# The Axiomatization of Propositional Logic ${ }^{1}$ 

Mariusz Giero<br>Faculty of Economics and Informatics<br>University of Białystok<br>Kalvariju 135, LT-08221 Vilnius<br>Lithuania

Summary. This article introduces propositional logic as a formal system (14], [10, [11). The formulae of the language are as follows $\phi::=\perp|p| \phi \rightarrow \phi$. Other connectives are introduced as abbrevations. The notions of model and satisfaction in model are defined. The axioms are all the formulae of the following schemes

- $\alpha \Rightarrow(\beta \Rightarrow \alpha)$,
- $(\alpha \Rightarrow(\beta \Rightarrow \gamma)) \Rightarrow((\alpha \Rightarrow \beta) \Rightarrow(\alpha \Rightarrow \gamma))$,
- $(\neg \beta \Rightarrow \neg \alpha) \Rightarrow((\neg \beta \Rightarrow \alpha) \Rightarrow \beta)$.

Modus ponens is the only derivation rule. The soundness theorem and the strong completeness theorem are proved. The proof of the completeness theorem is carried out by a counter-model existence method. In order to prove the completeness theorem, Lindenbaum's Lemma is proved. Some most widely used tautologies are presented.

MSC: 03B05 03B35
Keywords: completeness; formal system; Lindenbaum's lemma
MML identifier: PL_AXIOM, version: 8.1.05 5.39.1282

[^0]
## 1. Preliminaries

Now we state the propositions:
(1) Let us consider functions $f, g$. Suppose $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every set $x$ such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$. Then $\operatorname{rng} f \subseteq \operatorname{rng} g$.
(2) Let us consider Boolean objects $p, q$. Then $p \wedge q \Rightarrow p=$ true.
(3) Let us consider a Boolean object $p$. Then $\neg \neg p \Leftrightarrow p=$ true.

Let us consider Boolean objects $p, q$. Now we state the propositions:
(4) $\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q=$ true.
(5) $\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q=$ true.
(6) $\quad p \Rightarrow q \Rightarrow(\neg q \Rightarrow \neg p)=$ true.

Let us consider Boolean objects $p, q, r$. Now we state the propositions:
(7) $\quad p \Rightarrow q \Rightarrow(p \Rightarrow r \Rightarrow(p \Rightarrow q \wedge r))=$ true .
(8) $\quad p \Rightarrow r \Rightarrow(q \Rightarrow r \Rightarrow(p \vee q \Rightarrow r))=$ true.

Let us consider Boolean objects $p, q$. Now we state the propositions:
(9) $p \wedge q \Leftrightarrow q \wedge p=$ true.
(10) $p \vee q \Leftrightarrow q \vee p=$ true.

Let us consider Boolean objects $p, q, r$. Now we state the propositions:
(11) $(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)=$ true.
(12) $(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)=$ true.
(13) Let us consider Boolean objects $p, q$. Then $\neg q \Rightarrow \neg p \Rightarrow(\neg q \Rightarrow p \Rightarrow q)=$ true.
Let us consider Boolean objects $p, q, r$. Now we state the propositions:
(14) $p \wedge(q \vee r) \Leftrightarrow p \wedge q \vee p \wedge r=$ true.
(15) $p \vee q \wedge r \Leftrightarrow(p \vee q) \wedge(p \vee r)=$ true.
(16) Let us consider a finite set $X$, and a set $Y$. Suppose $Y$ is $\subseteq$-linear and $X \subseteq \bigcup Y$ and $Y \neq \emptyset$. Then there exists a set $Z$ such that
(i) $X \subseteq Z$, and
(ii) $Z \in Y$.

## 2. The Syntax

Let $D$ be a set. We say that $D$ has propositional variables if and only if (Def. 1) for every element $n$ of $\mathbb{N},\langle 3+n\rangle \in D$.

We say that $D$ is PL-closed if and only if
(Def. 2) $D \subseteq \mathbb{N}^{*}$ and $D$ has FALSUM, implication and propositional variables.

Let us note that every set which is PL-closed is also non empty and has also FALSUM, implication, and propositional variables and every subset of $\mathbb{N}^{*}$ which has FALSUM, implication, and propositional variables is also PL-closed.

The functor PL-WFF yielding a set is defined by
(Def. 3) it is PL-closed and for every set $D$ such that $D$ is PL-closed holds it $\subseteq D$.
Observe that PL-WFF is PL-closed and there exists a set which is PL-closed and non empty and PL-WFF is functional and every element of PL-WFF is finite sequence-like.

The functor $\perp_{\text {PL }}$ yielding an element of PL-WFF is defined by the term
(Def. 4) $\langle 0\rangle$.
Let $p, q$ be elements of PL-WFF. The functor $p \Rightarrow q$ yielding an element of PL-WFF is defined by the term
(Def. 5) ( $\left.\langle 1\rangle^{\wedge} p\right)^{\wedge} q$.
Let $n$ be an element of $\mathbb{N}$. The functor Prop $n$ yielding an element of PL-WFF is defined by the term
(Def. 6) $\langle 3+n\rangle$.
The functor $A P$ yielding a subset of PL-WFF is defined by
(Def. 7) for every set $x, x \in i t$ iff there exists an element $n$ of $\mathbb{N}$ such that $x=\operatorname{Prop} n$.
From now on $p, q, r, s, A, B$ denote elements of PL-WFF, $F, G, H$ denote subsets of PL-WFF, $k, n$ denote elements of $\mathbb{N}$, and $f, f_{1}, f_{2}$ denote finite sequences of elements of PL-WFF.

Let $D$ be a subset of PL-WFF. Observe that $D$ has implication if and only if the condition (Def. 8) is satisfied.
(Def. 8) for every $p$ and $q$ such that $p, q \in D$ holds $p \Rightarrow q \in D$.
The scheme PLInd deals with a unary predicate $\mathcal{P}$ and states that
(Sch. 1) For every $r, \mathcal{P}[r]$
provided

- $\mathcal{P}\left[\perp_{\mathrm{PL}}\right]$ and
- for every $n, \mathcal{P}[\operatorname{Prop} n]$ and
- for every $r$ and $s$ such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \Rightarrow s]$.

Now we state the proposition:
(17) $\mathrm{PL}-\mathrm{WFF} \subseteq \mathrm{HP}-W F F$.

Proof: Define $\mathcal{P}$ [element of PL-WFF] $\equiv \$_{1} \in$ HP-WFF. For every $n$, $\mathcal{P}[\operatorname{Prop} n]$. For every $r$ and $s$ such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \Rightarrow s]$. For every $A, \mathcal{P}[A]$ from PLInd.

Let us consider $p$. The functor $\neg p$ yielding an element of PL-WFF is defined by the term
(Def. 9) $\quad p \Rightarrow \perp_{\mathrm{PL}}$.
The functor $T_{\text {PL }}$ yielding an element of PL-WFF is defined by the term (Def. 10) $\neg \perp_{\mathrm{PL}}$.

Let us consider $p$ and $q$. The functors: $p \wedge q$ and $p \vee q$ yielding elements of PL-WFF are defined by terms
(Def. 11) $\neg(p \Rightarrow \neg q)$,
(Def. 12) $\neg p \Rightarrow q$,
respectively. The functor $p \Leftrightarrow q$ yielding an element of PL-WFF is defined by the term
(Def. 13) $\quad(p \Rightarrow q) \wedge(q \Rightarrow p)$.

## 3. The Semantics

A PL-model is a subset of $A P$. From now on $M$ denotes a PL-model.
Let $M$ be a PL-model. The functor $\mathrm{SAT}_{M}$ yielding a function from PL-WFF into Boolean is defined by
(Def. 14) $\quad i t\left(\perp_{\mathrm{PL}}\right)=0$ and for every $k, i t(\operatorname{Prop} k)=1$ iff Prop $k \in M$ and for every $p$ and $q, i t(p \Rightarrow q)=i t(p) \Rightarrow i t(q)$.
Now we state the propositions:
(18) $\operatorname{SAT}_{M}(A \Rightarrow B)=1$ if and only if $\operatorname{SAT}_{M}(A)=0$ or $\operatorname{SAT}_{M}(B)=1$.
(19) $\operatorname{SAT}_{M}(\neg p)=\neg\left(\operatorname{SAT}_{M}(p)\right)$.
(20) $\operatorname{SAT}_{M}(\neg A)=1$ if and only if $\operatorname{SAT}_{M}(A)=0$. The theorem is a consequence of (19).
(21) $\operatorname{SAT}_{M}(A \wedge B)=\operatorname{SAT}_{M}(A) \wedge \operatorname{SAT}_{M}(B)$. The theorem is a consequence of (19).
(22) $\operatorname{SAT}_{M}(A \wedge B)=1$ if and only if $\operatorname{SAT}_{M}(A)=1$ and $\operatorname{SAT}_{M}(B)=1$. The theorem is a consequence of (21).
(23) $\operatorname{SAT}_{M}(A \vee B)=\operatorname{SAT}_{M}(A) \vee \operatorname{SAT}_{M}(B)$. The theorem is a consequence of (19).
(24) $\operatorname{SAT}_{M}(A \vee B)=1$ if and only if $\operatorname{SAT}_{M}(A)=1$ or $\operatorname{SAT}_{M}(B)=1$. The theorem is a consequence of (23).
(25) $\operatorname{SAT}_{M}(A \Leftrightarrow B)=\operatorname{SAT}_{M}(A) \Leftrightarrow \operatorname{SAT}_{M}(B)$. The theorem is a consequence of (21).
(26) $\operatorname{SAT}_{M}(A \Leftrightarrow B)=1$ if and only if $\operatorname{SAT}_{M}(A)=\operatorname{SAT}_{M}(B)$. The theorem is a consequence of (25).

Let us consider $M$ and $p$. We say that $M \models p$ if and only if (Def. 15) $\operatorname{SAT}_{M}(p)=1$.

Let us consider $F$. We say that $M \models F$ if and only if
(Def. 16) for every $p$ such that $p \in F$ holds $M \models p$.
Let us consider $p$. We say that $F \models p$ if and only if (Def. 17) for every $M$ such that $M \models F$ holds $M \models p$.

Let us consider $A$. We say that $A$ is a tautology if and only if (Def. 18) for every $M, \operatorname{SAT}_{M}(A)=1$.

Now we state the propositions:
(27) $\quad A$ is a tautology if and only if $\emptyset_{\text {PL-WFF }} \models A$.
(28) $p \Rightarrow(q \Rightarrow p)$ is a tautology.
(29) $\quad p \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow r))$ is a tautology.
(30) $\neg q \Rightarrow \neg p \Rightarrow(\neg q \Rightarrow p \Rightarrow q)$ is a tautology. The theorem is a consequence of (19) and (13).
(31) $\quad p \Rightarrow q \Rightarrow(\neg q \Rightarrow \neg p)$ is a tautology. The theorem is a consequence of (19) and (6).
(32) $p \wedge q \Rightarrow p$ is a tautology. The theorem is a consequence of (21) and (2).
(33) $p \wedge q \Rightarrow q$ is a tautology. The theorem is a consequence of (21) and (2).
(34) $p \Rightarrow p \vee q$ is a tautology. The theorem is a consequence of (23).
(35) $\quad q \Rightarrow p \vee q$ is a tautology. The theorem is a consequence of (23).
(36) $p \wedge q \Leftrightarrow q \wedge p$ is a tautology. The theorem is a consequence of (25), (21), and (9).
(37) $p \vee q \Leftrightarrow q \vee p$ is a tautology. The theorem is a consequence of (25), (23), and (10).
(38) $(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)$ is a tautology. The theorem is a consequence of (25), (21), and (11).
(39) $(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)$ is a tautology. The theorem is a consequence of (25), (23), and (12).
(40) $p \wedge(q \vee r) \Leftrightarrow p \wedge q \vee p \wedge r$ is a tautology. The theorem is a consequence of (25), (21), (23), and (14).
(41) $p \vee q \wedge r \Leftrightarrow(p \vee q) \wedge(p \vee r)$ is a tautology. The theorem is a consequence of (25), (23), (21), and (15).
(42) $\neg \neg p \Leftrightarrow p$ is a tautology. The theorem is a consequence of (25), (19), and (3).
(43) $\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$ is a tautology. The theorem is a consequence of (25), (19), (21), (23), and (4).
(44) $\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$ is a tautology. The theorem is a consequence of (25), (19), (23), (21), and (5).
(45) $\quad p \Rightarrow q \Rightarrow(p \Rightarrow r \Rightarrow(p \Rightarrow q \wedge r))$ is a tautology. The theorem is a consequence of (21) and (7).
(46) $\quad p \Rightarrow r \Rightarrow(q \Rightarrow r \Rightarrow(p \vee q \Rightarrow r))$ is a tautology. The theorem is a consequence of (23) and (8).
(47) If $F \models A$ and $F \models A \Rightarrow B$, then $F \models B$.

## 4. The Axioms. Derivability.

Let $D$ be a set. We say that $D$ is with axioms of PL if and only if
(Def. 19) for every $p, q$, and $r$ holds $p \Rightarrow(q \Rightarrow p), p \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow$ $r), \neg q \Rightarrow \neg p \Rightarrow(\neg q \Rightarrow p \Rightarrow q) \in D$.
The functor PL-axioms yielding a subset of PL-WFF is defined by
(Def. 20) it is with axioms of PL and for every subset $D$ of PL-WFF such that $D$ is with axioms of PL holds it $\subseteq D$.
One can check that PL-axioms is with axioms of PL.
Let us consider $p, q$, and $r$. We say that $\operatorname{MP}(p, q, r)$ if and only if
(Def. 21) $q=p \Rightarrow r$.
Observe that PL-axioms is non empty.
Let us consider $A$. We say that $A$ is the simplification axiom if and only if
(Def. 22) there exists $p$ and there exists $q$ such that $A=p \Rightarrow(q \Rightarrow p)$.
We say that $A$ is Frege axiom if and only if
(Def. 23) there exists $p$ and there exists $q$ and there exists $r$ such that $A=p \Rightarrow$ $(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow r))$.
We say that $A$ is the explosion axiom if and only if
(Def. 24) there exists $p$ and there exists $q$ such that $A=\neg q \Rightarrow \neg p \Rightarrow(\neg q \Rightarrow p \Rightarrow$ q).

Now we state the propositions:
(48) Every element of PL-axioms is the simplification axiom or Frege axiom or the explosion axiom.
(49) If $A$ is the simplification axiom or Frege axiom or the explosion axiom, then $F \neq A$. The theorem is a consequence of (28), (29), and (30).
Let $i$ be a natural number. Let us consider $f$ and $F$. We say that $\operatorname{prc}(f, F, i)$ if and only if
(Def. 25) $\quad f(i) \in$ PL-axioms or $f(i) \in F$ or there exist natural numbers $j, k$ such that $1 \leqslant j<i$ and $1 \leqslant k<i$ and $\operatorname{MP}\left(f_{j}, f_{k}, f_{i}\right)$.

Let us consider $p$. We say that $F \vdash p$ if and only if
(Def. 26) there exists $f$ such that $f(\operatorname{len} f)=p$ and $1 \leqslant \operatorname{len} f$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$.
Now we state the propositions:
(50) Let us consider natural numbers $i$, $n$. Suppose $n+\operatorname{len} f \leqslant \operatorname{len} f_{2}$ and for every natural number $k$ such that $1 \leqslant k \leqslant \operatorname{len} f$ holds $f(k)=f_{2}(k+n)$ and $1 \leqslant i \leqslant \operatorname{len} f$. If $\operatorname{prc}(f, F, i)$, then $\operatorname{prc}\left(f_{2}, F, i+n\right)$.
(51) Suppose $f_{2}=f^{\frown} f_{1}$ and $1 \leqslant \operatorname{len} f$ and $1 \leqslant \operatorname{len} f_{1}$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f_{1}$ holds $\operatorname{prc}\left(f_{1}, F, i\right)$. Let us consider a natural number $i$. If $1 \leqslant i \leqslant \operatorname{len} f_{2}$, then $\operatorname{prc}\left(f_{2}, F, i\right)$. The theorem is a consequence of (50).
(52) Suppose $f=f_{1} \frown\langle p\rangle$ and $1 \leqslant \operatorname{len} f_{1}$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f_{1}$ holds $\operatorname{prc}\left(f_{1}, F, i\right)$ and $\operatorname{prc}(f, F$, len $f)$. Then
(i) for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$, and
(ii) $F \vdash p$.

The theorem is a consequence of (50).
(53) If $p \in \mathrm{PL}$-axioms or $p \in F$, then $F \vdash p$.

Proof: Define $\mathcal{P}$ [set, set] $\equiv \$_{2}=p$. Consider $f$ such that $\operatorname{dom} f=\operatorname{Seg} 1$ and for every natural number $k$ such that $k \in \operatorname{Seg} 1$ holds $\mathcal{P}[k, f(k)]$ from [3, Sch. 5]. For every natural number $j$ such that $1 \leqslant j \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, j)$.
(54) If $F \vdash p$ and $F \vdash p \Rightarrow q$, then $F \vdash q$.

Proof: Consider $f$ such that $f(\operatorname{len} f)=p$ and $1 \leqslant \operatorname{len} f$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$. Consider $f_{1}$ such that $f_{1}\left(\operatorname{len} f_{1}\right)=p \Rightarrow q$ and $1 \leqslant \operatorname{len} f_{1}$ and for every natural number $i$ such that $1 \leqslant i \leqslant$ len $f_{1}$ holds $\operatorname{prc}\left(f_{1}, F, i\right)$. Set $g=\left(f \frown f_{1}\right)^{\wedge}\langle q\rangle$. For every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f_{1}$ holds $g(\operatorname{len} f+i)=f_{1}(i)$ by [3, (22), (39)], [1, (12)], [3, (65), (64)]. For every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len}\left(f \frown f_{1}\right)$ holds $\operatorname{prc}\left(f \frown f_{1}, F, i\right)$.
(55) If $F \subseteq G$, then if $F \vdash p$, then $G \vdash p$.

Proof: Consider $f$ such that $f(\operatorname{len} f)=p$ and $1 \leqslant \operatorname{len} f$ and for every natural number $k$ such that $1 \leqslant k \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, k)$. Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1} \leqslant \operatorname{len} f$, then $G \vdash f_{\$_{1}}$. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 4].

## 5. Soundness Theorem. Deduction Theorem.

Now we state the propositions:
(56) If $F \vdash A$, then $F \models A$.

Proof: Consider $f$ such that $f(\operatorname{len} f)=A$ and $1 \leqslant \operatorname{len} f$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$. Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1} \leqslant \operatorname{len} f$, then $F \models f_{\$_{1}}$. For every natural number $i$ such that for every natural number $j$ such that $j<i$ holds $\mathcal{P}[j]$ holds $\mathcal{P}[i]$ by [1, (14)], [9, (1)], (48), (49). For every natural number $i, \mathcal{P}[i]$ from [1, Sch. 4].
(57) $\quad F \vdash A \Rightarrow A$. The theorem is a consequence of (53) and (54).
(58) DEDUCTION THEOREM:

If $F \cup\{A\} \vdash B$, then $F \vdash A \Rightarrow B$.
Proof: Consider $f$ such that $f(\operatorname{len} f)=B$ and $1 \leqslant \operatorname{len} f$ and for every natural number $i$ such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F \cup\{A\}, i)$. Define $\mathcal{P}$ [natural number] $\equiv$ if $1 \leqslant \$_{1} \leqslant \operatorname{len} f$, then $F \vdash A \Rightarrow f_{\$_{1}}$. For every natural number $i$ such that for every natural number $j$ such that $j<i$ holds $\mathcal{P}[j]$ holds $\mathcal{P}[i]$ by [1, (14)], (53), [9, (1)], (54). For every natural number $i, \mathcal{P}[i]$ from [1, Sch. 4].
(59) If $F \vdash A \Rightarrow B$, then $F \cup\{A\} \vdash B$. The theorem is a consequence of (53), (55), and (54).
(60) $F \vdash \neg A \Rightarrow(A \Rightarrow B)$. The theorem is a consequence of (53), (54), and (58).
(61) $F \vdash \neg A \Rightarrow A \Rightarrow A$. The theorem is a consequence of (53), (57), and (54).

## 6. Strong Completeness Theorem

Let us consider $F$. We say that $F$ is consistent if and only if
(Def. 27) there exists no $p$ such that $F \vdash p$ and $F \vdash \neg p$.
Now we state the propositions:
(62) $F$ is consistent if and only if there exists $A$ such that $F \nvdash A$. The theorem is a consequence of (60) and (54).
(63) If $F \nvdash A$, then $F \cup\{\neg A\}$ is consistent. The theorem is a consequence of (58), (62), (61), and (54).
(64) $F \vdash A$ if and only if there exists $G$ such that $G \subseteq F$ and $G$ is finite and $G \vdash A$. The theorem is a consequence of (55).
(65) If $F$ is not consistent, then there exists $G$ such that $G$ is finite and $G$ is not consistent and $G \subseteq F$. The theorem is a consequence of (64) and (55).
Let us consider $F$. We say that $F$ is maximal if and only if
(Def. 28) for every $p$ holds $p \in F$ or $\neg p \in F$.
Now we state the propositions:
(66) If $F \subseteq G$ and $F$ is not consistent, then $G$ is not consistent. The theorem is a consequence of (55).
(67) If $F$ is consistent and $F \cup\{A\}$ is not consistent, then $F \cup\{\neg A\}$ is consistent. The theorem is a consequence of (58), (62), (61), and (54).
In the sequel $x, y$ denote sets. Now we state the propositions:
(68) Lindenbaum's LEMmA:

If $F$ is consistent, then there exists $G$ such that $F \subseteq G$ and $G$ is consistent and maximal.
Proof: Set $L=$ PL-WFF. Consider $R$ being a binary relation such that $R$ well orders $L$. Reconsider $R_{2}=\left.R\right|^{2} L$ as a binary relation on L. Reconsider $R_{1}=\left\langle L, R_{2}\right\rangle$ as a non empty relational structure. Set $c=$ the carrier of $R_{1}$. Define $\mathcal{H}[$ object, object, object $] \equiv$ for every $p$ for every partial function $f$ from $c$ to $2^{L}$ such that $\$_{1}=p$ and $\$_{2}=f$ holds if $\left(\bigcup \operatorname{rng}\left(f\right.\right.$ qua $\left(2^{L}\right)$-valued binary relation $\left.) \cup F\right) \cup\{p\}$ is consistent, then $\$_{3}=(\bigcup \operatorname{rng} f \cup F) \cup\{p\}$ and if $\left(\bigcup \operatorname{rng}\left(f\right.\right.$ qua $\left(2^{L}\right)$-valued binary relation) $\cup F) \cup\{p\}$ is not consistent, then $\$_{3}=\bigcup \operatorname{rng} f \cup F$. For every objects $x, y$ such that $x \in c$ and $y \in c \rightarrow 2^{L}$ there exists an object $z$ such that $z \in 2^{L}$ and $\mathcal{H}[x, y, z]$ by [8, (46)]. Consider $h$ being a function from $c \times\left(c \dot{\rightarrow} 2^{L}\right)$ into $2^{L}$ such that for every objects $x, y$ such that $x \in c$ and $y \in c \dot{\rightarrow} 2^{L}$ holds $\mathcal{H}[x, y, h(x, y)]$ from [5, Sch. 1]. Consider $f$ being a function from $c$ into $2^{L}$ such that $f$ is recursively expressed by $h$. Reconsider $G=\bigcup \operatorname{rng}\left(f\right.$ qua $\left(2^{L}\right)$-valued binary relation) as a subset of PL-WFF. Set $i_{1}=$ the internal relation of $R_{1}$. For every $A$ and $B$ such that $\langle A, B\rangle \in R_{2}$ holds $f(A) \subseteq f(B)$ by [4, (1)], [2, (4), (29), (9)]. rng $f$ is $\subseteq$-linear. Define $\mathcal{S}$ [element of $\left.R_{1}\right] \equiv f\left(\$_{1}\right)$ is consistent. For every element $x$ of $R_{1}$ such that for every element $y$ of $R_{1}$ such that $y \neq x$ and $\langle y, x\rangle \in i_{1}$ holds $\mathcal{S}[y]$ holds $\mathcal{S}[x]$ by [2, (9)], [7, (32)], [2, (1)], [15, (42)]. For every element $A$ of $R_{1}, \mathcal{S}[A]$ from [12, Sch. 3]. $F \subseteq G$ by [ $\left.6, ~(3)\right] . G$ is consistent by (65), (16), [15, (42)], (66). $G$ is maximal by [6, (3)], (17), [13, (16)], (66).
(69) If $F$ is maximal and consistent, then for every $p, F \vdash p$ iff $p \in F$. The theorem is a consequence of (53).
(70) If $F \models A$, then $F \vdash A$.

Proof: Consider $G$ such that $F \cup\{\neg A\} \subseteq G$ and $G$ is consistent and $G$ is maximal. Set $M=\{\operatorname{Prop} n$, where $n$ is an element of $\mathbb{N}$ : Prop $n \in G\}$.
$M \subseteq A P$. Define $\mathcal{P}[$ element of PL-WFF $] \equiv \$_{1} \in G$ iff $M \models \$_{1} . \mathcal{P}\left[\perp_{\mathrm{PL}}\right]$. For every $n, \mathcal{P}[\operatorname{Prop} n]$. For every $r$ and $s$ such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \Rightarrow s]$. For every $B, \mathcal{P}[B]$ from PLInd. $M \not \vDash A$.
(71) $A$ is a tautology if and only if $\emptyset_{\mathrm{PL}-\mathrm{WFF}} \vdash A$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The well ordering relations Formalized Mathematics, 1(1):123-129, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Leszek Borys. On paracompactness of metrizable spaces Formalized Mathematics, 3(1): 81-84, 1992.
[5] Czesław Byliński. Binary operations, Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Mariusz Giero. Propositional linear temporal logic with initial validity semantics. Formalized Mathematics, 23(4):379-386, 2015. doi 10.1515/forma-2015-0030.
[10] Witold Pogorzelski. Dictionary of Formal Logic. Wydawnictwo UwB - Bialystok, 1992.
[11] Witold Pogorzelski. Notions and theorems of elementary formal logic. Wydawnictwo UwB - Bialystok, 1994.
[12] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Formalized Mathematics, 6(3):339-343, 1997.
[13] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematucs, 8(1):133-137, 1999.
[14] Anita Wasilewska. An Introduction to Classical and Non-Classical Logics. SUNY Stony Brook, 2005.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received October 18, 2016


[^0]:    ${ }^{1}$ This work was supported by the University of Bialystok grants: BST447 Formalization of temporal logics in a proof-assistant. Application to System Verification, and BST225 Database of mathematical texts checked by computer.

