Higher-Order Partial Differentiation ${ }^{1}$

Noboru Endou
Nagano National College of Technology
Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we shall extend the formalization of [10] to discuss higher-order partial differentiation of real valued functions. The linearity of this operator is also proved (refer to [10], [12] and [13] for partial differentiation).

MML identifier: PDIFF_9, version: $\underline{7.12 .024 .181 .1147}$

The terminology and notation used here have been introduced in the following articles: [3], [8], [2], [4], [5], [15], [21], [17], [16], [20], [1], [6], [10], [12], [13], [18], [11], [9], [23], [7], [19], [14], and [22].

1. Preliminaries

We use the following convention: m, n denote non empty elements of \mathbb{N}, i, j denote elements of \mathbb{N}, and Z denotes a set.

One can prove the following propositions:
(1) Let S, T be real normed spaces, f be a point of the real norm space of bounded linear operators from S into T, and r be a real number. Suppose $0 \leq r$ and for every point x of S such that $\|x\| \leq 1$ holds $\|f(x)\| \leq r \cdot\|x\|$. Then $\|f\| \leq r$.
(2) Let S be a real normed space and f be a partial function from S to \mathbb{R}. Then f is continuous on Z if and only if the following conditions are satisfied:

[^0](i) $Z \subseteq \operatorname{dom} f$, and
(ii) for every sequence s_{1} of S such that $\operatorname{rng} s_{1} \subseteq Z$ and s_{1} is convergent and $\lim s_{1} \in Z$ holds $f_{*} s_{1}$ is convergent and $f_{\lim s_{1}}=\lim \left(f_{*} s_{1}\right)$.
(3) For every partial function f from \mathcal{R}^{i} to \mathbb{R} holds $\operatorname{dom}\langle f\rangle=\operatorname{dom} f$.
(4) For every partial function f from \mathcal{R}^{i} to \mathbb{R} such that $Z \subseteq \operatorname{dom} f$ holds $\operatorname{dom}(\langle f\rangle \upharpoonright Z)=Z$.
(5) For every partial function f from \mathcal{R}^{i} to \mathbb{R} holds $\langle f \upharpoonright Z\rangle=\langle f\rangle \upharpoonright Z$.
(6) Let f be a partial function from \mathcal{R}^{i} to \mathbb{R} and x be an element of \mathcal{R}^{i}. If $x \in \operatorname{dom} f$, then $\langle f\rangle(x)=\langle f(x)\rangle$ and $\langle f\rangle_{x}=\left\langle f_{x}\right\rangle$.
(7) For all partial functions f, g from \mathcal{R}^{i} to \mathbb{R} holds $\langle f+g\rangle=\langle f\rangle+\langle g\rangle$ and $\langle f-g\rangle=\langle f\rangle-\langle g\rangle$.
(8) For every partial function f from \mathcal{R}^{i} to \mathbb{R} and for every real number r holds $\langle r \cdot f\rangle=r \cdot\langle f\rangle$.
(9) Let f be a partial function from \mathcal{R}^{i} to \mathbb{R} and g be a partial function from \mathcal{R}^{i} to \mathcal{R}^{1}. If $\langle f\rangle=g$, then $|f|=|g|$.
(10) For every subset X of \mathcal{R}^{m} and for every subset Y of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $X=Y$ holds X is open iff Y is open.
(11) For every element q of \mathbb{R} such that $1 \leq i \leq j$ holds $|(\operatorname{reproj}(i,\langle\underbrace{0, \ldots, 0}_{j}\rangle))(q)|=|q|$.
(12) For every element x of \mathcal{R}^{j} holds $x=(\operatorname{reproj}(i, x))((\operatorname{proj}(i, j))(x))$.

2. Continuity and Differentiability

The following two propositions are true:
(13) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}. If f is differentiable on X, then X is open.
(14) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}. Suppose X is open. Then f is differentiable on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every element x of \mathcal{R}^{m} such that $x \in X$ holds f is differentiable in x.

Let m, n be non empty elements of \mathbb{N}, let Z be a set, and let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}. Let us assume that $Z \subseteq \operatorname{dom} f$. The functor $f_{\upharpoonright}^{\prime}$ yields a partial function from \mathcal{R}^{m} to $\left(\mathcal{R}^{n}\right)^{\mathcal{R}^{m}}$ and is defined by:
(Def. 1) $\operatorname{dom}\left(f_{\mid Z}^{\prime}\right)=Z$ and for every element x of \mathcal{R}^{m} such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)_{x}=f^{\prime}(x)$.
We now state a number of propositions:
(15) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n}. Suppose f is differentiable on X and g is differentiable on X. Then $f+g$ is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((f+g)^{\prime}{ }_{X}\right)_{x}=f^{\prime}(x)+g^{\prime}(x)$.
(16) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n}. Suppose f is differentiable on X and g is differentiable on X. Then $f-g$ is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((f-g)_{\mid X}^{\prime}\right)_{x}=f^{\prime}(x)-g^{\prime}(x)$.
(17) Let X be a subset of \mathcal{R}^{m}, f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, and r be a real number. Suppose f is differentiable on X. Then $r \cdot f$ is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((r \cdot f)_{Y X}^{\prime}\right)_{x}=r \cdot f^{\prime}(x)$.
(18) Let f be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{j},\|\cdot\|\right\rangle$. Then there exists a point p of $\left\langle\mathcal{E}^{j},\|\cdot\|\right\rangle$ such that
(i) $p=f(\langle 1\rangle)$,
(ii) for every real number r and for every point x of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $x=\langle r\rangle$ holds $f(x)=r \cdot p$, and
(iii) for every point x of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ holds $\|f(x)\|=\|p\| \cdot\|x\|$.
(19) Let f be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{j},\|\cdot\|\right\rangle$. Then there exists a point p of $\left\langle\mathcal{E}^{j},\|\cdot\|\right\rangle$ such that $p=f(\langle 1\rangle)$ and $\|p\|=\|f\|$.
(20) Let f be a point of the real norm space of bounded linear operators from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{j},\|\cdot\|\right\rangle$ and x be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$. Then $\|f(x)\|=$ $\|f\| \cdot\|x\|$.
(21) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of \mathcal{R}^{m}, and Y be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $1 \leq i \leq m$ and X is open and $g=f$ and $X=Y$ and f is partially differentiable on X w.r.t. i. Let x be an element of \mathcal{R}^{m} and y be a point of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. If $x \in X$ and $x=y$, then partdiff $(f, x, i)=$ (partdiff $(g, y, i))(\langle 1\rangle)$.
(22) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of \mathcal{R}^{m}, and Y be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $1 \leq i \leq m$ and X is open and $g=f$ and $X=Y$ and f is partially differentiable on X w.r.t. i. Let x_{0}, x_{1} be elements of \mathcal{R}^{m} and y_{0}, y_{1} be points of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. If $x_{0}=y_{0}$ and $x_{1}=y_{1}$ and $x_{0}, x_{1} \in X$, then $\left|\left(f \upharpoonright^{i} X\right)_{x_{1}}-\left(f \upharpoonright^{i} X\right)_{x_{0}}\right|=\left\|\left(g \upharpoonright^{i} Y\right)_{y_{1}}-\left(g \upharpoonright^{i} Y\right)_{y_{0}}\right\|$.
(23) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of \mathcal{R}^{m}, and Y be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $1 \leq i \leq m$ and X is open and $g=f$ and $X=Y$. Then the following statements are equivalent
(i) $\quad f$ is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X,
(ii) $\quad g$ is partially differentiable on Y w.r.t. i and $g \upharpoonright^{i} Y$ is continuous on Y.
(24) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of \mathcal{R}^{m}, and Y be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $X=Y$ and X is open and $f=g$. Then for every i such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X if and only if g is differentiable on Y and $g_{\upharpoonright Y}^{\prime}$ is continuous on Y.
(25) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of \mathcal{R}^{m}, and Y be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose X is open and $X \subseteq \operatorname{dom} f$ and $g=f$ and $X=Y$. Then g is differentiable on Y and $g_{\lceil Y}^{\prime}$ is continuous on Y if and only if the following conditions are satisfied:
(i) f is differentiable on X, and
(ii) for every element x_{0} of \mathcal{R}^{m} and for every real number r such that $x_{0} \in X$ and $0<r$ there exists a real number s such that $0<s$ and for every element x_{1} of \mathcal{R}^{m} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ and for every element v of \mathcal{R}^{m} holds $\left|f^{\prime}\left(x_{1}\right)(v)-f^{\prime}\left(x_{0}\right)(v)\right| \leq r \cdot|v|$.
(26) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}. Suppose X is open and $X \subseteq \operatorname{dom} f$. Then the following statements are equivalent
(i) for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X,
(ii) $\quad f$ is differentiable on X and for every element x_{0} of \mathcal{R}^{m} and for every real number r such that $x_{0} \in X$ and $0<r$ there exists a real number s such that $0<s$ and for every element x_{1} of \mathcal{R}^{m} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ and for every element v of \mathcal{R}^{m} holds $\left|f^{\prime}\left(x_{1}\right)(v)-f^{\prime}\left(x_{0}\right)(v)\right| \leq$ $r \cdot|v|$.
(27) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n} and g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. If $f=g$ and f is differentiable on Z, then $f_{\upharpoonright Z}^{\prime}=g_{\upharpoonright Z}^{\prime}$.
(28) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle, X$ be a subset of \mathcal{R}^{m}, and Y be a subset of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $X=Y$ and X is open and $f=g$. Then for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X if and only if f is differentiable on X and $g_{\upharpoonright Y}^{\prime}$ is continuous on Y.
(29) Let f, g be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n} and x be an element of \mathcal{R}^{m}. Suppose f is continuous in x and g is continuous in x. Then $f+g$ is continuous in x and $f-g$ is continuous in x.
(30) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n}, x be an element of \mathcal{R}^{m}, and r be a real number. If f is continuous in x, then $r \cdot f$ is continuous in x.
(31) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n} and x be an element of \mathcal{R}^{m}. If f is continuous in x, then $-f$ is continuous in x.
(32) Let f be a partial function from \mathcal{R}^{m} to \mathcal{R}^{n} and x be an element of \mathcal{R}^{m}. If f is continuous in x, then $|f|$ is continuous in x.
(33) Let Z be a set and f, g be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n}. Suppose f is continuous on Z and g is continuous on Z. Then $f+g$ is continuous on Z and $f-g$ is continuous on Z.
(34) Let r be a real number and f, g be partial functions from \mathcal{R}^{m} to \mathcal{R}^{n}. If f is continuous on Z, then $r \cdot f$ is continuous on Z.
(35) For all partial functions f, g from \mathcal{R}^{m} to \mathcal{R}^{n} such that f is continuous on Z holds $-f$ is continuous on Z.
(36) Let f be a partial function from \mathcal{R}^{i} to \mathbb{R} and x_{0} be an element of \mathcal{R}^{i}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $x_{0} \in \operatorname{dom} f$, and
(ii) for every real number r such that $0<r$ there exists a real number s such that $0<s$ and for every element x of \mathcal{R}^{i} such that $x \in \operatorname{dom} f$ and $\left|x-x_{0}\right|<s$ holds $\left|f_{x}-f_{x_{0}}\right|<r$.
(37) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and x_{0} be an element of \mathcal{R}^{m}. Then f is continuous in x_{0} if and only if $\langle f\rangle$ is continuous in x_{0}.
(38) Let f, g be partial functions from \mathcal{R}^{m} to \mathbb{R} and x_{0} be an element of \mathcal{R}^{m}. Suppose f is continuous in x_{0} and g is continuous in x_{0}. Then $f+g$ is continuous in x_{0} and $f-g$ is continuous in x_{0}.
(39) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R}, x_{0} be an element of \mathcal{R}^{m}, and r be a real number. If f is continuous in x_{0}, then $r \cdot f$ is continuous in x_{0}.
(40) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and x_{0} be an element of \mathcal{R}^{m}. If f is continuous in x_{0}, then $|f|$ is continuous in x_{0}.
(41) Let f, g be partial functions from \mathcal{R}^{i} to \mathbb{R} and x be an element of \mathcal{R}^{i}. If f is continuous in x and g is continuous in x, then $f \cdot g$ is continuous in x.
Let m be a non empty element of \mathbb{N}, let Z be a set, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. We say that f is continuous on Z if and only if:
(Def. 2) For every element x_{0} of \mathcal{R}^{m} such that $x_{0} \in Z$ holds $f \upharpoonright Z$ is continuous in x_{0}.
We now state a number of propositions:
(42) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to \mathbb{R}. Suppose $f=g$. Then $Z \subseteq \operatorname{dom} f$ and f is continuous on Z if and only if g is continuous on Z.
(43) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to \mathbb{R}. Suppose $f=g$ and $Z \subseteq \operatorname{dom} f$. Then f is continuous on Z
if and only if for every sequence s of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ such that $\operatorname{rng} s \subseteq Z$ and s is convergent and $\lim s \in Z$ holds $g_{*} s$ is convergent and $g_{\lim s}=\lim \left(g_{*} s\right)$.
(44) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and g be a partial function from \mathcal{R}^{m} to \mathcal{R}^{1}. Suppose $\langle f\rangle=g$. Then $Z \subseteq \operatorname{dom} f$ and f is continuous on Z if and only if g is continuous on Z.
(45) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose $Z \subseteq \operatorname{dom} f$. Then f is continuous on Z if and only if for every element x_{0} of \mathcal{R}^{m} and for every real number r such that $x_{0} \in Z$ and $0<r$ there exists a real number s such that $0<s$ and for every element x_{1} of \mathcal{R}^{m} such that $x_{1} \in Z$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(46) Let f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose f is continuous on Z and g is continuous on Z and $Z \subseteq \operatorname{dom} f$ and $Z \subseteq \operatorname{dom} g$. Then $f+g$ is continuous on Z and $f-g$ is continuous on Z.
(47) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and r be a real number. If $Z \subseteq \operatorname{dom} f$ and f is continuous on Z, then $r \cdot f$ is continuous on Z.
(48) Let f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose f is continuous on Z and g is continuous on Z and $Z \subseteq \operatorname{dom} f$ and $Z \subseteq \operatorname{dom} g$. Then $f \cdot g$ is continuous on Z.
(49) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and g be a partial function from $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ to \mathbb{R}. Suppose $f=g$. Then $Z \subseteq \operatorname{dom} f$ and f is continuous on Z if and only if g is continuous on Z.
(50) For all partial functions f, g from \mathcal{R}^{m} to \mathcal{R}^{n} such that f is continuous on Z holds $|f|$ is continuous on Z.
(51) Let f, g be partial functions from \mathcal{R}^{m} to \mathbb{R} and x be an element of \mathcal{R}^{m}. Suppose f is differentiable in x and g is differentiable in x. Then $f+g$ is differentiable in x and $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$ and $f-g$ is differentiable in x and $(f-g)^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$.
(52) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R}, r be a real number, and x be an element of \mathcal{R}^{m}. Suppose f is differentiable in x. Then $r \cdot f$ is differentiable in x and $(r \cdot f)^{\prime}(x)=r \cdot f^{\prime}(x)$.
Let Z be a set, let m be a non empty element of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. We say that f is differentiable on Z if and only if:
(Def. 3) For every element x of \mathcal{R}^{m} such that $x \in Z$ holds $f \upharpoonright Z$ is differentiable in x.
Next we state three propositions:
(53) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and g be a partial function from \mathcal{R}^{m} to \mathcal{R}^{1}. Suppose $\langle f\rangle=g$. Then $Z \subseteq \operatorname{dom} f$ and f is differentiable on Z if and only if g is differentiable on Z.
(54) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose $X \subseteq \operatorname{dom} f$ and X is open. Then f is differentiable on X if and
only if for every element x of \mathcal{R}^{m} such that $x \in X$ holds f is differentiable in x.
(55) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathbb{R}. If $X \subseteq \operatorname{dom} f$ and f is differentiable on X, then X is open.
Let m be a non empty element of \mathbb{N}, let Z be a set, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Let us assume that $Z \subseteq \operatorname{dom} f$. The functor $f_{\mid Z}^{\prime}$ yields a partial function from \mathcal{R}^{m} to $\mathbb{R}^{\mathcal{R}^{m}}$ and is defined by:
(Def. 4) $\operatorname{dom}\left(f_{\ulcorner Z}^{\prime}\right)=Z$ and for every element x of \mathcal{R}^{m} such that $x \in Z$ holds $\left(f_{Z}^{\prime}\right)_{x}=f^{\prime}(x)$.
One can prove the following four propositions:
(56) Let X be a subset of \mathcal{R}^{m}, f be a partial function from \mathcal{R}^{m} to \mathbb{R}, and g be a partial function from \mathcal{R}^{m} to \mathcal{R}^{1}. Suppose $\langle f\rangle=g$ and $X \subseteq \operatorname{dom} f$ and f is differentiable on X. Then g is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left(f_{\lceil X}^{\prime}\right)_{x}=\operatorname{proj}(1,1) \cdot\left(g_{\lceil X}^{\prime}\right)_{x}$.
(57) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose $X \subseteq \operatorname{dom} f$ and $X \subseteq \operatorname{dom} g$ and f is differentiable on X and g is differentiable on X. Then $f+g$ is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((f+g)_{\lceil X}^{\prime}\right)_{x}=\left(f_{\lceil X}^{\prime}\right)_{x}+\left(g_{\lceil X}^{\prime}\right)_{x}$.
(58) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose $X \subseteq \operatorname{dom} f$ and $X \subseteq \operatorname{dom} g$ and f is differentiable on X and g is differentiable on X. Then $f-g$ is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((f-g)_{\mid X}^{\prime}\right)_{x}=\left(f_{\lceil X}^{\prime}\right)_{x}-\left(g_{\lceil X}^{\prime}\right)_{x}$.
(59) Let X be a subset of \mathcal{R}^{m}, f be a partial function from \mathcal{R}^{m} to \mathbb{R}, and r be a real number. Suppose $X \subseteq \operatorname{dom} f$ and f is differentiable on X. Then $r \cdot f$ is differentiable on X and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((r \cdot f)_{\mid X}^{\prime}\right)_{x}=r \cdot\left(f_{\uparrow X}^{\prime}\right)_{x}$.
Let m be a non empty element of \mathbb{N}, let Z be a set, let i be an element of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. We say that f is partially differentiable on Z w.r.t. i if and only if:
(Def. 5) $\quad Z \subseteq \operatorname{dom} f$ and for every element x of \mathcal{R}^{m} such that $x \in Z$ holds $f \upharpoonright Z$ is partially differentiable in x w.r.t. i.
Let m be a non empty element of \mathbb{N}, let Z be a set, let i be an element of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Let us assume that f is partially differentiable on Z w.r.t. i. The functor $f \upharpoonright^{i} Z$ yields a partial function from \mathcal{R}^{m} to \mathbb{R} and is defined as follows:
(Def. 6) $\operatorname{dom}\left(f \upharpoonright^{i} Z\right)=Z$ and for every element x of \mathcal{R}^{m} such that $x \in Z$ holds $\left(f \upharpoonright^{i} Z\right)_{x}=\operatorname{partdiff}(f, x, i)$.
Next we state several propositions:
(60) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose X is open and $1 \leq i \leq m$. Then f is partially differentiable on X
w.r.t. i if and only if $X \subseteq \operatorname{dom} f$ and for every element x of \mathcal{R}^{m} such that $x \in X$ holds f is partially differentiable in x w.r.t. i.
(61) Let X be a subset of \mathcal{R}^{m}, f be a partial function from \mathcal{R}^{m} to \mathbb{R}, and g be a partial function from \mathcal{R}^{m} to \mathcal{R}^{1}. Suppose $\langle f\rangle=g$ and X is open and $1 \leq i \leq m$. Then f is partially differentiable on X w.r.t. i if and only if g is partially differentiable on X w.r.t. i.
(62) Let X be a subset of \mathcal{R}^{m}, f be a partial function from \mathcal{R}^{m} to \mathbb{R}, and g be a partial function from \mathcal{R}^{m} to \mathcal{R}^{1}. Suppose $\langle f\rangle=g$ and X is open and $1 \leq i \leq m$ and f is partially differentiable on X w.r.t. i. Then $f \upharpoonright^{i} X$ is continuous on X if and only if $g \upharpoonright^{i} X$ is continuous on X.
(63) Let X be a subset of \mathcal{R}^{m} and f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose X is open and $X \subseteq \operatorname{dom} f$. Then the following statements are equivalent
(i) for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X,
(ii) $\quad f$ is differentiable on X and for every element x_{0} of \mathcal{R}^{m} and for every real number r such that $x_{0} \in X$ and $0<r$ there exists a real number s such that $0<s$ and for every element x_{1} of \mathcal{R}^{m} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ and for every element v of \mathcal{R}^{m} holds $\left|f^{\prime}\left(x_{1}\right)(v)-f^{\prime}\left(x_{0}\right)(v)\right| \leq$ $r \cdot|v|$.
(64) Let f, g be partial functions from \mathcal{R}^{m} to \mathbb{R} and x be an element of \mathcal{R}^{m}. Suppose f is partially differentiable in x w.r.t. i and g is partially differentiable in x w.r.t. i. Then $f \cdot g$ is partially differentiable in x w.r.t. i and $\operatorname{partdiff}(f \cdot g, x, i)=\operatorname{partdiff}(f, x, i) \cdot g(x)+f(x) \cdot \operatorname{partdiff}(g, x, i)$.
(65) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $1 \leq i$,
(iii) $i \leq m$,
(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i. Then
(vi) $f+g$ is partially differentiable on X w.r.t. i,
(vii) $\quad(f+g) \upharpoonright^{i} X=\left(f \upharpoonright^{i} X\right)+\left(g \upharpoonright^{i} X\right)$, and
(viii) for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((f+g) \upharpoonright^{i} X\right)_{x}=$ partdiff $(f, x, i)+\operatorname{partdiff}(g, x, i)$.
(66) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $1 \leq i$,
(iii) $i \leq m$,
(iv) $\quad f$ is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) $f-g$ is partially differentiable on X w.r.t. i,
(vii) $\quad(f-g) \upharpoonright^{i} X=\left(f \upharpoonright^{i} X\right)-\left(g \upharpoonright^{i} X\right)$, and
(viii) for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left((f-g) \upharpoonright^{i} X\right)_{x}=$ $\operatorname{partdiff}(f, x, i)-\operatorname{partdiff}(g, x, i)$.
(67) Let X be a subset of \mathcal{R}^{m}, r be a real number, and f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose X is open and $1 \leq i \leq m$ and f is partially differentiable on X w.r.t. i. Then
(i) $r \cdot f$ is partially differentiable on X w.r.t. i,
(ii) $r \cdot f \upharpoonright^{i} X=r \cdot\left(f \upharpoonright^{i} X\right)$, and
(iii) for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left(r \cdot f \upharpoonright^{i} X\right)_{x}=r$. partdiff (f, x, i).
(68) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $1 \leq i$,
(iii) $i \leq m$,
(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) $f \cdot g$ is partially differentiable on X w.r.t. i,
(vii) $f \cdot g \upharpoonright^{i} X=\left(f \upharpoonright^{i} X\right) \cdot g+f \cdot\left(g \upharpoonright^{i} X\right)$, and
(viii) for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left(f \cdot g \upharpoonright^{i} X\right)_{x}=$ $\operatorname{partdiff}(f, x, i) \cdot g(x)+f(x) \cdot \operatorname{partdiff}(g, x, i)$.

3. Higher-Order Partial Differentiation

Let m be a non empty element of \mathbb{N}, let Z be a set, let I be a finite sequence of elements of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. The functor $\operatorname{PartDiffSeq}(f, Z, I)$ yielding a sequence of partial functions from \mathcal{R}^{m} into \mathbb{R} is defined by:
(Def. 7) $\quad(\operatorname{PartDiffSeq}(f, Z, I))(0)=f$ and for every natural number i holds $(\operatorname{PartDiffSeq}(f, Z, I))(i+1)=(\operatorname{PartDiffSeq}(f, Z, I))(i) \upharpoonright^{I_{i+1}} Z$.
Let m be a non empty element of \mathbb{N}, let Z be a set, let I be a finite sequence of elements of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. We say that f is partially differentiable on Z w.r.t. I if and only if:
(Def. 8) For every element i of \mathbb{N} such that $i \leq \operatorname{len} I-1$ holds $(\operatorname{PartDiffSeq}(f, Z, I))(i)$ is partially differentiable on Z w.r.t. I_{i+1}.

Let m be a non empty element of \mathbb{N}, let Z be a set, let I be a finite sequence of elements of \mathbb{N}, and let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. The functor $f \upharpoonright^{I} Z$ yielding a partial function from \mathcal{R}^{m} to \mathbb{R} is defined by:
(Def. 9) $\quad f \upharpoonright^{I} Z=(\operatorname{PartDiffSeq}(f, Z, I))(\operatorname{len} I)$.
The following propositions are true:
(69) Let X be a subset of \mathcal{R}^{m}, I be a non empty finite sequence of elements of \mathbb{N}, and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $\operatorname{rng} I \subseteq \operatorname{Seg} m$,
(iii) $\quad f$ is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Let given i. Suppose $i \leq \operatorname{len} I-1$. Then $(\operatorname{PartDiffSeq}(f+g, X, I))(i)$ is partially differentiable on X w.r.t. I_{i+1} and $(\operatorname{PartDiffSeq}(f+g, X, I))(i)=$ $(\operatorname{PartDiffSeq}(f, X, I))(i)+(\operatorname{PartDiffSeq}(g, X, I))(i)$.
(70) Let X be a subset of \mathcal{R}^{m}, I be a non empty finite sequence of elements of \mathbb{N}, and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $\operatorname{rng} I \subseteq \operatorname{Seg} m$,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Then $f+g$ is partially differentiable on X w.r.t. I and $(f+g) \upharpoonright^{I} X=$ $\left(f \upharpoonright^{I} X\right)+\left(g \upharpoonright^{I} X\right)$.
(71) Let X be a subset of \mathcal{R}^{m}, I be a non empty finite sequence of elements of \mathbb{N}, and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $\quad \operatorname{rng} I \subseteq \operatorname{Seg} m$,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Let given i. Suppose $i \leq \operatorname{len} I-1$. Then $(\operatorname{PartDiffSeq}(f-g, X, I))(i)$ is partially differentiable on X w.r.t. I_{i+1} and $(\operatorname{PartDiffSeq}(f-g, X, I))(i)=$ $(\operatorname{PartDiffSeq}(f, X, I))(i)-(\operatorname{PartDiffSeq}(g, X, I))(i)$.
(72) Let X be a subset of \mathcal{R}^{m}, I be a non empty finite sequence of elements of \mathbb{N}, and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $\operatorname{rng} I \subseteq \operatorname{Seg} m$,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Then $f-g$ is partially differentiable on X w.r.t. I and $(f-g) \upharpoonright^{I} X=$ $\left(f \upharpoonright^{I} X\right)-\left(g \upharpoonright^{I} X\right)$.
(73) Let X be a subset of \mathcal{R}^{m}, r be a real number, I be a non empty finite sequence of elements of \mathbb{N}, and f be a partial function from \mathcal{R}^{m} to \mathbb{R}.

Suppose X is open and $\operatorname{rng} I \subseteq \operatorname{Seg} m$ and f is partially differentiable on X w.r.t. I. Let given i. Suppose $i \leq \operatorname{len} I-1$. Then $(\operatorname{PartDiffSeq}(r \cdot f, X, I))(i)$ is partially differentiable on X w.r.t. I_{i+1} and $(\operatorname{PartDiffSeq}(r \cdot f, X, I))(i)=$ $r \cdot(\operatorname{PartDiffSeq}(f, X, I))(i)$.
(74) Let X be a subset of \mathcal{R}^{m}, r be a real number, I be a non empty finite sequence of elements of \mathbb{N}, and f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose X is open and $\operatorname{rng} I \subseteq \operatorname{Seg} m$ and f is partially differentiable on X w.r.t. I. Then $r \cdot f$ is partially differentiable on X w.r.t. I and $r \cdot f \upharpoonright^{I} X=r \cdot\left(f \upharpoonright^{I} X\right)$.
Let m be a non empty element of \mathbb{N}, let f be a partial function from \mathcal{R}^{m} to \mathbb{R}, let k be an element of \mathbb{N}, and let Z be a set. We say that f is partial differentiable up to order k and Z if and only if the condition (Def. 10) is satisfied.
(Def. 10) Let I be a non empty finite sequence of elements of \mathbb{N}. If len $I \leq k$ and $\operatorname{rng} I \subseteq \operatorname{Seg} m$, then f is partially differentiable on Z w.r.t. I.
The following proposition is true
(75) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and I, G be non empty finite sequences of elements of \mathbb{N}. Then f is partially differentiable on Z w.r.t. $G^{\wedge} I$ if and only if f is partially differentiable on Z w.r.t. G and $f \upharpoonright^{G} Z$ is partially differentiable on Z w.r.t. I.
One can prove the following propositions:
(76) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Then f is partially differentiable on Z w.r.t. $\langle i\rangle$ if and only if f is partially differentiable on Z w.r.t. i.
(77) For every partial function f from \mathcal{R}^{m} to \mathbb{R} holds $f \Upsilon^{\langle i\rangle} Z=f \Upsilon^{i} Z$.
(78) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R} and I be a non empty finite sequence of elements of \mathbb{N}. Suppose f is partial differentiable up to order $i+j$ and Z and $\operatorname{rng} I \subseteq \operatorname{Seg} m$ and len $I=j$. Then $f \upharpoonright^{I} Z$ is partial differentiable up to order i and Z.
(79) Let f be a partial function from \mathcal{R}^{m} to \mathbb{R}. Suppose f is partial differentiable up to order i and Z and $j \leq i$. Then f is partial differentiable up to order j and Z.
(80) Let X be a subset of \mathcal{R}^{m} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose that
(i) X is open,
(ii) $\quad f$ is partial differentiable up to order i and X, and
(iii) g is partial differentiable up to order i and X.

Then $f+g$ is partial differentiable up to order i and X and $f-g$ is partial differentiable up to order i and X.
(81) Let X be a subset of \mathcal{R}^{m}, f be a partial function from \mathcal{R}^{m} to \mathbb{R}, and r be a real number. Suppose X is open and f is partial differentiable up to
order i and X. Then $r \cdot f$ is partial differentiable up to order i and X.
(82) Let X be a subset of \mathcal{R}^{m}. Suppose X is open. Let i be an element of \mathbb{N} and f, g be partial functions from \mathcal{R}^{m} to \mathbb{R}. Suppose f is partial differentiable up to order i and X and g is partial differentiable up to order i and X. Then $f \cdot g$ is partial differentiable up to order i and X.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Takao Inoué, Noboru Endou, and Yasunari Shidama. Differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 18(4):207-212, 2010, doi: 10.2478/v10037-010-0025-7.
[13] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 19(1):1-9, 2011, doi: 10.2478/v10037-011-0001-x.
[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[15] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into \mathcal{R}^{n}. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.
[16] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.
[17] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[20] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[21] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 20, 2011

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285 and 23500029.
 (C) 2012 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(p), 1898-9934(e)

