Semiring of Sets: Examples

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

MSC: 28A05 03E02 03E30 03B35
Keywords: semiring of sets
MML identifier: SRINGS_2, version: 8.1.03 5.23.1204
The notation and terminology used in this paper have been introduced in the following articles: [2], [14, [7], [17], [15], [5], [16], [9], [12], 19], [10], [18], and [6].

1. Preliminaries

From now on X denotes a set and S denotes a family of subsets of X.
Now we state the propositions:
(1) Let us consider sets X_{1}, X_{2}, a family S_{1} of subsets of X_{1}, and a family S_{2} of subsets of X_{2}. Then $\left\{a \times b\right.$, where a is an element of S_{1}, b is an element of $S_{2}: a \in S_{1}$ and $\left.b \in S_{2}\right\}=\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets a, b such that $a \in S_{1}$ and $b \in S_{2}$ and $\left.s=a \times b\right\}$. Proof: $\{a \times$ b, where a is an element of S_{1}, b is an element of $S_{2}: a \in S_{1}$ and $b \in$ $\left.S_{2}\right\} \subseteq\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets a, b such that $a \in S_{1}$ and $b \in S_{2}$ and $\left.s=a \times b\right\}$ by [6, (96)].
(2) Let us consider sets X_{1}, X_{2}, a non empty family S_{1} of subsets of X_{1}, and a non empty family S_{2} of subsets of X_{2}. Then $\{s$, where s is a subset of $X_{1} \times X_{2}$: there exist sets x_{1}, x_{2} such that $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ and $\left.s=x_{1} \times x_{2}\right\}=$ the set of all $x_{1} \times x_{2}$ where x_{1} is an element of S_{1}, x_{2} is an element of S_{2}.
(3) Let us consider sets X_{1}, X_{2}, a family S_{1} of subsets of X_{1}, and a family S_{2} of subsets of X_{2}. Suppose
(i) S_{1} is \cap-closed, and
(ii) S_{2} is \cap-closed.

Then $\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets x_{1}, x_{2} such that $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ and $\left.s=x_{1} \times x_{2}\right\}$ is \cap-closed. Proof: Set $Y=\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets x_{1}, x_{2} such that $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ and $\left.s=x_{1} \times x_{2}\right\}$. Y is \cap-closed by [6, (100)].
Let X be a set. Note that every σ-field of subsets of X is $\cap_{f p}$-closed and $\backslash \frac{\subset}{f p}$-closed and has countable cover and empty element.

2. Ordinary Examples of Semirings of Sets

Now we state the proposition:
(4) Every σ-field of subsets of X is a semiring of sets of X.

Let X be a set. Note that 2^{X} is $\cap_{f p}$-closed and $\backslash \frac{\subset}{f p}$-closed and has countable cover and empty element as a family of subsets of X.

Now we state the proposition:
(5) 2^{X} is a semiring of sets of X.

Let us consider X. Note that Fin X is $\cap_{f p}$-closed and $\backslash \frac{\subset}{f} p$-closed and has empty element as a family of subsets of X.

Let D be a denumerable set. Observe that Fin D has countable cover as a family of subsets of D.

Now we state the propositions:
(6) Fin X is a semiring of sets of X.
(7) Let us consider sets X_{1}, X_{2}, a semiring S_{1} of sets of X_{1}, and a semiring S_{2} of sets of X_{2}. Then $\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets x_{1}, x_{2} such that $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ and $\left.s=x_{1} \times x_{2}\right\}$ is a semiring of sets of $X_{1} \times X_{2}$. Proof: Set $Y=\left\{s\right.$, where s is a subset of $X_{1} \times X_{2}$: there exist sets x_{1}, x_{2} such that $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ and $\left.s=x_{1} \times x_{2}\right\}$. Y has empty element. Y is $\cap_{f p}$-closed by [6, (100)], [4, (8)], [1, (10)]. Y is $\backslash_{f p}$-closed by [1, (10)], [11, (39)], 4, (8)], [11, (45)].
(8) Let us consider non empty sets X_{1}, X_{2}, a family S_{1} of subsets of X_{1} with countable cover, a family S_{2} of subsets of X_{2} with countable cover, and a family S of subsets of $X_{1} \times X_{2}$. Suppose $S=\{s$, where s is a subset of $X_{1} \times X_{2}$: there exist sets x_{1}, x_{2} such that $x_{1} \in S_{1}$ and $x_{2} \in S_{2}$ and $\left.s=x_{1} \times x_{2}\right\}$. Then S has countable cover. Proof: There exists a countable subset U of S such that $\cup U=X_{1} \times X_{2}$ and U is a subset of S by [6), (77)], [2, (95)], 3, (7)].

Let us consider a family S of subsets of \mathbb{R}. Now we state the propositions:
(9) Suppose $S=\{] a, b]$, where a, b are real numbers : $a \leqslant b\}$. Then
(i) S is \cap-closed, and
(ii) S is $\backslash_{f p}$-closed and has empty element, and
(iii) S has countable cover.
(10) Suppose $S=\{s$, where s is a subset of $\mathbb{R}: s$ is left open interval $\}$. Then
(i) S is \cap-closed, and
(ii) S is $\backslash_{f p}$-closed and has empty element, and
(iii) S has countable cover.

Proof: S is \cap-closed. S has empty element. S is $\backslash_{f p}$-closed by [11, (39)], [6, (75)].

3. Numerical Example

The functor $\operatorname{sring}_{8}^{4}$ yielding a family of subsets of $\{1,2,3,4\}$ is defined by the term
(Def. 1) $\{\{1,2,3,4\},\{1,2,3\},\{2,3,4\},\{1\},(\{2\}),(\{3\}),(\{4\}),(\emptyset)\}$.
One can verify that sring ${ }_{8}^{4}$ has empty element and sring ${ }_{8}^{4}$ is $\cap_{f p}$-closed and non \cap-closed and sring ${ }_{8}^{4}$ is $\backslash_{f p}$-closed.

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. König's theorem| Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Grzegorz Bancerek. Minimal signature for partial algebra Formalized Mathematics, 5 (3):405-414, 1996.
[5] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[8] D.F. Goguadze. About the notion of semiring of sets. Mathematical Notes, 74:346-351, 2003. ISSN 0001-4346. doi 10.1023/A:1026102701631
[9] Andrzej Nędzusiak. σ-fields and probability Formalized Mathematics, 1(2):401-407, 1990.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers Formalized Mathematics, 1(4):777-780, 1990.
[13] Jean Schmets. Théorie de la mesure. Notes de cours, Université de Liège, 146 pages, 2004.
[14] Andrzej Trybulec. Enumerated sets Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[16] Andrzej Trybulec. On the sets inhabited by numbers Formalized Mathematics, 11(4): 341-347, 2003.
[17] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.
[18] Zinaida Trybulec. Properties of subsets, Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received March 31, 2014

