mortality 

Indicator Day1 Day2 Day3 Day1 Day2 Day3 

ALT -0.14 -0.12 -0.12 -0.14 -0.12 -0.11 

ALK -0.14 -0.12 -0.11 -0.14 -0.12 -0.1 

pH -0.11 -0.13 -0.15 -0.08 -0.1 -0.11 

PCO -0.11 -0.16 -0.18 -0.08 -0.13 -0.15 

PO -0.11 -0.16 -0.18 -0.08 -0.13 -0.15 

BE -0.11 -0.16 -0.18 -0.08 -0.13 -0.15 

AST -0.14 -0.12 -0.12 -0.14 -0.12 -0.11 

Na 0.01 0.03 0.04 0.01 0.02 0.05 

K 0 0.01 0.01 -0.01 0 0.03 

Cl 0.03 0.03 0.04 0.02 0.03 0.06 

HCO 0.03 0.03 0.04 0.02 0.03 0.05 

AG -0.01 0 0.01 -0.02 0 0.01 

BG -0.02 0 0.01 -0.02 -0.01 0.02 

BUN 0.04 0.04 0.06 0.04 0.04 0.07 

Cr 0.04 0.05 0.06 0.04 0.04 0.07 

Ca -0.1 -0.04 -0.04 -0.12 -0.05 -0.04 

WBC 0.03 0.04 0.06 0.02 0.04 0.06 

RBC 0.02 0.03 0.04 0.02 0.03 0.05 

HGB 0.03 0.03 0.05 0.02 0.03 0.05 

HCT 0.04 0.05 0.05 0.03 0.05 0.06 
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MCV 0.02 0.03 0.04 0.02 0.03 0.05 

MCH 0.02 0.03 0.04 0.02 0.03 0.05 

MCHC 0.02 0.03 0.05 0.02 0.03 0.05 

RDW 0.02 0.03 0.05 0.02 0.03 0.05 

PLT 0.03 0.04 0.05 0.03 0.04 0.05 

NE -0.1 -0.07 -0.08 -0.11 -0.08 -0.07 

LY -0.1 -0.07 -0.08 -0.11 -0.08 -0.07 

MO -0.1 -0.07 -0.08 -0.11 -0.08 -0.07 

EO -0.1 -0.07 -0.08 -0.11 -0.08 -0.07 

BA -0.1 -0.07 -0.08 -0.11 -0.08 -0.07 

LAC -0.12 -0.15 -0.15 -0.1 -0.13 -0.12 

Mg -0.03 0.01 0.02 -0.05 0.01 0.03 

PTT -0.04 -0.09 -0.09 -0.04 -0.09 -0.09 

Phos -0.1 -0.05 -0.04 -0.12 -0.06 -0.04 

PT -0.04 -0.09 -0.08 -0.04 -0.09 -0.09 

TBil -0.14 -0.12 -0.12 -0.14 -0.12 -0.11 

Table C2 Detailed results for predictor importance evaluation with regard to 30-day 

mortality. Numbers represent the ranking after aggregating the ranking results from the 

three different feature-selection methods. 

Day One Day Two Day Three 

Hot Deck PMM Hot Deck PMM Hot Deck PMM 

BUN 0.7429

36 

BUN 0.7623

97 

BUN 0.9007 AG 0.7954

19 

RDW 0.6933

05 

RDW 0.7489

97 

RDW 0.6825

17 

RDW 0.6800

87 

RDW 0.8518

29 

HCO3 0.7833

37 

BUN 0.6666

67 

BUN 0.6666

67 

MCH

C 

0.6770

31 

MCH

C 

0.6689

65 

HCO3 0.6551

54 

BUN 0.7767

7 

HCO3 0.5438

71 

HCO3 0.5449

64 
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AG 0.5247

67 

AG 0.5404

84 

AG 0.5808

52 

BE 0.6095

32 

BE 0.4940

6 

BE 0.5405

42 

I-Ca 0.4755

64 

I-Ca 0.4364

29 

MCH

C 

0.4480

53 

RDW 0.6087

11 

AG 0.4492

86 

pH 0.4884

33 

I-

Phos 

0.4645

9 

Cr 0.4360

71 

Cr 0.4050

85 

I-PO2 0.5871

51 

Cr 0.3985

43 

AG 0.4504

26 

PO2 0.4474

35 

HCO3 0.4167

41 

Cl 0.3828

46 

I-

PCO2 

0.5859

47 

I-

PCO2 

0.3752

11 

I-LAC 0.4187

16 

HCO3 0.4447

44 

PO2 0.4042

89 

MCV 0.3758

21 

I-BE 0.5855

92 

I-PO2 0.3749

31 

I-pH 0.4046

3 

Cr 0.4287

55 

MCV 0.3869

64 

I-LAC 0.3598

97 

Cl 0.5315

8 

I-BE 0.3741

27 

Cr 0.4000

08 

I-LAC 0.3871

9 

I-

Phos 

0.3744

31 

Na 0.3580

51 

PT 0.4620

85 

PCO2 0.3597

71 

Phos 0.3876

61 

HGB 0.3737

06 

PTT 0.3539

13 

PTT 0.3569

26 

LAC 0.4618

69 

NE 0.3576

08 

I-

PCO2 

0.3870

19 

MCV 0.3691

12 

HGB 0.3427

86 

Phos 0.3376

63 

Cr 0.4519

99 

MCH

C 

0.3318

02 

I-PO2 0.3867

39 

LY 0.3678

66 

pH 0.3276

7 

PT 0.3337

79 

PTT 0.4249

56 

PT 0.3284

78 

I-BE 0.3859

35 

PTT 0.3342

4 

LAC 0.3203

39 

I-PO2 0.3335 Na 0.4224

74 

LAC 0.2899

64 

PCO2 0.3672

57 

RBC 0.3334

82 

BE 0.3202

99 

I-

PCO2 

0.3328

14 

Phos 0.4191

71 

LY 0.2876

81 

NE 0.3607

91 

I-TBil 0.3207

28 

I-LAC 0.3182

16 

I-BE 0.3325

17 

I-LAC 0.4154

75 

pH 0.2836

43 

MCV 0.3512

66 

BG 0.3190

01 

PCO2 0.3166

68 

BE 0.2903

59 

MCV 0.3683

43 

MCV 0.2816

27 

I-PTT 0.3383

52 

I-ALT 0.3158

39 

I-TBil 0.3127

7 

I-

Phos 

0.2846

44 

MCH

C 

0.3631

46 

I-LAC 0.2703

27 

LAC 0.3312

05 
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I-AST 0.3148

76 

I-ALK 0.3055

29 

I-TBil 0.2836

94 

I-pH 0.3524

43 

Phos 0.2627

58 

MCH

C 

0.3298

17 

PT 0.3034

47 

I-ALT 0.3030

33 

I-pH 0.2735

27 

I-PT 0.3381

44 

I-pH 0.2394

26 

PT 0.3295

86 

I-ALK 0.3020

31 

I-AST 0.3020

74 

I-PTT 0.2615

53 

I-TBil 0.3254

66 

BG 0.2212

39 

I-PT 0.2999

4 

LAC 0.2776

14 

PT 0.2963

26 

I-PT 0.2582

42 

I-PTT 0.3253

62 

I-PTT 0.2212

11 

RBC 0.2386

42 

Cl 0.2760

99 

RBC 0.2937

54 

PLT 0.2529

63 

pH 0.3124

81 

WBC 0.2174

81 

I-

Phos 

0.2379

35 

pH 0.2738

49 

Phos 0.2888

46 

I-Ca 0.2480

52 

PCO2 0.3079

02 

I-PT 0.2149

63 

I-TBil 0.2378

11 

PLT 0.2733

01 

LY 0.2854

21 

NE 0.2474

63 

BG 0.3019

89 

I-TBil 0.2133

62 

BG 0.2228

07 

I-PT 0.2561

03 

ALK 0.2845

28 

I-ALK 0.2363

76 

I-ALK 0.3014

9 

I-ALT 0.2052

11 

WBC 0.2193

08 

PCO2 0.2552

03 

BG 0.2826

68 

LAC 0.2322

78 

PO2 0.2975

96 

PTT 0.2044

95 

I-ALT 0.2143

5 

I-PTT 0.2495

78 

PLT 0.2798

92 

I-ALT 0.2290

95 

PLT 0.2911

6 

I-AST 0.2020

47 

LY 0.2127

83 

MCH 0.2327

07 

NE 0.2666

46 

I-AST 0.2231

72 

I-ALT 0.2858

26 

I-ALK 0.1984

13 

I-AST 0.2096

72 

Phos 0.2186

56 

Cl 0.2233

53 

BG 0.2181

29 

TBil 0.2831

23 

PLT 0.1983

22 

PO2 0.2082

79 

BE 0.2084

77 

TBil 0.2161

97 

HGB 0.2089

15 

I-AST 0.2816

95 

Cl 0.1884

06 

PTT 0.2061

23 

Na 0.2074

31 

MCH 0.2127

88 

PCO2 0.2019

61 

LY 0.2716

01 

PO2 0.1806

45 

PLT 0.2006

99 

I-NE 0.2006

87 

I-NE 0.1962

31 

WBC 0.2019

17 

MCH 0.2615

53 

I-

Phos 

0.1673

56 

Cl 0.1955

87 
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I-MO 0.2006

87 

I-MO 0.1962

31 

Ca 0.1936

41 

I-

Phos 

0.2614 I-Ca 0.1652

53 

I-ALK 0.1922

4 

I-EO 0.2006

87 

I-EO 0.1962

31 

BA 0.1869

36 

Ca 0.2427

39 

Mg 0.1547

38 

Ca 0.1850

77 

I-BA 0.2006

87 

I-BA 0.1962

31 

RBC 0.1819

05 

WBC 0.2426

47 

Na 0.1468

87 

Mg 0.1563

56 

I-LY 0.2006

08 

I-LY 0.1961

52 

pH 0.1680

43 

I-Ca 0.2008

65 

Ca 0.1440

49 

Na 0.1495

34 

I-

PCO2 

0.1876

62 

WBC 0.1716

99 

HCT 0.1661

9 

HGB 0.1933

31 

TBil 0.1403

46 

MCH 0.1466

59 

I-PO2 0.1876

62 

Ca 0.1673

12 

LY 0.1598

86 

RBC 0.1880

82 

RBC 0.1070

89 

I-Ca 0.1443

85 

I-BE 0.1875

34 

AST 0.1625

32 

Mg 0.1313

04 

ALK 0.1841

85 

I-NE 0.0974

67 

TBil 0.1422

64 

NE 0.1731

5 

I-

PCO2 

0.1569

81 

TBil 0.1269

85 

BA 0.1698

45 

I-LY 0.0974

67 

EO 0.1421

07 

WBC 0.1669

62 

I-PO2 0.1569

81 

MCH 0.1200

35 

AST 0.1668

8 

I-MO 0.0974

67 

BA 0.1420

31 

Ca 0.1638

23 

I-BE 0.1568

53 

I-NE 0.1036

39 

Mg 0.1591

73 

I-EO 0.0974

67 

I-NE 0.0999

61 

I-pH 0.1598

75 

BA 0.1497

17 

I-LY 0.1036

39 

NE 0.1501

39 

I-BA 0.0974

67 

I-LY 0.0999

61 

I-Mg 0.1400

9 

Na 0.1460

76 

I-MO 0.1036

39 

HCT 0.1179

54 

K 0.0897

82 

I-MO 0.0999

61 

ALK 0.1310

4 

I-pH 0.1449

73 

I-EO 0.1036

39 

EO 0.1149

59 

AST 0.0841

85 

I-EO 0.0999

61 

TBil 0.1117

02 

I-Mg 0.1110

8 

I-BA 0.1036

39 

I-NE 0.1133

55 

ALK 0.0820

93 

I-BA 0.0999

61 

EO 0.1093

63 

I-BG 0.1066

93 

ALK 0.0948

55 

I-LY 0.1133

55 

I-Mg 0.0707

01 

I-

RDW 

0.0941

93 
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BA 0.1087

85 

EO 0.1060

64 

MO 0.0922

4 

I-MO 0.1133

55 

BA 0.0699

68 

K 0.0922

06 

I-BG 0.1032

06 

I-AG 0.1026

7 

K 0.0750

67 

I-EO 0.1133

55 

I-Cl 0.0698

21 

I-RBC 0.0858

6 

I-AG 0.0984

21 

I-PT 0.0922

05 

EO 0.0638

87 

I-BA 0.1133

55 

I-Cr 0.0690

27 

I-

MCV 

0.0858

6 

AST 0.0852

18 

I-PTT 0.0808

4 

I-Mg 0.0636

62 

MO 0.1080

44 

I-BUN 0.0678

5 

I-

MCH 

0.0858

6 

I-K 0.0851

22 

MO 0.0629

42 

PO2 0.0554

18 

K 0.1038

65 

I-BG 0.0651

49 

ALK 0.0843

26 

ALT 0.0610

17 

ALT 0.0559

05 

I-HCT 0.0552

02 

ALT 0.0780

95 

MO 0.0566

12 

AST 0.0814

58 

Mg 0.0520

26 

Mg 0.0441

78 

I-

MCH

C 

0.0457

23 

I-

RDW 

0.0774

68 

I-HCT 0.0545

67 

I-

MCH

C 

0.0807

82 

I-BUN 0.0488

02 

HCT 0.0441

35 

I-RBC 0.0455

97 

I-

MCH

C 

0.0767

33 

I-PLT 0.0526

54 

I-Mg 0.0651

96 

HCT 0.0473

72 

I-PLT 0.0352

78 

I-

MCV 

0.0455

97 

I-RBC 0.0766

01 

I-

HCO3 

0.0505

89 

I-Cr 0.0596

82 

I-Cr 0.0453

43 

K 0.0344

45 

I-

MCH 

0.0455

97 

I-

MCV 

0.0766

01 

I-K 0.0491

23 

I-BUN 0.0585

04 

MO 0.0375

29 

I-K 0.0340

74 

I-

RDW 

0.0452

42 

I-

MCH 

0.0766

01 

EO 0.0484

83 

I-

WBC 

0.0555

85 

K 0.0359 I-HGB 0.0332

98 

AST 0.0451

6 

I-HGB 0.0690

39 

MCH 0.0482

14 

I-HGB 0.0552

67 

I-Na 0.0284

94 

I-

MCV 

0.0330

14 

I-BUN 0.0319

37 

I-HCT 0.0632

31 

I-

WBC 

0.0470

5 

MO 0.0550

48 

I-Cl 0.0263

07 

I-

MCH 

0.0330

14 

I-PLT 0.0305

4 

I-PLT 0.0572

16 

I-Na 0.0466

79 

I-HCT 0.0549

35 
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I-PLT 0.0235

85 

I-

MCH

C 

0.0328

4 

ALT 0.0304

51 

I-

WBC 

0.0556

54 

ALT 0.0454

15 

I-PLT 0.0488

78 

I-

HCO3 

0.0232

89 

I-

RDW 

0.0328

36 

I-

WBC 

0.0288

15 

I-Cr 0.0438

87 

I-HGB 0.0396

08 

I-Cl 0.0440

26 

I-

WBC 

0.0157

26 

I-RBC 0.0327

37 

I-Cr 0.0283

58 

I-BUN 0.0418

46 

I-

RDW 

0.0351

26 

I-K 0.0432

33 

I-HCT 0.0124

93 

I-

WBC 

0.0281

94 

I-HGB 0.0275

24 

I-Cl 0.0342

06 

I-

MCH

C 

0.0329

41 

I-Na 0.0429

2 

I-HGB 0.0116

58 

I-HCT 0.0236

48 

I-K 0.0275

06 

I-

HCO3 

0.0337

03 

I-RBC 0.0324

01 

I-

HCO3 

0.0412

08 

I-

MCV 

0.0113

73 

I-Cr 0.0167

8 

I-AG 0.0213

07 

I-Na 0.0313

93 

I-

MCV 

0.0324

01 

I-BG 0.0387

48 

I-

MCH 

0.0113

73 

I-BUN 0.0166

79 

I-BG 0.0203

66 

I-Mg 0.0229

61 

I-

MCH 

0.0324

01 

I-AG 0.0306

97 

I-

MCH

C 

0.0111

98 

I-Na 0.0140

31 

I-Cl 0.0192

71 

I-BG 0.0170

67 

HGB 0.0278 HGB 0.0305

18 

I-

RDW 

0.0111

94 

I-Cl 0.0077

22 

I-

HCO3 

0.0192

6 

I-AG 0.0156

87 

I-AG 0.0257

59 

HCT 0.0231

2 

I-RBC 0.0110

95 

I-

HCO3 

0.0054

57 

I-Na 0.0136

49 

I-K 0.0135

39 

HCT 0.0203

15 

ALT 0 
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Table C3 Detailed results for predictor importance evaluation with regard to in-hospital mortality. Numbers represent the 

ranking after aggregating the ranking results from the three different feature-selection methods. 

Day One Day Two Day Three 

Hot Deck PMM Hot Deck PMM Hot Deck PMM 

BUN 0.792686 BUN 0.825715 BUN 0.871227 BUN 1 BE 0.66376 RDW 0.75246 

AG 0.66198 AG 0.668918 AG 0.856826 RDW 0.711852 BUN 0.640534 BUN 0.635729 

RDW 0.599006 RDW 0.573188 RDW 0.810929 HCO3 0.684191 HCO3 0.626034 BE 0.633926 

HCO3 0.590773 HCO3 0.531746 HCO3 0.802246 AG 0.664339 RDW 0.61847 HCO3 0.62367 

MCHC 0.584486 MCHC 0.507343 I-PO2 0.594496 BE 0.528778 I-BE 0.587481 I-BE 0.595553 

BG 0.53102 PCO2 0.489483 I-PCO2 0.593258 MCHC 0.503805 I-PCO2 0.587166 I-PCO2 0.595238 

PO2 0.521196 Cr 0.480181 I-BE 0.592893 PT 0.453111 I-PO2 0.586851 I-PO2 0.594924 

Cr 0.487362 BE 0.452599 I-LAC 0.548438 Cl 0.429405 pH 0.515275 pH 0.556242 

MCV 0.417346 I-LAC 0.436382 Cl 0.529452 I-LAC 0.425279 AG 0.494856 Phos 0.494694 

I-LAC 0.411539 LAC 0.415773 PTT 0.511771 Cr 0.395266 I-LAC 0.489909 AG 0.492864 

I-ALT 0.387559 HGB 0.414263 Phos 0.497639 I-PO2 0.382404 PCO2 0.438274 I-pH 0.470007 

I-AST 0.387498 pH 0.402466 MCHC 0.485717 I-PCO2 0.381737 I-pH 0.437812 I-LAC 0.469215 

I-ALK 0.385754 I-TBil 0.399363 Na 0.473093 I-BE 0.381448 Cr 0.416895 Cr 0.415249 

I-TBil 0.384603 I-Ca 0.395278 Cr 0.461062 PTT 0.357339 Phos 0.355405 LAC 0.396136 

I-Phos 0.381937 I-ALT 0.376004 I-pH 0.460122 Phos 0.352738 PT 0.328079 NE 0.338372 

I-Ca 0.380717 I-AST 0.375944 Ca 0.422747 Na 0.345109 I-PTT 0.311758 PT 0.326491 

LY 0.373098 LY 0.375163 PT 0.386761 I-PT 0.333936 NE 0.304336 LY 0.319146 
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PTT 0.36056 I-ALK 0.366346 PLT 0.371176 BG 0.320947 LAC 0.290642 MCV 0.314868 

PLT 0.359362 RBC 0.36628 BE 0.365499 I-pH 0.317841 MCV 0.286645 PCO2 0.304013 

Phos 0.358443 Phos 0.360009 I-PT 0.362492 LAC 0.307212 I-PT 0.280568 MCHC 0.297485 

HGB 0.353079 BG 0.359947 BG 0.356136 PO2 0.295944 I-TBil 0.276302 RBC 0.280764 

LAC 0.345373 PO2 0.333154 LAC 0.343797 MCV 0.293408 I-ALT 0.273609 I-AST 0.274608 

I-PCO2 0.340782 PLT 0.332843 I-PTT 0.342374 HGB 0.289974 I-AST 0.269524 I-TBil 0.274146 

I-PO2 0.340782 MCV 0.330676 MCV 0.341198 PCO2 0.287056 MCHC 0.257425 I-ALT 0.270957 

I-BE 0.340621 PT 0.324238 RBC 0.30348 I-PTT 0.286421 BG 0.256086 I-ALK 0.262906 

PCO2 0.336776 I-Phos 0.324092 I-TBil 0.300585 NE 0.283794 PLT 0.254084 I-PTT 0.260668 

PT 0.328778 I-PCO2 0.31347 PCO2 0.300358 I-TBil 0.282065 I-ALK 0.25055 I-PT 0.25894 

RBC 0.313951 I-PO2 0.31347 I-ALK 0.295056 LY 0.264846 WBC 0.240404 BG 0.254835 

pH 0.312077 I-BE 0.313312 I-ALT 0.293048 TBil 0.25852 RBC 0.229375 PLT 0.253083 

BE 0.301225 PTT 0.313247 I-AST 0.288134 RBC 0.257641 Cl 0.224759 WBC 0.239337 

I-pH 0.293267 I-pH 0.312705 HGB 0.287403 MCH 0.256053 I-Ca 0.220419 Cl 0.230215 

NE 0.291994 ALK 0.258992 I-Phos 0.278502 pH 0.254797 I-Phos 0.211873 PTT 0.201343 

Cl 0.282029 Na 0.228743 PO2 0.247892 I-ALK 0.245638 PTT 0.202375 Mg 0.188997 

MCH 0.259909 TBil 0.227722 WBC 0.245929 I-ALT 0.23875 Mg 0.190069 PO2 0.173802 

WBC 0.225897 AST 0.226631 LY 0.230429 I-AST 0.237073 Ca 0.182171 BA 0.164709 

I-NE 0.218566 WBC 0.221189 pH 0.21219 BA 0.229466 LY 0.163745 Ca 0.163818 

I-MO 0.218566 I-NE 0.214159 MCH 0.204618 PLT 0.227216 PO2 0.160079 MO 0.161944 

I-EO 0.218566 I-MO 0.214159 I-Ca 0.202655 WBC 0.193095 Na 0.150253 MCH 0.155433 
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I-BA 0.218566 I-EO 0.214159 HCT 0.195806 ALK 0.187838 TBil 0.139763 Na 0.149719 

I-LY 0.218487 I-BA 0.214159 NE 0.194221 HCT 0.180302 MCH 0.131544 TBil 0.139005 

Ca 0.209441 I-LY 0.214082 BA 0.189756 Ca 0.171374 K 0.117619 EO 0.136577 

Na 0.195981 Ca 0.211277 Mg 0.159471 I-Phos 0.14342 I-NE 0.114392 K 0.117024 

I-PT 0.185589 NE 0.204053 TBil 0.136629 MO 0.142681 I-LY 0.114392 I-Phos 0.115488 

I-PTT 0.183623 BA 0.18897 I-NE 0.125957 Mg 0.134089 I-MO 0.114392 I-NE 0.113881 

TBil 0.138903 EO 0.17213 I-LY 0.125957 AST 0.119857 I-EO 0.114392 I-LY 0.113881 

AST 0.134067 MCH 0.170869 I-MO 0.125957 I-NE 0.112565 I-BA 0.114392 I-MO 0.113881 

EO 0.127119 I-PT 0.170498 I-EO 0.125957 I-LY 0.112565 BA 0.110613 I-EO 0.113881 

ALK 0.110338 I-PTT 0.160825 I-BA 0.125957 I-MO 0.112565 AST 0.108952 I-BA 0.113881 

BA 0.108381 Cl 0.154443 K 0.096208 I-EO 0.112565 MO 0.083459 AST 0.112826 

MO 0.099866 ALT 0.098121 AST 0.079471 I-BA 0.112565 EO 0.074052 I-Ca 0.088959 

I-Mg 0.09522 I-BG 0.095042 MO 0.073539 I-Ca 0.097019 I-Mg 0.072413 ALK 0.066881 

ALT 0.086944 I-AG 0.081084 EO 0.059083 EO 0.090394 ALK 0.067309 I-RDW 0.059171 

Mg 0.05808 I-Mg 0.06207 ALK 0.050719 I-BG 0.077374 ALT 0.06125 I-MCHC 0.057317 

K 0.055639 I-K 0.054604 I-MCHC 0.049679 I-AG 0.070263 I-WBC 0.047277 I-RBC 0.056806 

I-HCT 0.038074 K 0.054598 I-RBC 0.049543 K 0.068477 I-Cr 0.046987 I-MCV 0.056806 

I-AG 0.03646 Mg 0.041903 I-MCV 0.049543 I-K 0.064423 I-BUN 0.043822 I-MCH 0.056806 

I-BG 0.034724 I-RBC 0.039129 I-MCH 0.049543 ALT 0.043276 I-PLT 0.040581 I-Cr 0.050183 

I-BUN 0.028065 I-MCV 0.039069 I-HCT 0.047944 I-HCT 0.036985 I-HCT 0.03936 I-PLT 0.047133 

I-K 0.027928 I-MCH 0.039069 I-HGB 0.047702 I-RDW 0.03124 I-RDW 0.039224 I-WBC 0.047106 
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I-Cr 0.027837 I-MCHC 0.038744 I-RDW 0.046801 I-PLT 0.029356 I-MCHC 0.037362 I-BUN 0.047027 

HCT 0.024159 I-HCT 0.036842 ALT 0.0414 I-WBC 0.027678 I-RBC 0.036849 I-HCT 0.045927 

I-PLT 0.022738 I-RDW 0.036652 I-BUN 0.040751 I-Cr 0.027393 I-MCV 0.036849 I-HGB 0.038626 

I-WBC 0.019027 I-Cr 0.0327 I-PLT 0.03946 I-BUN 0.026789 I-MCH 0.036849 I-Cl 0.034929 

I-RDW 0.018714 I-PLT 0.03036 I-Cr 0.039221 I-MCHC 0.023899 I-HGB 0.035416 I-HCO3 0.034152 

I-HGB 0.016144 I-BUN 0.030341 I-WBC 0.034229 I-RBC 0.023775 I-Cl 0.031698 I-AG 0.030166 

I-RBC 0.015815 I-HCO3 0.021465 I-Cl 0.02632 I-MCV 0.023775 I-HCO3 0.03092 I-K 0.027199 

I-MCV 0.015754 I-Cl 0.021105 I-HCO3 0.025802 I-MCH 0.023775 HGB 0.027294 HGB 0.027109 

I-MCH 0.015754 I-WBC 0.018852 I-Na 0.020485 I-HGB 0.022524 I-Na 0.023554 I-Na 0.026809 

I-MCHC 0.015422 HCT 0.018361 I-Mg 0.019784 I-HCO3 0.022448 HCT 0.020428 I-Mg 0.024299 

I-HCO3 0.01364 I-Na 0.016962 I-K 0.005176 I-Mg 0.020097 I-BG 0.007874 HCT 0.020301 

I-Cl 0.013272 I-HGB 0.016188 I-AG 0.00514 I-Cl 0.018554 I-AG 0.003873 ALT 0.017294 

I-Na 0.009183 MO 0.008405 I-BG 0.003625 I-Na 0.016975 I-K 0.003757 I-BG 0.010681 
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Table C4 Detailed AUROC values for all three days models for 30-days mortality. 

 Day1 Day2 Day3 

AUROC AUROC-SD AUROC AUROC-SD AUROC AUROC-SD 

Logistic 

Regression 

Indicator 

Only 

0.683639 0.012024 0.662923 0.010076 0.658562 0.016731 

HD 0.764109 0.007059 0.742167 0.015646 0.734406 0.009016 

HD + 

Indicator 

0.785046 0.008317 0.76738 0.013904 0.761211 0.01254 

PMM 0.765781 0.00824 0.749135 0.013908 0.733725 0.012114 

PMM + 

Indicator 

0.786277 0.010084 0.772205 0.012432 0.760894 0.013726 

SAPS II 0.781272 0.010389 0.734669 0.016996 0.704888 0.014114 

SAPS II 

+Indicator 

0.804469 0.010902 0.758655 0.014826 0.738983 0.013721 

Decision 

Tree 

Indicator 

Only 

0.650103 0.030717 0.626416 0.013378 0.629829 0.029985 

HD 0.710146 0.008507 0.686409 0.018551 0.664421 0.023127 

HD + 

Indicator 

0.721343 0.009624 0.699798 0.017404 0.673743 0.010208 

PMM 0.707519 0.010437 0.683301 0.024034 0.660748 0.024769 

PMM + 

Indicator 

0.714665 0.016703 0.695593 0.022077 0.676769 0.023449 

SAPS II 0.781272 0.010389 0.64003 0.020941 0.631917 0.014237 

SAPS II 

+Indicator 

0.804469 0.010902 0.733759 0.019449 0.716765 0.015101 

Random 

Forest 

Indicator 

Only 

0.505464 0.006078 0.514214 0.011948 0.530299 0.009883 

HD 0.773757 0.008081 0.7451 0.011768 0.72928 0.007846 

HD + 

Indicator 

0.792436 0.008205 0.766697 0.011666 0.754279 0.010198 

PMM 0.778668 0.009603 0.757371 0.00969 0.741238 0.014159 
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PMM + 

Indicator 

0.790357 0.01027 0.77025 0.010431 0.751982 0.011704 

SAPS II 0.598363 0.007601 0.582176 0.013028 0.581908 0.010418 

SAPS II 

+Indicator 

0.702174 0.009598 0.669676 0.016399 0.662755 0.014661 
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Table C5 Detailed AUROC values for all three days models for in-hospital mortality. 

 Day1 Day2 Day3 

AUROC AUROC-

SD 

AUROC AUROC-

SD 

AUROC AUROC-

SD 

Logistic 

Regression 

Indicator Only 0.714672 0.017386 0.691756 0.012501 0.692288 0.015078 

HD 0.764219 0.018237 0.741566 0.01794 0.732094 0.0221 

HD + Indicator 0.798866 0.01876 0.779967 0.01663 0.774248 0.013158 

PMM 0.764211 0.019857 0.747549 0.016608 0.73011 0.018976 

PMM + 

Indicator 

0.798734 0.018334 0.783444 0.015014 0.772708 0.012686 

SAPS II 0.787666 0.014567 0.733107 0.011018 0.697324 0.017352 

SAPS II 

+Indicator 

0.817011 0.014251 0.768525 0.013978 0.751957 0.013731 

Decision Tree Indicator Only 0.617608 0.084701 0.645272 0.010946 0.518569 0.010091 

HD 0.712456 0.016019 0.685595 0.025948 0.732607 0.018908 

HD + Indicator 0.733814 0.021929 0.718591 0.014642 0.768959 0.015584 

PMM 0.712825 0.014675 0.692577 0.013314 0.740328 0.019537 

PMM + 

Indicator 

0.731189 0.017454 0.72262 0.023738 0.765453 0.014443 

SAPS II 0.661025 0.021642 0.64404 0.016882 0.545543 0.009066 

SAPS II 

+Indicator 

0.785751 0.016167 0.740022 0.012199 0.662513 0.015397 

Random Forest Indicator Only 0.506492 0.002377 0.511513 0.004844 0.518569 0.010091 

HD 0.774549 0.01358 0.748636 0.021041 0.732607 0.018908 

HD + Indicator 0.802737 0.013752 0.778569 0.018496 0.768959 0.015584 

PMM 0.787579 0.015326 0.759913 0.019799 0.740328 0.019537 

PMM + 

Indicator 

0.802973 0.01194 0.780929 0.016078 0.765453 0.014443 

SAPS II 0.579601 0.010443 0.556754 0.013962 0.545543 0.009066 
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SAPS II 

+Indicator 

0.689969 0.015505 0.658816 0.017864 0.662513 0.015397 
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Appendix D 

Detailed Results of Chapter 4 

Table D1 Detailed mortality prediction performance of PS-based KNN. 

Number 

of 

Similar 

Patients 

Multifaceted PS 

AUROC (Mean [95% CI]) 

Cosine PS 

AUROC (Mean [95% CI]) 

Euclidean PS 

AUROC (Mean [95% CI]) 

1 0.5522 [0.5442, 0.5442] 0.5499 [0.544, 0.5559] 0.5452 [0.5354, 0.5549] 

10 0.6729 [0.6631, 0.6631] 0.6477 [0.6369, 0.6586] 0.6497 [0.6368, 0.6626] 

20 0.7096 [0.6979, 0.6979] 0.6717 [0.6583, 0.685] 0.6706 [0.6569, 0.6844] 

30 0.7269 [0.7138, 0.7138] 0.6815 [0.6691, 0.6938] 0.6796 [0.6667, 0.6924] 

40 0.7355 [0.7221, 0.7221] 0.6884 [0.6758, 0.701] 0.6854 [0.674, 0.6969] 

50 0.743 [0.7318, 0.7318] 0.6904 [0.6777, 0.7031] 0.6885 [0.6779, 0.699] 

60 0.7488 [0.7374, 0.7374] 0.6925 [0.6796, 0.7055] 0.6881 [0.6784, 0.6978] 

70 0.7545 [0.7446, 0.7446] 0.6934 [0.6814, 0.7054] 0.6879 [0.678, 0.6979] 

80 0.7571 [0.7469, 0.7469] 0.6957 [0.6834, 0.7081] 0.6874 [0.6769, 0.6979] 

90 0.7608 [0.7494, 0.7494] 0.6966 [0.6855, 0.7076] 0.6885 [0.6782, 0.6989] 

100 0.7628 [0.7519, 0.7519] 0.6972 [0.6856, 0.7088] 0.6883 [0.6783, 0.6983] 

110 0.7648 [0.7541, 0.7541] 0.6983 [0.687, 0.7096] 0.6874 [0.6769, 0.6979] 

120 0.7651 [0.7542, 0.7542] 0.6983 [0.6864, 0.7101] 0.6881 [0.6775, 0.6987] 

130 0.7675 [0.7567, 0.7567] 0.6989 [0.6874, 0.7103] 0.6885 [0.6773, 0.6997] 

140 0.7691 [0.7587, 0.7587] 0.6982 [0.6868, 0.7097] 0.6884 [0.6774, 0.6993] 

150 0.7714 [0.7608, 0.7608] 0.6986 [0.687, 0.7101] 0.6884 [0.6773, 0.6995] 

160 0.7726 [0.7619, 0.7619] 0.6979 [0.6868, 0.7091] 0.6888 [0.6781, 0.6996] 

170 0.7729 [0.7622, 0.7622] 0.6984 [0.6872, 0.7096] 0.689 [0.6789, 0.6991] 

180 0.7745 [0.7643, 0.7643] 0.6977 [0.6867, 0.7088] 0.6893 [0.6788, 0.6997] 

190 0.7758 [0.7656, 0.7656] 0.698 [0.6867, 0.7093] 0.6897 [0.6794, 0.6999] 
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200 0.7768 [0.7667, 0.7667] 0.6988 [0.6875, 0.7102] 0.6897 [0.6797, 0.6996] 

210 0.7773 [0.7675, 0.7675] 0.698 [0.6866, 0.7093] 0.6891 [0.6794, 0.6988] 

220 0.7788 [0.7689, 0.7689] 0.6983 [0.6867, 0.7098] 0.6893 [0.6794, 0.6991] 

230 0.7799 [0.7704, 0.7704] 0.6976 [0.6859, 0.7094] 0.6893 [0.6796, 0.699] 

240 0.78 [0.7705, 0.7705] 0.698 [0.6863, 0.7097] 0.6892 [0.6798, 0.6986] 

250 0.7805 [0.7709, 0.7709] 0.6978 [0.686, 0.7096] 0.6886 [0.6792, 0.6981] 

260 0.7812 [0.7717, 0.7717] 0.698 [0.6861, 0.7099] 0.688 [0.6785, 0.6974] 

270 0.7821 [0.7727, 0.7727] 0.6978 [0.6859, 0.7098] 0.6883 [0.6786, 0.698] 

280 0.7823 [0.7733, 0.7733] 0.6978 [0.6859, 0.7097] 0.6879 [0.6782, 0.6976] 

290 0.7834 [0.7743, 0.7743] 0.6972 [0.6859, 0.7086] 0.6874 [0.6777, 0.6972] 

300 0.7839 [0.7751, 0.7751] 0.6973 [0.6861, 0.7085] 0.687 [0.6771, 0.6969] 

310 0.785 [0.7762, 0.7762] 0.697 [0.686, 0.7081] 0.6868 [0.6771, 0.6966] 

320 0.7855 [0.7764, 0.7764] 0.6968 [0.6858, 0.7078] 0.6865 [0.6769, 0.6961] 

330 0.7858 [0.7772, 0.7772] 0.6966 [0.6854, 0.7078] 0.686 [0.6763, 0.6957] 

340 0.786 [0.7773, 0.7773] 0.6967 [0.6855, 0.7078] 0.6854 [0.6756, 0.6951] 

350 0.7862 [0.7777, 0.7777] 0.6964 [0.6852, 0.7075] 0.6852 [0.6753, 0.6952] 

360 0.7864 [0.7778, 0.7778] 0.6958 [0.6848, 0.7069] 0.6853 [0.6756, 0.6951] 

370 0.7861 [0.7772, 0.7772] 0.6957 [0.6847, 0.7066] 0.6854 [0.676, 0.6948] 

380 0.7861 [0.7772, 0.7772] 0.695 [0.6839, 0.7062] 0.6846 [0.6751, 0.6941] 

390 0.7862 [0.7773, 0.7773] 0.695 [0.6836, 0.7064] 0.6845 [0.675, 0.694] 

400 0.7865 [0.7774, 0.7774] 0.6945 [0.6833, 0.7058] 0.6841 [0.6747, 0.6935] 

410 0.7869 [0.7779, 0.7779] 0.6947 [0.6837, 0.7057] 0.6835 [0.6739, 0.6931] 

420 0.7865 [0.7778, 0.7778] 0.6947 [0.6838, 0.7057] 0.6832 [0.6737, 0.6927] 

430 0.7868 [0.7785, 0.7785] 0.6946 [0.6835, 0.7057] 0.6828 [0.6732, 0.6925] 

440 0.7873 [0.7795, 0.7795] 0.6946 [0.6835, 0.7057] 0.6824 [0.6728, 0.6921] 

450 0.7871 [0.7792, 0.7792] 0.6943 [0.6832, 0.7055] 0.6822 [0.6726, 0.6918] 

460 0.787 [0.7794, 0.7794] 0.6943 [0.6831, 0.7054] 0.6817 [0.6722, 0.6913] 

470 0.7869 [0.7793, 0.7793] 0.6941 [0.683, 0.7051] 0.6816 [0.6722, 0.691] 

480 0.7874 [0.7796, 0.7796] 0.6943 [0.6836, 0.7051] 0.6812 [0.6717, 0.6908] 

490 0.787 [0.7796, 0.7796] 0.6938 [0.6831, 0.7046] 0.6811 [0.6717, 0.6904] 
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500 0.7868 [0.7795, 0.7795] 0.6935 [0.6829, 0.7041] 0.6808 [0.6715, 0.6901] 

510 0.7866 [0.7795, 0.7795] 0.6934 [0.6829, 0.7039] 0.6806 [0.6713, 0.6899] 

520 0.7865 [0.7794, 0.7794] 0.6932 [0.6827, 0.7038] 0.6805 [0.6711, 0.6899] 

530 0.7866 [0.7796, 0.7796] 0.6931 [0.6827, 0.7035] 0.6803 [0.671, 0.6897] 

540 0.7867 [0.7795, 0.7795] 0.693 [0.6823, 0.7036] 0.6801 [0.6707, 0.6895] 

550 0.7869 [0.7796, 0.7796] 0.6931 [0.6823, 0.7039] 0.6799 [0.6705, 0.6894] 

560 0.787 [0.7796, 0.7796] 0.6929 [0.682, 0.7038] 0.6797 [0.6702, 0.6892] 

570 0.7868 [0.7795, 0.7795] 0.6926 [0.6819, 0.7034] 0.6792 [0.6697, 0.6886] 

580 0.787 [0.7797, 0.7797] 0.6921 [0.6812, 0.703] 0.6789 [0.6695, 0.6884] 

590 0.7869 [0.7796, 0.7796] 0.6919 [0.6808, 0.7029] 0.6786 [0.669, 0.6882] 

600 0.7872 [0.7797, 0.7797] 0.6915 [0.6805, 0.7026] 0.6783 [0.6686, 0.6879] 

610 0.7873 [0.7796, 0.7796] 0.6913 [0.6802, 0.7023] 0.6778 [0.6682, 0.6874] 

620 0.7876 [0.7798, 0.7798] 0.6912 [0.68, 0.7023] 0.6776 [0.6681, 0.6871] 

630 0.7877 [0.7798, 0.7798] 0.6909 [0.6798, 0.7019] 0.6771 [0.6679, 0.6864] 

640 0.7879 [0.7802, 0.7802] 0.6906 [0.6796, 0.7017] 0.6766 [0.6674, 0.6858] 

650 0.7884 [0.7806, 0.7806] 0.6906 [0.6796, 0.7016] 0.6764 [0.6672, 0.6856] 

660 0.7882 [0.7804, 0.7804] 0.6904 [0.6793, 0.7016] 0.6762 [0.6669, 0.6855] 

670 0.7877 [0.7799, 0.7799] 0.6901 [0.6789, 0.7012] 0.6761 [0.6668, 0.6853] 

680 0.7878 [0.7801, 0.7801] 0.6899 [0.6788, 0.701] 0.6759 [0.6665, 0.6852] 

690 0.7876 [0.7798, 0.7798] 0.6897 [0.6786, 0.7007] 0.6754 [0.666, 0.6848] 

700 0.7878 [0.7798, 0.7798] 0.6894 [0.6783, 0.7004] 0.6752 [0.6656, 0.6847] 

710 0.7881 [0.7797, 0.7797] 0.6893 [0.6783, 0.7003] 0.6753 [0.6657, 0.6848] 

720 0.7882 [0.7797, 0.7797] 0.689 [0.678, 0.7] 0.6753 [0.6656, 0.685] 

730 0.7879 [0.7795, 0.7795] 0.6888 [0.6777, 0.6999] 0.6752 [0.6655, 0.6849] 

740 0.7881 [0.78, 0.78] 0.6886 [0.6776, 0.6995] 0.6751 [0.6653, 0.6849] 

750 0.7883 [0.7802, 0.7802] 0.6884 [0.6774, 0.6993] 0.6749 [0.6651, 0.6846] 

760 0.7883 [0.78, 0.78] 0.6881 [0.6774, 0.6988] 0.6749 [0.6652, 0.6846] 

770 0.7885 [0.7803, 0.7803] 0.688 [0.6772, 0.6988] 0.6747 [0.665, 0.6845] 

780 0.7887 [0.7805, 0.7805] 0.6878 [0.6772, 0.6984] 0.6745 [0.6647, 0.6843] 

790 0.7887 [0.7804, 0.7804] 0.6875 [0.6769, 0.698] 0.6743 [0.6646, 0.6839] 
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800 0.7889 [0.7803, 0.7803] 0.6872 [0.6767, 0.6978] 0.6741 [0.6643, 0.6839] 

810 0.789 [0.7803, 0.7803] 0.687 [0.6765, 0.6975] 0.6738 [0.664, 0.6836] 

820 0.7891 [0.7804, 0.7804] 0.6869 [0.6763, 0.6974] 0.6739 [0.6641, 0.6837] 

830 0.7889 [0.7801, 0.7801] 0.687 [0.6765, 0.6976] 0.6739 [0.664, 0.6838] 

840 0.7891 [0.7801, 0.7801] 0.6867 [0.6762, 0.6973] 0.6735 [0.6636, 0.6835] 

850 0.7891 [0.78, 0.78] 0.6865 [0.6759, 0.697] 0.6735 [0.6636, 0.6835] 

860 0.7891 [0.7797, 0.7797] 0.6866 [0.6761, 0.6971] 0.6734 [0.6635, 0.6833] 

870 0.7893 [0.7798, 0.7798] 0.6864 [0.676, 0.6969] 0.6733 [0.6632, 0.6834] 

880 0.7893 [0.7797, 0.7797] 0.6865 [0.676, 0.6971] 0.6733 [0.6632, 0.6835] 

890 0.7892 [0.7794, 0.7794] 0.6864 [0.6759, 0.697] 0.6734 [0.6634, 0.6833] 

900 0.7893 [0.7794, 0.7794] 0.6861 [0.6756, 0.6967] 0.6731 [0.663, 0.6832] 

910 0.7891 [0.7792, 0.7792] 0.6861 [0.6756, 0.6967] 0.6728 [0.6627, 0.6829] 

920 0.7892 [0.7795, 0.7795] 0.6859 [0.6754, 0.6964] 0.6725 [0.6624, 0.6825] 

930 0.7891 [0.7792, 0.7792] 0.6857 [0.6753, 0.6961] 0.6723 [0.6621, 0.6825] 

940 0.789 [0.7791, 0.7791] 0.6855 [0.6752, 0.6959] 0.6724 [0.6622, 0.6825] 

950 0.7891 [0.7794, 0.7794] 0.6854 [0.675, 0.6958] 0.6722 [0.6621, 0.6823] 

960 0.7885 [0.7786, 0.7786] 0.6853 [0.6748, 0.6958] 0.672 [0.662, 0.682] 

970 0.7886 [0.7787, 0.7787] 0.6852 [0.6747, 0.6957] 0.6718 [0.6618, 0.6818] 

980 0.7884 [0.7784, 0.7784] 0.685 [0.6746, 0.6954] 0.6717 [0.6616, 0.6818] 

990 0.7885 [0.7787, 0.7787] 0.6849 [0.6745, 0.6953] 0.6716 [0.6613, 0.6818] 

1000 0.7885 [0.7789, 0.7789] 0.6847 [0.6744, 0.6951] 0.6714 [0.6611, 0.6818] 

1010 0.7884 [0.7788, 0.7788] 0.6844 [0.674, 0.6947] 0.671 [0.6609, 0.6812] 

1020 0.7885 [0.7789, 0.7789] 0.6843 [0.674, 0.6947] 0.6709 [0.6608, 0.681] 

1030 0.7886 [0.779, 0.779] 0.6841 [0.6739, 0.6943] 0.6709 [0.6608, 0.681] 

1040 0.7888 [0.7791, 0.7791] 0.6841 [0.674, 0.6943] 0.6709 [0.6608, 0.681] 

1050 0.7886 [0.7789, 0.7789] 0.684 [0.6739, 0.6941] 0.6706 [0.6605, 0.6806] 

1060 0.7887 [0.779, 0.779] 0.6839 [0.6738, 0.6939] 0.6702 [0.6602, 0.6803] 

1070 0.7883 [0.7787, 0.7787] 0.6837 [0.6736, 0.6938] 0.67 [0.6599, 0.6801] 

1080 0.7883 [0.7786, 0.7786] 0.6834 [0.6733, 0.6934] 0.6698 [0.6597, 0.6799] 

1090 0.7884 [0.7787, 0.7787] 0.6831 [0.673, 0.6931] 0.6696 [0.6595, 0.6797] 
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1100 0.788 [0.7784, 0.7784] 0.6829 [0.6728, 0.693] 0.6698 [0.6597, 0.6799] 

1110 0.7882 [0.7787, 0.7787] 0.6828 [0.6726, 0.693] 0.6695 [0.6595, 0.6795] 

1120 0.7881 [0.7786, 0.7786] 0.6827 [0.6725, 0.693] 0.6692 [0.6592, 0.6793] 

1130 0.7881 [0.7788, 0.7788] 0.6826 [0.6723, 0.6929] 0.6691 [0.659, 0.6791] 

1140 0.7882 [0.7788, 0.7788] 0.6826 [0.6723, 0.693] 0.6687 [0.6585, 0.6789] 

1150 0.788 [0.7786, 0.7786] 0.6825 [0.6721, 0.6929] 0.6685 [0.6583, 0.6788] 

1160 0.7882 [0.7788, 0.7788] 0.6823 [0.6719, 0.6928] 0.6683 [0.6582, 0.6785] 

1170 0.788 [0.7785, 0.7785] 0.6823 [0.6718, 0.6928] 0.6682 [0.6581, 0.6782] 

1180 0.7878 [0.7783, 0.7783] 0.6822 [0.6717, 0.6927] 0.6682 [0.6582, 0.6783] 

1190 0.7878 [0.7782, 0.7782] 0.682 [0.6715, 0.6926] 0.6682 [0.6582, 0.6783] 

1200 0.7878 [0.7783, 0.7783] 0.6818 [0.6714, 0.6923] 0.6683 [0.6584, 0.6782] 

1210 0.788 [0.7786, 0.7786] 0.6817 [0.6714, 0.6921] 0.6683 [0.6585, 0.678] 

1220 0.7881 [0.7786, 0.7786] 0.6818 [0.6714, 0.6921] 0.6682 [0.6585, 0.6779] 

1230 0.7881 [0.7786, 0.7786] 0.6818 [0.6715, 0.6921] 0.6679 [0.6582, 0.6776] 

1240 0.7882 [0.7787, 0.7787] 0.6817 [0.6714, 0.6919] 0.6681 [0.6583, 0.6778] 

1250 0.788 [0.7786, 0.7786] 0.6818 [0.6715, 0.692] 0.6678 [0.658, 0.6776] 

1260 0.788 [0.7786, 0.7786] 0.6817 [0.6714, 0.6919] 0.6677 [0.658, 0.6774] 

1270 0.788 [0.7785, 0.7785] 0.6814 [0.6712, 0.6916] 0.6677 [0.658, 0.6774] 

1280 0.7879 [0.7785, 0.7785] 0.6812 [0.671, 0.6914] 0.6678 [0.658, 0.6776] 

1290 0.7875 [0.7781, 0.7781] 0.6812 [0.671, 0.6914] 0.6677 [0.6579, 0.6774] 

1300 0.7875 [0.7781, 0.7781] 0.681 [0.6708, 0.6912] 0.6675 [0.6577, 0.6772] 

1310 0.7876 [0.7782, 0.7782] 0.681 [0.6708, 0.6912] 0.6674 [0.6575, 0.6773] 

1320 0.7874 [0.7781, 0.7781] 0.6809 [0.6708, 0.6911] 0.6674 [0.6575, 0.6774] 

1330 0.7871 [0.7777, 0.7777] 0.6808 [0.6707, 0.6909] 0.6671 [0.6572, 0.6771] 

1340 0.7871 [0.7777, 0.7777] 0.6807 [0.6705, 0.6909] 0.6671 [0.6572, 0.677] 

1350 0.7873 [0.778, 0.778] 0.6806 [0.6703, 0.6909] 0.6671 [0.6573, 0.6768] 

1360 0.7871 [0.7777, 0.7777] 0.6805 [0.6702, 0.6909] 0.6672 [0.6576, 0.6768] 

1370 0.787 [0.7775, 0.7775] 0.6804 [0.6702, 0.6906] 0.667 [0.6575, 0.6766] 

1380 0.7867 [0.7771, 0.7771] 0.6803 [0.67, 0.6905] 0.667 [0.6574, 0.6767] 

1390 0.7864 [0.7769, 0.7769] 0.6802 [0.6699, 0.6904] 0.667 [0.6574, 0.6767] 
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1400 0.7864 [0.7769, 0.7769] 0.6802 [0.67, 0.6904] 0.6671 [0.6575, 0.6768] 

1410 0.7867 [0.7773, 0.7773] 0.6802 [0.67, 0.6904] 0.6668 [0.6571, 0.6765] 

1420 0.7865 [0.7768, 0.7768] 0.6801 [0.67, 0.6903] 0.6669 [0.6572, 0.6765] 

1430 0.7863 [0.7768, 0.7768] 0.6799 [0.6697, 0.6902] 0.6669 [0.6573, 0.6766] 

1440 0.7862 [0.7766, 0.7766] 0.6799 [0.6696, 0.6901] 0.6669 [0.6573, 0.6766] 

1450 0.7863 [0.7766, 0.7766] 0.6797 [0.6695, 0.6899] 0.6669 [0.6572, 0.6765] 

1460 0.7862 [0.7767, 0.7767] 0.6797 [0.6695, 0.6898] 0.6666 [0.6569, 0.6763] 

1470 0.7863 [0.7766, 0.7766] 0.6794 [0.6694, 0.6895] 0.6666 [0.6569, 0.6763] 

1480 0.7862 [0.7765, 0.7765] 0.6794 [0.6694, 0.6895] 0.6666 [0.657, 0.6762] 

1490 0.7861 [0.7764, 0.7764] 0.6792 [0.6692, 0.6892] 0.6664 [0.6568, 0.6761] 

1500 0.7862 [0.7765, 0.7765] 0.6791 [0.6691, 0.6892] 0.6664 [0.6568, 0.6761] 

1510 0.7861 [0.7766, 0.7766] 0.6791 [0.6691, 0.6891] 0.6662 [0.6566, 0.6758] 

1520 0.786 [0.7763, 0.7763] 0.6789 [0.6689, 0.6889] 0.6663 [0.6566, 0.6759] 

1530 0.7859 [0.7763, 0.7763] 0.6788 [0.6688, 0.6888] 0.6661 [0.6566, 0.6757] 

1540 0.786 [0.7763, 0.7763] 0.6788 [0.6688, 0.6888] 0.6659 [0.6563, 0.6755] 

1550 0.786 [0.7761, 0.7761] 0.6787 [0.6687, 0.6887] 0.6658 [0.6563, 0.6753] 

1560 0.786 [0.7762, 0.7762] 0.6786 [0.6687, 0.6885] 0.6655 [0.6559, 0.6752] 

1570 0.7861 [0.7762, 0.7762] 0.6786 [0.6686, 0.6885] 0.6655 [0.6557, 0.6753] 

1580 0.7858 [0.7758, 0.7758] 0.6784 [0.6684, 0.6884] 0.6653 [0.6555, 0.6752] 

1590 0.786 [0.776, 0.776] 0.6783 [0.6683, 0.6883] 0.6654 [0.6554, 0.6753] 

1600 0.7859 [0.7758, 0.7758] 0.6782 [0.6683, 0.6882] 0.6655 [0.6556, 0.6754] 

1610 0.786 [0.7759, 0.7759] 0.6782 [0.6682, 0.6881] 0.6654 [0.6555, 0.6752] 

1620 0.7859 [0.7758, 0.7758] 0.6781 [0.6682, 0.6881] 0.6652 [0.6555, 0.675] 

1630 0.7861 [0.776, 0.776] 0.6781 [0.6681, 0.688] 0.6651 [0.6553, 0.6749] 

1640 0.786 [0.7761, 0.7761] 0.678 [0.6681, 0.6879] 0.6652 [0.6555, 0.6749] 

1650 0.7863 [0.7763, 0.7763] 0.6779 [0.668, 0.6878] 0.665 [0.6551, 0.6748] 

1660 0.7862 [0.7763, 0.7763] 0.6779 [0.6679, 0.6878] 0.6649 [0.655, 0.6748] 

1670 0.786 [0.776, 0.776] 0.6777 [0.6678, 0.6876] 0.6649 [0.6549, 0.6749] 

1680 0.7862 [0.7762, 0.7762] 0.6777 [0.6678, 0.6875] 0.665 [0.655, 0.6749] 

1690 0.7861 [0.7762, 0.7762] 0.6776 [0.6678, 0.6875] 0.665 [0.6551, 0.675] 
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1700 0.7863 [0.7764, 0.7764] 0.6776 [0.6679, 0.6874] 0.6651 [0.6551, 0.675] 

1710 0.7863 [0.7766, 0.7766] 0.6776 [0.6678, 0.6874] 0.6649 [0.655, 0.6749] 

1720 0.7863 [0.7768, 0.7768] 0.6777 [0.6679, 0.6874] 0.665 [0.655, 0.675] 

1730 0.7864 [0.7768, 0.7768] 0.6776 [0.6679, 0.6874] 0.6651 [0.6551, 0.675] 

1740 0.7863 [0.7768, 0.7768] 0.6776 [0.6678, 0.6874] 0.6652 [0.6552, 0.6752] 

1750 0.786 [0.7765, 0.7765] 0.6776 [0.6678, 0.6873] 0.6652 [0.6552, 0.6752] 

1760 0.786 [0.7765, 0.7765] 0.6773 [0.6675, 0.6871] 0.6651 [0.6551, 0.6752] 

1770 0.7859 [0.7765, 0.7765] 0.6772 [0.6673, 0.6871] 0.6652 [0.6552, 0.6753] 

1780 0.7861 [0.7768, 0.7768] 0.6772 [0.6674, 0.6871] 0.6653 [0.6553, 0.6753] 

1790 0.7862 [0.7768, 0.7768] 0.6772 [0.6674, 0.687] 0.6651 [0.6551, 0.6752] 

1800 0.7861 [0.7768, 0.7768] 0.677 [0.6672, 0.6869] 0.665 [0.655, 0.675] 

1810 0.7862 [0.777, 0.777] 0.6769 [0.6671, 0.6867] 0.6649 [0.6549, 0.6749] 

1820 0.7861 [0.7767, 0.7767] 0.6768 [0.6669, 0.6866] 0.6648 [0.6548, 0.6747] 

1830 0.7862 [0.7768, 0.7768] 0.6766 [0.6668, 0.6864] 0.6645 [0.6546, 0.6745] 

1840 0.786 [0.7766, 0.7766] 0.6766 [0.6667, 0.6864] 0.6645 [0.6546, 0.6745] 

1850 0.786 [0.7765, 0.7765] 0.6766 [0.6668, 0.6865] 0.6647 [0.6547, 0.6746] 

1860 0.7859 [0.7764, 0.7764] 0.6766 [0.6668, 0.6864] 0.6645 [0.6546, 0.6745] 

1870 0.7859 [0.7763, 0.7763] 0.6765 [0.6667, 0.6864] 0.6643 [0.6543, 0.6743] 

1880 0.7858 [0.776, 0.776] 0.6763 [0.6664, 0.6862] 0.6642 [0.6542, 0.6742] 

1890 0.7858 [0.7759, 0.7759] 0.6763 [0.6665, 0.6862] 0.6643 [0.6542, 0.6743] 

1900 0.7858 [0.776, 0.776] 0.6761 [0.6662, 0.6861] 0.6642 [0.6542, 0.6741] 

1910 0.7859 [0.776, 0.776] 0.676 [0.666, 0.686] 0.664 [0.654, 0.674] 

1920 0.7859 [0.776, 0.776] 0.6759 [0.6658, 0.6859] 0.6639 [0.6538, 0.674] 

1930 0.786 [0.7761, 0.7761] 0.6758 [0.6658, 0.6859] 0.6637 [0.6534, 0.6739] 

1940 0.7858 [0.7762, 0.7762] 0.6758 [0.6658, 0.6859] 0.6636 [0.6534, 0.6738] 

1950 0.7858 [0.7761, 0.7761] 0.6758 [0.6658, 0.6859] 0.6636 [0.6533, 0.6739] 

1960 0.7859 [0.7761, 0.7761] 0.6758 [0.6659, 0.6857] 0.6637 [0.6535, 0.6738] 

1970 0.7855 [0.7756, 0.7756] 0.6757 [0.6658, 0.6856] 0.6635 [0.6535, 0.6736] 

1980 0.7858 [0.7759, 0.7759] 0.6756 [0.6657, 0.6855] 0.6635 [0.6534, 0.6736] 

1990 0.7857 [0.7758, 0.7758] 0.6756 [0.6657, 0.6855] 0.6634 [0.6532, 0.6736] 
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2000 0.7858 [0.776, 0.776] 0.6755 [0.6656, 0.6855] 0.6633 [0.6532, 0.6734] 

2010 0.7857 [0.7758, 0.7758] 0.6755 [0.6656, 0.6854] 0.6634 [0.6534, 0.6733] 

2020 0.7856 [0.7759, 0.7759] 0.6754 [0.6654, 0.6854] 0.6633 [0.6534, 0.6732] 

2030 0.7856 [0.7758, 0.7758] 0.6753 [0.6653, 0.6854] 0.6632 [0.6532, 0.6731] 

2040 0.7858 [0.7762, 0.7762] 0.6752 [0.6652, 0.6853] 0.6629 [0.6529, 0.6729] 

2050 0.7859 [0.7762, 0.7762] 0.6752 [0.6651, 0.6852] 0.663 [0.6531, 0.6729] 

2060 0.7859 [0.7762, 0.7762] 0.6751 [0.665, 0.6851] 0.6629 [0.653, 0.6729] 

2070 0.7859 [0.7762, 0.7762] 0.675 [0.665, 0.685] 0.6629 [0.653, 0.6729] 

2080 0.7858 [0.776, 0.776] 0.675 [0.6649, 0.685] 0.6629 [0.653, 0.6728] 

2090 0.7855 [0.7757, 0.7757] 0.6749 [0.6649, 0.685] 0.6629 [0.653, 0.6729] 

2100 0.7856 [0.7758, 0.7758] 0.6748 [0.6648, 0.6848] 0.6629 [0.653, 0.6728] 

2110 0.7857 [0.776, 0.776] 0.6747 [0.6647, 0.6848] 0.6628 [0.6528, 0.6728] 

2120 0.7856 [0.7759, 0.7759] 0.6747 [0.6646, 0.6848] 0.6628 [0.6528, 0.6727] 

2130 0.7854 [0.7758, 0.7758] 0.6746 [0.6645, 0.6847] 0.6627 [0.6527, 0.6727] 

2140 0.7853 [0.7758, 0.7758] 0.6745 [0.6644, 0.6846] 0.6627 [0.6528, 0.6726] 

2150 0.7852 [0.7757, 0.7757] 0.6744 [0.6644, 0.6845] 0.6626 [0.6526, 0.6725] 

2160 0.7852 [0.7756, 0.7756] 0.6743 [0.6642, 0.6844] 0.6625 [0.6526, 0.6723] 

2170 0.7852 [0.7757, 0.7757] 0.6743 [0.6642, 0.6843] 0.6623 [0.6524, 0.6722] 

2180 0.7857 [0.7763, 0.7763] 0.6741 [0.6641, 0.6842] 0.6624 [0.6524, 0.6724] 

2190 0.7856 [0.7761, 0.7761] 0.674 [0.664, 0.6839] 0.6621 [0.6522, 0.6721] 

2200 0.7856 [0.7763, 0.7763] 0.674 [0.664, 0.684] 0.662 [0.652, 0.672] 

2210 0.7855 [0.7762, 0.7762] 0.6738 [0.6638, 0.6838] 0.6621 [0.6521, 0.6722] 

2220 0.7855 [0.7762, 0.7762] 0.6737 [0.6636, 0.6837] 0.6621 [0.6521, 0.6721] 

2230 0.7855 [0.7762, 0.7762] 0.6737 [0.6636, 0.6837] 0.6622 [0.6522, 0.6722] 

2240 0.7854 [0.7761, 0.7761] 0.6737 [0.6637, 0.6837] 0.6621 [0.6521, 0.672] 

2250 0.7853 [0.7761, 0.7761] 0.6735 [0.6634, 0.6836] 0.6621 [0.6522, 0.6721] 

2260 0.7851 [0.7759, 0.7759] 0.6735 [0.6635, 0.6836] 0.6621 [0.6522, 0.672] 

2270 0.7852 [0.7762, 0.7762] 0.6736 [0.6635, 0.6836] 0.6621 [0.6522, 0.6721] 

2280 0.7853 [0.7761, 0.7761] 0.6735 [0.6635, 0.6835] 0.6621 [0.6522, 0.672] 

2290 0.7853 [0.7763, 0.7763] 0.6734 [0.6633, 0.6835] 0.662 [0.652, 0.6719] 
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2300 0.7853 [0.7762, 0.7762] 0.6733 [0.6631, 0.6835] 0.662 [0.652, 0.6719] 

2310 0.7854 [0.7763, 0.7763] 0.6734 [0.6632, 0.6836] 0.6619 [0.652, 0.6718] 

2320 0.7853 [0.7763, 0.7763] 0.6733 [0.6631, 0.6835] 0.6619 [0.652, 0.6718] 

2330 0.7854 [0.7764, 0.7764] 0.6733 [0.6631, 0.6834] 0.662 [0.6522, 0.6718] 

2340 0.7854 [0.7764, 0.7764] 0.6732 [0.663, 0.6833] 0.6619 [0.652, 0.6718] 

2350 0.7855 [0.7765, 0.7765] 0.6731 [0.6629, 0.6833] 0.6618 [0.652, 0.6716] 

2360 0.7854 [0.7764, 0.7764] 0.673 [0.6628, 0.6832] 0.6618 [0.652, 0.6716] 

2370 0.785 [0.7759, 0.7759] 0.673 [0.6628, 0.6832] 0.6617 [0.6518, 0.6716] 

2380 0.7853 [0.7762, 0.7762] 0.6728 [0.6626, 0.6829] 0.6616 [0.6517, 0.6715] 

2390 0.7852 [0.7761, 0.7761] 0.6727 [0.6626, 0.6828] 0.6615 [0.6517, 0.6714] 

2400 0.7851 [0.7759, 0.7759] 0.6727 [0.6626, 0.6829] 0.6614 [0.6515, 0.6713] 

2410 0.7849 [0.7758, 0.7758] 0.6727 [0.6626, 0.6828] 0.6614 [0.6516, 0.6713] 

2420 0.7851 [0.776, 0.776] 0.6726 [0.6625, 0.6827] 0.6614 [0.6516, 0.6712] 

2430 0.7853 [0.7761, 0.7761] 0.6726 [0.6624, 0.6828] 0.6614 [0.6517, 0.6711] 

2440 0.7851 [0.7759, 0.7759] 0.6726 [0.6625, 0.6827] 0.6613 [0.6517, 0.671] 

2450 0.7851 [0.7759, 0.7759] 0.6726 [0.6626, 0.6826] 0.6615 [0.6517, 0.6712] 

2460 0.7852 [0.7759, 0.7759] 0.6726 [0.6627, 0.6825] 0.6614 [0.6517, 0.6712] 

2470 0.7851 [0.7758, 0.7758] 0.6726 [0.6627, 0.6825] 0.6612 [0.6514, 0.671] 

2480 0.7851 [0.7758, 0.7758] 0.6725 [0.6626, 0.6824] 0.6611 [0.6512, 0.6709] 

2490 0.7855 [0.7761, 0.7761] 0.6724 [0.6625, 0.6823] 0.661 [0.6512, 0.6708] 

2500 0.7853 [0.7761, 0.7761] 0.6723 [0.6624, 0.6822] 0.6611 [0.6513, 0.6709] 

2510 0.7853 [0.776, 0.776] 0.6721 [0.6623, 0.682] 0.6609 [0.6511, 0.6708] 

2520 0.7854 [0.7761, 0.7761] 0.6721 [0.6622, 0.6819] 0.661 [0.6512, 0.6708] 

2530 0.7854 [0.7762, 0.7762] 0.6722 [0.6624, 0.682] 0.6608 [0.6511, 0.6706] 

2540 0.7852 [0.776, 0.776] 0.6722 [0.6624, 0.6821] 0.6607 [0.651, 0.6705] 

2550 0.7852 [0.7761, 0.7761] 0.6721 [0.6622, 0.682] 0.6607 [0.6509, 0.6705] 

2560 0.7852 [0.776, 0.776] 0.672 [0.6622, 0.6819] 0.6605 [0.6507, 0.6702] 

2570 0.785 [0.7759, 0.7759] 0.672 [0.6623, 0.6817] 0.6604 [0.6506, 0.6702] 

2580 0.785 [0.776, 0.776] 0.672 [0.6623, 0.6817] 0.6604 [0.6507, 0.6701] 

2590 0.7848 [0.7759, 0.7759] 0.6719 [0.6621, 0.6816] 0.6603 [0.6505, 0.6701] 
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2600 0.7846 [0.7757, 0.7757] 0.6718 [0.6621, 0.6815] 0.6601 [0.6503, 0.6698] 

2610 0.7846 [0.7758, 0.7758] 0.6718 [0.6621, 0.6815] 0.66 [0.6502, 0.6698] 

2620 0.7847 [0.776, 0.776] 0.6719 [0.6622, 0.6815] 0.6599 [0.65, 0.6698] 

2630 0.7847 [0.7758, 0.7758] 0.6718 [0.6622, 0.6813] 0.66 [0.6501, 0.6699] 

2640 0.7846 [0.7758, 0.7758] 0.6717 [0.6621, 0.6812] 0.6599 [0.6501, 0.6697] 

2650 0.7845 [0.7757, 0.7757] 0.6716 [0.6621, 0.6811] 0.6599 [0.6501, 0.6697] 

2660 0.7845 [0.7756, 0.7756] 0.6715 [0.662, 0.681] 0.6598 [0.65, 0.6696] 

2670 0.7844 [0.7755, 0.7755] 0.6713 [0.6618, 0.6807] 0.6598 [0.6501, 0.6696] 

2680 0.7845 [0.7757, 0.7757] 0.6712 [0.6617, 0.6806] 0.6598 [0.6499, 0.6696] 

2690 0.7843 [0.7754, 0.7754] 0.6711 [0.6617, 0.6805] 0.6598 [0.65, 0.6696] 

2700 0.7844 [0.7755, 0.7755] 0.6712 [0.6619, 0.6806] 0.6598 [0.6499, 0.6696] 

2710 0.7844 [0.7755, 0.7755] 0.6711 [0.6617, 0.6805] 0.6597 [0.6499, 0.6695] 

2720 0.7844 [0.7756, 0.7756] 0.671 [0.6616, 0.6804] 0.6596 [0.6498, 0.6694] 

2730 0.7842 [0.7752, 0.7752] 0.6709 [0.6615, 0.6803] 0.6594 [0.6497, 0.6692] 

2740 0.7842 [0.7753, 0.7753] 0.6708 [0.6614, 0.6802] 0.6594 [0.6496, 0.6692] 

2750 0.7841 [0.7752, 0.7752] 0.6708 [0.6615, 0.6802] 0.6594 [0.6496, 0.6693] 

2760 0.7841 [0.7752, 0.7752] 0.6708 [0.6615, 0.6802] 0.6594 [0.6497, 0.6692] 

2770 0.784 [0.7751, 0.7751] 0.6708 [0.6614, 0.6802] 0.6593 [0.6496, 0.6691] 

2780 0.7839 [0.775, 0.775] 0.6707 [0.6613, 0.6802] 0.6592 [0.6495, 0.669] 

2790 0.7839 [0.7751, 0.7751] 0.6707 [0.6612, 0.6802] 0.6592 [0.6495, 0.669] 

2800 0.7837 [0.775, 0.775] 0.6707 [0.6611, 0.6803] 0.6593 [0.6495, 0.6691] 

2810 0.7839 [0.7752, 0.7752] 0.6708 [0.6612, 0.6803] 0.6594 [0.6496, 0.6692] 

2820 0.7838 [0.7751, 0.7751] 0.6706 [0.661, 0.6803] 0.6594 [0.6497, 0.6692] 

2830 0.7841 [0.7753, 0.7753] 0.6705 [0.6609, 0.6802] 0.6594 [0.6497, 0.6691] 

2840 0.784 [0.7752, 0.7752] 0.6705 [0.6609, 0.6801] 0.6594 [0.6496, 0.6691] 

2850 0.7841 [0.7752, 0.7752] 0.6704 [0.6608, 0.68] 0.6594 [0.6496, 0.6692] 

2860 0.7841 [0.7752, 0.7752] 0.6702 [0.6606, 0.6798] 0.6593 [0.6496, 0.6691] 

2870 0.7842 [0.7752, 0.7752] 0.6702 [0.6607, 0.6797] 0.6593 [0.6494, 0.6691] 

2880 0.7841 [0.7752, 0.7752] 0.6701 [0.6605, 0.6797] 0.6592 [0.6495, 0.669] 

2890 0.7841 [0.7752, 0.7752] 0.67 [0.6604, 0.6796] 0.6592 [0.6494, 0.669] 
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2900 0.7841 [0.7751, 0.7751] 0.67 [0.6605, 0.6796] 0.6592 [0.6493, 0.669] 

2910 0.784 [0.7751, 0.7751] 0.67 [0.6603, 0.6796] 0.6592 [0.6494, 0.6691] 

2920 0.7838 [0.7749, 0.7749] 0.6699 [0.6602, 0.6796] 0.6591 [0.6492, 0.669] 

2930 0.7837 [0.775, 0.775] 0.6697 [0.66, 0.6794] 0.6591 [0.6492, 0.669] 

2940 0.7837 [0.7749, 0.7749] 0.6696 [0.6599, 0.6792] 0.659 [0.6492, 0.6689] 

2950 0.7837 [0.7751, 0.7751] 0.6695 [0.6598, 0.6791] 0.659 [0.6493, 0.6688] 

2960 0.784 [0.7755, 0.7755] 0.6695 [0.6598, 0.6792] 0.659 [0.6493, 0.6688] 

2970 0.7838 [0.7752, 0.7752] 0.6695 [0.6598, 0.6792] 0.6591 [0.6493, 0.6688] 

2980 0.7839 [0.7752, 0.7752] 0.6695 [0.6598, 0.6792] 0.6591 [0.6494, 0.6688] 

2990 0.7837 [0.775, 0.775] 0.6694 [0.6598, 0.6791] 0.6589 [0.6492, 0.6685] 

3000 0.7837 [0.7749, 0.7749] 0.6694 [0.6597, 0.6791] 0.659 [0.6493, 0.6687] 

3010 0.7837 [0.7748, 0.7748] 0.6693 [0.6596, 0.679] 0.659 [0.6493, 0.6688] 

3020 0.7836 [0.7749, 0.7749] 0.6692 [0.6594, 0.679] 0.6591 [0.6493, 0.6688] 

3030 0.7836 [0.7749, 0.7749] 0.6692 [0.6594, 0.679] 0.659 [0.6493, 0.6687] 

3040 0.7835 [0.7749, 0.7749] 0.6692 [0.6594, 0.679] 0.659 [0.6493, 0.6687] 

3050 0.7833 [0.7748, 0.7748] 0.6691 [0.6594, 0.6789] 0.6589 [0.6491, 0.6687] 

3060 0.7833 [0.7747, 0.7747] 0.669 [0.6592, 0.6789] 0.6589 [0.6491, 0.6686] 

3070 0.7833 [0.7747, 0.7747] 0.669 [0.6593, 0.6788] 0.6589 [0.6492, 0.6686] 

3080 0.7833 [0.7747, 0.7747] 0.669 [0.6592, 0.6788] 0.6588 [0.6491, 0.6686] 

3090 0.7832 [0.7747, 0.7747] 0.6689 [0.6591, 0.6787] 0.6588 [0.6492, 0.6685] 

3100 0.7832 [0.7745, 0.7745] 0.6688 [0.659, 0.6786] 0.6588 [0.6491, 0.6685] 

3110 0.7832 [0.7745, 0.7745] 0.6687 [0.6588, 0.6786] 0.6588 [0.649, 0.6686] 

3120 0.7831 [0.7745, 0.7745] 0.6688 [0.6588, 0.6787] 0.6589 [0.6493, 0.6686] 

3130 0.7831 [0.7745, 0.7745] 0.6687 [0.6589, 0.6786] 0.6588 [0.6492, 0.6684] 

3140 0.7829 [0.7744, 0.7744] 0.6686 [0.6587, 0.6785] 0.6587 [0.6491, 0.6683] 

3150 0.7831 [0.7746, 0.7746] 0.6687 [0.6588, 0.6785] 0.6587 [0.6492, 0.6683] 

3160 0.783 [0.7745, 0.7745] 0.6687 [0.6589, 0.6784] 0.6586 [0.6491, 0.6682] 

3170 0.783 [0.7745, 0.7745] 0.6687 [0.659, 0.6784] 0.6586 [0.6491, 0.6681] 

3180 0.7831 [0.7746, 0.7746] 0.6687 [0.659, 0.6785] 0.6585 [0.6491, 0.668] 

3190 0.7831 [0.7746, 0.7746] 0.6688 [0.6591, 0.6785] 0.6585 [0.649, 0.6679] 
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3200 0.7832 [0.7747, 0.7747] 0.6688 [0.6591, 0.6785] 0.6585 [0.6491, 0.668] 

3210 0.7833 [0.7748, 0.7748] 0.6688 [0.6591, 0.6785] 0.6583 [0.6489, 0.6677] 

3220 0.7831 [0.7747, 0.7747] 0.6687 [0.659, 0.6784] 0.6582 [0.6487, 0.6676] 

3230 0.7831 [0.7745, 0.7745] 0.6687 [0.659, 0.6785] 0.6582 [0.6487, 0.6677] 

3240 0.783 [0.7744, 0.7744] 0.6688 [0.659, 0.6786] 0.6581 [0.6487, 0.6675] 

3250 0.783 [0.7745, 0.7745] 0.6689 [0.659, 0.6787] 0.658 [0.6487, 0.6673] 

3260 0.7828 [0.7744, 0.7744] 0.6688 [0.659, 0.6786] 0.6579 [0.6485, 0.6672] 

3270 0.7827 [0.7742, 0.7742] 0.6688 [0.659, 0.6786] 0.6578 [0.6485, 0.6672] 

3280 0.7826 [0.774, 0.774] 0.6688 [0.659, 0.6786] 0.6578 [0.6485, 0.6672] 

3290 0.7828 [0.7742, 0.7742] 0.6687 [0.6589, 0.6785] 0.6578 [0.6485, 0.6672] 

3300 0.7827 [0.774, 0.774] 0.6688 [0.6589, 0.6786] 0.6577 [0.6485, 0.667] 

3310 0.7825 [0.7738, 0.7738] 0.6689 [0.659, 0.6787] 0.6576 [0.6483, 0.6669] 

3320 0.7824 [0.7736, 0.7736] 0.6689 [0.6591, 0.6788] 0.6575 [0.6482, 0.6668] 

3330 0.7823 [0.7734, 0.7734] 0.669 [0.6592, 0.6788] 0.6575 [0.6482, 0.6669] 

3340 0.7822 [0.7733, 0.7733] 0.669 [0.6592, 0.6788] 0.6574 [0.6481, 0.6668] 

3350 0.7823 [0.7735, 0.7735] 0.6689 [0.659, 0.6788] 0.6574 [0.6481, 0.6667] 

3360 0.7823 [0.7734, 0.7734] 0.6688 [0.6587, 0.6788] 0.6574 [0.6481, 0.6666] 

3370 0.7823 [0.7732, 0.7732] 0.6688 [0.6587, 0.6789] 0.6573 [0.648, 0.6666] 

3380 0.7822 [0.7732, 0.7732] 0.6688 [0.6587, 0.6788] 0.6573 [0.6481, 0.6665] 

3390 0.782 [0.7729, 0.7729] 0.6688 [0.6588, 0.6788] 0.6574 [0.6481, 0.6666] 

3400 0.782 [0.7729, 0.7729] 0.6687 [0.6587, 0.6787] 0.6573 [0.648, 0.6665] 

3410 0.7821 [0.773, 0.773] 0.6687 [0.6586, 0.6788] 0.6572 [0.648, 0.6664] 

3420 0.7822 [0.7731, 0.7731] 0.6686 [0.6586, 0.6786] 0.6573 [0.648, 0.6665] 

3430 0.7822 [0.773, 0.773] 0.6685 [0.6585, 0.6785] 0.6572 [0.6479, 0.6665] 

3440 0.7823 [0.7731, 0.7731] 0.6685 [0.6586, 0.6785] 0.6573 [0.648, 0.6667] 

3450 0.7824 [0.7732, 0.7732] 0.6685 [0.6586, 0.6785] 0.6572 [0.6479, 0.6665] 

3460 0.7823 [0.7731, 0.7731] 0.6685 [0.6586, 0.6785] 0.6572 [0.6479, 0.6665] 

3470 0.7823 [0.7731, 0.7731] 0.6684 [0.6585, 0.6784] 0.6572 [0.6479, 0.6665] 

3480 0.7822 [0.773, 0.773] 0.6683 [0.6584, 0.6782] 0.6573 [0.648, 0.6666] 

3490 0.7822 [0.7731, 0.7731] 0.6683 [0.6584, 0.6783] 0.6574 [0.6482, 0.6666] 
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3500 0.7822 [0.7729, 0.7729] 0.6684 [0.6586, 0.6783] 0.6572 [0.648, 0.6664] 

3510 0.782 [0.7728, 0.7728] 0.6684 [0.6586, 0.6783] 0.6571 [0.6478, 0.6664] 

3520 0.7819 [0.7728, 0.7728] 0.6683 [0.6584, 0.6782] 0.6572 [0.648, 0.6665] 

3530 0.782 [0.7729, 0.7729] 0.6682 [0.6583, 0.6781] 0.6571 [0.6479, 0.6664] 

3540 0.782 [0.7728, 0.7728] 0.6683 [0.6584, 0.6782] 0.6573 [0.648, 0.6665] 

3550 0.7821 [0.7727, 0.7727] 0.6683 [0.6583, 0.6782] 0.6572 [0.648, 0.6665] 

3560 0.7821 [0.7727, 0.7727] 0.6681 [0.6582, 0.678] 0.6573 [0.648, 0.6666] 

3570 0.7819 [0.7726, 0.7726] 0.6682 [0.6583, 0.6781] 0.6571 [0.6479, 0.6664] 

3580 0.7818 [0.7725, 0.7725] 0.6681 [0.6583, 0.678] 0.6571 [0.6479, 0.6664] 

3590 0.7817 [0.7724, 0.7724] 0.6681 [0.6582, 0.6781] 0.6571 [0.6479, 0.6664] 

3600 0.7816 [0.7722, 0.7722] 0.6682 [0.6582, 0.6781] 0.6571 [0.6479, 0.6663] 

3610 0.7817 [0.7723, 0.7723] 0.6681 [0.6581, 0.6781] 0.6571 [0.6479, 0.6664] 

3620 0.7816 [0.7723, 0.7723] 0.6681 [0.6581, 0.6781] 0.6572 [0.6479, 0.6665] 

3630 0.7816 [0.7723, 0.7723] 0.6681 [0.6581, 0.6781] 0.6571 [0.6478, 0.6664] 

3640 0.7818 [0.7724, 0.7724] 0.6681 [0.6581, 0.6781] 0.6571 [0.6478, 0.6664] 

3650 0.7817 [0.7724, 0.7724] 0.668 [0.658, 0.678] 0.6572 [0.6478, 0.6666] 

3660 0.7817 [0.7723, 0.7723] 0.668 [0.658, 0.6779] 0.6574 [0.648, 0.6667] 

3670 0.7818 [0.7724, 0.7724] 0.6679 [0.658, 0.6779] 0.6574 [0.6481, 0.6667] 

3680 0.7817 [0.7723, 0.7723] 0.6679 [0.658, 0.6778] 0.6574 [0.648, 0.6668] 

3690 0.7817 [0.7721, 0.7721] 0.668 [0.6581, 0.6778] 0.6574 [0.6481, 0.6668] 

3700 0.7817 [0.7721, 0.7721] 0.6679 [0.6581, 0.6778] 0.6575 [0.6481, 0.6668] 

3710 0.7815 [0.772, 0.772] 0.668 [0.6581, 0.6778] 0.6575 [0.6482, 0.6669] 

3720 0.7816 [0.772, 0.772] 0.668 [0.6581, 0.6779] 0.6576 [0.6482, 0.6669] 

3730 0.7815 [0.7719, 0.7719] 0.668 [0.6581, 0.6779] 0.6576 [0.6483, 0.667] 

3740 0.7814 [0.7718, 0.7718] 0.668 [0.6581, 0.6778] 0.6577 [0.6483, 0.667] 

3750 0.7814 [0.7718, 0.7718] 0.6679 [0.658, 0.6778] 0.6577 [0.6484, 0.667] 

3760 0.7813 [0.7717, 0.7717] 0.6679 [0.658, 0.6778] 0.6577 [0.6483, 0.6672] 

3770 0.7813 [0.7716, 0.7716] 0.6679 [0.658, 0.6778] 0.6577 [0.6483, 0.6671] 

3780 0.7814 [0.7718, 0.7718] 0.6679 [0.6581, 0.6777] 0.6578 [0.6484, 0.6672] 

3790 0.7814 [0.7717, 0.7717] 0.6678 [0.6579, 0.6776] 0.6578 [0.6484, 0.6672] 
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3800 0.7813 [0.7716, 0.7716] 0.6678 [0.6581, 0.6776] 0.6578 [0.6484, 0.6673] 

3810 0.7814 [0.7716, 0.7716] 0.6678 [0.658, 0.6776] 0.6579 [0.6484, 0.6674] 

3820 0.7814 [0.7716, 0.7716] 0.6677 [0.6581, 0.6774] 0.658 [0.6485, 0.6674] 

3830 0.7815 [0.7718, 0.7718] 0.6677 [0.658, 0.6773] 0.658 [0.6486, 0.6674] 

3840 0.7816 [0.7719, 0.7719] 0.6676 [0.658, 0.6773] 0.6579 [0.6485, 0.6672] 

3850 0.7816 [0.7719, 0.7719] 0.6675 [0.6578, 0.6773] 0.6579 [0.6485, 0.6673] 

3860 0.7816 [0.7718, 0.7718] 0.6674 [0.6577, 0.6772] 0.658 [0.6486, 0.6673] 

3870 0.7817 [0.772, 0.772] 0.6675 [0.6577, 0.6772] 0.6579 [0.6486, 0.6673] 

3880 0.7817 [0.772, 0.772] 0.6674 [0.6575, 0.6772] 0.6579 [0.6484, 0.6673] 

3890 0.7818 [0.772, 0.772] 0.6674 [0.6576, 0.6772] 0.6577 [0.6483, 0.6672] 

3900 0.7817 [0.772, 0.772] 0.6674 [0.6576, 0.6771] 0.6577 [0.6481, 0.6672] 

3910 0.7816 [0.7718, 0.7718] 0.6673 [0.6574, 0.6771] 0.6577 [0.6482, 0.6672] 

3920 0.7817 [0.7719, 0.7719] 0.6672 [0.6574, 0.677] 0.6576 [0.6481, 0.6671] 

3930 0.7816 [0.7719, 0.7719] 0.6671 [0.6573, 0.6769] 0.6577 [0.6482, 0.6671] 

3940 0.7817 [0.772, 0.772] 0.6672 [0.6574, 0.677] 0.6576 [0.6481, 0.6671] 

3950 0.7816 [0.772, 0.772] 0.6671 [0.6573, 0.6769] 0.6575 [0.648, 0.6671] 

3960 0.7816 [0.7719, 0.7719] 0.6671 [0.6573, 0.677] 0.6576 [0.648, 0.6672] 

3970 0.7816 [0.7719, 0.7719] 0.6671 [0.6572, 0.677] 0.6576 [0.648, 0.6672] 

3980 0.7816 [0.7719, 0.7719] 0.6671 [0.6571, 0.677] 0.6576 [0.648, 0.6672] 

3990 0.7816 [0.7719, 0.7719] 0.667 [0.657, 0.677] 0.6575 [0.6479, 0.667] 

4000 0.7816 [0.7719, 0.7719] 0.667 [0.657, 0.677] 0.6575 [0.6479, 0.667] 

4010 0.7815 [0.7717, 0.7717] 0.667 [0.6571, 0.6769] 0.6574 [0.6478, 0.6669] 

4020 0.7815 [0.7718, 0.7718] 0.667 [0.657, 0.677] 0.6574 [0.6478, 0.6669] 

4030 0.7814 [0.7717, 0.7717] 0.667 [0.657, 0.677] 0.6574 [0.648, 0.6668] 

4040 0.7814 [0.7717, 0.7717] 0.667 [0.657, 0.677] 0.6574 [0.6479, 0.6668] 

4050 0.7812 [0.7715, 0.7715] 0.667 [0.657, 0.677] 0.6572 [0.6478, 0.6667] 

4060 0.7813 [0.7715, 0.7715] 0.6669 [0.6568, 0.6769] 0.6572 [0.6477, 0.6667] 

4070 0.7811 [0.7714, 0.7714] 0.6668 [0.6568, 0.6768] 0.6572 [0.6477, 0.6667] 

4080 0.7811 [0.7714, 0.7714] 0.6667 [0.6567, 0.6767] 0.6571 [0.6475, 0.6666] 

4090 0.7811 [0.7714, 0.7714] 0.6665 [0.6566, 0.6765] 0.657 [0.6476, 0.6665] 
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4100 0.7812 [0.7715, 0.7715] 0.6664 [0.6565, 0.6764] 0.657 [0.6476, 0.6665] 

4110 0.7811 [0.7715, 0.7715] 0.6664 [0.6564, 0.6764] 0.6571 [0.6477, 0.6666] 

4120 0.7812 [0.7715, 0.7715] 0.6664 [0.6565, 0.6764] 0.657 [0.6475, 0.6665] 

4130 0.7813 [0.7716, 0.7716] 0.6664 [0.6564, 0.6764] 0.657 [0.6475, 0.6665] 

4140 0.7814 [0.7717, 0.7717] 0.6664 [0.6564, 0.6763] 0.657 [0.6475, 0.6665] 

4150 0.7813 [0.7716, 0.7716] 0.6663 [0.6562, 0.6763] 0.6571 [0.6476, 0.6666] 

4160 0.7813 [0.7716, 0.7716] 0.6662 [0.6562, 0.6763] 0.6572 [0.6477, 0.6666] 

4170 0.7812 [0.7715, 0.7715] 0.6662 [0.6561, 0.6762] 0.6571 [0.6476, 0.6666] 

4180 0.7812 [0.7715, 0.7715] 0.6662 [0.6562, 0.6762] 0.6572 [0.6476, 0.6667] 

4190 0.7811 [0.7714, 0.7714] 0.666 [0.6561, 0.676] 0.6571 [0.6476, 0.6667] 

4200 0.7812 [0.7715, 0.7715] 0.666 [0.656, 0.6759] 0.6571 [0.6475, 0.6667] 

4210 0.7812 [0.7715, 0.7715] 0.6659 [0.6559, 0.6758] 0.6571 [0.6474, 0.6667] 

4220 0.7813 [0.7716, 0.7716] 0.6659 [0.6559, 0.6758] 0.6571 [0.6474, 0.6667] 

4230 0.7813 [0.7717, 0.7717] 0.6658 [0.6559, 0.6758] 0.657 [0.6473, 0.6667] 

4240 0.7812 [0.7716, 0.7716] 0.6658 [0.6559, 0.6758] 0.657 [0.6473, 0.6667] 

4250 0.7813 [0.7717, 0.7717] 0.6658 [0.6559, 0.6757] 0.6569 [0.6472, 0.6665] 

4260 0.7812 [0.7716, 0.7716] 0.6656 [0.6557, 0.6756] 0.6568 [0.6472, 0.6665] 

4270 0.7814 [0.7717, 0.7717] 0.6656 [0.6557, 0.6756] 0.6568 [0.6472, 0.6664] 

4280 0.7814 [0.7717, 0.7717] 0.6656 [0.6557, 0.6756] 0.6568 [0.6472, 0.6665] 

4290 0.7813 [0.7716, 0.7716] 0.6656 [0.6557, 0.6755] 0.6569 [0.6473, 0.6665] 

4300 0.7812 [0.7715, 0.7715] 0.6656 [0.6557, 0.6755] 0.657 [0.6474, 0.6666] 

4310 0.7813 [0.7717, 0.7717] 0.6656 [0.6557, 0.6755] 0.657 [0.6474, 0.6666] 

4320 0.7814 [0.7717, 0.7717] 0.6655 [0.6556, 0.6755] 0.6571 [0.6475, 0.6668] 

4330 0.7814 [0.7718, 0.7718] 0.6654 [0.6555, 0.6753] 0.6569 [0.6472, 0.6665] 

4340 0.7814 [0.7717, 0.7717] 0.6654 [0.6555, 0.6753] 0.6569 [0.6473, 0.6666] 

4350 0.7812 [0.7715, 0.7715] 0.6655 [0.6556, 0.6754] 0.6569 [0.6472, 0.6666] 

4360 0.7813 [0.7717, 0.7717] 0.6655 [0.6556, 0.6754] 0.6569 [0.6472, 0.6665] 

4370 0.7814 [0.7717, 0.7717] 0.6655 [0.6556, 0.6754] 0.6568 [0.6471, 0.6665] 

4380 0.7815 [0.7718, 0.7718] 0.6655 [0.6556, 0.6754] 0.6568 [0.6471, 0.6665] 

4390 0.7814 [0.7716, 0.7716] 0.6655 [0.6556, 0.6754] 0.6568 [0.6471, 0.6664] 
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4400 0.7814 [0.7716, 0.7716] 0.6654 [0.6554, 0.6753] 0.6567 [0.6471, 0.6664] 

4410 0.7814 [0.7716, 0.7716] 0.6654 [0.6555, 0.6753] 0.6569 [0.6472, 0.6665] 

4420 0.7813 [0.7714, 0.7714] 0.6652 [0.6553, 0.6752] 0.6569 [0.6473, 0.6666] 

4430 0.7812 [0.7714, 0.7714] 0.6653 [0.6553, 0.6752] 0.6569 [0.6472, 0.6665] 

4440 0.7813 [0.7716, 0.7716] 0.6651 [0.6551, 0.6751] 0.6568 [0.6471, 0.6665] 

4450 0.7814 [0.7716, 0.7716] 0.6651 [0.655, 0.6751] 0.6567 [0.647, 0.6664] 

4460 0.7814 [0.7716, 0.7716] 0.665 [0.655, 0.675] 0.6567 [0.647, 0.6664] 

4470 0.7813 [0.7716, 0.7716] 0.665 [0.6549, 0.6751] 0.6566 [0.6471, 0.6662] 

4480 0.7813 [0.7715, 0.7715] 0.665 [0.6549, 0.6751] 0.6565 [0.647, 0.6661] 

4490 0.7814 [0.7716, 0.7716] 0.6649 [0.6549, 0.675] 0.6564 [0.6467, 0.6661] 

4500 0.7813 [0.7715, 0.7715] 0.6649 [0.6548, 0.6749] 0.6565 [0.6467, 0.6662] 

4510 0.7814 [0.7715, 0.7715] 0.6648 [0.6548, 0.6748] 0.6564 [0.6468, 0.6661] 

4520 0.7814 [0.7714, 0.7714] 0.6647 [0.6546, 0.6747] 0.6564 [0.6466, 0.6662] 

4530 0.7814 [0.7714, 0.7714] 0.6646 [0.6546, 0.6747] 0.6564 [0.6465, 0.6663] 

4540 0.7812 [0.7712, 0.7712] 0.6645 [0.6544, 0.6746] 0.6564 [0.6465, 0.6663] 

4550 0.7813 [0.7713, 0.7713] 0.6645 [0.6545, 0.6746] 0.6563 [0.6464, 0.6662] 

4560 0.7814 [0.7713, 0.7713] 0.6645 [0.6545, 0.6746] 0.6562 [0.6463, 0.6661] 

4570 0.7813 [0.7712, 0.7712] 0.6646 [0.6546, 0.6746] 0.6562 [0.6463, 0.6662] 

4580 0.7812 [0.7711, 0.7711] 0.6646 [0.6546, 0.6747] 0.6564 [0.6465, 0.6663] 

4590 0.7812 [0.7711, 0.7711] 0.6646 [0.6546, 0.6746] 0.6564 [0.6465, 0.6663] 

4600 0.7812 [0.7711, 0.7711] 0.6647 [0.6547, 0.6746] 0.6563 [0.6464, 0.6662] 

4610 0.7811 [0.7709, 0.7709] 0.6646 [0.6546, 0.6746] 0.6562 [0.6464, 0.666] 

4620 0.781 [0.7708, 0.7708] 0.6646 [0.6546, 0.6747] 0.6562 [0.6464, 0.666] 

4630 0.7809 [0.7707, 0.7707] 0.6645 [0.6545, 0.6746] 0.6562 [0.6464, 0.666] 

4640 0.7809 [0.7706, 0.7706] 0.6645 [0.6545, 0.6746] 0.6562 [0.6465, 0.666] 

4650 0.7808 [0.7706, 0.7706] 0.6644 [0.6544, 0.6744] 0.6561 [0.6464, 0.6659] 

4660 0.7809 [0.7706, 0.7706] 0.6644 [0.6544, 0.6744] 0.6562 [0.6464, 0.666] 

4670 0.7809 [0.7705, 0.7705] 0.6643 [0.6544, 0.6743] 0.6561 [0.6464, 0.6658] 

4680 0.7808 [0.7704, 0.7704] 0.6644 [0.6545, 0.6743] 0.6561 [0.6464, 0.6658] 

4690 0.7809 [0.7705, 0.7705] 0.6644 [0.6545, 0.6743] 0.656 [0.6464, 0.6657] 
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4700 0.7809 [0.7707, 0.7707] 0.6644 [0.6545, 0.6743] 0.6562 [0.6465, 0.6658] 

4710 0.781 [0.7708, 0.7708] 0.6645 [0.6546, 0.6744] 0.6562 [0.6466, 0.6658] 

4720 0.7809 [0.7707, 0.7707] 0.6645 [0.6545, 0.6744] 0.6562 [0.6465, 0.6658] 

4730 0.7808 [0.7706, 0.7706] 0.6644 [0.6545, 0.6743] 0.6561 [0.6466, 0.6656] 

4740 0.7808 [0.7705, 0.7705] 0.6644 [0.6545, 0.6743] 0.6561 [0.6466, 0.6657] 

4750 0.7807 [0.7703, 0.7703] 0.6643 [0.6545, 0.6742] 0.656 [0.6464, 0.6656] 

4760 0.7804 [0.77, 0.77] 0.6643 [0.6544, 0.6742] 0.6559 [0.6463, 0.6655] 

4770 0.7804 [0.7699, 0.7699] 0.6642 [0.6543, 0.6741] 0.6559 [0.6462, 0.6656] 

4780 0.7804 [0.7699, 0.7699] 0.6642 [0.6543, 0.6741] 0.656 [0.6462, 0.6657] 

4790 0.7802 [0.7697, 0.7697] 0.6641 [0.6542, 0.674] 0.656 [0.6462, 0.6657] 

4800 0.7802 [0.7698, 0.7698] 0.6642 [0.6542, 0.6741] 0.656 [0.6462, 0.6657] 

4810 0.7804 [0.77, 0.77] 0.6641 [0.6541, 0.674] 0.656 [0.6462, 0.6657] 

4820 0.7803 [0.7699, 0.7699] 0.6641 [0.6542, 0.674] 0.6561 [0.6463, 0.6658] 

4830 0.7803 [0.7699, 0.7699] 0.664 [0.6541, 0.674] 0.6562 [0.6464, 0.6659] 

4840 0.7802 [0.7698, 0.7698] 0.664 [0.6541, 0.6739] 0.6562 [0.6464, 0.6661] 

4850 0.7803 [0.7698, 0.7698] 0.664 [0.6541, 0.6738] 0.6563 [0.6464, 0.6661] 

4860 0.7804 [0.7699, 0.7699] 0.6639 [0.6541, 0.6738] 0.6562 [0.6463, 0.6661] 

4870 0.7803 [0.7698, 0.7698] 0.6639 [0.654, 0.6737] 0.6563 [0.6465, 0.6662] 

4880 0.7803 [0.7697, 0.7697] 0.6638 [0.6539, 0.6738] 0.6563 [0.6464, 0.6661] 

4890 0.7804 [0.7698, 0.7698] 0.6638 [0.6539, 0.6737] 0.6564 [0.6466, 0.6662] 

4900 0.7804 [0.7697, 0.7697] 0.6638 [0.6539, 0.6738] 0.6563 [0.6466, 0.6661] 

4910 0.7804 [0.7696, 0.7696] 0.6638 [0.6539, 0.6737] 0.6562 [0.6465, 0.6658] 

4920 0.7803 [0.7695, 0.7695] 0.6638 [0.6539, 0.6738] 0.6561 [0.6465, 0.6658] 

4930 0.7803 [0.7695, 0.7695] 0.6638 [0.6539, 0.6737] 0.6562 [0.6466, 0.6658] 

4940 0.7802 [0.7694, 0.7694] 0.6639 [0.654, 0.6738] 0.6561 [0.6464, 0.6657] 

4950 0.7802 [0.7693, 0.7693] 0.6639 [0.654, 0.6738] 0.656 [0.6464, 0.6657] 

4960 0.7801 [0.7691, 0.7691] 0.6639 [0.654, 0.6738] 0.656 [0.6463, 0.6657] 

4970 0.7798 [0.7688, 0.7688] 0.6639 [0.6539, 0.6738] 0.6559 [0.6462, 0.6656] 

4980 0.7797 [0.7687, 0.7687] 0.6638 [0.6538, 0.6737] 0.6559 [0.6463, 0.6655] 

4990 0.7798 [0.7687, 0.7687] 0.6637 [0.6538, 0.6737] 0.656 [0.6464, 0.6655] 
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5000 0.7798 [0.7688, 0.7688] 0.6637 [0.6537, 0.6736] 0.656 [0.6464, 0.6655] 
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