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Abstract: Power transmission lines predominantly involve lattice towers, which are typically composed of 
steel angle members connected together by means of bolted joints. An effective design of such structures 
requires the consideration of a range of complex phenomena likely to affect either the carrying capacity or 
the failure mode. In practice, simple numerical models are combined with standard design equations to 
consider these effects. A few advanced numerical models reported in the literature deal with eccentricities, 
stiffness of the connections, and joint slippage. However, the impact of residual stresses on the global 
behavior of lattice towers is not addressed in prior works. In this work, the influence of residual stresses is 
studied numerically using the finite element software Code_Aster. The proposed model employs multi-fibre 
beam elements to model the elastoplastic angle members, and discrete elements to represent the bolted 
connections. Both the connection eccentricity and the rotational stiffness of connections are modeled. The 
associated problem is solved in an incremental way, so as to deal with geometric and material 
nonlinearities, and the results are compared with experimental tests. Considering residual stresses in 
advanced models is an important step for the numerical evaluation of the failure of lattice towers.  

1 INTRODUCTION  

In the field of power transmission lines, the reliability of the electrical network depends on the stability of 
support structures. It is thus important to ensure the durability of the lattice tower structures which are 
predominantly involved in transmission lines. In practice, the capacity of lattice towers is evaluated by 
simple numerical models where standard design equations are applied to consider the complex phenomena 
[Prasad Rao and Kalyanaraman (2001)]. The failure of the lattice towers usually originates from a 
compressive instability, such as buckling which is known to be significantly influenced by various 
parameters including residual stresses, connections’ rigidity, straightness imperfections, etc. [Zhu and al. 
(2013)]. The interaction between the angle members in a steel lattice tower is complex. An advanced 
numerical model is required to consider the complex behavior of the assembly of angle members. Many 
authors in the literature proposed advanced numerical models to represent the complex behavior of lattice 
towers ([Da Silva and al. (2005)], [Prasad Rao and Kalyanaraman (2001)], [Lee and McClure (2007)]). 
However, the imperfections are usually neglected in advanced numerical models.  

Zhu and al. (2013) studied the effect of taking into account the residual stresses for a single angle using a 
finite element model. Their study revealed that residual stresses may affect the behavior of angle members 
by modifying their yielding pattern. In this respect, Ban and al. (2012) studied different distributions available 
in international codes based on experimental data.   
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The few studies available in the literature deal with single angle members but no analysis is reported on a 
lattice structure. In this paper, a numerical model has been developed in order to analyze the effect of 
residual stresses on steel lattice structures. The proposed model investigates the following behaviors: the 
connections’ rigidity, connections’ eccentricity and the residual stresses, and considers both material and 
geometric non-linearities. 

A validation model is developed using the Code_Aster software [EDF (2017)], in which angle members are 
modeled by means of beam elements and joints by discrete elements. The residual stresses are taken into 
account according to design criteria of steel structure in America [Galambos (1998)]. A section of a steel 
lattice structure is analyzed to discuss the above-mentioned effects. The numerical results are compared 
to similar experimental results [Loignon and al. (2016)].  

2 MODELING APPROACH 

The numerical modeling of a lattice tower is done using the finite element program Code_Aster. In this 
section, the type of element chosen and the strategy to consider residual stresses are presented.  

2.1 Type of element  

The element chosen for the numerical model is the multi-fibre beam element POU_D_TGM. This type of 
element combines a beam element based on a model of Timoshenko with warping (theory of Vlassov) [EDF 
(2017)] and a constant section divided into several fibers for the integration of axial strain. The multi-fibre 
element supports both material (elastoplasticity) and geometric (large displacements/rotations) non-
linearities. The Timoshenko beam element is modeled at the center of gravity of the fiber section in the 
local reference (see Figure 1). 

The beam element is composed of two nodes. Each node has 7 degrees of freedom (DoF): three 
translations, three rotations, and one DoF associated with warping.  

 

2.2 Consideration of residual stresses in the model 

To consider the residual stresses in the numerical model, the simplified distribution of an angle member 
presented in Figure 2 was used. This distribution of residual stresses is standard for hot-rolled equal leg 
steel angle members. Ban and al. (2012) showed that for different countries, standard for the residual 
stresses factor β (see Figure 2) was not the same. According to an American standard [AISC (2016)], the 
factor β is considered constant and takes the value of 0.3. In Figure 2, the plus and the minus symbols 
mean that the residual stresses are respectively either tensile or compressive.  

The fiber meshing of the section was achieved as follow. The cross-section is divided to get 4 fibers along 
the thickness of each legs. Then, the number of divisions along the length is chosen to obtain almost square 
fibers. Finally, the fibers are gathered into groups of same effective yield strength (Fy) (see Figure 2). The 
modeling strategy to consider the residual stresses is to assign a variable yield strength following the 
simplified distribution of residual stresses. Since the objective is to better predict the compression 
resistance, the yield stress of each fiber is modified by a negative amount for compressive residual stress 
and by a positive amount for tensile residual stress according to the distribution presented in Figure 2. 

Figure 1: POU_D_TGM element 
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Code_Aster has a limit of ten different materials for the whole section of fiber. The group of fibers having 
the same yield strength (numbered parts in Figure 2) are regrouped to optimize the distribution. The same 
distribution was followed by Zhu and al. (2013). This distribution should be as close as possible to the 
distribution presented in Figure 2. The geometric average yield strength correction of the curve presented 
in Figure 3 was assigned to each numbered group of fibers. The geometric mean of the affected yield 
strengths is verified to have the same value as the nominal yield strength of the section (see equation 1).  

 [1] 𝑭𝒚𝒏𝒐𝒎𝒊𝒏𝒂𝒍 =  
∑ 𝐹𝑦𝑖∗𝐿𝑖 10

𝑖=1

∑ 𝐿𝑖
10
𝑖=1

 

 where L represents the length of each group along the mid-surface plane. 

3 VALIDATION OF NON-LINEAR NUMERICAL MODEL WITH RESIDUAL STRESSES 

This section presents the validation of the approach on simplified single angle members in compression. 
The properties of angle members (materials, dimensions of tested sections and characteristics of the mesh) 
and the results of the validation are presented subsequently. 

3.1 Properties of angle members 

The material properties used in this analysis are presented in Table 1, where E is the Young’s modulus, Fy 
is the nominal yield strength for the section, H is the strain hardening modulus and ν is the Poisson’s ratio. 
In this study, the strain hardening modulus (linear) is taken as Young’s modulus E divided by 200. This 
value was selected based on coupon tests from the lattice tower section which will be used in section 4.1. 

Table 1: Material properties of the studied angle members 
 

E  
(MPa) 

Fy  
(MPa) 

H 
(MPa) ν 

200 000 350 1000 0.3 

 

Three types of angle members were studied: L76x76x7.9, L76x76x13 and L152x152x25. They were 
selected to analyze the effect of the residual stresses on angles of various width-to-thickness ratios (b/t). 
Each member was tested at three different slenderness ratios (kL/r): small, intermediate and large, such as 
to analyze local and global failures. The characteristics of each case tested are presented in Table 2, where 
r, b and t are the minimum radius of gyration of the angle, the length of each leg and the thickness, 
respectively.  

  

Figure 2: Simplified distribution of  
residual stresses 

  

Figure 3: Simplified distribution of discrete yield  
strength correction 
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Two meshes were used in the numerical model: the beam element and the cross-section of the angle. The 
members were divided into 15 beam elements.  

3.2 Methodology of validation 

The numerical model used for validation is a pin-pin beam with an initial deformation of L/1000 [Picard and 
Beaulieu (1991)] (see Figure 4). A compression load is applied on the top of the beam concentrically and a 
pushover is performed. The results of the previous analysis were compared to the S16 standard [CSA 
(2014)]. Each angle has been tested with three different lengths. Two scenarios of initial out-of-straightness 
imperfection have been considered during this study; positive bending (the deformation moves the center 
of gravity away from the angle’s heel) and negative bending (the deformation brings the center of gravity 
closer to the angle’s heel). The comparison of the two scenarios showed that the compression capacity is 
affected by the direction of the deformation. Those results are not presented in this study. Preliminary tests 
showed that the capacity for an initial negative bending imperfection is larger than for a positive bending. 
According to Zhu and al. (2013), the positive bending model is more likely to have instabilities.  

The problem is solved incrementally using the Newton algorithm. The pushover analysis is achieved by 
piloting the displacement step by step while keeping the same ratio of the compressive force. Displacement 
for the pushover analysis are applied to the model through the DDL_IMPO option available in Code_Aster. 
Similar approach is used throughout this paper. 

3.3 Result of validation 

The Figure 5 presents the positive bending results only for three slenderness ratios. RS and NRS refer to 
the curves with and without residual stresses, respectively. The solid line is the capacity as determined by 
S16’s formulae. It is possible to compare the three cases of different angles because x and y axis are 
normalised; the axial force of the y axis is normalised by the result of the standard and the displacement of 
the x axis is normalised by the length of each angle members. In all cases, the results of the curves without 
residual stresses (NRS) overestimates the capacity of the angle member more than the result of the curves 
with residual stresses (RS).   

Table 2: Geometric properties of angle members 

  
r b t Slenderness ratios 

mm  mm  mm  small intermediate large 

L76_8: L76x76x7.9 15.0 76.2 7.9 

40 101 152 L76_13: L76x76x13 14.8 76.2 12.7 

L152_25: L152x152x25 29.6 152.0 25.4 
 

kx = 1.0 

ky = 1.0  

kz = 0.5  

L/1000  

Figure 4: Validation model: pin-pin 
beam under compression 
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The analysis of different slenderness ratios shows that considering the residual stresses leads to a better 
prediction (see Figure 5). It is also observed that the effect of residual stress varies with the slenderness 
ratio. For large slenderness ratio, the buckling is mostly elastic. Therefore, the effect of residual stresses is 
negligible. For intermediate and small slenderness ratio, the buckling is elastoplastic. Therefore, the angle 
is affected by residual stresses. It is observed that the effect is larger for the intermediate slenderness ratio 
than for the small slenderness ratio. It is coherent with the fact that the failure mode for small slenderness 
ratios tends to the complete yielding of the section, for which the residual stress has less effect. It is also 
observed that for small slenderness ratio the predictions for the L76x76x7.9 differs from the others. It is 
assumed to be due to the different geometric proportions of this section compared to the other two. Similar 
conclusions were noted in the article of Zhu and al. (2013).  

The results of this validation showed that the modeling of residual stresses performed as expected and that 
the modifications of yielding properties does not affect the behaviour out of the plastic and elastoplastic 
buckling range. The conclusive results allowed to elaborate a strategy that will be used in the following 
section to analyze the effect of residual stresses on a lattice structure.   

 
 

1) 2) 

  
3) 

Figure 5: Force-displacement curves for three slenderness 1) small slenderness ratio kL/r = 40, 2) intermediate 
slenderness ratio kL/r = 101 and 3) large slenderness ratio kL/r = 152 
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4 ANALYSIS OF THE EFFECT OF RESIDUAL STRESSES ON THE BEHAVIOR OF A LATTICE 
STRUCTURE  

4.1 Methodology and properties  

The analyzed structure, presented in Figure 6, is a substructure of a lattice tower tested at Université de 
Sherbrooke [Loignon and al. (2016)]. The structure is derived from a section of a real lattice tower. The 
structure is constituted of 56 steel angles: 28 angles - L12.7x12.7x3.18, 20 angles - L19.1x19.1x3.18 and 
8 angles - L25.4x25.4x3.18. The loads are applied by a transfer beam. 

Figure 6: Experimental test sand-up for hybrid tests [Loignon and al. (2016)] 

A numerical model of the substructure (Figure 7) has been developed to compare the experimental results 
with the numerical results. The support condition of the experimental test has been reproduced in the 
numerical model (DoFs fixed at the base) and the load pattern which led to the failure is applied on the 
center node on the top of the numerical structure; Fx = -8770 N, My = -7570 Nm and Fz = -4244 N, where 
Fx is the force along the x axis, My is the bending moment around the y axis and Fz is the force along the 
z axis.  

 

  

Figure 7: Numerical model of the tested part of a lattice tower 
substructure 
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The assumptions taken in the numerical model are based on the work of Bouchard (2013): 

 Joint eccentricities; 

In the model, the eccentricities are taken into account by a rigid link connecting the center of gravity 
to the position of the bolt connection. The attachment point for each connection is assumed to be 
located in the middle of the connected leg for all connections, as shown in Figure 8. Unlike the case 
of single angle members where straightness imperfections are required to initiate out-of-plane 
buckling, eccentricities alone are sufficient to model the buckling failure in the case of the lattice 
tower section.  

 Stiffness of the connections; 

The connections are modeled by a spring with a certain stiffness depending on the configuration of 
the connection. Those with one bolt are considered flexible around the bolt axis and rigid around the 
others axis [Bouchard (2013)]. For the section of lattice tower studied, all the secondary braces have 
flexible connections around the axis of the bolt and all the principal members have rigid connections. 
However, the stiffness of the secondary braces’ connections depends on various parameters. For 
this reason, two values of rotational stiffness (KRY) of the secondary braces’ connections are 
analyzed in this work. The models 1) and 2) of Figure 9 have tested the effect of the rotational 
stiffness; the models have respectively KRY = 1.0 N.m/rad (flexible) and KRY = 1000.0 N.m/rad 
(semi-rigid).  

 Residual stresses; 

All the members in compression are identified and the yield strength pattern is modified according to 
the distribution described in the section 2.2. Residual stresses are not applied to members in tension 
because the failure mode is less affected by the residual stresses, and because the sign of the 
modifications applied to the yield stresses in the proposed method would need to be reversed to be 
adequate for tension members. 

 

The properties of the three angles are given in Table 3. For each angle composing the studied tower section, 
the material properties obtained by standard tensile testing are assigned. The Young’s modulus, E and the 
Poisson’s ratio, v of all angle members are defined in Table 1. The strain hardening modulus H was 
obtained such that the energy (area under the stress-strain curve for each specimens) below the ultimate 
strength (Fu) is equivalent to the energy of the bilinear representation using the proposed slope [Desrochers 
(2014)].  

As for the validation models, each beam member was divided in 15 elements. The global section of fibers 
of the three angle members are defined as in section 3.1.  
 

Table 3: Properties of the section of fiber  

 

 

Fy  
(MPa) 

H  
(MPa) 

 L12.7x12.7x3.18 400.00 1243.4 

 L19.1x19.1x3.18 396.05 1155.4 
 L25.4x25.4x3.18 390.27 925.9 

 
 
 
 

Figure 8: Link between the gravity center and the 
attachment point [Bouchard (2013)] 
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4.2  Results of the analysis of the lattice tower substructure 

The effects of the rigidity of connections and residual stresses effects on the tower section are investigated 
in this section. Figure 9 presents the results of the shear force, Fx, as a function of the displacement of the 
tower section considering two secondary braces’ connection stiffnesses and the presence or absence of 
residual stresses. The nomenclature to differentiate the cases with (RS) and without (NRS) residual 
stresses is the same.  Figures 10 and 11 present the experimental failure modes and the numerical failure 
modes, respectively. Failure modes (see Figure 11) are obtained with numerical models by analysing the 
behavior of models without residual stresses and KRY = 1.0 N.m/rad (1), with residual stresses and KRY = 
1.0 N.m/rad (2) and, with residual stresses and KRY = 1000.0 N.m/rad (3). The conventional mode of failure 
for lattice tower structure is buckling. The experimental failure showed a buckling on a L19.1x19.1x3.18 
member, which has an intermediate slenderness ratio, similarly to all main members of the lattice structure. 

4.2.1 Rigidity effect 

The capacity of the model with flexible connections KRY = 1.0 N.m/rad (Figure 9) is about 10 % lower than 
the capacity of the model with semi-rigid connections KRY = 1000.0 N.m/rad. The latter leads to a better 
prediction of the experimental result. The conclusion is that the rigidity around the bolt (KRY) has an impact 
on the prediction of the capacities showed in the Figure 9: the buckling capacity increases with the rigidity 
of the connections of the secondary braces. Comparing the models with flexible and semi-rigid connections 
on Figure 11 shows that the stiffness of the secondary braces’ connections does not have a significant 
effect on the failure mode.  

4.2.2 Residual stresses effect  

 As shown in Figure 9, the two models with flexible and semi-rigid connections show the same trend when 
they consider the residual stresses. The capacity estimated by the model decreases by 5 % when the 
residual stresses are considered. Figure 11 also shows that the consideration of residual stresses have no 
effect on the failure mode. In this case, the principal members, which all have a similar slenderness ratio, 
seem to be influenced by residual stresses in a similar manner. The secondary braces, which have in 
general a larger slenderness ratio, are less affected by residual stresses. They are therefore unlikely to 
become critical when considering residual stresses.  

  
1) 2) 

Figure 9: Shear force depending of the displacement; 1) stiffness KRY = 1.0  N.m/rad  and 2) stiffness KRY = 
1000.0  N.m/rad 
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8.18 
8.98 
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Figure 10: Experimental failure mode [Loignon and al. (2016)] 

 

 
  

 
 
 
 
 
 
 
 
 
 
 

 

1) 2) 3)  

Figure 11: Numerical failure mode 1) without residual stresses and KRY = 1.0 N.m/rad, 2) with 
residual stresses and KRY = 1.0 N.m/rad and 3) with residual stresses and KRY = 1000.0 N.m/rad 

5 CONCLUSION 

A numerical model to investigate the influence of residual stresses and connections’ rigidity on a lattice 
structure was carried out in this study. Based on this work, the following conclusions were made: 

 A numerical strategy to include the residual stress was validated on single angle members and was 
shown to improve the failure prediction. The strategy was then implemented on a lattice tower 
section. 

 The ultimate capacity of the tower section increases by up to 10 % by stiffening the connections 
around the bolt axis (KRY).  
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Scale factor = 10 
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 Consideration of the residual stresses reduced the ultimate capacity of the tower section by about 
5 %.   

 The failure mode with and without residual stresses and considering different rigidities around the 
bolt axis (KRY) is not influenced.  

For future works, the method developed in this paper could be implemented for the study of different lattice 
tower sections including sections with larger angle members to better evaluate the effect of residual 
stresses on the failure of transmission line structures. Further research is also needed to investigate in-
depth the effect of the stiffness of the assembly on the behavior of lattice structures.  
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