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Summary. In this article we prove Cauchy-Riemann differential equations
of complex functions. These theorems give necessary and sufficient condition for
differentiable function.
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The articles [20], [21], [6], [7], [22], [8], [3], [1], [4], [14], [13], [19], [16], [9], [2],
[5], [10], [17], [11], [18], [12], and [15] provide the notation and terminology for
this paper.
Let f be a partial function from C to C. The functor <(f) yielding a partial

function from C to R is defined as follows:
(Def. 1) dom f = dom<(f) and for every complex number z such that z ∈

dom<(f) holds <(f)(z) = <(fz).
Let f be a partial function from C to C. The functor =(f) yields a partial

function from C to R and is defined as follows:
(Def. 2) dom f = dom=(f) and for every complex number z such that z ∈

dom=(f) holds =(f)(z) = =(fz).
One can prove the following propositions:

(1) For every partial function f from C to C such that f is total holds
dom<(f) = C and dom=(f) = C.
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(2) Let f be a partial function from C to C, u, v be partial functions from
R2 to R, z0 be a complex number, x0, y0 be real numbers, and x1 be an
element of R2. Suppose that
(i) for all real numbers x, y such that x+y · i ∈ dom f holds 〈x, y〉 ∈ domu
and u(〈x, y〉) = <(f)(x+ y · i),

(ii) for all real numbers x, y such that x+y · i ∈ dom f holds 〈x, y〉 ∈ dom v
and v(〈x, y〉) = =(f)(x+ y · i),

(iii) z0 = x0 + y0 · i,
(iv) x1 = 〈x0, y0〉, and
(v) f is differentiable in z0.
Then

(vi) u is partially differentiable in x1 w.r.t. coordinate 1 and partially dif-
ferentiable in x1 w.r.t. coordinate 2,

(vii) v is partially differentiable in x1 w.r.t. coordinate 1 and partially diffe-
rentiable in x1 w.r.t. coordinate 2,

(viii) <(f ′(z0)) = partdiff(u, x1, 1),
(ix) <(f ′(z0)) = partdiff(v, x1, 2),
(x) =(f ′(z0)) = −partdiff(u, x1, 2), and
(xi) =(f ′(z0)) = partdiff(v, x1, 1).
(3) For every sequence s of real numbers holds s is convergent and lim s = 0
iff |s| is convergent and lim|s| = 0.

(4) Let X be a real normed space and s be a sequence of X. Then s is
convergent and lim s = 0X if and only if ‖s‖ is convergent and lim‖s‖ = 0.

(5) Let u be a partial function from R2 to R, x0, y0 be real numbers, and
x1 be an element of R2. Suppose x1 = 〈x0, y0〉 and 〈u〉 is differentiable in
x1. Then
(i) u is partially differentiable in x1 w.r.t. coordinate 1 and partially dif-
ferentiable in x1 w.r.t. coordinate 2,

(ii) 〈partdiff(u, x1, 1)〉 = 〈u〉′(x1)(〈1, 0〉), and
(iii) 〈partdiff(u, x1, 2)〉 = 〈u〉′(x1)(〈0, 1〉).
(6) Let f be a partial function from C to C, u, v be partial functions fromR2
to R, z0 be a complex number, x0, y0 be real numbers, and x1 be an element
ofR2. Suppose that for all real numbers x, y such that 〈x, y〉 ∈ dom v holds
x+y·i ∈ dom f and for all real numbers x, y such that x+y·i ∈ dom f holds
〈x, y〉 ∈ domu and u(〈x, y〉) = <(f)(x+ y · i) and for all real numbers x, y
such that x+y·i ∈ dom f holds 〈x, y〉 ∈ dom v and v(〈x, y〉) = =(f)(x+y·i)
and z0 = x0 + y0 · i and x1 = 〈x0, y0〉 and 〈u〉 is differentiable in x1
and 〈v〉 is differentiable in x1 and partdiff(u, x1, 1) = partdiff(v, x1, 2)
and partdiff(u, x1, 2) = −partdiff(v, x1, 1). Then f is differentiable in z0
and u is partially differentiable in x1 w.r.t. coordinate 1 and partially
differentiable in x1 w.r.t. coordinate 2 and v is partially differentiable in
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x1 w.r.t. coordinate 1 and partially differentiable in x1 w.r.t. coordinate
2 and <(f ′(z0)) = partdiff(u, x1, 1) and <(f ′(z0)) = partdiff(v, x1, 2) and
=(f ′(z0)) = −partdiff(u, x1, 2) and =(f ′(z0)) = partdiff(v, x1, 1).

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. For-
malized Mathematics, 13(4):577–580, 2005.

[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on nor-
med linear spaces Rn. Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-
007-0008-5.

[13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273–275, 1990.

[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[15] Chanapat Pacharapokin, Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamu-
ra. Complex function differentiability. Formalized Mathematics, 17(2):67–72, 2009, doi:
10.2478/v10037-009-0007-9.

[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[17] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics,
12(1):39–48, 2004.

[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
1990.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received April 7, 2009

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/2/15 12:00 PM


