

σ -ring and σ -algebra of Sets¹

Noboru Endou Gifu National College of Technology Gifu, Japan Kazuhisa Nakasho Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, semiring and semialgebra of sets are formalized so as to construct a measure of a given set in the next step. Although a semiring of sets has already been formalized in [13], that is, strictly speaking, a definition of a quasi semiring of sets suggested in the last few decades [15]. We adopt a classical definition of a semiring of sets here to avoid such a confusion. Ring of sets and algebra of sets have been formalized as non empty preboolean set [23] and field of subsets [18], respectively. In the second section, definitions of a ring and a σ -ring of sets, which are based on a semiring and a ring of sets respectively, are formalized and their related theorems are proved. In the third section, definitions of an algebra and a σ -algebra of sets, which are based on a semialgebra and an algebra of sets respectively, are formalized and their related theorems are proved. In the last section, mutual relationships between σ -ring and σ -algebra of sets are formalized and some related examples are given. The formalization is based on [15], and also referred to [9] and [16].

MSC: 03E30 28A05 03B35

Keywords: semiring of sets; σ -ring of sets; σ -algebra of sets

MML identifier: SRINGS_3, version: 8.1.04 5.31.1231

The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [3], [17], [21], [6], [14], [23], [10], [11], [7], [8], [22], [4], [5], [18], [19], [26], [27], [20], [13], [25], and [12].

¹This work was supported by JSPS KAKENHI 23500029 and 22300285.

1. Preliminaries

Now we state the propositions:

- (1) Let us consider finite sequences f_1 , f_2 , and a natural number k. Suppose $k \in \text{Seg}(\text{len } f_1 \cdot \text{len } f_2)$. Then
 - (i) $(k 1 \mod \text{len } f_2) + 1 \in \text{dom } f_2$, and
 - (ii) $(k 1 \operatorname{div} \operatorname{len} f_2) + 1 \in \operatorname{dom} f_1$.
- (2) Let us consider a non empty, finite set S. Then $\bigcup CFS(S) = \bigcup S$.
- (3) Let us consider an object x. Then $\langle x \rangle$ is a disjoint valued finite sequence.
- (4) Let us consider sets x, y, and a finite sequence F. If $F = \langle x, y \rangle$ and x misses y, then F is disjoint valued.
- (5) Let us consider finite sequences f_1 , f_2 . Then there exists a finite sequence f such that
 - (i) $\bigcup f_1 \cap \bigcup f_2 = \bigcup f$, and
 - (ii) dom $f = \text{Seg}(\text{len } f_1 \cdot \text{len } f_2)$, and
 - (iii) for every natural number i such that $i \in \text{dom } f$ holds $f(i) = f_1((i 1 \text{ div len } f_2) + 1) \cap f_2((i 1 \text{ mod len } f_2) + 1)$.

PROOF: For every natural number k such that $k \in \text{Seg}(\text{len } f_1 \cdot \text{len } f_2)$ holds $(k-'1 \mod \text{len } f_2) + 1 \in \text{dom } f_2$ and $(k-'1 \dim \text{len } f_2) + 1 \in \text{dom } f_1$. Define $\mathcal{P}[\text{natural number, object}] \equiv \$_2 = f_1((\$_1 -'1 \dim \text{len } f_2) + 1) \cap f_2((\$_1 -'1 \mod \text{len } f_2) + 1)$. Consider f being a finite sequence such that f being a finite sequence such that f being f and for every natural number f such that f being f be

- (6) Let us consider disjoint valued finite sequences f_1 , f_2 . Then there exists a disjoint valued finite sequence f such that
 - (i) $\bigcup f_1 \cap \bigcup f_2 = \bigcup f$, and
 - (ii) dom $f = \text{Seg}(\text{len } f_1 \cdot \text{len } f_2)$, and
 - (iii) for every natural number i such that $i \in \text{dom } f$ holds $f(i) = f_1((i 1 \text{ div len } f_2) + 1) \cap f_2((i 1 \text{ mod len } f_2) + 1)$.

The theorem is a consequence of (5).

(7) Let us consider a set X, and a non empty, \-closed family S of subsets of X. Then $\emptyset \in S$.

Let X be a set. One can check that every family of subsets of X which is non empty and \backslash -closed has also the empty element.

2. Classical Semiring, Ring and σ -ring of Sets

Let I_1 be a set. We say that I_1 is semi \-closed if and only if

(Def. 1) for every sets X, Y such that X, $Y \in I_1$ there exists a disjoint valued finite sequence F of elements of I_1 such that $X \setminus Y = \bigcup F$.

Let X be a set. Let us note that 2^X is semi \-closed and there exists a family of subsets of X which is non empty, semi \-closed, and \cap-closed and there exists a family of subsets of X which is semi \-closed and \cap-closed and has the empty element.

A semiring of X is a semi \-closed, \cap -closed family of subsets of X with the empty element. Now we state the propositions:

- (8) Let us consider a set X, a family S of subsets of X, and sets S_1 , S_2 . Suppose S_1 , $S_2 \in S$ and S is semi \-closed. Then there exists a finite subset x of S such that x is a partition of $S_1 \setminus S_2$.
- (9) Let us consider a set X, and a non empty family S of subsets of X. Suppose S is semi \-closed. Then S is $\setminus_{fp}^{\subseteq}$ -closed. The theorem is a consequence of (8).
- (10) Let us consider a set X, and a family S of subsets of X. Suppose S is \cap_{fp} -closed and $\setminus_{fp}^{\subseteq}$ -closed and has the empty element. Then S is semi \setminus -closed. The theorem is a consequence of (2).

Note that every set which is \-closed is also semi \-closed and ∩-closed.

Let X be a set. Observe that there exists a family of subsets of X which is non empty and preboolean and every set which is non empty and preboolean has also the empty element.

Let X be a set and S be a semi \-closed, \cap -closed family of subsets of X with the empty element. The ring generated by S yielding a non empty, preboolean family of subsets of X is defined by the term

(Def. 2) $\bigcap \{Z, \text{ where } Z \text{ is a non empty, preboolean family of subsets of } X : S \subseteq Z \}.$

Now we state the proposition:

(11) Let us consider a set X, and a semi \-closed, \cap-closed family P of subsets of X with the empty element. Then $P \subseteq$ the ring generated by P.

Let X be a set and S be a semi \-closed, \cap -closed family of subsets of X with the empty element. The functor DisUnion S yielding a non empty family of subsets of X is defined by the term

(Def. 3) $\{A, \text{ where } A \text{ is a subset of } X : \text{there exists a disjoint valued finite sequence } F \text{ of elements of } S \text{ such that } A = \bigcup F \}.$

Let us consider a set X and a semi \backslash -closed, \cap -closed family S of subsets of X with the empty element. Now we state the propositions:

- (12) $S \subseteq \text{DisUnion } S$.
- (13) DisUnion S is \cap -closed. The theorem is a consequence of (6) and (1). Now we state the proposition:
- (14) Let us consider a set X, a semi \-closed, \cap-closed family S of subsets of X with the empty element, and sets A, B, P. If P = DisUnion S and A, $B \in P$ and A misses B, then $A \cup B \in P$.

Let us consider a set X, a semi \backslash -closed, \cap -closed family S of subsets of X with the empty element, and sets A, B. Now we state the propositions:

- (15) If $A, B \in S$, then $B \setminus A \in \text{DisUnion } S$.
- (16) If $A \in S$ and $B \in \text{DisUnion } S$, then $B \setminus A \in \text{DisUnion } S$.

 PROOF: Reconsider $A_1 = A$ as a subset of X. Consider B_1 being a subset of X such that $B = B_1$ and there exists a disjoint valued finite sequence F of elements of S such that $B_1 = \bigcup F$. Consider g_1 being a disjoint valued finite sequence of elements of S such that $B_1 = \bigcup g_1$. Reconsider $R_1 = \text{DisUnion } S$ as a non empty set. Define $\mathcal{P}[\text{natural number, object}] \equiv \$_2 = g_1(\$_1) \setminus A_1$. For every natural number k such that $k \in \text{Seg len } g_1$ there exists an element x of R_1 such that $\mathcal{P}[k, x]$ by [10, (3)], (15). Consider g_2 being a finite sequence of elements of R_1 such that dom $g_2 = \text{Seg len } g_1$ and for every natural number k such that $k \in \text{Seg len } g_1$ holds $\mathcal{P}[k, g_2(k)]$ from [6, Sch. 5]. For every natural numbers n, m such that n, $m \in \text{dom } g_2$ and $n \neq m$ holds $g_2(n)$ misses $g_2(m)$. Set R = DisUnion S. Define $\mathcal{H}[\text{natural number}] \equiv \bigcup \text{rng}(g_2 \upharpoonright \$_1) \in R$. For every natural number k such that $\mathcal{H}[k]$ holds $\mathcal{H}[k+1]$ by [4, (13)], [6, (59), (82)], [24, (55)]. For every natural number k, $\mathcal{H}[k]$ from [4, Sch. 2]. \square

Now we state the propositions:

(17) Let us consider a set X, a semi \backslash -closed, \cap -closed family S of subsets of X with the empty element, and sets A, B, R. Suppose R = DisUnion S and A, $B \in R$ and $A \neq \emptyset$. Then $B \setminus A \in R$.

PROOF: Consider A_1 being a subset of X such that $A = A_1$ and there exists a disjoint valued finite sequence F of elements of S such that $A_1 = \bigcup F$. Consider f_1 being a disjoint valued finite sequence of elements of S such that $A_1 = \bigcup f_1$. Consider B_1 being a subset of X such that $B = B_1$ and there exists a disjoint valued finite sequence F of elements of S such that $B_1 = \bigcup F$. Reconsider $B_1 = B$ as a non empty set. Define $\mathcal{P}[\text{natural number, object}] \equiv \$_2 = B_1 \setminus f_1(\$_1)$. For every natural number K such that $K \in Seg \text{ len } f_1$ there exists an element $K \in Seg \text{ len } f_1$ there exists an element $K \in Seg \text{ len } f_1$ such that $K \in Seg \text{ len } f_1$ there exists an element $K \in Seg \text{ len } f_1$ such that $K \in Seg \text{ len } f_1$ there exists an element $K \in Seg \text{ len } f_1$ such that $K \in Seg \text{ len } f_1$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ there exists an element $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_2$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ such that $K \in Seg \text{ len } f_3$ suc

that dom $F = \text{Seg len } f_1$ and for every natural number k such that $k \in \text{Seg len } f_1$ holds $\mathcal{P}[k, F(k)]$ from [6, Sch. 5]. Define $\mathcal{P}[\text{natural number}] \equiv \bigcap \text{rng}(F \upharpoonright \$_1) \in R$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [6, (82)], [4, (11)], [6, (59)], [24, (55)]. For every natural number k, $\mathcal{P}[k]$ from [4, Sch. 2]. \square

(18) Let us consider a set X, and a semi \-closed, \cap-closed family S of subsets of X with the empty element. Then the ring generated by S = DisUnion S. The theorem is a consequence of (13), (17), and (14).

Let X be a set.

A σ -ring of subsets of X is a non empty, preboolean family of subsets of X and is defined by

- (Def. 4) for every sequence F of subsets of X such that rng $F \subseteq it$ holds $\bigcup F \in it$. Let us observe that every σ -ring of subsets of X is σ -multiplicative. Let S be a family of subsets of X. The functor σ -ring(S) yielding a σ -ring
- of subsets of X is defined by (Def. 5) $S \subseteq it$ and for every set Z such that $S \subseteq Z$ and Z is a σ -ring of subsets of X holds $it \subseteq Z$.

Now we state the proposition:

- (19) Let us consider a set X, and a semi \-closed, \cap-closed family S of subsets of X with the empty element. Then σ -ring(the ring generated by S) = σ -ring(S). The theorem is a consequence of (11).
 - 3. Semialgebra, Algebra and σ -algebra of Sets

Let X be a set.

A semialgebra of sets of X is a semi \-closed, \cap -closed family of subsets of X with the empty element and is defined by

(Def. 6) $X \in it$.

Now we state the proposition:

(20) Let us consider a set X. Then every field of subsets of X is a semialgebra of sets of X.

Let X be a set and S be a semialgebra of sets of X. The field generated by S yielding a non empty field of subsets of X is defined by the term

(Def. 7) $\cap \{Z, \text{ where } Z \text{ is a field of subsets of } X : S \subseteq Z\}.$

Now we state the propositions:

(21) Let us consider a set X, and a semialgebra P of sets of X. Then $P \subseteq$ the field generated by P.

- (22) Let us consider a set X, and a semialgebra S of sets of X. Then the field generated by S = DisUnion S. The theorem is a consequence of (13), (17), and (14).
- (23) Let us consider a non empty set X, and a semialgebra S of sets of X. Then σ (the field generated by S) = σ (S). The theorem is a consequence of (21).
- 4. Mutual Relationships between σ -ring and σ -algebra of Sets

Let us consider a set X and a set S. Now we state the propositions:

- (24) If S is a σ -field of subsets of X, then S is a σ -ring of subsets of X.
- (25) If S is a σ -ring of subsets of X and $X \in S$, then S is a σ -field of subsets of X.

Let us consider a family S of subsets of \mathbb{R} . Now we state the propositions:

- (26) Suppose $S = \{I, \text{ where } I \text{ is a subset of } \mathbb{R} : I \text{ is left open interval}\}$. Then S is semi \-closed and \cap -closed and has the empty element. The theorem is a consequence of (10).
- (27) Suppose $S = \{I, \text{ where } I \text{ is a subset of } \mathbb{R} : I \text{ is right open interval}\}$. Then S is semi \-closed and \cap-closed and has the empty element. The theorem is a consequence of (4) and (3).

Now we state the proposition:

(28) the set of all I where I is an interval is a semialgebra of sets of \mathbb{R} . The theorem is a consequence of (3) and (4).

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563–567, 1990.
- [3] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. Formalized Mathematics, 5(3):381-393, 1996.
- [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [7] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [8] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263–269, 1992.
- [9] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

- [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Roland Coghetto. Semiring of sets. Formalized Mathematics, 22(1):79–84, 2014. doi:10.2478/forma-2014-0008.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [15] D.F. Goguadze. About the notion of semiring of sets. Mathematical Notes, 74:346–351, 2003. ISSN 0001-4346. doi:10.1023/A:1026102701631.
- [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
- [17] Jarosław Kotowicz and Konrad Raczkowski. Coherent space. Formalized Mathematics, 3 (2):255–261, 1992.
- [18] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [19] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745–749, 1990.
- [20] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [21] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [22] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341–347, 2003.
- [23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187–190, 1990.
- [24] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
- [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received February 18, 2015