Partial Differentiation, Differentiation and Continuity on *n*-Dimensional Real Normed Linear Spaces

Takao Inoué Inaba 2205, Wing-Minamikan Nagano, Nagano, Japan

Adam Naumowicz Institute of Computer Science University of Białystok Akademicka 2, 15-267 Białystok, Poland

Noboru Endou Nagano National College of Technology Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we aim to prove the characterization of differentiation by means of partial differentiation for vector-valued functions on n-dimensional real normed linear spaces (refer to [15] and [16]).

MML identifier: $\texttt{PDIFF_8},$ version: 7.11.07 4.156.1112

The notation and terminology used in this paper have been introduced in the following papers: [2], [7], [1], [3], [4], [5], [17], [11], [13], [6], [9], [14], [10], [8], [12], and [18].

One can prove the following propositions:

- (1) Let n, i be elements of \mathbb{N}, q be an element of \mathcal{R}^n , and p be a point of $\mathcal{E}^n_{\mathbb{T}}$. If $i \in \text{Seg } n$ and q = p, then $|p_i| \leq |q|$.
- (2) For every real number x and for every element v_1 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that $v_1 = \langle x \rangle$ holds $\| v_1 \| = |x|$.
- (3) Let *n* be a non empty element of \mathbb{N} , *x* be a point of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and *i* be an element of \mathbb{N} . If $1 \le i \le n$, then $\|(\operatorname{Proj}(i, n))(x)\| \le \|x\|$.

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

TAKAO INOUÉ et al.

- (4) For every non empty element n of \mathbb{N} and for every element x of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ and for every element i of \mathbb{N} holds $\|(\operatorname{Proj}(i, n))(x)\| = |(\operatorname{proj}(i, n))(x)|.$
- (5) Let n be a non empty element of \mathbb{N} , x be an element of \mathcal{R}^n , and i be an element of \mathbb{N} . If $1 \leq i \leq n$, then $|(\operatorname{proj}(i, n))(x)| \leq |x|$.
- (6) Let m, n be non empty elements of \mathbb{N} , s be a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and ibe an element of \mathbb{N} . Suppose $1 \leq i \leq n$. Then $\operatorname{Proj}(i, n)$ is a bounded linear operator from $\langle \mathcal{E}^n, \|\cdot\| \rangle$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$ and $(\operatorname{BdLinOpsNorm}(\langle \mathcal{E}^n, \|\cdot\| \rangle), \langle \mathcal{E}^1, \|\cdot\| \rangle))(\operatorname{Proj}(i, n)) \leq 1$.
- (7) Let m, n be non empty elements of \mathbb{N} , s be a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\|\rangle$ into $\langle \mathcal{E}^n, \|\cdot\|\rangle$, and i be an element of \mathbb{N} . Suppose $1 \leq i \leq n$. Then
- (i) $\operatorname{Proj}(i, n) \cdot s$ is a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$, and
- (ii) (BdLinOpsNorm($\langle \mathcal{E}^{m}, \|\cdot\|\rangle, \langle \mathcal{E}^{1}, \|\cdot\|\rangle)$)(Proj $(i, n) \cdot s$) \leq (BdLinOpsNorm($\langle \mathcal{E}^{n}, \|\cdot\|\rangle, \langle \mathcal{E}^{1}, \|\cdot\|\rangle)$)(Proj(i, n))·(BdLinOpsNorm($\langle \mathcal{E}^{m}, \|\cdot\|\rangle)$)(s).
- (8) For every non empty element n of \mathbb{N} and for every element i of \mathbb{N} holds $\operatorname{Proj}(i, n)$ is homogeneous.
- (9) Let n be a non empty element of N, x be an element of Rⁿ, r be a real number, and i be an element of N. Then (proj(i,n))(r ⋅ x) = r ⋅ (proj(i,n))(x).
- (10) Let n be a non empty element of \mathbb{N} , x, y be elements of \mathcal{R}^n , and i be an element of \mathbb{N} . Then $(\operatorname{proj}(i,n))(x+y) = (\operatorname{proj}(i,n))(x) + (\operatorname{proj}(i,n))(y)$.
- (11) Let *n* be a non empty element of \mathbb{N} , *x*, *y* be points of $\langle \mathcal{E}^n, \|\cdot\|\rangle$, and *i* be an element of \mathbb{N} . Then $(\operatorname{Proj}(i,n))(x-y) = (\operatorname{Proj}(i,n))(x) (\operatorname{Proj}(i,n))(y)$.
- (12) Let n be a non empty element of \mathbb{N} , x, y be elements of \mathcal{R}^n , and i be an element of \mathbb{N} . Then $(\operatorname{proj}(i,n))(x-y) = (\operatorname{proj}(i,n))(x) (\operatorname{proj}(i,n))(y)$.
- (13) Let m, n be non empty elements of \mathbb{N} , s be a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$, i be an element of \mathbb{N} , and s_1 be a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$. If $s_1 = \operatorname{Proj}(i, n) \cdot s$ and $1 \leq i \leq n$, then $\|s_1\| \leq \|s\|$.
- (14) Let m, n be non empty elements of \mathbb{N}, s, t be points of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$, s_1, t_1 be points of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$, and i be an element of \mathbb{N} . If $s_1 = \operatorname{Proj}(i, n) \cdot s$ and $t_1 = \operatorname{Proj}(i, n) \cdot t$ and $1 \leq i \leq n$, then $\|s_1 - t_1\| \leq \|s - t\|$.
- (15) Let K be a real number, n be an element of \mathbb{N} , and s be an element of \mathcal{R}^n . Suppose that for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds

 $|s(i)| \leq K$. Then $|s| \leq n \cdot K$.

- (16) Let K be a real number, n be a non empty element of \mathbb{N} , and s be an element of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Suppose that for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\|(\operatorname{Proj}(i,n))(s)\| \leq K$. Then $\|s\| \leq n \cdot K$.
- (17) Let K be a real number, n be a non empty element of \mathbb{N} , and s be an element of \mathcal{R}^n . Suppose that for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $|(\operatorname{proj}(i,n))(s)| \leq K$. Then $|s| \leq n \cdot K$.
- (18) Let m, n be non empty elements of \mathbb{N} , s be a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and K be a real number. Suppose that for every element i of \mathbb{N} and for every point s_1 of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$ such that $s_1 = \operatorname{Proj}(i, n) \cdot s$ and $1 \leq i \leq n$ holds $\|s_1\| \leq K$. Then $\|s\| \leq n \cdot K$.
- (19) Let m, n be non empty elements of \mathbb{N} , s, t be points of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and K be a real number. Suppose that for every element i of \mathbb{N} and for all points s_1 , t_1 of the real norm space of bounded linear operators from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ into $\langle \mathcal{E}^1, \|\cdot\| \rangle$ such that $s_1 = \operatorname{Proj}(i, n) \cdot s$ and $t_1 = \operatorname{Proj}(i, n) \cdot t$ and $1 \leq i \leq n$ holds $\|s_1 - t_1\| \leq K$. Then $\|s - t\| \leq n \cdot K$.
- (20) Let m, n be non empty elements of \mathbb{N} , f be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, X be a subset of $\langle \mathcal{E}^m, \|\cdot\| \rangle$, and i be an element of \mathbb{N} . Suppose $1 \leq i \leq m$ and X is open. Then the following statements are equivalent
 - (i) f is partially differentiable on X w.r.t. i and $f \upharpoonright^i X$ is continuous on X,
- (ii) for every element j of \mathbb{N} such that $1 \leq j \leq n$ holds $\operatorname{Proj}(j,n) \cdot f$ is partially differentiable on X w.r.t. i and $\operatorname{Proj}(j,n) \cdot f |^i X$ is continuous on X.
- (21) Let m, n be non empty elements of \mathbb{N} , f be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and X be a subset of $\langle \mathcal{E}^m, \|\cdot\| \rangle$. Suppose X is open. Then f is differentiable on X and $f'_{\uparrow X}$ is continuous on X if and only if for every element j of \mathbb{N} such that $1 \leq j \leq n$ holds $\operatorname{Proj}(j, n) \cdot f$ is differentiable on X and $(\operatorname{Proj}(j, n) \cdot f)'_{\uparrow X}$ is continuous on X.
- (22) Let m, n be non empty elements of \mathbb{N} , f be a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and X be a subset of $\langle \mathcal{E}^m, \|\cdot\| \rangle$. Suppose X is open. Then for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^i X$ is continuous on X if and only if f is differentiable on X and $f \upharpoonright^i X$ is continuous on X.

References

 Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

TAKAO INOUÉ et al.

- Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– [4] 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6]
- Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. [7]Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. For-[8] malized Mathematics, 13(4):577-580, 2005.
- Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on nor-[9] med linear spaces \mathcal{R}^n . Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-007-0008-5.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [11] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [13] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [15] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
- [16] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
- [17]Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received October 13, 2010