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ABSTRACT 

The aquaculture provides millions of tonnes of food for human consumption and with the 

expected increase in the population it is important that aquaculture production continues to grow in 

a sustainable way. Gilthead seabream (Sparus aurata) is one of the most produced fish species in 

the Mediterranean, mainly in off-shore cages, and since it is very susceptible to low temperature, 

reducing feed intake and growth, it is necessary to improve formulations for the Winter, focusing 

on minimising the dietary protein content and the fishmeal inclusion level. Furthermore, during 

production gilthead seabream can be exposed to stressful events, as high densities during sorting 

procedures, that can affect negatively the fish. Therefore, the aim of this thesis was to optimize 

feed formulations that benefits gilthead seabream at low temperature (14°-15°C) in the 

Mediterranean Sea and assess the potential of nutritional strategies to help the fish cope with 

stressful events. The fish were fed with three experimental diets, the Control diet with high 

protein:energy ratio (48P:19L), the Low diet with low protein:energy ratio (45P:19L) and the LowMix 

diet with low protein:energy ratio (44P:19L) but supplemented with a mix of additives, for 84 days. 

At day 84, fish were exposed to a simulated sorting procedure, and blood samples were collected 

at different times (T=0 min, T=30 min, T=90 min). At the end of the experiment, the fish fed the 

LowMix diet had similar final weight and growth performance than fish fed the Control diet. The 

Low diet fish had a lower weight when compared with the Control fish. Furthermore, the 

viscerosomatic index was lower in the fish fed the LowMix diet compared with the Control fish. In 

the stress experiment, the stress indicators were not significantly different among diets. These 

results indicate that the Winter formulation for gilthead seabream juveniles may present a low 

protein content and a low fishmeal inclusion, provided that the adequate dietary supplements are 

included, without negative consequences in fish welfare and growth performance. 

 

 

 

 

 

 

Keywords: gilthead seabream, low temperature, nutrition, protein:energy ratio, stress response 
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RESUMO 

A dourada (Sparus aurata) é uma das espécies mais produzidas em aquacultura no 

Mediterrâneo. Esta espécie é muito suscetível a baixas temperaturas no inverno, que diminuem o 

consumo de alimento e consequentemente o seu crescimento, o que pode provocar efeitos 

negativos na produção e comércio desta espécie. Além disso, a dourada pode ser afetada por 

situações de stress, como a exposição a grandes densidades de cultivo, o que pode causar 

problemas severos durante o ciclo de produção. A produção em aquacultura tem aumentado, mas 

com o aumento constante da população humana é necessário que a produção continue a 

aumentar de forma sustentável. A otimização da formulação das dietas é fundamental para 

melhorar os protocolos de produção. Desta forma, o objetivo desta tese foi otimizar as formulações 

de dietas para que estas possam beneficiar a dourada a baixas temperaturas (14-15°C) e avaliar 

o potencial da modulação nutricional como uma estratégia para ajudar a dourada a lidar com 

eventos adversos. Para tal, as douradas foram alimentadas com três dietas diferentes, a dieta 

Control com uma razão alta de proteína:energia (48P:19L), a dieta Low com uma razão baixa de 

proteína:energia (45P:19L) e a dieta LowMix com uma razão baixa de proteína:energia (44P:19L) 

mas suplementada com uma mistura de aditivos, durante 84 dias. No dia 84 as douradas foram 

expostas a um evento de stress (simulação de um procedimento de triagem) e foram recolhidas 

amostras de sangue a tempos diferentes (T=0 min, T=30 min e T=90 min). No final da experiência, 

os peixes da dieta LowMix apresentaram um peso final assim como outros indicadores de 

crescimento similares aos peixes da dieta Control. Os peixes alimentados com a dieta Low 

apresentaram um peso mais baixo quando comparado com o peso dos peixes da dieta Control. 

Além disso, os peixes da dieta LowMix apresentavam um índice viscero-somático mais baixo que 

os do Control. Em relação ao stress, a alimentação com as diferentes dietas não resultou em 

diferenças significativas nos indicadores de stress em peixes expostos a elevadas densidades, 

apenas se verificaram diferenças entre tempos de amostragem. Os resultados obtidos indicam 

que é possível alimentar as douradas, durante o inverno, com dietas com reduzido teor proteico 

assim como com um reduzido nível de inclusão de farinha de peixe, sem que se verifiquem 

consequências negativas no crescimento e no bem-estar dos peixes. 

 

 

Palavras-chave: dourada, baixa temperatura, nutrição, razão proteína:energia, resposta ao stress 
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ABBREVIATIONS 

 

AA – amino acids 

ANOVA – analysis of variance  

DGI – daily growth index 

dL – decilitre  

DM – dry matter 

DW – dry weight 

FAO – Food and Agriculture Organization 

FBW – final body weight 

FCR – feed conversion ratio 

G - gauge 

g – grams 

h – hour 

HCl – hydrochloric acid  

HSI – hepatosomatic index  

IBW – initial body weight  

K – condition factor 

Kg – kilograms 

L – litre 

m – meter 

m3 – cubic meter 

mg - milligram 

 

min – minute 

ml - millilitre 

mm – millimetre  

N – nitrogen 

n – number 

ng – nanograms 

nm – nanometre  

ppm – parts per million 

psu – practical salinity unit 

R – retention 

SD – standard deviation 

T – time 

TL – total length  

USA – United States of America 

µl – microliter  

µm – micrometre 

VFI – voluntary feed intake 

VSI – viscerosomatic index 

WF – Winter feed 

WG – weight gain 

°C – degrees Celsius  
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1. INTRODUCTION 

1.1. Status of the aquaculture production 

Aquaculture is an important food supplier in the world, mainly in developing countries, 

producing about 80.0 million tonnes of seafood (Fig. 1), most for human consumption (FAO, 2018).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Aquaculture production and world capture fisheries. Source: FAO (2018). 

 

Aquaculture production has been increasing in all continents, and in 37 countries (e.g. 

China and India) more seafood is coming from aquaculture than harvested from the sea. Globally, 

in 2014 it was the first time that most of the seafood was provided from aquaculture (Fig. 2), in 

terms of food supply (FAO, 2016; FAO, 2018). However, by 2030 with the increasing population 

more 40 million metric tons, approximately, of aquatic products will be necessary to maintain the 

actual seafood consumption per capita (Anedda et al., 2013).  

Figure 2. Relative contribution of aquaculture and capture fisheries for human consumption.  
Source: FAO (2018) 

 

The principal species of seafood produced in aquaculture are finfishes (54.1 million tonnes, 

according to FAO, 2018) but molluscs, crustaceans and other aquatic animals (e.g. frogs, sea 
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cucumbers and sea urchins) are also produced (FAO, 2018). Furthermore, aquatic plants 

production increased in the decade of 2005-2016, from 13 503 to 30 139 thousand tonnes (FAO, 

2018). 

There are distinct types of aquaculture production, the inland aquaculture where freshwater 

is mainly used, and mariculture that includes sea, intertidal production, and productions operated 

in land-based facilities (FAO, 2014). The most common type is the inland aquaculture, contributing 

about 65% for the increase of fish production in the 2006-2016 decade (FAO, 2018). However, 

some species are cultivated in marine and coastal areas, like molluscs and crustaceans, especially 

in developed countries (FAO, 2016).  

To increase the aquaculture production in the future, the open ocean must be used due to 

the availability of space (Edwards, 2015). However, the principal species produced in mariculture 

(seaweeds and bivalve molluscs; FAO, 2016) are not major sources of food supply, so it is 

important to produce other species, mainly of finfish (Edwards, 2015).  

In aquaculture, feed is the key factor for growth, however almost half of the production, by 

volume, in 2016 was accomplished without feeding, mainly in developing countries, in cultures of 

bighead carp, silver carp and filter-feeding animals such as bivalve molluscs (FAO, 2018). In 

developing countries, this type of non-feed production can contribute to food security and nutrition, 

through the diversification of species with less cost production, and for minimising environmental 

impacts due to less production wastes (FAO, 2016). However, in some countries feed is not used 

due to the high cost or lack of knowledge, so it is important to improve feed formulations, 

management practices and training of farmers to reduce costs and increase profitability (Shipton & 

Hasan, 2013). 

 

1.2. Gilthead seabream production 

One of the most produced species in aquaculture in the Mediterranean Sea and southern 

European countries is the gilthead seabream (Sparus aurata, Linnaeus 1758). Gilthead seabream 

belongs to the infraclass Teleostei, Sparidae family and is typically found in the Mediterranean Sea 

(Ibarz et al., 2003). Gilthead seabream has an oval silvery grey body, a black blotch at the beginning 

of the lateral line and a golden band between the eyes (Colloca & Cerasi, 2005; Fig. 3). This 

carnivorous species is found in coastal environments in depths of about 30 m, or even 150 m in 

case of the adults, and can also be found in brackish waters, due to their euryhaline capacities 

(Basurco et al., 2011). Furthermore, seabream are protandrous hermaphrodite, so in the first two 

years (20-30 cm), normally, are males and after females (33-40 cm; Basurco et al., 2011). 
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Figure 3. Gilthead seabream (Sparus aurata). Source: Colloca & Cerasi (2005). 

 

Gilthead seabream started to be cultivated, especially in Italy and Egypt, in coastal lagoons 

and brackish/ saltwater ponds in extensive systems due to high survival rate, feeding habits in the 

low food chain and market price (Colloca & Cerasi, 2005). However, in the 80s the artificial breeding 

protocols were developed for the species, which allowed the beginning of cultivation in intensive 

conditions, mainly using cages and tanks (Colloca & Cerasi, 2005). In the Mediterranean, gilthead 

seabream is mainly produced in cages (Mozes et al., 2011) which can be subject to adverse 

environmental factors, such as storms and hydrodynamism, therefore the cages are normally 

circular to withstand currents and waves, and flexibles to minimize the stress (García García et al., 

2016; Baez Paleo, 2009). 

The production of gilthead seabream has been increasing in the last two decades, reaching 

166 794 tonnes in 2015 (Fig. 4), with Turkey as major producer (51 844 tonnes) followed by Greece, 

Spain and Italy (estimated 46 815, 12 958 and 4 200 tonnes, respectively), according to FAO 

(2017). 

  

 

Figure 4. Global aquaculture production of gilthead seabream (Sparus aurata) from 1970 to 2015. Source: FAO 
(2017) 
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The gilthead seabream is produced in hatcheries from a fish broodstock with different ages 

that are stocked in spawning tanks (Fig. 5), where the sex ratio is important due to the occurrence 

of sex reversal (Colloca & Cerasi, 2005). The females are batch spawners that during four months 

can lay 20 000 to 80 000 eggs daily, in the wild (Colloca & Cerasi, 2005), but in the hatcheries with 

the manipulation of the natural conditions, like photoperiod and temperature, the spawning period 

can be increased, and a female can lay about 1 million eggs with a fertilization rate of 90-95% (Sola 

et al. 2007). The quality of the larvae/eggs are dependent of a broodstock, a good nutrition and a 

calm environment (Sola et al., 2007). 

The larvae are, normally, reared in controlled conditions in cylinder-conical tanks with 3-6 

m of diameter during the first month (Basurco et al., 2011). After 3 or 4 days post hatching larvae 

start to feed on live food (rotifers followed by Artemia) and the green water technique is used 

(Basurco et al., 2011; Sola et al., 2007). Inert feed is usually introduced at later stages of 

development (after 1 or 2 months; Sola et al., 2007). The juveniles are mainly reared in intensive 

systems, where densities are high and only formulated feed is used (Colloca & Cerasi, 2005). In 

this system, the fish reach the commercial size (350-400g), under excellent conditions, in about 12 

to 16 months (Colloca & Cerasi, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Production cycle of gilthead seabream (Sparus aurata) in intensive systems. 
                        Source: Colloca & Cerasi, (2005) 
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1.3. Dietary protein:energy ratios and their effects 

 The major nutrients required by fish are proteins, lipids and carbohydrates, although growth 

is essentially protein deposition (Bowyer et al., 2013a; Wilson, 2002). Proteins are large organic, 

nitrogen-containing compounds comprised by amino acids (Jobling, 2001) that are essential for fish 

growth, tissue maintenance and synthesis of hormones and enzymes, and can be used as energy 

sources (Oliva-Teles et al., 2011; Cowey, 1995). Fish synthesize protein from amino acids, and the 

amino acids that cannot be synthesized by the organism are considered indispensable and must 

be provided by the diet, while the ones that can be synthesized by the organism are considered 

dispensable. The protein synthesis can be limited by dietary indispensable amino acid deficiencies, 

which can cause a reduction in weight gain (Gatlin, 2010). The fish protein requirement is correlated 

with the growth rate of the fish (Tacon & Cowey, 1985), since amino acid requirements decrease 

with growth (Oliva-Teles et al., 2011), and low temperatures can decrease the protein requirement 

in some species (Wilson, 2002). 

Carbohydrates are organic compounds with carbon, oxygen and hydrogen that are sources 

of energy and carbon. Fish do not have a dietary requirement for carbohydrates since they can 

synthetize glucose from non-carbohydrates sources, as amino acids, lactate and pyruvate and the 

ability of fish to use dietary carbohydrates as an energy source is generally lower than in terrestrial 

animals (Kamalam et al., 2017; NRC, 2011). Lipids are water-insoluble organic compounds and a 

source of fatty acids (Jobling, 2001) and along with carbohydrates are used as non-protein energy 

sources and may be included in diets towards attaining a protein sparing effect, decreasing the use 

of protein for energy purposes and increasing its availability for growth (Xu et al., 2015; Cho & 

Kaushik, 1990). However, these non-protein sources when in excess increase the deposition of 

body fat and decrease the feed intake (Lovell, 1989). The energy requirements of the fish depend 

on the species, size, feeding preferences and environmental conditions (Bowyer et al., 2013a). 

Nutritional balanced diets that provide the amounts of protein and energy required by the 

fish are important, due to the high economic costs of feeding and due to the environmental impacts, 

since feed waste is released to the water (Lupatsch et al., 2003). In gilthead seabream production 

it is important to define the optimum ratio between dietary protein and energy to achieve the best 

growth performance (García-Meilán et al., 2013), since if the non-protein energy sources do not 

meet the energy requirement, the protein will be used for energy instead of growth (Oliva-Teles et 

al., 2011). 

For seabream juveniles the optimum protein level was estimated as 45-46% (Santinha et 

al., 1996; Vergara et al., 1996) and the optimal value of dietary lipid as 15% using fish oil (Vergara 
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et al., 1996). However, in Lupatsch et al. (2001) the growth and protein gain were optimal in diets 

with 48% of protein and 22.5% of lipids, while in García-Meilán et al. (2013) the diets with 44% and 

47% of protein and 21% lipids showed good growth. 

 

1.4. Diet formulations for different seasons 

The water temperature influences the welfare of the fish, affecting their metabolism, 

ingestion and growth rate (Jobling, 1994), so it is important to use diet formulations with different 

compositions and energy levels, to help the fish cope with the changes in water temperature during 

the year. 

In the Winter, the low temperature can have severe negative consequences in gilthead 

seabream performance (see section 1.5), therefore it is necessary to formulate a diet capable to 

enhance growth and mitigate the consequences of cold exposure. Gilthead seabream, as 

temperate species, has the capacity to utilize high levels of dietary lipids, however with low 

temperatures this capacity can be lower because high dietary lipids (30%) can increase lipid 

deposition in visceral cavity (Bowyer et al., 2013a).  

Silva et al. (2014) and Schrama et al. (2017) showed that diets (“Winter Feed”) with high 

levels of inclusion of marine-derived ingredients (40.8% fishmeal and 17.5% krill ingredients), 

taurine, soy lecithin, marine phospholipids, antioxidants, vitamins and phagostimulants may 

enhance the fish condition in cold periods, contrary to diets with low levels of fishmeal and high 

levels of plant-protein sources (15% and 63.9%, respectively). However, fishmeal is mainly 

obtained from mass catches of pelagic fish, as horse and jack mackerel, anchovy and sardine 

(Yoshitomi et al., 2006), and since the fish stocks have been overexploited and fishmeal has a high 

cost, feed formulations with alternative ingredients have been developed, such as proteins from 

vegetable sources, like soybean, peas, sunflower, lupin seeds (Ghisaura et al., 2014; Carter & 

Hauler, 2000), soy protein concentrate (Bowyer et al., 2013b), wheat gluten (Messina et al., 2013) 

and corn gluten (Men et al., 2014). Terrestrial animal proteins, such as blood meal, feather meal 

and by-products of poultry and porcine, can be used together with plant-protein sources, to provide 

the nutrients required by the fish that are not present in vegetable meals (Ghisaura et al., 2014).  

During the Summer, the water temperature can be very high and in the last years, due to 

the global warming, temperature has reached 26-27°C or more in the Mediterranean Sea (Mongile 

et al., 2014). An increase in temperature, even slightly within thermal tolerance, can enhance the 

growth and feed efficiency (Lupatsch et al., 2003). However, in the upper limits of thermal tolerance 

a suppress of appetite occurs, possibly due to a limitation in the capacity of respiratory and 
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circulatory systems to deliver oxygen to tissues when the demand is high, and the metabolism 

increases causing a decline in growth (Jobling, 1997). It is important to have a diet that supports 

the higher energy requirements during high temperature periods, therefore, according to Mongile 

et al., (2014) a diet with 46% of dietary protein and 18% of lipids is adequate for gilthead seabream 

growth during Summer. 

 

1.5. Effects of low temperature in gilthead seabream production 

Gilthead seabream is a species very sensitive to cold water, mainly with temperatures 

below 12-13°C (Ibarz et al, 2010). In the wild, gilthead seabream lives in waters with temperatures 

ranging from 11°C (Winter) to 26°C (Summer) without apparent problems due to temperature 

changes, since when the temperature declines the fish migrate to warm waters (Ibarz et al., 2010; 

Davis, 1988).  

Therefore, when gilthead seabream is cultured intensively in aquaculture they can be 

exposed to low temperatures and the impossibility to swim to warm waters can provoke several 

problems or even death if the temperatures reach the low lethal value (5°C; Barnabé, 1990) for this 

species (Ibarz et al., 2010).  

In the Winter, with temperature below 13°C, gilthead seabream reduces swimming activity 

(Ibarz et al., 2003), feed intake (Tort et al., 1998), metabolism (Ibarz et al., 2010), and growth (Tort 

et al., 1998). When the exposition to low temperature occur for a long period, the fish can develop 

a pathological condition named “Winter syndrome”, which reduces the fish ability to resist to 

opportunistic parasites (Tort et al., 1998; Gallardo et al., 2003) and provokes histopathological and 

physiological changes, like fatty liver and low plasma glucose, respectively (Gallardo et al., 2003). 

The time of fasting, because the fish stop eating, can be long at low temperatures what 

causes losses in body weight and result in economic losses (Ibarz et al., 2010). Therefore, to 

enhance the seabream production it is important to develop methods that improve feed intake at 

low temperature (Ibarz et al., 2010). 

 

1.6. Diet supplementation  

Fish appetite may decrease due to changes in water temperature (Kasumyan & Doving, 

2003), salinity (Stradmeyer, 1994) and oxygen (Remen et al., 2016). Feed additives may overcome 

these challenges in production, since they are products that may be incorporated in diet 

formulations to enhance weight gain, resistance to diseases (Vallejos-Vidal et al., 2016) and to 

stimulate feeding (Chatzifotis et al., 2009). Furthermore, additives are used in seabream diets when 
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the fishmeal and fish oil are replaced by proteins and oils from vegetable sources, to provide a 

balanced diet to the fish (Lunger et al., 2007). 

The Antarctic krill (Euphausia superba) is a zooplankton crustacean (Xie et al., 2018), 

found close to the continental shelf of the Antarctic ocean (Yoshitomi et al., 2006), that is considered 

the largest animal protein resource of the planet (Wang et al., 2011). Krill contains 77.9-83.1% 

moisture, 11.9-15.4% protein and 0.4-3.6% fat and most krill products are frozen krill for 

aquaculture and sport fishing proposes (Grantham,1977; Yoshitomi et al., 2006). In aquaculture, 

krill meal is often used has an additive in feeds to enhance attractability and palatability of feed 

pellets, enabling increased growth in fish fed diets with low fishmeal content (Suresh et al., 2011). 

Lecithin is “a complex mixture of glycerophospholipids obtained from animal, vegetable or 

microbial sources, containing varying amounts of substances such as triglycerides, fatty acids, 

glycolipids, sterols, and sphingophospholipids”, according to The International Lecithin and 

Phospholipid Society, and is mainly derived from soybean for commercial purposes (Szuhaj, 2003). 

Soy lecithin can be used as a source of phospholipids in feed formulations, since is composed, 

mainly, by phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol (Szuhaj, 2003) 

and can be used as supplement in diets, providing nutrients, as phosphorus, choline and fatty acids 

(Gibbs et al., 2015) and facilitating fat emulsification during the fish digestion (Schrama et al., 2017). 

Taurine (2-aminoethane sulfonic acid) is a sulphur-containing amino acid (Hano et al., 

2017) and in general it is not considered an essential nutrient, but in some species its dietary 

inclusion is recommended, due to is role in physiological functions, such as feeding stimulation, 

retina development and vision, osmotic regulation, antioxidation (El-Sayed, 2014), lipid digestion 

(Richard et al., 2017), and growth promotion (Matsunari et al., 2008). Some species of fish can 

biosynthesize taurine, but other species, mainly marine, are unable to biosynthesize it or at least 

not in enough levels, due to the lack/low levels of the enzymes required for its synthesis (Hano et 

al., 2017). In the case of gilthead seabream, Chatzifotis et al. (2009) observed that taurine act as 

a feed stimulant when supplemented in diet formulations.  

There are other types of amino acids that stimulate the feed intake in this species, as 

alanine, arginine, betaine, glycine (Kolkovski et al., 1997) and methionine (Pérez-Jiménez et al., 

2013).  

Some vitamins, such as vitamin C, vitamin E, choline and inositol, can be used as 

supplements in diets to enhance the immune status and growth of the fish when exposed to low 

temperatures (Ibarz et al., 2010; Tort et al., 2004). Furthermore, to enhance growth and immunity 

in gilthead seabream other supplements have been used, such as butyrate (Robles et al., 2013), 
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fenugreek seeds (Bahi et al., 2017) and macroalgae as Ulva lactuca and Pterocladia capillacea 

(Wassef et al., 2005).  

 

1.7. Stress indicators  

Stress can cause severe problems in the welfare of the farmed fish affecting growth, 

reproduction and disease resistance (Conte, 2004), therefore is important to prevent or minimize 

its consequences. Stress can be caused by several factors, such as water quality conditions as 

temperature and salinity, handling, sorting, transportation or even high water flow rates and 

crowding (Guardiola et al., 2016). The crowding stress consists in maintaining fish at high stocking 

densities (at least from 22 kg/m3; Tort et al., 1996) that causes problems in health, growth and 

behaviour (Wedemeyer, 1996). Furthermore, this stress factor can provoke oxidative stress, 

increase energy demand, increase the susceptibility to pathologies (Caipang et al. 2009; Vijayan 

et al., 1997), and increase plasma cortisol levels (Mazur & Iwama, 1993). 

Fish response to stress occurs at three stages: a primary response corresponding to the 

stimulation of the hypothalamic-pituitary-interrenal axis (HPI-axis) and brain-sympathetic-

chromaffin cell axis (BSC-axis) releasing catecholamines and cortisol to blood circulation; a 

secondary response with changes in metabolism, respiration, immune functions and hydromineral 

balance; and a tertiary response that involves the performance of the fish such as growth, 

behaviour, resistance to disease and survival (Alves et al., 2010; Barton, 2002; Iwama, 2007). 

Several stress indicators can be used to measure the fish response to stress. As primary 

and secondary stress indicators, biochemical parameters are normally used such as plasma 

cortisol, glucose, lactate and electrolytes and as tertiary stress indicators, feeding parameters, 

growth and organosomatic indexes are normally used (Alves et al., 2010; Barton, 2002; Mommsen 

et al., 1999). 

Gilthead seabream, as mentioned previously, is very susceptible to low temperature and 

the exposure to stressful events, as high densities in sorting procedures, in addition to low 

temperature can cause negative effects, since the fish is already immunodepressed and 

metabolically modified (Ibarz et al., 2010). Therefore, it is important to comprehend the levels of 

stress to which the fish are exposed and study methods (e.g. diet formulation) to mitigate or prevent 

the stress consequences, towards improving production, sustainability and quality of gilthead 

seabream. 
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1.8. Objectives  

The aim of this study was to optimize feed formulations that benefits gilthead seabream at 

low temperature (14°-15°C) during the ongrowing production. To achieve this objective, it was 

assessed the impact of different dietary formulations with different protein:energy ratios or with a 

mix of additives on key performance indicators of gilthead seabream juveniles exposed to low 

temperature during the Winter period.  

 

2. METHODOLOGY 

2.1. Fish and experimental system 

Gilthead seabream (Sparus aurata) juveniles from Atlantik Fish (Castro Marim, Portugal) 

were transported and acclimated in Ramalhete Experimental field station (CCMAR, University of 

Algarve, Faro, Portugal) before the start of the experiment, in 1000L tanks (n=5) at 10 kg/m3, under 

natural conditions of temperature and photoperiod. Fish were fed ad libitum with a commercial diet 

until the temperature conditions were appropriated to the study, for two months.  

The gilthead seabream juveniles were sorted and randomly distributed by nine round tanks 

of 500L with flat bottom (Fig. 6), at an initial density of 8.6 kg/m3 (28 fish per replicate), in a flow-

through system with constant aeration, under natural photoperiod (January-April). The seawater 

was filtered by sand filters and distributed by gravity to the rearing tanks. Water quality was 

monitored daily for dissolved oxygen saturation and temperature. Daily, death fish were removed 

from the tanks and weighed.  
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Figure 6. Experimental setup for gilthead seabream juveniles growth trial. 

2.2. Experimental diets 

Diet formulation is described in Table 1. The Control diet had a similar formulation to a 

commercial diet used during the Winter for gilthead seabream, with a high ratio of protein:energy 

(48% P:19% L) and fishmeal (27.5%) and soy ingredients (14%) as main protein sources. The 

second diet (Low) had a low ratio of protein:energy (45% P:19% L), with poultry meal (15%), soy 

ingredients (11.5%) and fishmeal (10%) as main protein sources. Finally, the third diet (LowMix) 

had a low ratio of protein:energy (44% P:19% L), with poultry meal (15%), soy ingredients (11.5%) 

and fishmeal (7.5%) as main protein sources. The LowMix diet was supplemented with a mix of 

feed additives, which included soy lecithin (1%), macroalgae mix (1%) and taurine (0.3%) and a 

higher level of krill meal (5%) and betaine (1%) when compared to the other experimental diets. 

The Low and LowMix diets due to the lower protein content and lower level of fishmeal inclusion, 

are more environmentally sustainable and have a lower cost of production when compared to the 

Control diet. All diets were manufactured and extruded by SPAROS Lda. (Olhão, Portugal). 

Proximate composition and amino acid content of experimental diets are presented in Tables 1 and 

2, respectively. 

Fish were fed ad libitum once a day (10h00), with one of the three experimental diets (3 

mm). Each diet was tested in triplicate. The feed was offered to the fish during a 45 min period. 

Apparent feed intake was determined daily. The experiment lasted 84 days (January-April). 
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Table 1. Formulation and proximate composition of the experimental diets (Control, Low and 
LowMix). 

 

 

 

 

 

 

 

Ingredients (%) 
Diets 

Control Low LowMix 

Fishmeal Super Prime  27.50 10.00 7.50 

CPSP 90 2.50 2.50 2.50 

Squid meal 83  2.50 2.50 2.50 

Krill meal  2.50 2.50 5.00 

Poultry meal 65 
 

15.00 15.00 

Soy protein concentrate  10.00 7.50 7.50 

Soybean meal 48 4.00 4.00 4.00 

Corn gluten 7.50 6.00 6.30 

Wheat gluten 4.00 4.00 4.00 

Wheat meal 16.85 22.65 20.45 

Faba beans (low tannins) 6.00 6.00 6.00 

Sardine oil  10.22 10.15 9.52 

Rapeseed oil 4.38 4.35 4.08 

Soy lecithin  
  

1.00 

Vitamin & Mineral Premix INVIVO  1.00 1.00 1.00 

Lutavit C35 and E50 0.05 0.05 0.05 

Betaine HCl 0.50 0.50 1.00 

Macroalgae mix 
  

1.00 

Antioxidant powder  0.20 0.20 0.20 

Sodium propionate 0.10 0.10 0.10 

Mono-calcium phosphate 
 

0.40 0.40 

L-Lysine 
 

0.20 0.20 

L-Tryptophan 
 

0.10 0.10 

DL-Methionine 0.20 0.30 0.30 

L-Taurine 
  

0.30 

Proximate Composition 

Dry matter (DM) % 92.90 93.99 94.87 

Crude protein, % DM 47.56 44.66 44.24 

Crude fat, % DM 19.34 18.72 18.51 

Ash, % DM 7.94 7.37 7.57 
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Table 2. Amino acid content (mg AA / g DW) of the experimental diets. 

Amino acids Control Low LowMix 

Arginine 35.8 31.3 30.4 

Histidine 10.9 9.7 9.7 

Lysine 27.6 27.6 29.3 

Threonine 18.1 15.5 15.1 

Isoleucine 21.0 19.5 19.3 

Leucine 36.5 32.6 32.8 

Valine 23.2 21.4 21.4 

Methionine 14.9 14.7 13.0 

Phenylalanine 24.4 20.4 19.7 

Cystine 2.6 3.0 2.5 

Tyrosine 19.4 18.4 16.1 

Aspartic acid + Asparagine 38.2 35.8 35.7 

Glutamic acid + Glutamine 74.1 71.8 71.4 

Alanine 24.1 23.3 22.7 

Glycine 30.4 26.6 27.0 

Proline 31.1 29.1 28.3 

Serine 19.9 17.1 16.7 

Taurine 2.8 2.0 2.2 

 

2.3. Sampling 

Fish were fasted for 24 h before any sampling procedure. At the beginning of the 

experiment, the fish were group weighed (n=3-4 fish) and assigned to a tank replicate. Initial body 

weight (IBW, g) and total length (TL, cm) were determined individually (n=30). Fish were euthanized 

by lethal anaesthesia, sampled for initial whole-body composition (n=5) and frozen at -20ºC for 

posterior analyses. During the experiment, tank biomass was determined twice, at 28 and 56 days 

of the experimental period. 

At the final sampling, fish were euthanized by lethal anaesthesia with 2-phenoxyethanol 

(1000 ppm) (n=10 per replicate, n=30 per treatment). Fish were individually measured (TL) and 

weighed (FBW). Fish were sampled for final whole-body composition (n=5) and samples were 

frozen at -20ºC for posterior analyses. Blood samples (n=5) were collected (basal time - T=0 min) 

and analysed as described in Section 2.4. Afterwards, the liver and viscera were removed from the 
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same fish and weighed for determination of the hepatosomatic (HSI) and viscerosomatic (VSI) 

indexes, respectively.  

 

2.4. Stress assay 

At the end of the growth experiment fish were exposed to a stressful event, to simulate a 

common practice (sorting procedure) at aquaculture facilities and to determine if the experimental 

diets may help fish to cope better during the sorting procedure (Fig. 7). 

At the beginning of the stress experiment (T=0 min), fish were sampled from each replicate 

(n=5), anaesthetized with 2-phenoxyethanol (400 ppm) and individual blood samples were 

collected from the caudal vein, in less than 3 min/fish, with a 1 ml heparinized syringe and a needle 

of 21G x 2". After, fish density in the tank was increased by flushing out 400L of seawater, resulting 

in a density of 50 kg/m3. At this density fish were lightly sedated with 75 ppm of anaesthesia, as is 

the common practice in aquaculture facilities during the sorting procedure. After exposing the fish 

to 50 kg/m3 for 30 min (T=30 min), samples were collected as described for T=0 min. After 30 min, 

the water inlet was open and tank volume was doubled resulting in a density of 25 kg/m3. The fish 

were maintained at this density during 60 min (T=90 min). At this point samples were collected as 

described for T=0 min. 

Blood samples were centrifuged at 5000×g for 10 min, plasma was separated from blood 

cells and frozen at -80ºC until analysis of stress indicators. The remaining fish in each tank were 

counted and group weighed. 

 

 

 

 

 

 

 

 

 

 

 Figure 7. Tank densities at the different sampling points (T=0 min, T=30 min and T=90 min). 

 

T=0 T=30 T=90 

Density – 10.5 kg/m3 Density – 50 kg/m3 Density – 25 kg/m3 
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2.5. Biochemical analysis 

2.5.1 Fish and diet samples processing  

All fish samples were pooled together by tank replicate (n=3 per treatment), severed into 

small pieces with an electric knife, ground in a mincer (Moulinex 1,2,3) until sample was 

homogeneous and frozen at -80°C for at least 12 h. A sub-sample was taken, freeze-dried and 

ground with an electric grinder until an apparently homogeneous powder was obtained. The 

samples were sieved using a 1000µm sieve to remove the unmilled particles, ground with a pestle 

and mortar until they were completely homogeneous, and then frozen at -80°C for at least 12 h. 

After this procedure, all samples were freeze-dried. The three experimental diets were individually 

ground with an electric grinder and homogenised with the pestle and mortar. All samples were 

frozen at -80°C for at least 12 h before freeze-drying. 

 

2.5.2 Proximate composition 

For the dry matter determination, the crucibles with the individual samples were dried at 

105°C for 24 h in an oven and weighed. Afterwards, the same crucible was combusted in a muffle 

furnace for 12 h at 550°C, to obtain the sample ash, and weighed (Fig. 8). Fish and diets dry matter 

and ash were determined in duplicate for each tank 

 

 

 

 

 

 

 

 

 

Figure 8. Ash obtained from fish and diets samples.
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The fish and experimental diets crude protein (N × 6.25) was analysed by an automatic 

flash combustion technique followed by a gas chromatographic separation and thermal conductivity 

detection (LECO FP428) and the fat was obtained after petroleum ether extraction (40–60 °C) by 

the Soxhlet method. The total phosphorus present in the fish and diets was obtained according to 

the norm AFNOR V 04-406 after digesting the samples, in duplicates, with an oxidant reagent 

based in sodium molybdate and perchloric acid. 

2.5.3 Amino acid analysis 

The experimental diets were analysed for amino acid content, according to Aragão et al. 

(2014), using the diets previously processed as described in section 2.5.1. The diets were 

hydrolysed (6M HCl at 116°C over 48h in nitrogen-flushed glass vials) before total amino acid 

analysis. All the samples were then pre-column derivatised with Waters AccQ Fluor Reagent (6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate) using the AccQ Tag method (Waters, USA). 

Analyses were done by ultra-high-performance liquid chromatography (UPLC) in a Waters 

reversed-phase amino acid analysis system, using norvaline as an internal standard. The resultant 

peaks were analysed with EMPOWER software (Waters, USA). 

2.5.4 Stress indicators  

The stress indicators, cortisol, glucose and lactate, were determined in fish plasma. The 

glucose levels were determined using a commercial Spinreact kit (Ref. 41011) where, briefly, 10 µl 

of each sample was pipetted to a cuvette (1.5 ml), which had already 1 ml of the kit reagent, and 

incubated during 20 min at room temperature (25°C). The absorbance was read at 505nm in a 

spectrophotometer (Thermo Scientific™, GENESYS 10S UV-Vis).  The determination of the lactate 

levels in the plasma was performed with a Spinreact kit (Ref. 1001330) with a similar procedure to 

that of glucose, but with an incubation time of 10 min. For the cortisol levels two different kits from 

IBL were used, for the basal plasma a Cortisol Saliva ELISA kit (Ref. RE52611) and for the 

remaining samples a Cortisol ELISA kit (Ref. RE52061). Briefly, for the basal cortisol, 50 µl of the 

standards, control and samples were pipetted to microplate wells (96 well), 100 µl of the enzyme 

conjugate was added and incubated for 2h at room temperature (25°C). The microplate was 

washed with a Buffer and 100 µl of the substrate solution was pipetted to each well. After incubating 

another 30 min, 100 µl of the stop solution was added and the plate optical density was measured 

in a microplate reader (Biotek Synergy 4, USA) at 450nm. For the other plasma samples (T=30 and 

T=90 min), the procedure was similar but 20 µl of the standards, control and samples were pipetted 

to the microplate wells, 200 µl of the enzyme conjugate was added and incubated for 1h. Then, 
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the microplate was washed with a Buffer, 100 µl of the substrate solution was pipetted to the wells 

and after 15 min of incubation, 100 µl of the stop solution was added and the plate optical density 

measured at 450nm. 

 

2.6. Data analysis 

The fish weight gain (WG, %IBW) was calculated based on the final biomass and the initial 

biomass (1), while the condition factor (K) was calculated using the final body weight (FBW) and 

total length (2). The daily growth index (DGI) was calculated using the difference in final body weight 

(FBW) and initial body weight (IBW), by the days of the experiment (3). 

 

(1)                    WG = 
final biomass (g) - initial biomass(g)

initial biomass (g)
×100 

     

                (2)                                       K = 
Final body weight (g)

[Final body length (cm)]
3

                              

 

               (3)                                   DGI = 
FBW

1
3 (g) - IBW

1
3 (g)

days
 ×100                           

 

The feed conversion ratio (FCR) was obtained by the following formula, where the wet 

weight gain was the difference between the final biomass and the initial biomass. 

 

(4)                            FCR = 
crude feed intake

wet weight gain
   

  

The voluntary feed intake (VFI) was calculated through the following formula: 

 

   (5)                         VFI = (
crude feed intake

IBW
 × days

-1) × 100 

 

The hepatosomatic index (HSI) and the viscerosomatic index (VSI) were calculated using 

the liver and viscera weight, respectively. The following formulas were applied:  
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             (6)                       HSI = 
liver weight (g)

fish weight (g)
 ×100                      

 

                              (7)                        VSI = 
viscera weight (g)

fish weight (g)
 ×100                                 

 

The phosphorus, protein and fat retention (% intake) were calculated through the formula 

(8). 

 

(8)  R = 
FBW × final body nutrient content - IBW × initial body nutrient content

nutrient intake
×100 

 

The data was tested for homogeneity of variance with Levene’s test and to compare the 

key performance indicators, proximal composition and stress indicators among the three 

treatments, an One-way analysis of variance (ANOVA) was used, if homogeneity of variances was 

verified. If there were significant differences, the Tukey’s test was performed to compare individual 

means. If homogeneity of variances was not verified, a Kruskal–Wallis test was performed, followed 

by a Dunn-Bonferroni test post-hoc, if necessary. To compare the stress indicators between the 

three sampling periods a repeated measures ANOVA was performed. 

The values were expressed as mean ± standard deviation. All percentage data was arcsin 

transformed prior to analysis. For all the statistical tests the level of significance used was p < 0.05 

and the statistical analysis were performed with SPSS 25.0 (SPSS Inc., Chicago, IL, USA) statistic 

software. 

3. RESULTS 

3.1. Abiotic parameters and survival rate 

During the experiment, the seawater temperature was 13.44 ± 0.03°C with a minimum 

value recorded of 8.02 ± 0.12°C and a maximum of 17.29 ± 0.03°C. The seawater salinity was 

between 31.80 - 35.40 psu with a mean of 34.44 ± 0.79 psu and the dissolved oxygen was 95.13 

± 0.71% of saturation with a minimum recorded of 91.11 ± 0.93% and a maximum of 99.00 ± 

0.87%. At the end of the experiment, average survival was 97.06% for the Control treatment, 98.8% 

for the Low treatment and 100% for the LowMix treatment. 

 



19 
 

3.2. Growth performance indicators 

At the beginning of the experiment, gilthead seabream had an initial weight of 154.52 ± 

1.13 g. At 28 and 56 days of experiment, the fish growth was similar among the three treatments. 

At the end of the experiment (84 days) seabream juveniles from the Control treatment presented a 

significantly (p<0.05) higher wet weight (197.83 ± 1.35 g) when compared with fish from the Low 

treatment (190.15 ± 3.81 g). The gilthead seabream wet weight during the experimental trial, at 28, 

56 and 84 days is presented in figure 9. 

 

 

 

 

 

 

 

Figure 9. Wet weight of gilthead seabream juveniles fed with one of the three experimental diets, during the experiment 
trial. Data are presented as mean ± SD. Different letters, at the same sampling time, indicate significant differences 
among diets (p<0.05). 

 

 The fish weight gain (WG) increased significantly (p<0.05) during the experiment, since the 

mean value of the three treatments at 28 days was 5.91 ± 1.18 %IBW, at 56 days the value 

increased to 12.44 ± 2.26 %IBW and the final mean value was 21.88 ± 3.09 %IBW, at 84 days.  At 

the end of the experiment, the weight gain was 24.60 ± 2.98 %IBW for the Control treatment fish, 

18.48 ± 6.65 %IBW for the Low treatment fish and 22.34 ± 3.05 %IBW for the LowMix treatment 

fish (Fig. 10), with no significant differences found among treatments.   
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Figure 10. Weight gain (%IBW) of gilthead seabream juveniles fed with one of the three experimental diets, during the 
experiment trial. Data are presented as mean ± SD. Absence of letters at the same sampling time indicate no significant 
differences among diets (p>0.05). 

 

 The feed conversion ratio (FCR), represented in figure 11, was similar among the three 

experimental diets along the experiment. At 28 days of experiment the FCR was 1.60 ± 0.70 for 

the Control treatment, 1.77 ± 0.30 for the LowMix treatment and 2.09 ± 0.39 for the Low treatment, 

while at day 56 the FCR values increased to 2.09 ± 0.41 for the Control treatment, 2.08 ± 0.21 for 

the LowMix treatment and 2.61 ± 0.55 for the Low treatment. 

 

 

 

 

 

 

 

 

Figure 11. Feed conversion ratio of gilthead seabream juveniles fed with one of three experimental diets, during the 
experiment trial. Data are presented as mean ± SD. Absence of letters at the same sampling time indicate no significant 
differences among diets (p>0.05). 

 

At the end of the experiment (day 84) the FCR was 1.96 ± 0.24 for the Control treatment, 

2.01 ± 0.27 for the LowMix treatment and 2.34 ± 0.75 for the Low treatment.  
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The daily growth index (DGI) of gilthead seabream was similar at the end of the experiment 

with values of 0.37 ± 0.07 for the Low treatment, 0.47 ± 0.06 for the LowMix treatment and 0.54 ± 

0.01 for the Control treatment (Fig. 12). The DGI mean value obtained from the three treatments at 

day 28 was 0.37 ± 0.07, at day 56 was 0.38 ± 0.07 and the final mean value, at 84 days, increased 

to 0.46 ± 0.09. 

 

 

 

 

 

 

 

Figure 12. Daily growth index of gilthead seabream juveniles fed with one of the three experimental diets, during the 
experiment trial. Data are presented as mean ± SD. Absence of letters at the same sampling time indicate no significant 
differences among diets (p>0.05). 

The voluntary feed intake (VFI), represented in figure 13, increased significantly (p<0.05) 

from day 28 to days 56 and 84, with a mean value among the three experimental treatments of 

0.36 ± 0.02 %IBW/day at 28 days, 0.48 ± 0.03 %IBW/day at 56 days and 0.52 ± 0.05 %IBW/day 

at 84 days. At the end of the experiment VFI was 0.57 ± 0.02 %IBW/day for the fish fed with the 

Control diet, 0.48 ± 0.06 %IBW/day for the fish fed with the Low diet and 0.53 ± 0.04 %IBW/day 

for the fish fed with the LowMix diet, with no significant differences found among treatments. 

 

 

 

 

 

 

Figure 13. Voluntary feed intake of gilthead seabream juveniles fed with one of the three experimental diets, during the 
experiment trial. Data are presented as mean ± SD. Absence of letters at the same sampling time indicate no significant 
differences among diets (p>0.05).  
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The condition factor (K) at the end of the experiment was similar among the three 

experimental treatments with values of 1.57 ± 0.02 for the LowMix treatment, 1.58 ± 0.04 for the 

Low treatment and 1.63 ± 0.03 for the Control treatment (Fig.14). 

 

 

 

 

 

 

 

Figure 14. Condition factor of gilthead seabream juveniles fed with one of three experimental diets, during the 
experiment trial. Data are presented as mean ± SD. Absence of letters at the same sampling time indicate no significant 
differences among diets (p>0.05). 

 

3.3. Fish whole-body composition 

Regarding fish whole-body composition (Table 3), no significant differences were found 

among treatments at the end of the experiment. Compared with the initial whole-body composition, 

the percentage of dry matter decreased along the experiment, while crude protein, ash and 

phosphorus increased. The final crude fat in fish fed with the Low diet was the same that the initial 

value, while the fish fed with the Control and LowMix diets had relatively higher crude fat values 

compared with the initial value.  

 
Table 3. Fish whole-body composition at the beginning and at the end of the experimental trial.  

Data are presented as mean (± SD). Absence of superscripts in the same row indicate no significant differences among 
diets (p>0.05). 

Whole-body composition Initial                Control                Low                LowMix 

Dry matter (DM), % 

Crude protein, % DM 

Crude fat, % DM 

35.10 ± 0.88 34.02 ± 0.30 34.55 ± 1.51 

48.32 ± 0.90 

35.80 ± 1.06 

34.92 ± 1.17 

47.33 ± 1.48 

36.69 ± 1.49 

46.60 ± 0.12 

35.76 ± 0.35 

48.72 ± 1.31 

36.01 ± 2.45 

Ash, % DM 9.60 ± 0.78 10.30 ± 2.56 11.68 ± 0.75 11.38 ± 2.15 

Total phosphorus, % DM 2.26 ± 0.29 2.37 ± 0.20 2.53 ± 0.10 2.47 ± 0.25 
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Regarding the nutrient retention (Table 4) of the fish at the end of the experiment, the 

protein retention was similar for all experimental treatments (mean value of 20.42 ± 0.28%), while 

the LowMix treatment had the highest value of fat retention (35.06 ± 14.61%) and the Low treatment 

the highest value of phosphorus retention (58.74 ± 8.97%). However, no significant differences 

were found among treatments. 

Table 4. Nutrient retention (% intake) in the fish at the end of the experimental trial. 

 Control Low LowMix 

Protein 20.43 ± 4.69 20.13 ± 7.09       20.69 ± 4.72 

Fat 27.46 ± 9.38 24.63 ± 4.81 35.06 ± 14.61 

Phosphorus 45.94 ± 20.61 58.74 ± 8.97 54.99 ± 16.51 

Data are presented as mean ± SD. Absence of superscripts in the same row indicate no significant differences among 
diets (p>0.05). 

 

The hepatosomatic index (HSI), represented in figure 15, was similar at the end of the 

experiment with values of 2.18 ± 0.08% for the Control treatment, 2.31 ± 0.14% for the Low 

treatment and 2.51 ± 0.01% for the LowMix treatment. 

Regarding the viscerosomatic index (VSI), the fish fed with the Control diet had a 

significantly (p<0.05) higher value (5.06 ± 0.09) than the fish fed with the LowMix diet (3.99 ± 0.35), 

while the value of the viscerosomatic index from the fish fed with the Low diet was not significantly 

different from the other diets (Fig.15). 

Figure 15. Hepatosomatic and viscerosomatic index of gilthead seabream juveniles fed with one of the three 
experimental diets, at the end of experiment trial (day 84). Data are presented as mean ± SD. Different letters for the 

same parameter indicate significant differences among diets (p<0.05). 
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3.4. Stress indicators 

The lactate concentration in plasma (Fig. 16) for the fish fed with the Control diet was not 

significantly different among sampling times. For the fish fed with the Low diet, the lactate 

concentration was significantly different (p<0.05) between T=0 (10.82 ± 2.58 mg/dL) and T=30 

(5.37 ± 2.65 mg/dL) and at T=90 no significant differences were found compared with the other 

sampling times. Regarding the LowMix diet, the lactate concentration was significantly higher 

(p<0.05) at T=0 (12.16 ± 1.03 mg/dL) than at T=30 (4.77 ± 1.61 mg/dL), while the T=90 was 

statistically similar to the other sampling times. The lactate concentrations were not significantly 

different among the treatments at the same sampling time.  

 

Figure 16. Plasma lactate concentration in gilthead seabream juveniles fed with one of three experimental diets, at the 
end of experiment trial (day 84). Data are presented as mean ± SD. Different letters within the same treatment indicate 
significant differences among sampling times (p<0.05).  

The glucose concentration in plasma (Fig.17) for the Control treatment was significantly 

higher (p<0.05) at T=30 (66.94 ± 1.35 mg/dL) than at T=0 (46.63 ± 1.32 mg/dL), while the T=90 

had no significant differences from the other sampling times. For the Low treatment the glucose 

concentration was similar among sampling times, since no statistical differences were found among 

them. The plasma glucose concentration in the LowMix treatment was significantly higher (p<0.05) 

at T=90 (72.06 ± 3.21 mg/dL) than at T=0 (44.95 ± 5.86 mg/dL), while at T=30 there were no 

statistical differences compared with the other sampling times. No significant differences were 

found among treatments at the same sampling time. 
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Figure 17. Plasma glucose concentration in gilthead seabream juveniles fed with one of the three experimental diets, 
at the end of experiment trial (day 84). Data are presented as mean ± SD. Different letters within the same treatment 
indicate significant differences among times (p<0.05).  

 

In the Control treatment the cortisol concentration (Fig.18) was significantly higher (p<0.05) 

at T=30 (375.08 ± 13.97 ng/ml) than at T=0 (3.41 ± 3.31 ng/ml), while the concentration at T=90 

was not significantly different from the other sampling times. The plasma cortisol concentration in 

the Low treatment was significantly lower (p<0.05) at T=0 (3.76 ± 3.90 ng/ml) compared with T=30 

and T=90, with T=30 (352.84 ± 72.44 ng/ml) having the highest concentration. For the LowMix 

treatment the highest concentration was found at T=30 (328.20 ± 39.51 ng/ml) and the 

concentration at T=0 (33.15 ± 33.47 ng/ml) was significantly lower (p<0.05) compared with the 

values at T=30 and T=90. No significant differences were found among treatments at the same 

sampling time. 

 

 

Figure 18. Plasma cortisol concentration in gilthead seabream juveniles fed with one of the three experimental diets, 
at the end of experiment trial (day 84). Data are presented as mean ± SD. Different letters within the same treatment 
indicate significant differences among times (p<0.05).  
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4. DISCUSSION 

In order to ensure a sustainable growth, the Aquaculture Industry needs to improve 

aquafeeds sustainability through a reduction in dietary fishmeal inclusion and/or an increase in feed 

efficiency by adding supplements to the fish diets. For this to become a reality, research is 

necessary to evaluate the effects of these news diets in terms of fish growth and welfare, and also 

environment impacts. 

The water quality parameters are important factors for gilthead seabream production that 

directly affect growth and welfare (Mozes et al., 2011). In the present study the mean temperature 

was 13.44 ± 0.03°C, which according to Mozes et al. (2011) is when gilthead seabream decreases 

sharply feed intake but is still in the range of temperature to which they are found in the wild (11°C-

23°C; Faggio et al., 2014), and within the objective of this study. Regarding other water parameters, 

salinity must be in the range of 35-44 psu for gilthead seabream production and in this experiment 

the salinity was between 32-35 psu and dissolved oxygen concentration had a mean value of 95.13 

± 0.71%, which is within the preferred range (>80-85%) for the species (Mozes et al., 2011; Moretti 

et al., 1999).  

In the Winter, due to low temperatures, gilthead seabream juveniles reduce the feed intake 

and consequently the growth (Ibarz et al., 2010). Therefore, the Winter diets should be formulated 

to help gilthead seabream to cope with this challenging situation. Silva et al. (2014) formulated a 

diet for Winter nominated “Winter feed” (WF) with a high content of marine-derived ingredients, 

mainly fishmeal (40.8%), 50.6% of crude protein and 19.7% of lipids. After 113 days of experiment, 

this diet demonstrated to be beneficial for the fish in terms of nutritional and metabolic status and 

improved growth, from 87.2 ± 0.1g to 106.4 ± 3.2g, during Winter. However, this diet has a high 

cost and it was not sustainable, due to high inclusion of fishmeal.  

In the present study, the Control diet was similar to the “Winter feed” (Silva et al., 2014) in 

terms of high inclusion of fishmeal (27.50%) and other marine-derived ingredients (krill protein and 

fish oil). Yet, the Control diet used in the present study has a medium ratio of protein:energy and is 

still expensive, therefore needs to be formulated in a more sustainable way, but still effective during 

Winter. The two experimental diets (Low and LowMix) in this study were formulated with a lower 

ratio of protein:energy, and with a lower inclusion of fishmeal. At the end of the experiment, the fish 

fed the Low diet had a significantly lower weight when compared with the Control fish, which agrees 

with the results obtained in other studies with similar diet formulation. In Silva et al. (2014) and 

Schrama et al. (2017), the diet with more fishmeal and crude protein content resulted in heavier 
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fish than the diet with lower fishmeal/crude protein, but the fish used in those experiments were 

smaller compared with the fish used in the present study.  

Regarding voluntary feed intake (VFI), no differences were found between the fish fed the 

Low and Control diets, which means that a good palatability was assured since diets with high 

levels of plant protein inclusion can have low palatability (Pereira & Oliva-Teles, 2002; De 

Francesco et al., 2007). Although, the weight gain, daily growth index (DGI) and condition factor 

(K) had no differences from the Control treatment, it is worth noticed that the values were lower in 

the Low treatment fish than in the Control fish. Despite no significantly differences were found in 

the feed conversion ratio (FCR) between the fish fed the Low and the Control diets, the FCR in the 

present study was lower than in Silva et al. (2014) for the Winter period, which probably may be 

explained by the fact that the Low and LowMix diets had ingredients that are not present in the 

Silva et al. (2014) diet, such as squid meal and krill meal, which are ingredients that improve 

palatability and consequently the feed intake, and poultry meal, which is an ingredient that presents 

a high digestiblity (Derby et al., 2016; Cruz-Suárez et al., 2007).  

 When the marine proteins are replaced or partially replaced by plant sources in fish diets, 

is necessary to supplement feed additives to the formulations to balance the diet nutritional profile 

and improve attractability, since these “new” proteins, usually, are less palatable (Lunger et al., 

2007) and have amino acids deficiencies (Kissil et al., 2000) when compared with the marine 

protein sources. In the present study, the LowMix diet was supplemented with a mix of additives, 

as macroalgae that improves growth performance (Mustafa et al., 1995), krill meal that enhances 

attractability and palatability (Suresh et al., 2011), betaine that is phagostimulant, soy lecithin that 

facilitates fat emulsification during the digestion and taurine that is a feeding stimulant, antioxidant 

and is involved in bile acid conjugation (Schrama et al., 2017; El-Sayed, 2014). At the end of the 

study, the LowMix diet was similar when compared with the Control diet, regarding fish wet weight 

and other growth indicators as weight gain, FCR, DGI, VFI and K, indicating that the additives 

improved the Low diet formulation. This is confirmed by studies that used as additives macroalgae 

(Mustafa et al., 1995; Wassef et al., 2005), krill meal (Derby et al., 2016), betaine (Xue & Cui, 2001), 

soy lecithin (Jafari et al., 2018) and taurine (Chatzifotis et al., 2008; Koven et al., 2016; Li et al., 

2016) and had positive results in terms of growth performance for different fish species. The 

combination of additives can also improve growth performance as in Silva et al. (2014) that 

combined some of these supplements (krill, betaine, taurine and soy lecithin) in a formulation. The 

fact that there are no differences between the LowMix and the Control indicates that is possible to 
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feed gilthead seabream juveniles during the Winter period with a diet formulation containing less 

protein and with low fishmeal inclusion, provided that they are properly supplemented. 

Despite some minimal differences were found in whole-body composition of gilthead 

seabream juveniles at the beginning and at the end of the experiment, no significant differences 

were found among treatments at the end of the study, which indicates that the dietary protein 

content did not affected the whole-body composition. The fish hepatosomatic index (HSI) was not 

affected by the dietary treatments, which is positive, since in Silva et al. (2014) fish fed the high 

protein diet (WF) had a higher HSI value than the fish fed the diet with lower protein content. 

However, the values of HSI in this experiment were relatively higher, in all treatments, when 

compared with the data obtained by Silva et al. (2014) for smaller fish. The viscerosomatic index 

(VSI) in fish fed the LowMix diet was significantly lower than in the Control fish, and the range of 

values (3.9-5.1%) were lower than the ones found in Silva et al. (2014) for the Winter period (5-

7.5%). These results indicate that the additives in the LowMix treatment may have influenced the 

fish VSI, possibly by helping the fish to use the viscera fat content for energetic purposes in 

response to the low water temperatures (Ibarz et al., 2007). The protein, fat and phosphorus 

retention in gilthead seabream juveniles was not significantly different among treatments. The 

protein and fat retention values found in the present study were relatively lower compared with the 

values obtained in Dias et al. (2009) and the phosphorus retention was relatively higher. However, 

the Dias et al. (2009) study was performed at higher temperatures. To the best of my knowledge 

this is the first study analysing the nutrient retention in gilthead seabream fed a low protein diet 

during the Winter period.  

Gilthead seabream in fish farms are potentially exposed to stressful conditions, such as 

high density, sorting procedures, handling, transport and sub-optimal water quality conditions that 

may negatively affect fish physiology (Guardiola et al., 2016). Therefore, the fish stress response 

needs to be assessed through behavioural, physiological and anatomical measures to evaluate the 

level of stress to which the fish are exposed (Guardiola et al., 2016). In the present study, plasma 

lactate and glucose concentrations were measured as secondary stress indicators and plasma 

cortisol as primary stress indicator in gilthead seabream juveniles. 

Cortisol and glucose concentrations were used simultaneously in some studies to assess 

the stress response of several fish species to unfavourable rearing conditions, for example: high 

stocking densities in Atlantic cod (Caipang et al., 2009), European seabass (Di Marco et al., 2008) 

and gilthead seabream (Pérez-Sánchez et al., 2013); air exposure in cobia (Cnaani & Mclean, 

2009); handling stress in gilthead seabream (Sánchez-Muros et al., 2017). In some cases, lactate 
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concentration was also used, in addition to cortisol and glucose, to evaluate the stress response in 

gilthead seabream, common dentex, common pandora, sharpsnout seabream, dusky grouper, 

meagre (Fanouraki et al., 2011), Senegalese sole (Costas et al., 2011) and rainbow trout (Naderi 

et al., 2018). 

In this study, plasma lactate was not influenced by the dietary treatments (Control, Low 

and LowMix), however differences occurred between different sampling times (T=0 and T=30) for 

each treatment. Lactate presented higher plasma concentrations at basal time (T=0 min) than at 

T=30 min in fish from Low and LowMix treatments. However, the values found in the basal time 

were low and similar to the values obtained in Fanouraki et al. (2011) and Arends et al. (1999), 

which suggests that despite the higher value at the basal time, the gilthead seabream were not 

stressed. The lower lactate values obtained after the stressful event, could have been influenced 

by an external factor, since in other studies after the stress event the lactate concentration was 

higher than or similar to the basal value (Arends et al., 1999; Rottlant et al., 2001). 

Glucose concentration was similar among treatments but had significant differences 

between the sampling times for Control and LowMix fish. In the Control treatment, fish glucose 

concentration was significantly higher at T=30 min (50 kg/m3) than at the basal time (T=0 min), 

while the concentration in LowMix fish was significantly higher at T=90 min (25 kg/m3) than at basal 

time (T=0 min). The basal values of glucose in this experiment were similar to the values found in 

Fanouraki et al. (2011) and Rottlant et al. (2001) for similar fish size and lower than the values in 

Yildiz (2009) and Pérez-Sánchez et al. (2013), for smaller gilthead seabream. In the Control 

treatment fish, the peak occurred at T=30, while in the LowMix fish the peak occurred at T=90 or 

possible after, since in other studies glucose peaks were obtained between 1-3h (Pérez-Sánchez 

et al., 2013) or until 4h (Rottlant et al., 2001). However, the values obtained in this experiment were 

lower compared with Rottlant et al. (2001) and Pérez-Sánchez et al. (2013), probably due to the 

differences in stocking densities, which were much higher in those studies (200 and 100 kg/m3, 

respectively). Furthermore, the lower glucose values can be due to different sampling points, since 

in this study the last sampling occurred at T=90, while in Pérez-Sánchez et al. (2013) and Rottlant 

et al. (2001) higher values than in the present study were found after that time. 

Regarding cortisol concentration, in the Control treatment fish, the concentration was 

higher at T=30 min (50 kg/m3) than at the basal time (T=0 min) and in Low and LowMix treatments 

fish cortisol concentration was higher at T=30 and T=90 (50 and 25 kg/m3, respectively) than at 

T=0 min (10.5 kg/m3). The basal cortisol concentration was similar to values obtained in Rottlant et 

al. (2001) and Yildiz (2009), except the basal value of the LowMix treatment fish, possibly due to 
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errors in the determination of the cortisol concentration in plasma. The peak of cortisol occurred at 

T=30 min, for all treatments, which is consistent with the results obtained in several studies, that 

state that the peak of cortisol generally occurs between 30 min and 2 h after the stress exposure 

(Arends et al., 1999; Rottlant et al., 2001; Fanouraki et al., 2011). However, the values of cortisol, 

in the present study, were considerably higher than the values obtained for gilthead seabream in 

other studies with the same type of stressor and similar or higher densities (Arends et al., 1999; 

Rottlant et al., 2001; Ganga et al., 2011; Pérez-Sánchez et al., 2013). These higher values may 

have resulted from other additional stressors, possibly by the addition of anaesthesia to the water 

tank, since some studies reported that this might increase the cortisol levels (Molinero & Gonzalez, 

1995; Guardiola et al., 2016). It is worth noticed that in the referred articles the temperature was 

higher than in the present study, which may influence the concentration of cortisol. Since fish are 

poikilothermic, and the temperature increases the metabolic rate, the cortisol levels tend to increase 

with the temperature in some fish species (Fanouraki et al. 2007, 2011). Such as with lactate and 

glucose, in cortisol no significant differences were found in fish from different treatments at the 

same sampling time. These results indicate that is possible to use diets with lower protein content 

and lower fishmeal inclusion without having negative consequences in terms of stress response.  

7. CONCLUSION 

Fish growth performance was not affected by the dietary treatments. The Winter diet 

LowMix that had a lower crude protein content and was supplemented with feed additives had no 

detrimental effect on fish performance. The whole-body composition, nutrient retention and HSI 

were similar among the treatments and the VSI was lower for the LowMix fish. The results obtained 

in the present study indicate that is possible to formulate a diet with low protein content and low 

inclusion of marine-derived ingredients for gilthead seabream juveniles during the Winter period, 

without having negative impacts in fish growth performance and stress response. However, more 

research is needed to improve the Winter formulations in order to enhance growth performance in 

gilthead seabream juveniles. 
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