

Brouwer Invariance of Domain Theorem¹

Karol Pąk Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok Poland

Summary. In this article we focus on a special case of the Brouwer invariance of domain theorem. Let us A, B be a subsets of \mathcal{E}^n , and $f : A \to B$ be a homeomorphic. We prove that, if A is closed then f transform the boundary of A to the boundary of B; and if B is closed then f transform the interior of A to the interior of B. These two cases are sufficient to prove the topological invariance of dimension, which is used to prove basic properties of the *n*-dimensional manifolds, and also to prove basic properties of the boundary and the interior of manifolds, e.g. the boundary of an *n*-dimension manifold with boundary is an (n-1)-dimension manifold. This article is based on [18]; [21] and [20] can also serve as reference books.

MSC: 54A05 03B35

Keywords: continuous transformations; topological dimension

MML identifier: BROUWER3, version: 8.1.02 5.22.1199

The notation and terminology used in this paper have been introduced in the following articles: [27], [1], [14], [4], [6], [15], [37], [7], [8], [40], [31], [34], [38], [2], [3], [9], [5], [33], [13], [44], [45], [10], [42], [43], [35], [17], [28], [29], [25], [46], [16], [47], [26], [30], [32], and [12].

1. Preliminaries

From now on x, X denote sets, n, m, i denote natural numbers, p, q denote points of $\mathcal{E}^n_{\mathrm{T}}$, A, B denote subsets of $\mathcal{E}^n_{\mathrm{T}}$, and r, s denote real numbers.

Let us consider X and n. One can verify that every function from X into $\mathcal{E}_{\mathrm{T}}^{n}$ is finite sequence-yielding.

 $^{^{1}}$ The paper has been financed by the resources of the Polish National Science Centre granted by decision no DEC-2012/07/N/ST6/02147.

Let us consider m. Let f be a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$ and g be a function from X into $\mathcal{E}_{\mathrm{T}}^{m}$. Let us observe that the functor $f \cap g$ yields a function from Xinto $\mathcal{E}_{\mathrm{T}}^{n+m}$. Let T be a topological space. Let f be a continuous function from T into $\mathcal{E}_{\mathrm{T}}^{n}$ and g be a continuous function from T into $\mathcal{E}_{\mathrm{T}}^{m}$. Note that $f \cap g$ is continuous as a function from T into $\mathcal{E}_{\mathrm{T}}^{n+m}$.

Let f be a real-valued function. The functor |[f]| yielding a function is defined by

(Def. 1) (i) dom it = dom f, and

(ii) for every object x such that $x \in \text{dom } it \text{ holds } it(x) = |[f(x)]|$.

One can verify that |[f]| is (the carrier of $\mathcal{E}^1_{\mathrm{T}}$)-valued.

Let us consider X. Let Y be a non empty real-membered set and f be a function from X into Y. One can verify that the functor |[f]| yields a function from X into $\mathcal{E}^1_{\mathrm{T}}$. Let T be a non empty topological space and f be a continuous function from T into \mathbb{R}^1 . Note that |[f]| is continuous as a function from T into $\mathcal{E}^1_{\mathrm{T}}$.

Let f be a continuous real map of T. Observe that |[f]| is continuous as a function from T into $\mathcal{E}^1_{\mathbb{T}}$.

2. A DISTRIBUTION OF SPHERE

In the sequel N denotes a non zero natural number and u, t denote points of $\mathcal{E}_{\mathrm{T}}^{N+1}$.

Now we state the propositions:

- (1) Let us consider an element F of $((\text{the carrier of } \mathbb{R}^1)^{\alpha})^N$. Suppose If $i \in \text{dom } F$, then F(i) = PROJ(N+1, i). Then
 - (i) for every t, $(\prod^* F)(t) = t \upharpoonright N$, and
 - (ii) for every subsets S_3 , S_2 of $\mathcal{E}_{\mathrm{T}}^{N+1}$ such that $S_3 = \{u : u(N+1) \ge 0 \text{ and } |u| = 1\}$ and $S_2 = \{t : t(N+1) \le 0 \text{ and } |t| = 1\}$ holds $(\prod^* F)^\circ S_3 = \overline{\mathrm{Ball}}(0_{\mathcal{E}_{\mathrm{T}}^N}, 1)$ and $(\prod^* F)^\circ S_2 = \overline{\mathrm{Ball}}(0_{\mathcal{E}_{\mathrm{T}}^N}, 1)$ and $(\prod^* F)^\circ S$
 - $(\prod^* F)^{\circ}(S_3 \cap S_2) = \text{Sphere}(0_{\mathcal{E}_{\mathrm{T}}^N}, 1)$ and for every function H from $\mathcal{E}_{\mathrm{T}}^{N+1} \upharpoonright S_3$ into $\mathrm{Tdisk}(0_{\mathcal{E}_{\mathrm{T}}^N}, 1)$ such that $H = \prod^* F \upharpoonright S_3$ holds H is a homeomorphism and for every function H from $\mathcal{E}_{\mathrm{T}}^{N+1} \upharpoonright S_2$ into

 $\operatorname{Tdisk}(0_{\mathcal{E}_{m}^{N}}, 1)$ such that $H = \prod^{*} F \upharpoonright S_{2}$ holds H is a homeomorphism,

where α is the carrier of $\mathcal{E}_{\mathrm{T}}^{N+1}$. PROOF: Set $N_2 = N + 1$. Set $T_{10} = \mathcal{E}_{\mathrm{T}}^{N_2}$. Set $T_4 = \mathcal{E}_{\mathrm{T}}^N$. Set $N_3 = N$ NormF. Set $N_4 = N_3 \cdot N_3$. Reconsider O = 1as an element of \mathbb{N} . Set $T_3 = \mathrm{Tdisk}(0_{\mathcal{E}_{\mathrm{T}}^N}, 1)$. Reconsider $m_2 = -N_4$ as a function from T_4 into \mathbb{R}^1 . Reconsider $m_1 = 1 + m_2$ as a function from T_4 into \mathbb{R}^1 . Set $F_1 = \prod^* F$. For every t, $(\prod^* F)(t) = t \upharpoonright N$ by [2, (13)], [41, (25)], [4, (1)]. Ball $(0_{T_4}, 1) \subseteq F_1 \circ S_3$ by [14, (22)], [28, (11)], [6, (16)],

[11, (145)]. $\overline{\text{Ball}}(0_{T_4}, 1) \subseteq F_1^{\circ}S_2$ by [14, (22)], [28, (11)], [6, (16)], [11, (145)](145)]. Sphere $(0_{T_4}, 1) \subseteq F_1^{\circ}(S_2 \cap S_3)$ by [14, (22)], [28, (12)], [6, (16), (16)](92)]. $F_1^{\circ}S_3 \subseteq \overline{\text{Ball}}(0_{T_4}, 1)$ by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. $F_1^{\circ}S_2 \subseteq \overline{\text{Ball}}(0_{T_4}, 1)$ by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. $F_1^{\circ}(S_2 \cap$ $S_3) \subseteq \text{Sphere}(0_{T_4}, 1)$ by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. For every function H from $\mathcal{E}_{T}^{N+1} \upharpoonright S_{3}$ into $\mathrm{Tdisk}(0_{\mathcal{E}_{T}^{N}}, 1)$ such that $H = \prod^{*} F \upharpoonright S_{3}$ holds *H* is a homeomorphism by [24, (17)], [17, (17)], [2, (11)], [25, (13)]. For every objects x_1, x_2 such that $x_1, x_2 \in \text{dom } H$ and $H(x_1) = H(x_2)$ holds $x_1 = x_2$ by [14, (22)], [19, (10)], [7, (47)], [39, (40)]. Set $T_3 = Tdisk(0_{T_4}, 1)$. Set $M = m_1 \upharpoonright T_3$. Reconsider $M_1 = M$ as a continuous function from T_3 into \mathbb{R} . Reconsider $M_2 = -\sqrt{M_1}$ as a function from T_3 into \mathbb{R} . For every point p of T_4 such that $p \in$ the carrier of T_3 holds $M_1(p) = 1 - |p| \cdot |p|$ by [7, (49)]. Reconsider $S_1 = |[M_2]|$ as a continuous function from T_3 into \mathcal{E}_T^1 . Reconsider $I_3 = id_{T_3}$ as a continuous function from T_3 into T_4 . Reconsider $I_4 = I_3 \cap S_1$ as a continuous function from T_3 into \mathcal{E}_T^{N+O} . For every objects $y, x, y \in \operatorname{rng} H$ and $x = I_4(y)$ iff $x \in \operatorname{dom} H$ and y = H(x) by [7, (17)], [11, (145), (144), (55)]. For every subset P of $T_{10} \upharpoonright S_2$, P is open iff $H^{\circ}P$ is open by [4, (1)], [2, (13)], [25, (57)].

(2) Let us consider subsets S_3 , S_2 of $\mathcal{E}^n_{\mathrm{T}}$. Suppose

- (i) $S_3 = \{s, \text{ where } s \text{ is a point of } \mathcal{E}^n_T : s(n) \ge 0 \text{ and } |s| = 1\}, \text{ and }$
- (ii) $S_2 = \{t, \text{ where } t \text{ is a point of } \mathcal{E}^n_{\mathrm{T}} : t(n) \leq 0 \text{ and } |t| = 1\}.$

Then

- (iii) S_3 is closed, and
- (iv) S_2 is closed.
- (3) Let us consider a metrizable topological space T_2 . Suppose T_2 is finiteind and second-countable. Let us consider a closed subset F of T_2 . Suppose ind $F^c \leq n$. Let us consider a continuous function f from $T_2 \upharpoonright F$ into TopUnitCircle(n + 1). Then there exists a continuous function gfrom T_2 into TopUnitCircle(n + 1) such that $g \upharpoonright F = f$. PROOF: Define $\mathcal{P}[$ natural number $] \equiv$ for every metrizable topological space T_2 such that T_2 is finite-ind and second-countable for every closed subset F of T_2 such that ind $F^c \leq \$_1$ for every continuous function f from $T_2 \upharpoonright F$ into TopUnitCircle $(\$_1+1)$, there exists a function g from T_2 into TopUnitCircle $(\$_1+1)$ such that g is continuous and $g \upharpoonright F = f$. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by (2), [29, (9)], [42, (13)], [44, (121)]. $\mathcal{P}[(0$ **qua** natural number)] by [44, (143), (135)], [29, (9)], [14, (70)]. For every n, $\mathcal{P}[n]$ from [2, Sch. 2]. \Box
- (4) Suppose $p \notin A$ and r > 0. Then there exists a function h from $\mathcal{E}^n_{\mathrm{T}} \upharpoonright A$ into $\mathcal{E}^n_{\mathrm{T}} \upharpoonright \mathrm{Sphere}(p, r)$ such that
 - (i) h is continuous, and

(ii) $h \upharpoonright \operatorname{Sphere}(p, r) = \operatorname{id}_{A \cap \operatorname{Sphere}(p, r)}$.

- (5) If $r + |p q| \leq s$, then $\operatorname{Ball}(p, r) \subseteq \operatorname{Ball}(q, s)$.
- (6) If A is not boundary, then $\operatorname{ind} A = n$.

Now we state the proposition:

- (7) The Small Inductive Dimension of the Sphere:
 - If r > 0, then ind Sphere(p, r) = n 1. PROOF: If ind $A \leq i$ and ind $B \leq i$ and A is closed, then $\operatorname{ind}(A \cup B) \leq i$ by [33, (31)], [23, (93)], [35, (22)], [36, (5)]. \Box

3. A Characterization of Open Sets in Euclidean Space in Terms of Continuous Transformations

Now we state the propositions:

(8) Suppose n > 0 and $p \in A$ and for every r such that r > 0 there exists an open subset U of $\mathcal{E}^n_{\mathsf{T}} \upharpoonright A$ such that $p \in U$ and $U \subseteq \text{Ball}(p, r)$ and for every function f from $\mathcal{E}^n_{\mathrm{T}} \upharpoonright (A \setminus U)$ into TopUnitCircle n such that f is continuous there exists a function h from $\mathcal{E}_{T}^{n} \upharpoonright A$ into TopUnitCircle n such that h is continuous and $h \upharpoonright (A \setminus U) = f$. Then $p \in \operatorname{Fr} A$. PROOF: Set $T_7 = \mathcal{E}^n_{\mathrm{T}}$. Set c_1 = the carrier of T_7 . Set S = Sphere $(0_{T_7}, 1)$. Set T_9 = TopUnitCircle n. Reconsider $c = c_1 \setminus \{0_{T_7}\}$ as a non empty open subset of T_7 . Set $n_3 =$ *n* NormF. Set $T_8 = T_7 \upharpoonright c$. Set $G = \operatorname{transl}(p, T_7)$. Reconsider $I = \overset{T_8}{\smile}$ as a continuous function from T_8 into T_7 . $0 \notin \operatorname{rng}(n_3 \upharpoonright T_8)$ by [44, (57)], [14, (22)], [7, (47)], [14, (8), (70)]. Reconsider $n_2 = n_3 \upharpoonright T_8$ as a non-empty continuous function from T_8 into \mathbb{R}^1 . Reconsider $b = I/n_2$ as a function from T_8 into T_7 . Set $E_1 = \mathcal{E}^n$. Set $T_2 = E_{1 \text{top}}$. Reconsider e = p as a point of E_1 . Reconsider $I_1 = \text{Int } A$ as a subset of T_2 . Consider r being a real number such that r > 0 and $Ball(e, r) \subseteq I_1$. Set $r_2 = \frac{r}{2}$. Consider U being an open subset of $T_7 \upharpoonright A$ such that $p \in U$ and $U \subseteq \text{Ball}(p, r_2)$ and for every function f from $T_7 \upharpoonright (A \setminus U)$ into T_9 such that f is continuous there exists a function h from $T_7 \upharpoonright A$ into T_9 such that h is continuous and $h \upharpoonright (A \setminus U) = f$. Reconsider $S_4 = \text{Sphere}(p, r_2)$ as a non empty subset of T_7 . Consider a being an object such that $a \in S_4$. Reconsider $C_2 = \overline{\text{Ball}}(p, r_2)$ as a non empty subset of T_7 . Reconsider $s_2 = S_4$ as a non empty subset of $T_7 \upharpoonright C_2$. Reconsider $A_1 = A \setminus U$ as a non empty subset of T_7 . Set $T_1 = T_7 \upharpoonright A_1$. Set $t = \text{transl}(-p, T_7)$. Set $T = t \upharpoonright T_1$. rng $T \subseteq c$ by [7, (47)], [42, (21)]. Reconsider $T_1 = T$ as a continuous function from T_1 into T_8 . For every point p of T_7 such that $p \in c$ holds $b(p) = \frac{1}{|p|} \cdot p$ and $\left|\frac{1}{|p|} \cdot p\right| = 1$ by [22, (84)], $[7, (49)], [26, (72)], [12, (56)], \operatorname{rng} b \subseteq S$ by [42, (13)]. Reconsider B = b as a function from T_8 into T_9 . Set $m = r_2 \bullet T_7$. Set $M = m \upharpoonright T_9$. Reconsider $M = m \upharpoonright T_9$ as a continuous function from T_9 into T_7 . Reconsider $c_2 = C_2$ as a subset of $T_7 \upharpoonright A$. Consider h being a function from $T_7 \upharpoonright A$ into T_9 such

that h is continuous and $h \upharpoonright (A \setminus U) = B \cdot T_1 1$. Reconsider $G_2 = G \cdot (M \cdot h)$ as a continuous function from $T_7 \upharpoonright A$ into T_7 . rng $G_2 \subseteq S_4$ by [7, (12), (11), (47)], [42, (28), (15)]. Reconsider $g_2 = G_2$ as a function from $T_7 \upharpoonright A$ into $T_7 \upharpoonright S_4$. Reconsider $g_1 = g_2 \upharpoonright ((T_7 \upharpoonright A) \upharpoonright c_2)$ as a continuous function from $T_7 \upharpoonright C_2$ into $(T_7 \upharpoonright C_2) \upharpoonright s_2$. For every point w of $T_7 \upharpoonright C_2$ such that $w \in S_4$ holds $g_1(w) = w$ by [7, (11), (12)], [44, (61)], [7, (47)]. \square

- (9) Suppose $p \in \operatorname{Fr} A$ and A is closed. Suppose r > 0. Then there exists an open subset U of $\mathcal{E}^n_{\mathsf{T}} \upharpoonright A$ such that
 - (i) $p \in U$, and
 - (ii) $U \subseteq \text{Ball}(p, r)$, and
 - (iii) for every function f from $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright (A \setminus U)$ into TopUnitCircle n such that f is continuous there exists a function h from $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$ into TopUnitCircle n such that h is continuous and $h \upharpoonright (A \setminus U) = f$.

PROOF: n > 0 by [14, (77), (22)], [12, (33)]. Set $r_3 = \frac{r}{3}$. Set $r_2 = 2 \cdot r_3$. Set $B = \text{Ball}(p, r_3)$. Consider x being an object such that $x \in A^c$ and $x \in B$. Set $u = \text{Ball}(x, r_2)$. $u \subseteq \text{Ball}(p, r)$. \Box

4. Brouwer Invariance of Domain Theorem – Special Case

Let us consider a function h from $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$ into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright B$. Now we state the propositions:

- (10) If A is closed and $p \in \operatorname{Fr} A$, then if h is a homeomorphism, then $h(p) \in \operatorname{Fr} B$. The theorem is a consequence of (9) and (8).
- (11) If B is closed and $p \in \text{Int } A$, then if h is a homeomorphism, then $h(p) \in \text{Int } B$. The theorem is a consequence of (8) and (9).
- (12) Suppose A is closed and B is closed. Then if h is a homeomorphism, then $h^{\circ}(\operatorname{Int} A) = \operatorname{Int} B$ and $h^{\circ}(\operatorname{Fr} A) = \operatorname{Fr} B$. PROOF: $h^{\circ}(\operatorname{Int} A) = \operatorname{Int} B$ by (11), (10), [46, (39)]. \Box

5. Topological Invariance of Dimension – An Introduction to Manifolds

Now we state the proposition:

(13) Suppose r > 0. Let us consider a subset U of Tdisk(p, r). Suppose U is open and non empty. Let us consider a subset A of \mathcal{E}_{T}^n . If A = U, then Int A is not empty.

Let us consider a non empty topological space T, subsets A, B of T, r, s, a point p_1 of \mathcal{E}^n_T , and a point p_2 of \mathcal{E}^m_T .

Let us assume that r > 0 and s > 0. Now we state the propositions:

- (14) Suppose $T \upharpoonright A$ and $Tdisk(p_1, r)$ are homeomorphic and $T \upharpoonright B$ and $Tdisk(p_2, s)$ are homeomorphic and Int A meets Int B. Then n = m. The theorem is a consequence of (13) and (6).
- (15) Suppose $T \upharpoonright A$ and $\mathcal{E}_{T}^{n} \upharpoonright \text{Ball}(p_{1}, r)$ are homeomorphic and $T \upharpoonright B$ and $\text{Tdisk}(p_{2}, s)$ are homeomorphic and Int A meets Int B. Then n = m. The theorem is a consequence of (13) and (6).

Now we state the propositions:

- (16) (i) $(\operatorname{transl}(p, \mathcal{E}^n_{\mathrm{T}}))^{\circ}(\operatorname{Ball}(q, r)) = \operatorname{Ball}(q + p, r)$, and
 - (ii) $(\operatorname{transl}(p, \mathcal{E}_{\mathrm{T}}^n))^{\circ}(\overline{\operatorname{Ball}}(q, r)) = \overline{\operatorname{Ball}}(q + p, r)$, and
 - (iii) $(\operatorname{transl}(p, \mathcal{E}^n_{\mathrm{T}}))^{\circ}(\operatorname{Sphere}(q, r)) = \operatorname{Sphere}((q+p), r).$
 - PROOF: Set $T_5 = \mathcal{E}_T^n$. Set $T = \text{transl}(p, T_5)$. $T^{\circ}(\text{Ball}(q, r)) = \text{Ball}(q + p, r)$ by [28, (7)], [42, (27)]. $T^{\circ}(\overline{\text{Ball}}(q, r)) = \overline{\text{Ball}}(q + p, r)$ by [28, (8)], [42, (27)]. $T^{\circ}(\text{Sphere}(q, r)) \subseteq \text{Sphere}((q + p), r)$ by [28, (9)]. □
- (17) Suppose s > 0. Then
 - (i) $(s \bullet \mathcal{E}^n_{\mathrm{T}})^{\circ}(\mathrm{Ball}(p, r)) = \mathrm{Ball}(s \cdot p, r \cdot s)$, and
 - (ii) $(s \bullet \mathcal{E}_{T}^{n})^{\circ}(\overline{\text{Ball}}(p, r)) = \overline{\text{Ball}}(s \cdot p, r \cdot s)$, and
 - (iii) $(s \bullet \mathcal{E}_{\mathrm{T}}^{n})^{\circ}(\operatorname{Sphere}(p, r)) = \operatorname{Sphere}((s \cdot p), (r \cdot s)).$

PROOF: Set $T_5 = \mathcal{E}^n_{\mathrm{T}}$. Set $M = s \bullet T_5$. $M^{\circ}(\mathrm{Ball}(p, r)) = \mathrm{Ball}(s \cdot p, r \cdot s)$ by [42, (34)], [14, (11)], [28, (7)]. $M^{\circ}(\overline{\mathrm{Ball}}(p, r)) = \overline{\mathrm{Ball}}(s \cdot p, r \cdot s)$ by [42, (34)], [14, (11)], [28, (8)]. $M^{\circ}(\mathrm{Sphere}(p, r)) \subseteq \mathrm{Sphere}((s \cdot p), (r \cdot s))$ by [42, (34)], [14, (11)], [28, (9)]. \Box

- (18) Let us consider a rotation homogeneous additive function f from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose f is onto. Then
 - (i) $f^{\circ}(\text{Ball}(p, r)) = \text{Ball}(f(p), r)$, and
 - (ii) $f^{\circ}(\overline{\text{Ball}}(p,r)) = \overline{\text{Ball}}(f(p),r)$, and
 - (iii) $f^{\circ}(\operatorname{Sphere}(p, r)) = \operatorname{Sphere}((f(p)), r).$

PROOF: $f^{\circ}(\text{Ball}(p, r)) = \text{Ball}(f(p), r)$ by [28, (7)]. $f^{\circ}(\overline{\text{Ball}}(p, r)) = \overline{\text{Ball}}(f(p), r)$ by [28, (8)]. $f^{\circ}(\text{Sphere}(p, r)) \subseteq \text{Sphere}((f(p)), r)$ by [28, (9)]. Consider x being an object such that $x \in \text{dom } f$ and f(x) = y. \Box

- (19) Let us consider points p, q of $\mathcal{E}_{\mathrm{T}}^{n+1}, r$, and s. Suppose
 - (i) $s \leq r \leq |p-q|$, and
 - (ii) s < |p q| < s + r.

Then there exists a function h from $\mathcal{E}^{n+1}_{\mathrm{T}} \upharpoonright (\mathrm{Sphere}(p, r) \cap \overline{\mathrm{Ball}}(q, s))$ into $\mathrm{Tdisk}(0_{\mathcal{E}^n_{\mathrm{T}}}, 1)$ such that

- (iii) h is a homeomorphism, and
- (iv) $h^{\circ}(\operatorname{Sphere}(p, r) \cap \operatorname{Sphere}(q, s)) = \operatorname{Sphere}(0_{\mathcal{E}^n_T}, 1).$

PROOF: Set $n_1 = n + 1$. Set $T_6 = \mathcal{E}_T^{n_1}$. Set $y = \frac{1}{r} \cdot (q - p)$. Set $Y = \langle \underbrace{0, \ldots, 0}_{n_1} \rangle + (n_1, |y|)$. There exists a homogeneous additive rotation func-

tion R from T_6 into T_6 such that R is a homeomorphism and R(y) = Y by [34, (40), (41)]. Consider R being a homogeneous additive rotation function from T_6 into T_6 such that R is a homeomorphism and R(y) = Y. s > 0. \Box

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [16] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [17] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [18] Roman Duda. Wprowadzenie do topologii. PWN, 1986.
- [19] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [20] Ryszard Engelking. Dimension Theory. North-Holland, Amsterdam, 1978.
- [21] Ryszard Engelking. General Topology. Heldermann Verlag, Berlin, 1989.
- [22] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1–16, 1992.
- [23] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665–674, 1991.
- [24] Artur Korniłowicz. Homeomorphism between $[:\mathcal{E}_{T}^{i}, \mathcal{E}_{T}^{j}:]$ and \mathcal{E}_{T}^{i+j} . Formalized Mathematics, 8(1):73–76, 1999.
- [25] Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3): 175–183, 2010. doi:10.2478/v10037-010-0020-z.
- [26] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43–60, 2009. doi:10.2478/v10037-009-0005-y.

- [27] Artur Korniłowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane. Formalized Mathematics, 13(2):333–336, 2005.
- [28] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}^n_{\mathbb{T}}$. Formalized Mathematics, 12(3):301–306, 2004.
- [29] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117–124, 2005.
- [30] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [31] Roman Matuszewski and Yatsuka Nakamura. Projections in *n*-dimensional Euclidean space to each coordinates. *Formalized Mathematics*, 6(4):505–509, 1997.
- [32] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294, 1998.
- [33] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [34] Karol Pak. The rotation group. Formalized Mathematics, 20(1):23–29, 2012. doi:10.2478/v10037-012-0004-2.
- [35] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17 (3):207–212, 2009. doi:10.2478/v10037-009-0025-7.
- [36] Karol Pąk. Small inductive dimension of topological spaces. Part II. Formalized Mathematics, 17(3):219–222, 2009. doi:10.2478/v10037-009-0027-5.
- [37] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [38] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4): 341–347, 2003.
- [39] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [40] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [41] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [42] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [43] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [44] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [45] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [46] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.
- [47] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, 5 (1):75–77, 1996.

Received February 11, 2014