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Abstract: Lattice towers are extensively used in overhead transmission lines, owing primarily to their 

lightness and cost-effectiveness. The modeling of such structures is usually laborious due to various 

complex factors including connection eccentricities, rotational stiffness of connections, bolt slippage, among 

others. Therefore, full-scale tests are usually performed for the qualification of new overhead line supports, 

which is a time-consuming and expensive process. Numerical models used in practice rely on simplified 

hypotheses, using linear truss/beam elements assumed to be pin-connected at both ends. Such models 

are combined with standard design equations to only evaluate the members’ axial capacities. Finite element 

models involving solid/shell elements are generally more accurate, though, the computational cost of the 

resulting problems makes it very difficult to evaluate the response of a complete tower. This paper presents 

an advanced numerical approach using beam elements aimed at predicting the load-bearing resistance of 

steel lattice towers under static load cases. Such approach will serve not only to verify the design of new 

towers, but also to understand various phenomena leading to the collapse of towers in the case of 

premature failures. The proposed model is developed using the finite element package Code_Aster, 

wherein lattice towers are modeled using spatial beams. The highly nonlinear problem is solved in an 

incremental way using advanced features to deal with both geometric and material nonlinearities. An 

example of a lattice tower loaded until failure is presented and compared with analogous experimental test. 

The effect of different geometric imperfections on the failure is particularly highlighted. 

1 INTRODUCTION 

The continuous expansion in the worldwide demand for electrical energy brings major challenges to power 

transmission system operators, who actively work towards the continuous improvement of their services. 

To accommodate the increasing power consumption, new transmission line towers need to be designed 

and existing structures must be upgraded to withstand heavier loads. Among other concerns, ensuring the 

structural integrity of transmission infrastructures, under normal as well as extreme weather events, is of 

substantial value to guarantee the electrical networks’ safety and reliability, and thereby significantly limit 

the occurrence of power outages.  

Steel lattice towers are intensively employed in high-voltage transmission lines because of their lightweight 

construction and excellent strength achieved at a relatively low cost. These towers are conventionally 

composed of straight angle members connected together by means of various bolted joints, which results 

in cumbersome structural systems often exhibiting complex structural behaviors. Accordingly, destructive 

testing on full-size towers are currently required to assess their vulnerability under the most critical loading 

conditions before being brought into service. This process is usually costly and time-consuming, and there 
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is therefore a need to develop accurate numerical approaches with a view to redressing the lack of 

awareness and understanding of lattice structures.  

The most popular modeling approach used in the design of transmission towers assumes lattice structures 

to be linear space trusses, where secondary bracing elements are generally not included in the model 

[Kitipornchai et al. (2005)]. In such representations, towers are designed to only carry axial forces, as the 

angle members are assembled using exclusively pin-ended connections [CIGRE (2014)]. Various nonlinear 

effects are generally accounted for by modifying the effective length of members in the design equations 

[Rao and Kalyanaraman (2001)]. In a 3D model exclusively composed of truss elements, numerical 

instabilities occur, and hence supplementary efforts are required to remove them [Al-Bermani and 

Kitipornchai (1992)]. Moreover, Eltaly et al. (2014) reported that almost a quarter of the tested towers, 

designed using the above-mentioned method, experienced premature failures, often at unexpected 

locations. 

Modeling approaches using beam elements may represent a good compromise between accuracy and 

computational costs, as shown in the study by Rao and Kalyanaraman (2001). This requires the 

consideration of various complex phenomena concerning the connections, such as stiffness and slippage. 

Also, initial geometric imperfections, including either connection eccentricities or out-of-straightness of the 

members, may have a significant impact on the stability response of lattice towers. However, the relative 

contribution of each type of imperfection on the global response of lattice towers is poorly understood and 

thus should be closely investigated.  

In this paper, a finite element modeling approach for the numerical analysis of the structural behavior of 

steel lattice towers under static load cases is presented. The proposed modeling approach is developed 

using the finite element software Code_Aster. This modeling approach uses three-dimensional beam 

elements accounting for warping to model the inelastic behavior of steel angle members, and linear discrete 

elements to represent the bolted connections. Other factors such as connection eccentricity and joint 

stiffness are also incorporated in this model. The resulting highly nonlinear problem is solved incrementally 

using advanced features implemented in Code_Aster to cope with both geometric and material 

nonlinearities up to advanced post-critical stages. This work focusses on the study of the impact of two 

different geometric imperfections, namely the out-of-straightness and the connection eccentricities, on the 

post-buckling response of steel lattice towers under static load cases. An example of a tower quasi-statically 

loaded until failure is analyzed herein. The numerical results are compared with similar laboratory tests 

performed on a complete 8 m tall downscaled lattice tower specimen. This analysis results emphasize the 

high sensitivity of steel lattice towers to geometric imperfections.   

2 FRAMEWORK AND MODELING PROCEDURE 

The analysis of steel lattice towers is carried out using the open-source software Code_Aster [Code_Aster 

(2017)]. The assumptions used in the modeling of each single element composing the lattice towers are 

summarized below.  

2.1 Angle members 

The modeling of the behavior of angle members is performed using spatial beam elements based on 

Timoshenko beam theory accounting for transverse shear and warping effects. The resulting beam element 

with seven degrees-of-freedom can undergo finite displacements and rotations, while strains are assumed 

to be small. In practice, a large amount of lattice towers fails due to yielding of the thin-walled angle sections. 

Hence, the formulation of the beam element also integrates an elastoplastic material model, based on the 

von Mises yield criterion. The governing equations for the beam element are derived within an Updated-

Lagrangian framework. 
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2.2 Connections 

There is a large amount of bolted connections in steel lattice towers. The increase (or reduction) of the local 

stiffness at the various connection locations as well as the introduction of load eccentricities that is inherent 

to these connections has a major effect on the global behavior of the structures. In this modeling, their 

behavior is represented using discrete elements attached to two superimposed nodes. Each discrete 

element has a total number of 12 uncoupled degrees of freedom (3 translations and 3 rotations per node) 

obeying a linear elastic constitutive law. The stiffness of the connections may thus be controlled by 

modifying the stiffness coefficients of the discrete elements (springs). In this study, multi-bolt connections 

are considered as semi-rigid, whereas one-bolt connections are assumed to be pinned about the bolt axis 

and rigid in the other directions. The behavior of the connection is therefore controlled by the value assigned 

to the rotational stiffness coefficient about the bolt axis. These values are selected based on a study of 

typical connections in various lattice towers [Bouchard (2013)]. In this paper, unless otherwise specified, 

the expressions ‘semi-rigid model’ and ‘flexible model’ will be used to designate one-bolt connections with 

high, and low stiffness coefficients, respectively. The actual behavior of lattice towers is believed to be 

bounded between these two extreme cases.    

It is worth-mentioning that nonlinear effects including bolt slippage and connection yielding are not 

accounted for in the present study for practical reasons. This assumption may significantly affect tower 

flexibility, but it is not believed to greatly influence the towers’ ultimate capacity, as shown in a study by Al-

Bermani and Kitipornchai (1992).  

2.3 Eccentricities 

Steel angle members are generally connected eccentrically. In the case of angle members connected by 

only one leg, a rigid link is used to connect the centroid of the angle section to the connection point assumed 

to be located in the middle of the connected leg. A similar procedure is also adopted in the specific case of 

angle members connected on both legs. However, the connection point in this case coincides with the angle 

member’s heel.  

Once derived, the nonlinear problem is solved incrementally using Newton’s method. At the beginning of 

the incremental static analysis, also referred to as pushover analysis, use is made of classical force control 

method. In the vicinity of limit points, the control strategy is manually switched to the path-following arc-

length method [Crisfield (1981)] to effectively circumvent possible nonlinear behaviors such as snap-

through or snap-back buckling, and thus analyze advanced post-buckling responses.  

3 APPLICATION EXAMPLE 

3.1 Problem statement 

The accuracy of the numerical procedure described above has been assessed in ongoing works by the 

authors by comparing numerical simulations’ results obtained from various lattice towers with experimental 

test results of lattice towers subjected to extreme loading conditions. In the present work, the developed 

modeling procedure will be used to analyze the way in which the choice of the initial geometric imperfection 

may affect the buckling response of steel lattice towers. The impact of the stiffness of bolted connections 

on the structural response will also be briefly investigated.  

The analyzed lattice tower is presented in Figure 1. This structure measuring 8 m in height was tested 

experimentally [Loignon (2015)], and the results of the test are used in this study for validation purposes. It 

represents a small-scale version of a transmission line tower, composed of simple equal-leg angles. The 

geometric characteristics of the equal-leg angles are reported in Table 1. For each angle member listed in 

Table 1, five coupon tests were conducted, using a universal testing machine with a load capacity of 100 

kN in accordance with the specifications of ASTM A370 – 12a standard testing methods [ASTM (2012)], to 

establish average values for the material properties. For the sake of simplicity, a bilinear elastoplastic 

material model is considered. The slope of the plastic curve, denoted H, is determined based on the concept 
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of equal energy dissipation, so that the areas under the curves comprised between the yield point and 

ultimate tensile strain are the same [Foster (2015)]. Accordingly, the Young’s modulus E, Poisson’s ratio ν 

(assumed value), yield strength Fy, and tangent modulus H are given in Table 1. 

         

Figure 1: Self-supporting lattice tower    

Table 1: Geometric and material properties of the angle members constituting the analyzed tower. 

Designation angle size  
(mm) 

E  
(GPa) 

ν H 
(MPa) 

Fy 

(MPa) 

L13x13x3 12.7x12.7x3.18 200 0.3 926 400 
L19x19x3 
L25x25x3 
L32x32x3 

19.05x19.05x3.18 
25.4x25.4x3.18 

31.75x31.75x3.18 

204 
207 
212 

0.3 
0.3 
0.3 

1160 
1240 
823 

396 
390 
346 

 

The loading pattern composed of gravity load of constant value as well as vertical load and transverse load, 

denoted V and T, respectively (in the -z and -x direction, respectively), is applied at the tip of each cross-

arm composing the tower (see Figure 1 for the location of the loading points). Table 2 summarizes the 

intensity of the applied loading, which corresponds to the ultimate loads recorded experimentally.  

Table 2: Ultimate load combination for the analyzed lattice tower. 

Loading 
point 

V  
(kN) 

T  
(kN) 

1 
2 

1.36 
1.36 

3.01 
2.90 

3 1.36 3.08 
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The tower is fixed at its base. The degrees-of-freedom related to warping are restrained at every joint 

composing the tower, thus inducing non-uniform stresses along the beams. 

The mesh of each angle member composing the tower is achieved using a total number of 15 linear 

elements (first-order interpolation), in accordance with a preliminary mesh convergence analysis.  

For the study of the effect of geometric imperfections, let us recall that two types are considered, namely 

eccentricities and initial out-of-straightness defects. In the case of eccentricities, the modeling methodology 

described previously is used, and the effect of the stiffness of the connections is briefly analyzed. However, 

in the case of initial out-of-straightness defects, the methodology is slightly modified so as to neglect the 

member eccentricities (connected member centroids meet at a unique point).  

3.2 Results and analysis 

The result of the experimental test performed on the lattice tower is presented in Figure 2. First, the buckling 

of two diagonal members in the lower part of the tower was observed shortly after the beginning of the 

loading process, but without affecting the global stability of the whole structure (see Figure 2(b)).   

 

 

 

 

 

Figure 2: Experimental set-up and failure mode [Loignon (2015)]. 

The test was then pursued until the onset of a secondary buckling in the upper part of the tower body, as 

shown in Figure 2(c), leading to the global instability of the structure [Loignon (2015)]. 

a) tested tower 

b) primary buckling 

c) secondary buckling 
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As mentioned above, the laboratory test is reproduced numerically considering two different geometric 

imperfections. The use of geometric imperfections is necessary to initiate the buckling of the structure. In 

the case of eccentricities, the modeling approach described previously is used without any additional 

treatment. However, a linearized buckling analysis is performed prior to the pushover test in the case of 

out-of-straightness defects. Figure 3 presents the first three buckling modes (with eigenvalues λ sorted in 

ascending order) obtained for the analyzed structure. Notice that the buckling modes and associated 

eigenvalues depicted in Figure 3 corresponds to the case in which all connections are modeled as 

concentric. These modes are similar to those obtained for the tower considering eccentricities.    

  
 

 

Figure 3: First three buckling modes of the analyzed tower. 

Mode 3 (λ = 1.32) Mode 2 (λ = 0.95) Mode 1 (λ = 0.93) 
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The post-buckling deformed shapes obtained numerically are depicted in Figure 4. On the left-hand side, 

Figure 4(a) shows the failure mechanism of the tower considering connection eccentricities, which turns 

out to be similar to the one observed experimentally (see Figure 2). It is observed that both the semi-rigid 

model and flexible model lead to similar post-buckling configurations, that is to say the rotational stiffness 

of the one-bolt connections here do not alter the buckling mechanism. The right-hand side of Figure 4(b) 

corresponds to the case of the analysis considering the initial out-of-straightness. In this case, the first 

critical mode determined from the linearized buckling analysis (having the lowest buckling load factor λ), 

which is identical to the first buckling occurrence observed experimentally, is employed to pre-deform the 

analyzed tower. The amplitude of the initial imperfection, denoted r, was varied to take the following values: 

1/1000, 1/100, and 1/10. In all cases, the pushover test exhibits an instability localized in the lower part of 

the structure. No secondary buckling was observed, even when considering small amplitude of the initial 

imperfection. Therefore, in order to analyze the effect of pre-deforming the upper part of the tower, mode 3 

with r =1/1000, which is a realistic defect size, was used as an out-of-straightness defect. As in the previous 

case, the result simply shows the amplification of mode 3, and no buckling mode was observed in the lower 

part of the structure. A supplementary analysis combining both connection eccentricities and out-of-

straightness defect (considering mode 3) shows that the response is similar to the response observed 

during the experimental test. The out-of-straightness defect simply decreases the load-bearing capacity of 

the structure without affecting its mechanical behavior.  

 

 

 

 

 

 

 

 

  

Figure 4: Deformed structure obtained numerically. 

The load factor ᶯ, defined as the ratio between the load increment and the applied loading (for instance, a 

load factor of 1 corresponds to the experimental ultimate load level), is plotted in Figure 5 for each of the 

cases studied previously. The sequence Inst does not have any physical meaning in this static analysis. It 

only specifies how the applied load is incremented. Figure 5 shows that the ultimate resistance of the lattice 

tower is influenced by both the imperfection type and the rotational stiffness of one-bolt connections. 

Nevertheless, considering only eccentricities yields to a collapse behavior closer to the one observed during 

a) eccentricities   b) out-of-straightness 
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the experimental test. The comparison also indicates that the carrying capacity of the tower analyzed using 

mode 1 as an initial out-of-straightness defect is much higher than the one corresponding to mode 3. Finally, 

the combination of connection eccentricities and a realistic out-of-straightness defect slightly reduces the 

tower ultimate capacity.   

 

Figure 5: Comparison of various responses of the analyzed lattice tower. 

The maximum values of the load factor corresponding to the simulations presented Figure 5 are reported 

in Table 3, where the experimental ultimate capacity of the tower is bounded by the numerical collapse 

values corresponding to the semi-rigid model and flexible model. 

Table 3: Ultimate carrying capacities of the analyzed lattice tower. 

 exp semi-
rigid 

flexible mode 1 
r=1/1000 

mode 1 
r=1/100 

mode 1 
r=1/10 

mode 3 
r=1/1000 

semi-rigid 
+ mode 3 

flexible + 
mode 3 

ᶯ 1.0 1.07 0.89 1.24 1.23 1.15 0.87 0.97 0.75 

 

4 SUMMARY AND CONCLUSIONS 

In this study, a numerical procedure for the analysis of steel lattice towers subjected to a static loading is 

presented. The associated model is developed using the finite element software Code_Aster, where steel 

angle members are modeled as spatial beam elements encompassing both geometric and material 

nonlinearities. The bolted joints are represented here using discrete elements, so that the behavior of any 

bolted connection is modeled by six stiffness coefficients assigned to the associated discrete element. 

Nonlinear static analyses are performed up to advanced post-critical stages thanks to the use of specific 

modeling strategies. A comparative study is carried out to analyze the influence of eccentricities and initial 

out-of-straightness defects on the buckling response of lattice towers. The main conclusions of this study 

are summarized as follows:  
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 in the present study, considering only connection eccentricities lead to accurate estimation of both 

the ultimate carrying capacity and collapse mechanism of lattice structures.  

 in the present study, initial out-of-straightness defects alone yield to an acceptable estimation of 

the tower’s ultimate capacity, but the predicted failure modes do not match the one observed in the 

physical test. 

 the effect of connection eccentricities predominates over the effect of initial out of straightness on 

the global behaviour when combining the two types of imperfection.  

 the actual ultimate capacity of the studied steel lattice tower is comprised between the semi-rigid 

and flexible models.  

The rotational stiffness of the one-bolt connections was shown to influence the ultimate capacity of lattice 

towers. Understanding its effect requires a more in-depth investigation. Finally, for the sake of simplicity, 

bolt slippage is not considered herein. This effect should be included in the present model for an accurate 

estimation of the tower deflections in future analyses. 
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