Elementary Introduction to Stochastic Finance in Discrete Time

Peter Jaeger
Ludwig Maximilians University of Munich
Germany

Abstract

Summary. This article gives an elementary introduction to stochastic finance (in discrete time). A formalization of random variables is given and some elements of Borel sets are considered. Furthermore, special functions (for buying a present portfolio and the value of a portfolio in the future) and some statements about the relation between these functions are introduced. For details see: $[8]$ (p. 185), [7] (pp. 12, 20), [6] (pp. 3-6).

MML identifier: FINANCE1, version: $\underline{7.12 .014 .167 .1133}$

The notation and terminology used in this paper have been introduced in the following papers: [15], [2], [1], [3], [4], [11], [10], [9], [5], [14], [12], and [13].

We use the following convention: O_{1}, O_{2} are non empty sets, S_{1}, F are σ-fields of subsets of O_{1}, and S_{2}, F_{2} are σ-fields of subsets of O_{2}.

Let a, r be real numbers. We introduce the halfline finance of a and r as a synonym of $[a, r[$. Then the halfline finance of a and r is a subset of \mathbb{R}.

We now state two propositions:
(1) For every real number k holds $\mathbb{R} \backslash[k,+\infty[=]-\infty, k[$.
(2) For every real number k holds $\mathbb{R} \backslash]-\infty, k[=[k,+\infty[$.

Let a, b be real numbers. The half open sets of a and b yields a sequence of subsets of \mathbb{R} and is defined by the conditions (Def. 1).
(Def. 1)(i) (The half open sets of a and $b)(0)=$ the halfline finance of a and $b+1$, and
(ii) for every element n of \mathbb{N} holds (the half open sets of a and $b)(n+1)=$ the halfline finance of a and $b+\frac{1}{n+1}$.
A sequence of real numbers is said to be a price function if:
(C) 2012 University of Białystok
(Def. 2) $\operatorname{It}(0)=1$ and for every element n of \mathbb{N} holds $\operatorname{it}(n) \geq 0$.
Let p_{1}, j_{1} be sequences of real numbers. We introduce the elements of buy portfolio of p_{1} and j_{1} as a synonym of $p_{1} \cdot j_{1}$. Then the elements of buy portfolio of p_{1} and j_{1} is a sequence of real numbers.

Let d be a natural number. The buy portfolio extension of p_{1}, j_{1}, and d yields an element of \mathbb{R} and is defined as follows:
(Def. 3) The buy portfolio extension of p_{1}, j_{1}, and $d=\left(\sum_{\alpha=0}^{\kappa}\right.$ (the elements of buy portfolio of p_{1} and $\left.\left.j_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(d)$.
The buy portfolio of p_{1}, j_{1}, and d yielding an element of \mathbb{R} is defined as follows:
(Def. 4) The buy portfolio of p_{1}, j_{1}, and $d=\left(\sum_{\alpha=0}^{\kappa}((\right.$ the elements of buy portfolio of p_{1} and $\left.\left.\left.j_{1}\right) \uparrow 1\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(d-1)$.
Let O_{1}, O_{2} be sets, let S_{1} be a σ-field of subsets of O_{1}, let S_{2} be a σ-field of subsets of O_{2}, and let X be a function. We say that X is random variable on S_{1} and S_{2} if and only if:
(Def. 5) For every element x of S_{2} holds $\left\{y \in O_{1}: X(y)\right.$ is an element of $\left.x\right\}$ is an element of S_{1}.
Let O_{1}, O_{2} be sets, let F be a σ-field of subsets of O_{1}, and let F_{2} be a σ-field of subsets of O_{2}. The set of random variables on F and F_{2} is defined by:
(Def. 6) The set of random variables on F and $F_{2}=\left\{f: O_{1} \rightarrow O_{2}: f\right.$ is random variable on F and F_{2} \}.
Let us consider O_{1}, O_{2}, F, F_{2}. One can check that the set of random variables on F and F_{2} is non empty.

Let O_{1}, O_{2} be non empty sets, let F be a σ-field of subsets of O_{1}, let F_{2} be a σ-field of subsets of O_{2}, and let X be a set. Let us assume that $X=$ the set of random variables on F and F_{2}. Let k be an element of X. The change element to function F, F_{2}, and k yielding a function from O_{1} into O_{2} is defined by:
(Def. 7) The change element to function F, F_{2}, and $k=k$.
Let O_{1} be a non empty set, let F be a σ-field of subsets of O_{1}, let X be a non empty set, and let k be an element of X. The random variables for future elements of portfolio value of F and k yields a function from O_{1} into \mathbb{R} and is defined by the condition (Def. 8).
(Def. 8) Let w be an element of O_{1}. Then (the random variables for future elements of portfolio value of F and $k)(w)=$ (the change element to function F, the Borel sets, and $k)(w)$.
Let p be a natural number, let O_{1}, O_{2} be non empty sets, let F be a σ-field of subsets of O_{1}, let F_{2} be a σ-field of subsets of O_{2}, and let X be a set. Let us assume that $X=$ the set of random variables on F and F_{2}. Let G be a function from \mathbb{N} into X. The element of F, F_{2}, G, and p yields a function from O_{1} into O_{2} and is defined as follows:
(Def. 9) The element of F, F_{2}, G, and $p=G(p)$.

Let r be a real number, let O_{1} be a non empty set, let F be a σ-field of subsets of O_{1}, let X be a non empty set, let w be an element of O_{1}, let G be a function from \mathbb{N} into X, and let p_{1} be a sequence of real numbers. The future elements of portfolio value of r, p_{1}, F, w, and G yields a sequence of real numbers and is defined by the condition (Def. 10).
(Def. 10) Let n be an element of \mathbb{N}. Then (the future elements of portfolio value of r, p_{1}, F, w, and $\left.G\right)(n)=($ the random variables for future elements of portfolio value of F and $G(n))(w) \cdot p_{1}(n)$.
Let r be a real number, let d be a natural number, let p_{1} be a sequence of real numbers, let O_{1} be a non empty set, let F be a σ-field of subsets of O_{1}, let X be a non empty set, let G be a function from \mathbb{N} into X, and let w be an element of O_{1}. The future portfolio value extension of r, d, p_{1}, F, G, and w yields an element of \mathbb{R} and is defined by the condition (Def. 11).
(Def. 11) The future portfolio value extension of r, d, p_{1}, F, G, and $w=$ ($\sum_{\alpha=0}^{\kappa}$ (the future elements of portfolio value of r, p_{1}, F, w, and $G)(\alpha))_{\kappa \in \mathbb{N}}(d)$.
The future portfolio value of r, d, p_{1}, F, G, and w yields an element of \mathbb{R} and is defined by the condition (Def. 12).
(Def. 12) The future portfolio value of r, d, p_{1}, F, G, and $w=\left(\sum_{\alpha=0}^{\kappa}((\right.$ the future elements of portfolio value of r, p_{1}, F, w, and $\left.\left.\left.G\right) \uparrow 1\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(d-1)$.
Let us observe that there exists an element of the Borel sets which is non empty.

One can prove the following propositions:
(3) For every real number k holds [$k,+\infty$ [is an element of the Borel sets and $]-\infty, k[$ is an element of the Borel sets.
(4) For all real numbers k_{1}, k_{2} holds [k_{2}, k_{1} is an element of the Borel sets.
(5) For all real numbers a, b holds Intersection (the half open sets of a and b) is an element of the Borel sets.
(6) For all real numbers a, b holds Intersection (the half open sets of a and $b)=[a, b]$.
(7) Let a, b be real numbers and n be a natural number. Then (the partial intersections of the half open sets of a and $b)(n)$ is an element of the Borel sets.
(8) For all real numbers k_{1}, k_{2} holds $\left[k_{2}, k_{1}\right]$ is an element of the Borel sets.
(9) Let X be a function from O_{1} into \mathbb{R}. Suppose X is random variable on S_{1} and the Borel sets. Then for every real number k holds $\left\{w \in O_{1}\right.$: $X(w) \geq k\}$ is an element of S_{1} and $\left\{w \in O_{1}: X(w)<k\right\}$ is an element of S_{1} and for all real numbers k_{1}, k_{2} such that $k_{1}<k_{2}$ holds $\left\{w \in O_{1}\right.$: $\left.k_{1} \leq X(w) \wedge X(w)<k_{2}\right\}$ is an element of S_{1} and for all real numbers k_{1}, k_{2} such that $k_{1} \leq k_{2}$ holds $\left\{w \in O_{1}: k_{1} \leq X(w) \wedge X(w) \leq k_{2}\right\}$ is an
element of S_{1} and for every real number r holds LE-dom $(X, r)=\left\{w \in O_{1}\right.$: $X(w)<r\}$ and for every real number r holds GTE-dom $(X, r)=\left\{w \in O_{1}\right.$: $X(w) \geq r\}$ and for every real number r holds EQ-dom $(X, r)=\left\{w \in O_{1}\right.$: $X(w)=r\}$ and for every real number r holds EQ-dom (X, r) is an element of S_{1}.
(10) For every real number s holds $O_{1} \longmapsto s$ is random variable on S_{1} and the Borel sets.
(11) Let p_{1} be a sequence of real numbers, j_{1} be a price function, and d be a natural number. Suppose $d>0$. Then the buy portfolio extension of p_{1}, j_{1}, and $d=p_{1}(0)+$ the buy portfolio of p_{1}, j_{1}, and d.
(12) Let d be a natural number. Suppose $d>0$. Let r be a real number, p_{1} be a sequence of real numbers, and G be a function from \mathbb{N} into the set of random variables on F and the Borel sets. Suppose the element of F, the Borel sets, G, and $0=O_{1} \longmapsto 1+r$. Let w be an element of O_{1}. Then the future portfolio value extension of r, d, p_{1}, F, G, and $w=(1+r) \cdot p_{1}(0)+$ the future portfolio value of r, d, p_{1}, F, G, and w.
(13) Let d be a natural number. Suppose $d>0$. Let r be a real number. Suppose $r>-1$. Let p_{1} be a sequence of real numbers, j_{1} be a price function, and G be a function from \mathbb{N} into the set of random variables on F and the Borel sets. Suppose the element of F, the Borel sets, G, and $0=O_{1} \longmapsto 1+r$. Let w be an element of O_{1}. Suppose the buy portfolio extension of p_{1}, j_{1}, and $d \leq 0$. Then the future portfolio value extension of r, d, p_{1}, F, G, and $w \leq$ (the future portfolio value of r, d, p_{1}, F, G, and $w)-(1+r) \cdot$ the buy portfolio of p_{1}, j_{1}, and d.
(14) Let d be a natural number. Suppose $d>0$. Let r be a real number. Suppose $r>-1$. Let p_{1} be a sequence of real numbers, j_{1} be a price function, and G be a function from \mathbb{N} into the set of random variables on F and the Borel sets. Suppose the element of F, the Borel sets, G, and $0=O_{1} \longmapsto 1+r$. Suppose the buy portfolio extension of p_{1}, j_{1}, and $d \leq 0$. Then
(i) $\quad\left\{w \in O_{1}\right.$: the future portfolio value extension of r, d, p_{1}, F, G, and $w \geq 0\} \subseteq\left\{w \in O_{1}\right.$: the future portfolio value of r, d, p_{1}, F, G, and $w \geq(1+r)$. the buy portfolio of p_{1}, j_{1}, and $\left.d\right\}$, and
(ii) $\quad\left\{w \in O_{1}\right.$: the future portfolio value extension of r, d, p_{1}, F, G, and $w>0\} \subseteq\left\{w \in O_{1}\right.$: the future portfolio value of r, d, p_{1}, F, G, and $w>(1+r) \cdot$ the buy portfolio of p_{1}, j_{1}, and $\left.d\right\}$.
(15) Let f be a function from O_{1} into \mathbb{R}. Suppose f is random variable on S_{1} and the Borel sets. Then f is measurable on $\Omega_{\left(S_{1}\right)}$ and f is a real-valued random variable on S_{1}.
(16) The set of random variables on S_{1} and the Borel sets \subseteq the real-valued random variables set on S_{1}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[6] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.
[7] Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004.
[8] Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[11] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received March 22, 2011

