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Topology from Neighbourhoods

Roland Coghetto
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7100 La Louvière, Belgium

Summary. Using Mizar [9], and the formal topological space structure
(FMT Space Str) [19], we introduce the three U-FMT conditions (U-FMT filter,
U-FMT with point and U-FMT local) similar to those VI , VII , VIII and VIV of
the proposition 2 in [10]:

If to each element x of a set X there corresponds a set B(x) of subsets
of X such that the properties VI , VII , VIII and VIV are satisfied,
then there is a unique topological structure on X such that, for each
x ∈ X, B(x) is the set of neighborhoods of x in this topology.

We present a correspondence between a topological space and a space defined
with the formal topological space structure with the three U-FMT conditions called
the topology from neighbourhoods. For the formalization, we were inspired by
the works of Bourbaki [11] and Claude Wagschal [31].
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The notation and terminology used in this paper have been introduced in the
following articles: [24], [16], [1], [30], [17], [19], [12], [13], [27], [2], [34], [25], [28],
[4], [14], [23], [32], [33], [22], [29], [5], [6], [8], [18], [26], and [15].

1. Preliminaries

From now on X denotes a non empty set.
Now we state the propositions:

(1) Let us consider families B, Y of subsets of X. If Y ⊆ UniCl(B), then⋃
Y ∈ UniCl(B).
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(2) Let us consider an empty family B of subsets of X. Suppose for every
elements B1, B2 of B, there exists a subset B3 of B such that B1 ∩B2 =⋃
B3 and X =

⋃
B. Then FinMeetCl(B) ⊆ UniCl(B).

Proof: FinMeetCl(B) ⊆ UniCl(B) by [22, (1)]. �

(3) Let us consider a non empty family B of subsets of X. Suppose for
every elements B1, B2 of B, there exists a subset B3 of B such that
B1 ∩B2 =

⋃
B3 and X =

⋃
B. Then FinMeetCl(B) ⊆ UniCl(B).

Proof: Reconsider x0 = x as a subset of X. Consider Y being a family
of subsets of X such that Y ⊆ B and Y is finite and x0 = Intersect(Y ).
Define P[natural number] ≡ for every family Y of subsets of X for every
subset x of X such that Y ⊆ B and Y = $1 and x = Intersect(Y ) holds
x ∈ UniCl(B). P[0]. For every natural number k such that P[k] holds
P[k + 1] by [20, (24)], [22, (10), (9)], [15, (2)]. For every natural number
k, P[k] from [3, Sch. 2]. �

(4) Let us consider a family B of subsets of X. Suppose for every elements
B1, B2 of B, there exists a subset B3 of B such that B1 ∩B2 =

⋃
B3 and

X =
⋃
B. Then

(i) UniCl(B) = UniCl(FinMeetCl(B)), and

(ii) 〈X,UniCl(B)〉 is topological space-like.

Proof: UniCl(B) = UniCl(FinMeetCl(B)) by [24, (4)], (2), (3), [7, (15)].
�

(5) Let us consider a non empty formal topological space R. Then there
exists a relational structure S such that for every element x of R, UF (x)
is a subset of S.

Let T be a non empty topological space. One can verify that NeighSpT is
filled.

2. Open, Neighborhood and Conditions for Topological Space
from Neighborhoods

Let E be a non empty, strict formal topological space and O be a subset of
E. We say that O is open if and only if

(Def. 1) for every element x of E such that x ∈ O holds O ∈ UF (x).

We say that E is U-FMT filter if and only if

(Def. 2) for every element x of E, UF (x) is a filter of the carrier of E.

We say that E is U-FMT with point if and only if

(Def. 3) for every element x of E and for every element V of UF (x), x ∈ V .
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We say that E is U-FMT local if and only if

(Def. 4) for every element x of E and for every element V of UF (x), there exists
an element W of UF (x) such that for every element y of E such that y is
an element of W holds V is an element of UF (y).

Now we state the proposition:

(6) Let us consider a non empty, strict formal topological space E. Suppose
E is U-FMT filter. Let us consider an element x of E. Then UF (x) is not
empty.

Let us consider a non empty, strict formal topological space E. Now we state
the propositions:

(7) If E is U-FMT with point, then E is filled.

(8) If E is filled and for every element x of E, UF (x) is not empty, then E
is U-FMT with point.

(9) If E is filled and U-FMT filter, then E is U-FMT with point. The theorem
is a consequence of (8).

Observe that there exists a non empty, strict formal topological space which
is U-FMT local, U-FMT with point, and U-FMT filter.

Now we state the proposition:

(10) Let us consider a U-FMT filter, non empty, strict formal topological
space E, and an element x of E. Then the carrier of E ∈ UF (x).

Let E be a U-FMT filter, non empty, strict formal topological space and x
be an element of E.

A neighbourhood of x is a subset of E and is defined by

(Def. 5) it ∈ UF (x).

Let us observe that there exists a neighbourhood of x which is open.
Let A be a subset of E.
A neighbourhood of A is a subset of E and is defined by

(Def. 6) for every element x of E such that x ∈ A holds it ∈ UF (x).

Note that there exists a neighbourhood of A which is open.
Now we state the proposition:

(11) Let us consider a U-FMT filter, non empty, strict formal topological
space E, a subset A of E, a neighbourhood C of A, and a subset B of E.
If C ⊆ B, then B is a neighbourhood of A.

Let E be a U-FMT filter, non empty, strict formal topological space and A
be a subset of E. The functor NeighborhoodA yielding a family of subsets of E
is defined by the term

(Def. 7) the set of all N where N is a neighbourhood of A.
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Now we state the proposition:

(12) Let us consider a U-FMT filter, non empty, strict formal topological
space E, and a non empty subset A of E. Then NeighborhoodA is a filter
of the carrier of E. The theorem is a consequence of (10).

Let E be a non empty, strict formal topological space. We say that E is
U-FMT filter base if and only if

(Def. 8) for every element x of the carrier of E, UF (x) is a filter base of the carrier
of E.

Let E be a non empty formal topological space. The functor [E] yielding
a function from the carrier of E into 22

(the carrier of E)
is defined by

(Def. 9) for every element x of the carrier of E, it(x) = [UF (x)].

Let E be a non empty, strict formal topological space. The functor gen-filterE
yielding a non empty, strict formal topological space is defined by the term

(Def. 10) 〈the carrier of E, [E]〉.
Now we state the proposition:

(13) Let us consider a non empty, strict formal topological space E. Suppose
E is U-FMT filter base. Then gen-filterE is U-FMT filter.
Proof: For every element x of gen-filterE, UF (x) is a filter of the carrier
of gen-filterE by [16, (25)]. �

3. Topology from Neighborhoods: a Definition

A topology from neighbourhoods is a U-FMT local, U-FMT with point, U-
FMT filter, non empty, strict formal topological space. Let E be a topology
from neighbourhoods and x be an element of E. We introduce the notation
the neighborhood system of x as a synonym of UF (x).

Let us note that there exists a subset of E which is open.
The functor the open set family of E yielding a non empty family of subsets

of the carrier of E is defined by the term

(Def. 11) the set of all O where O is an open subset of E.

Now we state the propositions:

(14) Let us consider a topology from neighbourhoods E. Then

(i) ∅, the carrier of E ∈ the open set family of E, and

(ii) for every family a of subsets of E such that a ⊆ the open set family
of E holds

⋃
a ∈ the open set family of E, and

(iii) for every subsets a, b of E such that a, b ∈ the open set family of E
holds a ∩ b ∈ the open set family of E.
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Proof: ∅ ∈ the open set family of E. The carrier of E ∈ the open set
family of E by [30, (5)]. For every family a of subsets of E such that
a ⊆ the open set family of E holds

⋃
a ∈ the open set family of E by [15,

(74)]. For every subsets a, b of E such that a, b ∈ the open set family of
E holds a ∩ b ∈ the open set family of E. �

(15) Let us consider a topology from neighbourhoods E, an element a of E,
and a neighbourhood V of a. Then there exists an open subset O of E
such that

(i) a ∈ O, and

(ii) O ⊆ V .

The theorem is a consequence of (6).

(16) Let us consider a topology from neighbourhoods E, a non empty subset
A of E, and a subset V of E. Then V is a neighbourhood of A if and only
if there exists an open subset O of E such that A ⊆ O ⊆ V .
Proof: If V is a neighbourhood of A, then there exists an open subset O
of E such that A ⊆ O ⊆ V by (15), (14), [13, (4)]. If there exists an open
subset O of E such that A ⊆ O ⊆ V , then V is a neighbourhood of A. �

(17) Let us consider a topology from neighbourhoods E, and a non empty
subset A of E. Then NeighborhoodA is a filter of the carrier of E.

Let E be a topology from neighbourhoods and A be a non empty subset of
E. The open neighbourhoods of A yielding a family of subsets of the carrier of
E is defined by the term

(Def. 12) the set of all N where N is an open neighbourhood of A.

Now we state the propositions:

(18) Let us consider a topology from neighbourhoods E, a filter F of the car-
rier of E, a non empty subset S of F , and a non empty subset A of E.
Suppose F = NeighborhoodA and S = the open neighbourhoods of A.
Then S is filter basis. The theorem is a consequence of (16).

(19) Let us consider a non empty topological space T . Then there exists
a topology from neighbourhoods E such that

(i) the carrier of T = the carrier of E, and

(ii) the open set family of E = the topology of T .

Proof: There exists a non empty, strict formal topological space E such
that E is U-FMT filter, U-FMT with point, and U-FMT local and the carri-
er of T = the carrier of E and there exists a topology from neighbourhoods
T1 such that T1 = E and the open set family of T1 = the topology of T by
(13), [23, (1)], [21, (3), (7)]. Consider E being a non empty, strict formal
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topological space such that the carrier of T = the carrier of E and E is
U-FMT filter, U-FMT with point, and U-FMT local and there exists a to-
pology from neighbourhoods T1 such that T1 = E and the open set family
of T1 = the topology of T . Consider T1 being a topology from neighbour-
hoods such that T1 = E and the open set family of T1 = the topology of
T . �

(20) Let us consider a non empty topological space T , and a topology from ne-
ighbourhoods E. Suppose the carrier of T = the carrier of E and the open
set family of E = the topology of T . Let us consider an element x of E.
Then UF (x) = {V , where V is a subset of E : there exists a subset O of
T such that O ∈ the topology of T and x ∈ O and O ⊆ V }. The theorem
is a consequence of (15).

4. Basis

Let E be a topology from neighbourhoods and F be a family of subsets of
E. We say that F is quasi basis if and only if

(Def. 13) the open set family of E ⊆ UniCl(F ).

Note that the open set family of E is quasi basis and there exists a family
of subsets of E which is quasi basis.

Let S be a family of subsets of E. We say that S is open if and only if

(Def. 14) S ⊆ the open set family of E.

One can check that there exists a family of subsets of E which is open and
there exists a family of subsets of E which is open and quasi basis.

A basis of E is an open, quasi basis family of subsets of E. Now we state
the propositions:

(21) Let us consider a topology from neighbourhoods E, and a basis B of E.
Then the open set family of E = UniCl(B). The theorem is a consequence
of (14).

(22) Let us consider a non empty family B of subsets of X. Suppose for every
elements B1, B2 of B, there exists a subset B3 of B such that B1 ∩B2 =⋃
B3 and X =

⋃
B. Then there exists a topology from neighbourhoods E

such that

(i) the carrier of E = X, and

(ii) B is a basis of E.

The theorem is a consequence of (4) and (19).

(23) Let us consider a topology from neighbourhoods E, and a basis B of E.
Then
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(i) for every elements B1, B2 of B, there exists a subset B3 of B such
that B1 ∩B2 =

⋃
B3, and

(ii) the carrier of E =
⋃
B.

Proof: For every elements B1, B2 of B, there exists a subset B3 of B such
that B1 ∩ B2 =

⋃
B3 by [7, (16)], (14). The carrier of X ∈ the open set

family of X. Consider Y being a family of subsets of X such that Y ⊆ B
and the carrier of X =

⋃
Y. �

5. Correspondence between Topological Space and Topology
from Neighborhoods

Let T be a non empty topological space. The functor TopSpace2FMTT
yielding a topology from neighbourhoods is defined by

(Def. 15) the carrier of it = the carrier of T and the open set family of it =
the topology of T .

Let E be a topology from neighbourhoods. The functor FMT2TopSpaceE
yielding a strict topological space is defined by

(Def. 16) the carrier of it = the carrier of E and the open set family of E =
the topology of it .

Let us observe that FMT2TopSpaceE is non empty.
Now we state the propositions:

(24) Let us consider a non empty, strict topological space T . Then T =
FMT2TopSpace TopSpace2FMTT .

(25) Let us consider a topology from neighbourhoods E. Then E =
TopSpace2FMT FMT2TopSpaceE.
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