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Summary. Formalization of a part of [[1]. Unfortunately, not all is possible
to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3.
It states that there exists € M such that Mi(x) > Ni(z) and (Vy € Ni)x £ y.
It should be Mi(z) > Ni(z). Nevertheless we do not know whether x € Ny or
not and cannot prove the contradiction. In the article we referred to [8], [9] and
[10].
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1. PRELIMINARIES

Now we state the propositions:
(1) Let us consider natural numbers m, n. Then n = m—'(m—"n)+(n—"m).
(2) Let us consider natural numbers n, m. Then m —'n > m —n.
Let us consider natural numbers m, n, x, y. Now we state the propositions:
(3) Ifn=m—-"2+y, then m —"n <z and n =" m < y. The theorem is
a consequence of (2).
(4) Ifz<mandn=m—-"z+y, then x = (m —"n) =y —'(n—"m). The
theorem is a consequence of (3).
Now we state the propositions:
(5) Let us consider natural numbers k, 1, x2, y1, y2. Suppose z3 < k and
x1 < k —' 29+ y9. Then

(i) x2 + (1 —" y2) < k, and

@ 2016 University of Bialystok
CC-BY-SA License ver. 3.0 or later
95 ISSN 1426-2630(Print), 1898-9934(Online)

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated
Download Date | 12/23/16 12:07 PM


http://www.degruyter.com/view/j/forma
http://zbmath.org/classification/?q=cc:06F05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/bagord_2.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

96 GRZEGORZ BANCEREK

(ii) k=" 2 + Y2 2 +y1 =k —! (.%2 + (.T1 —! yg)) + (yg —'z +y1).

PROOF: xo + (w1 —" y2) < k by [12, (8)]. O
(6) Let us consider natural numbers x, y. If z +y > 0, then 2z > 0 or y > 0.

From now on a, b denote objects and I, J denote sets.

Let us consider I. Let J be a non empty set. Let us note that every function
from [ into J is total and there exists a relational structure which is asymmetric,
transitive, and non empty.

Let us consider I. One can verify that there exists a binary relation on [
which is asymmetric and transitive.

Let R be a transitive relational structure. Observe that the internal relation
of R is transitive.

Let R be an asymmetric relational structure. Let us observe that the internal
relation of R is asymmetric.

Let us consider I. Let p, ¢ be I-valued finite sequences. Let us observe that
p " q is I-valued.

Now we state the proposition:

(7) Let us consider finite sequences p, q. Suppose p ~ ¢ is I-valued. Then
(i) pis I-valued, and
(ii) ¢ is I-valued.

Let us consider I. Let f be an I-valued finite sequence and n be a natural
number. Let us note that f[n is I-valued.

Now we state the propositions:

(8) Let us consider a finite sequence p. Suppose a € rngp. Then there exist

~

finite sequences ¢, r such that p = (¢~ (a)) " r.

(9) Let us consider finite sequences p, g. Then p C ¢ if and only iflenp < lengq
and for every natural number i such that i € dom p holds p(i) = q(7).
(10) Let us consider finite sequences p, g, . Then r ~p C r ™ ¢ if and only if
p Cq.
PRrROOF: If r “p C r "¢, then p C ¢ by [4, (22)], (9), [15 (30)], [4, (28)]. O
Let R be an asymmetric, non empty relational structure and z, y be elements
of R. Let us observe that the predicate x < y is asymmetric.
Now we state the proposition:

(11) Let us consider an asymmetric, non empty relational structure R, and
elements z, y of R. Then x < y if and only if x < y.
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ON MULTISET ORDERING 97

2. RELATIONAL EXTENSION

Let us consider 1.

A multiset of I is an element of I®. Observe that every multiset of I is
I-defined and natural-valued and every multiset of I is total.

Let m be a natural-valued function. Let us note that the functor support m
is defined by the term

(Def. 1) m~Y(N\ {0}).
Let us consider I. One can check that every multiset of [ is finite-support.
Now we state the propositions:

(12) a is a multiset of I if and only if a is a bag of I.
(13) 1;6 = EmptyBagI.
Let R be a relational structure and «x, y be elements of R. We say that x =y
if and only if
(Def. 2) 2z yandy<K .
Observe that the predicate is symmetric.

We consider relational multiplicative magmas which extend multiplicative
magmas and relational structures and are systems

(a carrier, a multiplication, an internal relation)

where the carrier is a set, the multiplication is a binary operation on the carrier,
the internal relation is a binary relation on the carrier.

We consider relational monoids which extend multiplicative loop structures
and relational structures and are systems

(a carrier, a multiplication, a one, an internal relation)

where the carrier is a set, the multiplication is a binary operation on the carrier,
the one is an element of the carrier, the internal relation is a binary relation on
the carrier.

Let M be a multiplicative loop structure.

A relational extension of M is a relational monoid and is defined by

(Def. 3) the multiplicative loop structure of it = the multiplicative loop structure
of M.

Let M be a non empty multiplicative loop structure. Let us observe that
every relational extension of M is non empty.

Let M be a multiplicative loop structure. One can check that there exists
a relational extension of M which is strict.

Let us consider a multiplicative loop structure /N and a relational extension
M of N. Now we state the propositions:
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98 GRZEGORZ BANCEREK

(14) a is an element of M if and only if a is an element of N.
(15) 1y =1p.

Let us consider I. Let M be a relational extension of I®. Let us observe that
every element of M is function-like and relation-like and every element of M is
I-defined, natural-valued, and finite-support and every element of M is total.

Now we state the proposition:

(16) Let us consider a relational extension M of I®. Then the carrier of
M = BagsI. The theorem is a consequence of (12) and (14).
The scheme RelEz deals with a non empty multiplicative loop structure M
and a binary predicate R and states that
(Sch. 1) There exists a strict relational extension N of M such that for every
elements x, y of N, z < y iff R[z,y].
Now we state the proposition:
(17) Let us consider a multiplicative loop structure N, and strict relational
extensions M7, My of N. Suppose for every elements m, n of M; for every
elements x, y of Ms such that m = z and n = y holds m < n iff z < y.

Then M1 = MQ.
PROOF: The internal relation of M; = the internal relation of My by [7,
(87)]. O

3. DERSHOWITZ-MANNA ORDER

Let R be a non empty relational structure. The Dershowitz-Manna order R
yielding a strict relational extension of (the carrier of R)® is defined by
(Def. 4) for every elements m, n of it, m < n iff there exist elements x, y of it
such that 14 # = | n and m = n —' = + y and for every element b of R
such that y(b) > 0 there exists an element a of R such that x(a) > 0 and
b<a.
Now we state the proposition:
(18) Let us consider bags m, n of I. Then n =m —' (m —"n)+ (n =" m). The
theorem is a consequence of (1).
Let us consider bags m, n, x, y of I. Now we state the propositions:
(19) Ifn =m —"x+y, then m —'n | x and n = m | y. The theorem is
a consequence of (3).
(20) Ifz|mand n=m—"z+y, then x =" (m —'n) =y —" (n —"m). The
theorem is a consequence of (4).

Now we state the propositions:
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ON MULTISET ORDERING 99

(21) Let us consider bags m, z, y of I. If x | m and x # y, then m # m—'xz+y.

(22) Let us consider a non empty set I, a binary relation R on I, and a re-
duction sequence r w.r.t. R. If lenr > 1, then r(lenr) € I.

(23) Let us consider an asymmetric, transitive binary relation R on I. Then
every reduction sequence w.r.t. R is one-to-one.
ProoOF: For every natural numbers ¢, j such that ¢ > j and ¢, 7 € domr
holds 7(7) # r(j) by [1, (13)], [13 (22)], [1L (11)], [15, (25)]. O

(24) Let us consider an asymmetric, transitive, non empty relational struc-
ture R, and a set X. Suppose X is finite and there exists an element x of
R such that x € X. Then there exists an element x of R such that x is
maximal in X.
PROOF: Reconsider X; = X as a finite set. Set ¥ = {r, where r is
an element of X1* : r is a reduction sequence w.r.t. the internal relation
of R}. Define P[natural number| = there exists a reduction sequence r
w.r.t. the internal relation of R such that r € Y and lenr = $;. For every
natural number k such that P[k] holds £ < X by (23), [1, (43)]. P[1]
by [2, (6)], [4, (74), (39)]. Consider k being a natural number such that
P[k] and for every natural number n such that P[n| holds n < k from [,
Sch. 6]. Consider r being a reduction sequence w.r.t. the internal relation
of R such that r € Y and lenr = k. Consider ¢ being an element of X;*
such that » = ¢ and ¢ is a reduction sequence w.r.t. the internal relation
of R.J

(25) Let us consider bags m, n of I. Then m —'n | m.

Let us consider I. Note that every element of Bags/ is function-like and
relation-like.
Now we state the proposition:

(26) Let us consider bags m, n of I. Then
(i) m =" n # EmptyBag I, or
(ii) m =n, or
(iii) n —' m # EmptyBagI.
Let R be an asymmetric, transitive, non empty relational structure. Let us
observe that the Dershowitz-Manna order R is defined by
(Def. 5) for every elements m, n of it, m < n iff m # n and for every element a
of R such that m(a) > n(a) there exists an element b of R such that a <b
and m(b) < n(b).
Now we state the proposition:
(27) Let us consider bags k, x1, x2, y1, y2 of I. Suppose xo | k and x |
k —' 29 + y9. Then
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100 GRZEGORZ BANCEREK

(i) x2 + (r1 —"y2) | k, and
(i) k—"2o+ys—" 21+ =k~ (z2+ (x1 " y2)) + (2 =" x1 + 11)-
The theorem is a consequence of (5).
Let R be an asymmetric, transitive, non empty relational structure. Let us
observe that the Dershowitz-Manna order R is asymmetric and transitive.
Let us consider I. The functor DivOrder(/) yielding a binary relation on
Bags I is defined by
(Def. 6) for every bags by, by of I, (b1, bo) € it iff by # by and by | bo.
Now we state the proposition:
(28) Let us consider bags a, b, cof I. If a | b | ¢, then a | c.
Let us consider /. Note that DivOrder(]) is asymmetric and transitive.
Let us consider an asymmetric, transitive, non empty relational structure
R. Now we state the propositions:

(29) DivOrder(the carrier of R) C the internal relation of the Dershowitz-
Manna order R. The theorem is a consequence of (12) and (14).

(30) Suppose the internal relation of R is empty. Then the internal relation
of the Dershowitz-Manna order R = DivOrder(the carrier of R). The the-
orem is a consequence of (29).

Now we state the proposition:

(31) Let us consider asymmetric, transitive, non empty relational structures
R1, Ro. Suppose the carrier of R; = the carrier of Ry and the internal
relation of Ry C the internal relation of Ry. Then the internal relation of
the Dershowitz-Manna order 1 C the internal relation of the Dershowitz-
Manna order Ry. The theorem is a consequence of (12) and (14).

4. MoNOIDAL ORDER

Let us consider I. Let f be a (BagsI)-valued finite sequence. The functor
> f yielding a bag of I is defined by
(Def. 7) there exists a function F' from N into Bags I such that it = F'(len f) and
F(0) = EmptyBag I and for every natural number ¢ and for every bag b
of I such that i <len f and b = f(i + 1) holds F'(i + 1) = F(i) + b.
Now we state the proposition:
(32) > eBags1 = EmptyBag 1.
Let us consider I. Let b be a bag of I. One can verify that (b) is (BagsI)-
valued as a finite sequence.
Now we state the proposition:
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ON MULTISET ORDERING 101

(33) Let us consider a (BagsI)-valued finite sequence p, and a bag b of I.
Then X(p~ (8)) = S2p + .
PROOF: Set f = p ™ (b). Consider F' being a function from N into Bags I
such that Y f = F(len f) and F(0) = EmptyBag I and for every natural
number ¢ and for every bag b of I such that i < len f and b = f(i + 1)
holds F'(i4+1) = F(i) +b. Consider F; being a function from N into Bags I
such that > p = Fi(lenp) and F;(0) = EmptyBag I and for every natural
number ¢ and for every bag b of I such that i < lenp and b = p(i + 1)
holds Fi(i+1) = F1(i) +b. Define P[natural number] = if §; < lenp, then
F($1) = F1($1). For every natural number ¢ such that P[i] holds P[i + 1]
by [5, (16)], [I, (13), (11)], [15, (25)]. For every natural number i, P]i]
from [1, Sch. 2]. O

From now on b denotes a bag of I.
Now we state the propositions:

(34) >°(b) =b. The theorem is a consequence of (33) and (32).

(35) Let us consider (Bags I)-valued finite sequences p, g. Then > (p ™ q) =
2P+ 2q
PROOF: Set f = p ™ q. Consider F being a function from N into Bags [l
such that ) f = F(len f) and F(0) = EmptyBag I and for every natural
number i and for every bag b of I such that i < len f and b = f(i + 1)
holds F'(i4+1) = F(i) +b. Consider F; being a function from N into Bags I
such that > p = Fi(lenp) and F;(0) = EmptyBag I and for every natural
number 4 and for every bag b of I such that i < lenp and b = p(i+1) holds
Fi(i+ 1) = Fi(i) + b. Consider Fy being a function from N into Bags
such that >" g = Fy(lenq) and F»(0) = EmptyBag I and for every natural
number i and for every bag b of I such that i < leng and b = ¢(i + 1)
holds F5(i + 1) = Fy(i) + b. Define P[natural number] = if §; < lenp,
then F($1) = Fi($1). For every natural number i such that P[i] holds
Pli + 1] by [4, (22)], [1, (11), (13)], [I5, (25)]. For every natural number
i, P[i] from [I, Sch. 2]. Define Q[natural number| = if $; < leng, then
F(lenp +$1) = > p + F>($1). For every natural number ¢ such that Q[i]
holds Q[i + 1] by [4, (22)], [1, (13), (11)], [15, (25)]. For every natural
number ¢, Q[i] from [1, Sch. 2]. O

Let us consider a (Bags I)-valued finite sequence p. Now we state the pro-
positions:
(36) >>((b) " p) =b+ > p. The theorem is a consequence of (35) and (34).
(37) If b € rngp, then b | > p. The theorem is a consequence of (8), (7), (33),
and (35).

Now we state the proposition:
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102 GRZEGORZ BANCEREK

(38) Let us consider a (Bags)-valued finite sequence p, and an object i.
Suppose i € support > p. Then there exists b such that

(i) b € rngp, and
(ii) ¢ € supportb.

PROOF: Define P[natural number] = for every (Bags I')-valued finite sequ-
ence p such that lenp = $; for every object ¢ such that ¢ € support . p
there exists b such that b € rng p and i € support b. P[0]. For every natural
number j such that P[j] holds P[j + 1] by [3, (3)], (7), [4, (40)], [15} (25)].
For every natural number j, P[j] from [I, Sch. 2]. O

Let us consider I and b.

A partition of b is a (Bags I)-valued finite sequence and is defined by

(Def. 8) b=>"1t.
Observe that the functor (b) yields a partition of b. Let R be a relational

structure, M be a relational extension of (the carrier of R)®, b be an element
of M, and p be a partition of b. We say that p is co-ordered if and only if

(Def. 9) for every natural number ¢ such that i, i + 1 € dom p for every elements
b1, by of M such that by = p(i) and by = p(i + 1) holds by < by.
Let R be a non empty relational structure and b be a bag of the carrier of
R. We say that p is ordered if and only if

(Def. 10) for every bag m of the carrier of R such that m € rngp for every element
x of R such that m(z) > 0 holds m(z) = b(z) and for every bag m of
the carrier of R such that m € rngp for every elements z, y of R such
that m(xz) > 0 and m(y) > 0 and = # y holds = y and for every bag m
of the carrier of R such that m € rngp holds m # EmptyBag(the carrier
of R) and for every natural number i such that ¢, i + 1 € dom p for every
element x of R such that p;y1(x) > 0 there exists an element y of R such
that p;(y) > 0 and = < y.

In the sequel R denotes an asymmetric, transitive, non empty relational
structure, a, b, ¢ denote bags of the carrier of R, and x, y, z denote elements of
R.

Now we state the propositions:

(39) (a) is ordered if and only if a # EmptyBag(the carrier of R) and for
every x and y such that a(z) > 0 and a(y) > 0 and = # y holds x = y.

(40) Let us consider a (Bags I)-valued finite sequence p, and bags a, b of I.
Then (a) ~ p is a partition of b if and only if a | b and p is a partition of
b —'a. The theorem is a consequence of (36).
From now on p denotes a partition of b — a and ¢ denotes a partition of b.
Now we state the proposition:
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ON MULTISET ORDERING 103

(41) If g = (a) "~ p and q is ordered, then p is ordered. The theorem is a con-
sequence of (37) and (25).

Let us consider I. Let m be a bag of I and J be a set. The functor m[J
yielding a bag of I is defined by

(Def. 11) for every object i such that ¢ € I holds if 7 € J, then it(i) = m(i) and if
i ¢ J, then it(i) = 0.
From now on J denotes a set and m denotes a bag of I.
Now we state the propositions:

(42) support(mlJ) = J Nsupport m.

(43) m|J+m[(I\J)=m.

(44) ml[J | m.

(45) If supportm C J, then m[J = m.

(46) support(m —' m[J) = supportm \ J.

(47) 1If q is ordered and ¢ = (a) " p and a(z) > 0, then a(z) = b(x).

(48) If ¢ is ordered and ¢ = (a) " p and a(zx) > 0 and a(y) > 0 and = # v,

then z = y.
(49) 1If g is ordered and g = (a) ~ p, then a # EmptyBag(the carrier of R).
(50) Let us consider a bag ¢ of the carrier of R, and a (Bags(the carrier of
R))-valued finite sequence r. Suppose ¢ is ordered and ¢ = (a,c) ™ r and
¢(y) > 0. Then there exists x such that

(i) a(zx) >0, and
(i) y <.

(51) If x € I and for every y such that y € I and y # x holds = = y, then z
is maximal in I.

(52) 1If g is ordered and ¢ = (a) "~ p and ¢ € rngp and ¢(z) > 0, then there
exists y such that a(y) > 0 and = < y.
ProOOF: Consider i being an object such that ¢ € domp and ¢ = p(i).
Define P[natural number| = if $; € domp, then for every = such that
pg, (x) > 0 there exists y such that a(y) > 0 and = < y. P[1] by [ (28)],
[15, (25)], [4, (40)]. For every natural number ¢ such that ¢ > 1 and PJi]
holds P[i + 1] by [1, (13)], [15, (25)], [4, (28)], [16], (3)]. For every natural
number ¢ such that ¢ > 1 holds P[i] from [II, Sch. 8]. O

Let us assume that ¢ is ordered and g = (a) ~ p. Now we state the proposi-
tions:

(53) z is maximal in support b if and only if a(z) > 0.
PROOF: a | Y~ ¢ = b. There exists no y such that y € supportb and x <y
by (48), (38), [4, (31), (39)]. O
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104 GRZEGORZ BANCEREK

(54) a = b[{z : z is maximal in supportb}. The theorem is a consequence of
(53) and (47).

Now we state the propositions:

(55) Let us consider a (BagsI)-valued finite sequence p. Suppose Y p =
EmptyBag I and for every bag a of I such that a € rngp holds a #
EmptyBag I. Then p = (). The theorem is a consequence of (37).

(56) Let us consider bags a, b of I. If a # EmptyBagl, then a + b #
EmptyBag I.

(57) Let us consider partitions p, ¢ of b. If p is ordered and ¢ is ordered, then
p=gq.

PROOF: Define P[natural number] = for every b and ¢ such that lengq = $;
and ¢ is ordered for every partition p of b such that p is ordered holds ¢ = p.
P[0]. For every natural number 4 such that P[i] holds P[i+1] by [5, (130)],
(40), (49), (36). For every natural number 4, P[i] from [I, Sch. 2]. O
Let us consider I. Let a, b be bags of I. One can verify that the functor {(a,
b) yields an element of Bags I x Bags I. Now we state the proposition:

(58) Suppose a # EmptyBag(the carrier of R). Then {z : z is maximal in

support a} # (). The theorem is a consequence of (24).
Let us consider R and b. The ordered partition of b yielding a (Bags(the carrier
of R))-valued finite sequence is defined by
(Def. 12) there exist functions F', G from N into Bags(the carrier of R) such that
F(0) = b and G(0) = EmptyBag(the carrier of R) and for every natural
number i, G(i+1) = F(i)[{z : x is maximal in support(F'(i))} and F(i+
1) = F(i) = G(i + 1) and there exists a natural number i such that
F(i) = EmptyBag(the carrier of R) and it = G| Seg i and for every natural
number j such that j < i holds F(j) # EmptyBag(the carrier of R).
One can verify that the ordered partition of b yields a partition of b. Let us
note that the ordered partition of b is ordered as a partition of b.
Now we state the proposition:

(59) b = EmptyBag(the carrier of R) if and only if the ordered partition of

b = (. The theorem is a consequence of (32).
Let us consider R. The functor < R yielding a strict relational extension
of (the carrier of R)® is defined by
(Def. 13) for every elements m, n of it, m < n iff m # n and for every x such that
m(x) > 0 holds m(z) < n(x) or there exists y such that n(y) > 0 and
Tz < y.
Let us note that <¢ R is asymmetric and transitive.
Let us consider /. Let R be a relation between I and I.
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ON MULTISET ORDERING 105

The functor LexOrder (I, R) yielding a binary relation on I* is defined by
(Def. 14) for every I-valued finite sequences p, q, (p, ¢) € it iff p C ¢ or there
exists a natural number k such that k£ € domp and k € domq and (p(k),
q(k)) € R and for every natural number n such that 1 < n < k holds
p(n) =q(n).
Let R be a transitive binary relation on /. One can verify that LexOrder (7, R)
is transitive.
Let R be an asymmetric binary relation on I. Note that LexOrder(I, R) is
asymmetric.
Now we state the proposition:

(60) Let us consider an asymmetric binary relation R on I, and I-valued
finite sequences p, ¢, r. Then (p, q) € LexOrder(I, R) if and only if (r ™ p,
r ™ q) € LexOrder(/, R). The theorem is a consequence of (10).

Let us consider R. The functor << R yielding a strict relational extension
of (the carrier of R)® is defined by
(Def. 15) for every elements m, n of it, m < n iff (the ordered partition of m,
the ordered partition of n) € LexOrder((the carrier of < R), (the internal
relation of < R)).
Observe that << R is asymmetric and transitive.
Now we state the propositions:

(61) Let us consider elements a, b of the Dershowitz-Manna order R. Suppose
a < b. Then b # EmptyBag(the carrier of R). The theorem is a consequ-
ence of (29).

(62) Let us consider elements a, b, ¢, d of the Dershowitz-Manna order R, and
a bag e of the carrier of R. Suppose a < bande|aande|b. Ifc=a—"¢
and d = b —' e, then ¢ < d.

(63) Let us consider a (BagsI)-valued finite sequence p, and an object x.
Suppose x € I and (}_p)(x) > 0. Then there exists a natural number 4
such that

(i) i € domp, and

(i) pi(z) > 0.

PROOF: Define P[object] = for every (Bags I')-valued finite sequence p such

that p = $; and (3_p)(x) > 0 there exists a natural number ¢ such that

i € domp and p;(x) > 0. P[0] by (32), [I4, (7)]. For every finite sequence

p and for every object a such that P[p] holds P[p ~ (a)] by (7), [4 (40)],

[15, (25)], [6, (102)]. For every finite sequence p, P[p| from [4, Sch. 3]. O
(64) If g is ordered and ¢;(z) = 0 and b(z) > 0, then there exists y such that

q1(y) >0 and = < y.
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PROOF: Define P[natural number] = if $; € dom g, then for every x such
that gg, (x) > 0 there exists y such that ¢1(y) > 0 and = < y. P[2] by [15}
(25)]. For every natural number ¢ such that 2 < i and P[i] holds P[i + 1]
by [, (11)], [15} (25)], [16} (3)]. For every natural number ¢ such that i > 2
holds P[i] from [I. Sch. 8]. Consider i being a natural number such that
i € domgq and ¢;(x) > 0. O
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