

Semiring of Sets: Examples

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

MSC: 28A05 03E02 03E30 03B35 Keywords: semiring of sets MML identifier: SRINGS_2, version: 8.1.03 5.23.1204

The notation and terminology used in this paper have been introduced in the following articles: [2], [14], [7], [17], [15], [5], [16], [9], [12], [19], [10], [18], and [6].

1. Preliminaries

From now on X denotes a set and S denotes a family of subsets of X. Now we state the propositions:

- (1) Let us consider sets X_1, X_2 , a family S_1 of subsets of X_1 , and a family S_2 of subsets of X_2 . Then $\{a \times b, where a \text{ is an element of } S_1, b \text{ is an element}$ of $S_2 : a \in S_1$ and $b \in S_2\} = \{s, where s \text{ is a subset of } X_1 \times X_2 : \text{ there}$ exist sets a, b such that $a \in S_1$ and $b \in S_2$ and $s = a \times b\}$. PROOF: $\{a \times b, where a \text{ is an element of } S_1, b \text{ is an element of } S_2 : a \in S_1 \text{ and } b \in S_2\} \subseteq \{s, where s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } a, b \text{ such that } a \in S_1, b \text{ is an element of } S_2 : a \in S_1 \text{ and } b \in S_2\} \subseteq \{s, where s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } a, b \text{ such that } a \in S_1 \text{ and } b \in S_2 \text{ and } s = a \times b\}$ by [6, (96)]. \Box
- (2) Let us consider sets X_1 , X_2 , a non empty family S_1 of subsets of X_1 , and a non empty family S_2 of subsets of X_2 . Then $\{s, \text{ where } s \text{ is a subset}$ of $X_1 \times X_2$: there exist sets x_1, x_2 such that $x_1 \in S_1$ and $x_2 \in S_2$ and $s = x_1 \times x_2\}$ = the set of all $x_1 \times x_2$ where x_1 is an element of S_1, x_2 is an element of S_2 .
- (3) Let us consider sets X_1 , X_2 , a family S_1 of subsets of X_1 , and a family S_2 of subsets of X_2 . Suppose

C 2014 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online) (i) S_1 is \cap -closed, and

(ii) S_2 is \cap -closed.

Then $\{s, \text{ where } s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \}$ is \cap -closed. PROOF: Set $Y = \{s, \text{ where } s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \}$. Y is \cap -closed by [6, (100)]. \Box

Let X be a set. Note that every σ -field of subsets of X is \cap_{fp} -closed and $\setminus_{\overline{fp}}^{\subseteq}$ -closed and has countable cover and empty element.

2. Ordinary Examples of Semirings of Sets

Now we state the proposition:

(4) Every σ -field of subsets of X is a semiring of sets of X.

Let X be a set. Note that 2^X is \cap_{fp} -closed and $\setminus_{fp}^{\subseteq}$ -closed and has countable cover and empty element as a family of subsets of X.

Now we state the proposition:

(5) 2^X is a semiring of sets of X.

Let us consider X. Note that Fin X is \cap_{fp} -closed and $\setminus_{fp}^{\subseteq}$ -closed and has empty element as a family of subsets of X.

Let D be a denumerable set. Observe that Fin D has countable cover as a family of subsets of D.

Now we state the propositions:

- (6) Fin X is a semiring of sets of X.
- (7) Let us consider sets X_1, X_2 , a semiring S_1 of sets of X_1 , and a semiring S_2 of sets of X_2 . Then $\{s, \text{ where } s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \}$ is a semiring of sets of $X_1 \times X_2$. PROOF: Set $Y = \{s, \text{ where } s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \}$ is a semiring of sets of $X_1 \times X_2$. PROOF: Set $Y = \{s, \text{ where } s \text{ is a subset of } X_1 \times X_2 : \text{ there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \}$. Y has empty element. Y is \cap_{fp} -closed by [6, (100)], [4, (8)], [1, (10)]. Y is \setminus_{fp} -closed by [1, (10)], [11, (39)], [4, (8)], [11, (45)]. \square
- (8) Let us consider non empty sets X_1 , X_2 , a family S_1 of subsets of X_1 with countable cover, a family S_2 of subsets of X_2 with countable cover, and a family S of subsets of $X_1 \times X_2$. Suppose $S = \{s, \text{ where } s \text{ is a subset} \text{ of } X_1 \times X_2 :$ there exist sets x_1, x_2 such that $x_1 \in S_1$ and $x_2 \in S_2$ and $s = x_1 \times x_2\}$. Then S has countable cover. PROOF: There exists a countable subset U of S such that $\bigcup U = X_1 \times X_2$ and U is a subset of S by [6, (2), (77)], [2, (95)], [3, (7)]. \Box

Let us consider a family S of subsets of \mathbb{R} . Now we state the propositions:

(9) Suppose $S = \{[a, b], \text{ where } a, b \text{ are real numbers } : a \leq b\}$. Then

- (i) S is \cap -closed, and
- (ii) S is \int_{fp} -closed and has empty element, and
- (iii) S has countable cover.

(10) Suppose
$$S = \{s, \text{ where } s \text{ is a subset of } \mathbb{R} : s \text{ is left open interval}\}$$
. Then

- (i) S is \cap -closed, and
- (ii) S is \int_{fp} -closed and has empty element, and

(iii) S has countable cover.

PROOF: S is \cap -closed. S has empty element. S is \setminus_{fp} -closed by [11, (39)], [6, (75)]. \Box

3. Numerical Example

The functor sring⁴₈ yielding a family of subsets of $\{1, 2, 3, 4\}$ is defined by the term

 $(Def. 1) \quad \{\{1, 2, 3, 4\}, \{1, 2, 3\}, \{2, 3, 4\}, \{1\}, (\{2\}), (\{3\}), (\{4\}), (\emptyset)\}.$

One can verify that sring⁴₈ has empty element and sring⁴₈ is \cap_{fp} -closed and non \cap -closed and sring⁴₈ is \setminus_{fp} -closed.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
- [4] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5 (3):405-414, 1996.
- [5] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263–269, 1992.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] D.F. Goguadze. About the notion of semiring of sets. *Mathematical Notes*, 74:346–351, 2003. ISSN 0001-4346. doi:10.1023/A:1026102701631.
- [9] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [11] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(3):441–444, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [13] Jean Schmets. Théorie de la mesure. Notes de cours, Université de Liège, 146 pages, 2004.
- [14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [16] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4): 341–347, 2003.

ROLAND COGHETTO

- [17] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187–190, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (1):73–83, 1990.

Received March 31, 2014

88