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Summary. In this article, we formalize polynomially bounded sequences
that plays an important role in computational complexity theory. Class P is a
fundamental computational complexity class that contains all polynomial-time
decision problems [11], [12]. It takes polynomially bounded amount of computa-
tion time to solve polynomial-time decision problems by the deterministic Turing
machine. Moreover we formalize polynomial sequences [5].
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The notation and terminology used in this paper have been introduced in the
following articles: [26], [18], [16], [17], [6], [22], [10], [7], [8], [24], [14], [1], [2], [3],
[13], [20], [27], [28], [21], [25], and [9].

1. Preliminaries

Now we state the proposition:

(1) Let us consider natural numbers m, k. If 1 ¬ m, then 1 ¬ mk.
Let us consider natural numbers m, n. Now we state the propositions:

(2) m ¬ mn+1.

(3) If 2 ¬ m, then n+ 1 ¬ mn.
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(4) Let us consider a natural number k. Then 2 · k ¬ 2k.
Proof: Define P[natural number] ≡ 2·$1 ¬ 2$1 . For every natural number
n such that P[n] holds P[n + 1] by [20, (25)], [24, (5)], [1, (14)], (2). For
every natural number n, P[n] from [1, Sch. 2]. �

(5) Let us consider natural numbers k, n. If k ¬ n, then n+ k ¬ 2n.
Proof: Define P[natural number] ≡ $1 + k + k ¬ 2$1+k. 2 · k ¬ 2k. For
every natural number n such that P[n] holds P[n + 1] by [20, (27), (25),
(24)]. For every natural number n, P[n] from [1, Sch. 2]. �

(6) Let us consider natural numbers k, m. If 2 · k+ 1 ¬ m, then 2k ¬ 2m/m.
The theorem is a consequence of (5).

(7) Let us consider real numbers a, b, c. If 1 < a and 0 < b ¬ c, then
loga b ¬ loga c.

Let us consider a natural number n and a real number a. Now we state the
propositions:

(8) If 1 < a, then an < an+1.

(9) If 1 ¬ a, then an ¬ an+1.

(10) There exists a partial function g from R to R such that

(i) dom g = ]0,+∞[, and

(ii) for every real number x such that x ∈ ]0,+∞[ holds g(x) = log2 x,
and

(iii) g is differentiable on ]0,+∞[, and

(iv) for every real number x such that x ∈ ]0,+∞[ holds g is differentiable
in x and g′(x) = log2 e/x and 0 < g′(x).

Proof: Set g = log2 e · (the function ln). For every real number d such
that d ∈ ]0,+∞[ holds g(d) = log2 d by [20, (56)]. For every real number
x such that x ∈ ]0,+∞[ holds g is differentiable in x and g′(x) = log2 e/x
and 0 < g′(x) by [23, (18)], [22, (15)], [20, (57)], [23, (11)]. �

(11) There exists a partial function f from R to R such that

(i) ]e,+∞[ = dom f , and

(ii) for every real number x such that x ∈ dom f holds f(x) = x/log2 x,
and

(iii) f is differentiable on ]e,+∞[, and

(iv) for every real number x0 such that x0 ∈ ]e,+∞[ holds 0 ¬ f ′(x0),
and

(v) f is non-decreasing.
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Proof: Consider g being a partial function from R to R such that dom g =
]0,+∞[ and for every real number x such that x ∈ ]0,+∞[ holds g(x) =
log2 x and g is differentiable on ]0,+∞[ and for every real number x such
that x ∈ ]0,+∞[ holds g is differentiable in x and g′(x) = log2 e/x and
0 < g′(x). Set g0 = g�]e,+∞[. For every object x such that x ∈ ]e,+∞[
holds x ∈ ]0,+∞[ by [23, (11)]. Set f = idΩR/g0 . g0

−1({0}) = ∅ by [23,
(11)], [7, (49)], [4, (10)], [20, (52)]. For every real number x such that x ∈
dom f holds f(x) = x/log2 x by [7, (49)]. For every real number x such that
x ∈ ]e,+∞[ holds f is differentiable in x and f ′(x) = log2 x−log2 e/(log2 x)2

by [23, (11)], [7, (49)], [4, (10)], [20, (52)]. For every real number x such
that x ∈ ]e,+∞[ holds 0 ¬ f ′(x) by [20, (57)], [23, (11)]. �

(12) Let us consider real numbers x, y. If e < x ¬ y, then x/log2 x ¬ y/log2 y.
The theorem is a consequence of (11).

(13) Let us consider a natural number k. Suppose e < k. Then there exists
a natural number N such that for every natural number n such that N ¬ n
holds 2k ¬ n/log2 n. The theorem is a consequence of (12) and (6).

Let us consider a natural number x. Let us assume that 1 < x.

(14) There exists a natural number N such that for every natural number n
such that N ¬ n holds 4 < n/logx n.

(15) There exist natural numbers N , c such that for every natural number n
such that N ¬ n holds nx ¬ c · xn.

(16) Let us consider a natural number x. Suppose 1 < x. Then there exist
no natural numbers N , c such that for every natural number n such that
N ¬ n holds 2n ¬ c · nx.
Proof: Consider N being a natural number such that there exists a natu-
ral number c such that for every natural number n such that N ¬ n holds
2n ¬ c · nx. N 6= 0 by [20, (42), (24)]. Consider c being a natural number
such that for every natural number n such that N ¬ n holds 2n ¬ c · nx.
There exists an element n of N such that N ¬ n and 0 < n − (x/4) by
[24, (6), (3)]. Consider n being an element of N such that N ¬ n and
0 < n − (x/4). 0 < c by [20, (34)]. For every natural number k such that
1 ¬ k holds 2k·n ¬ c · (k ·n)x. For every natural number k such that 1 ¬ k
holds k ·n ¬ log2 c+ x · log2 k+ x · log2 n by [20, (34)], (7), [20, (55), (52),
(53)]. Consider Z being an element of N such that for every natural number
k such that Z ¬ k holds 4 < k/log2 k. There exists a natural number k such
that Z ¬ k and log2 c+x · log2 n/n−(x/4) ¬ k by [24, (6), (3)]. There exists
a natural number k such that Z ¬ k and log2 c+x · log2 n/n−(x/4) ¬ k and
1 < k by [1, (11)]. Consider k being a natural number such that Z ¬ k
and 1 < k and log2 c+ x · log2 n/n−(x/4) ¬ k. �
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(17) Let us consider natural numbers a, b. If a ¬ b, then {na}n∈N ∈ O({nb}n∈N).

(18) Let us consider a natural number x. Suppose 1 < x. Then there exist
no natural numbers N , c such that for every natural number n such that
N ¬ n holds xn ¬ c · nx.
Proof: There exist natural numbers N , c such that for every natural
number n such that N ¬ n holds 2n ¬ c · nx by [24, (7)]. �

(19) Let us consider a non negative real number a, and a natural number n.
If 1 ¬ n, then 0 < {na}n∈N(n).

2. Polynomially Bounded Sequences

Let p be a sequence of real numbers. We say that p is polynomially bounded
if and only if

(Def. 1) there exists a natural number k such that p ∈ O({nk}n∈N).

Now we state the propositions:

(20) Let us consider a sequence f of real numbers. Suppose f is not polyno-
mially bounded. Let us consider a natural number k. Then f /∈ O({nk}n∈N).

(21) Let us consider a sequence f of real numbers. Suppose for every natural
number k, f /∈ O({nk}n∈N). Then f is not polynomially bounded.

(22) Let us consider a positive real number a. Then {a1·n+0}n∈N is positive.

Let us consider a real number a. Now we state the propositions:

(23) If 1 ¬ a, then {a1·n+0}n∈N is non-decreasing. The theorem is a consequ-
ence of (9).

(24) If 1 < a, then {a1·n+0}n∈N is increasing. The theorem is a consequence
of (8).

(25) Let us consider a natural number a. If 1 < a, then {a1·n+0}n∈N is not
polynomially bounded.
Proof: Consider k being a natural number such that {a1·n+0}n∈N ∈
O({nk}n∈N). Reconsider f = {nk}n∈N as an eventually positive sequen-
ce of real numbers. Reconsider t = {a1·n+0}n∈N as an eventually non-
negative sequence of real numbers. t ∈ O(f) and for every element n
of N such that 1 ¬ n holds 0 < f(n). Consider c being a real number
such that c > 0 and for every element n of N such that n ­ 1 holds
({a1·n+0}n∈N)(n) ¬ c · {nk}n∈N(n). For every natural number n such that
n ­ 1 holds 2n ¬ c ·nk by [24, (7)]. There exist natural numbers N , b such
that for every natural number n such that N ¬ n holds 2n ¬ b ·nk by [24,
(3)]. �
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3. Polynomial Sequences

Now we state the proposition:

(26) Let us consider a finite 0-sequence x of R, and a sequence y of real
numbers. Then

(i) x · y is a finite transfinite sequence of elements of R, and

(ii) dom(x · y) = domx, and

(iii) for every object i such that i ∈ domx holds (x · y)(i) = x(i) · y(i).

Let x be a finite 0-sequence of R and y be a sequence of real numbers.
Observe that the functor x · y yields a finite 0-sequence of R. Now we state the
proposition:

(27) Let us consider a finite 0-sequence d of R, and natural numbers x, i.
Suppose i ∈ dom d. Then (d · {x1·n+0}n∈N)(i) = d(i) · xi. The theorem is a
consequence of (26).

Let c be a finite 0-sequence of R. The functor Seqpoly(c) yielding a sequence
of real numbers is defined by

(Def. 2) for every natural number x, it(x) =
∑

(c · {x1·n+0}n∈N).

Let us consider a finite 0-sequence d of R and a natural number k. Now we
state the propositions:

(28) Suppose len d = k+1. Then there exists a real number a and there exists
a finite 0-sequence d1 of R and there exists a sequence y of real numbers
such that len d1 = k and d1 = d�k and a = d(k) and d = d1 a 〈a〉 and
Seqpoly(d) = Seqpoly(d1) + y and for every natural number i, y(i) = a · ik.
Proof: Consider a being a real number, d1 being a finite 0-sequence of R
such that len d1 = k and d1 = d�k and a = d(k) and d = d1 a 〈a〉. Define
F(natural number) = a · $k1. Consider y being a sequence of real numbers
such that for every natural number x, y(x) = F(x) from [15, Sch. 1]. For
every element x of N, (Seqpoly(d))(x) = (Seqpoly(d1) + y)(x) by (26), [1,
(13), (44)], (27). �

(29) If len d = 1, then there exists a real number a such that a = d(0)
and for every natural number x, (Seqpoly(d))(x) = a. The theorem is a
consequence of (26).

(30) If len d = 1 and d is non-negative yielding, then Seqpoly(d) ∈ O({nk}n∈N).
The theorem is a consequence of (29).

(31) Let us consider a natural number k, a real number a, and a sequence y of
real numbers. Suppose 0 ¬ a and for every natural number i, y(i) = a · ik.
Then y ∈ O({nk}n∈N).
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(32) Let us consider natural numbers k, n. If k ¬ n, then O({nk}n∈N) ⊆
O({nn}n∈N).
Proof: Consider i being a natural number such that n = k + i. Define
P[natural number] ≡ O({nk}n∈N) ⊆ O({n(k+$1)}n∈N). For every natural
number x such that P[x] holds P[x+1]. For every natural number x, P[x]
from [1, Sch. 2]. �

(33) Let us consider a natural number k, and a non-negative yielding finite
0-sequence c of R. Suppose len c = k + 1. Then Seqpoly(c) ∈ O({nk}n∈N).
Proof: Define P[natural number] ≡ for every non-negative yielding finite
0-sequence c of R such that len c = $1 + 1 holds Seqpoly(c) ∈ O({n$1}n∈N).
P[0]. For every natural number k such that P[k] holds P[k + 1] by (28),
[7, (47)], [1, (13), (39)]. For every natural number k, P[k] from [1, Sch. 2].
�

(34) Let us consider a natural number k, and a finite 0-sequence c of R. Then
there exists a finite 0-sequence d of R such that

(i) len d = len c, and

(ii) for every natural number i such that i ∈ dom d holds d(i) = |c(i)|.
Proof: Define F(natural number) = |c($1)|(∈ R). Consider d being a fi-
nite 0-sequence of R such that len d = len c and for every natural number
j such that j ∈ len c holds d(j) = F(j) from [18, Sch. 1]. �

(35) Let us consider a finite 0-sequence c of R, and a finite 0-sequence d
of R. Suppose len d = len c and for every natural number i such that
i ∈ dom d holds d(i) = |c(i)|. Let us consider a natural number n. Then
(Seqpoly(c))(n) ¬ (Seqpoly(d))(n).
Proof: dom(d · {x1·n+0}n∈N) = dom d. For every natural number i such
that i ∈ dom(c·{x1·n+0}n∈N) holds (c·{x1·n+0}n∈N)(i) ¬ (d·{x1·n+0}n∈N)(i)
by (26), (27), [19, (4)]. �

(36) Let us consider a natural number k, and a finite 0-sequence c of R.
Suppose len c = k + 1 and Seqpoly(c) is eventually nonnegative. Then
Seqpoly(c) ∈ O({nk}n∈N).
Proof: Consider d being a finite 0-sequence of R such that len d = len c
and for every natural number i such that i ∈ dom d holds d(i) = |c(i)|. For
every natural number i such that i ∈ dom d holds 0 ¬ d(i) by [6, (46)].
For every real number r such that r ∈ rng d holds 0 ¬ r. Seqpoly(d) ∈
O({nk}n∈N). Consider t being an element of RN such that Seqpoly(d) = t
and there exists a real number c and there exists an element N of N such
that c > 0 and for every element n of N such that n ­ N holds t(n) ¬
c·{nk}n∈N(n) and t(n) ­ 0. Consider N1 being a natural number such that
for every natural number n such that N1 ¬ n holds 0 ¬ (Seqpoly(c))(n).
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Consider a being a real number, N2 being an element of N such that a > 0
and for every element n of N such that n ­ N2 holds t(n) ¬ a ·{nk}n∈N(n)
and t(n) ­ 0. Set N = N1 +N2. For every element n of N such that n ­ N
holds (Seqpoly(c))(n) ¬ a ·{nk}n∈N(n) and (Seqpoly(c))(n) ­ 0 by [1, (11)],
(35). �

(37) Let us consider natural numbers k, n. If 0 < n, then n · {nk}n∈N(n) =
{n(k+1)}n∈N(n).

(38) Let us consider a finite 0-sequence c of R. Suppose len c = 0. Let us
consider a natural number x. Then (Seqpoly(c))(x) = 0.

(39) Let us consider an eventually nonnegative sequence f of real numbers,
and a natural number k. Suppose f ∈ O({nk}n∈N). Then there exists
a natural number N such that for every natural number n such that N ¬ n
holds f(n) ¬ {n(k+1)}n∈N(n). The theorem is a consequence of (37).

(40) Let us consider a finite 0-sequence c of R. Then there exists a finite
0-sequence a1 of R such that

(i) a1 = |c|, and

(ii) for every natural number n, (Seqpoly(c))(n) ¬ (Seqpoly(a1))(n).

Proof: Reconsider a1 = |c| as a finite 0-sequence of R. Set m1 = c ·
{n1·n+0}n∈N. Set m2 = a1 · {n1·n+0}n∈N. For every natural number x such
that x ∈ domm1 holds m1(x) ¬ m2(x) by [19, (4)]. �

(41) Let us consider finite 0-sequences c, a1 of R. Suppose a1 = |c|. Let us
consider a natural number n. Then |(Seqpoly(c))(n)| ¬ (Seqpoly(a1))(n).
Proof: Define P[natural number] ≡ for every finite 0-sequences c, a1
of R such that len c = $1 and a1 = |c| for every natural number x,
|(Seqpoly(c))(x)| ¬ (Seqpoly(a1))(x). P[0] by (26), [6, (44)]. For every na-
tural number k such that P[k] holds P[k + 1] by (28), [7, (47)], [15, (7)],
[6, (56), (65)]. For every natural number n, P[n] from [1, Sch. 2]. �

(42) Let us consider a real number a. Suppose 0 < a. Let us consider a natural
number k, and a non-negative yielding finite 0-sequence d of R. Suppose
len d = k. Then there exists a natural number N such that for every
natural number x such that N ¬ x for every natural number i such that
i ∈ dom d holds d(i) · xi · k ¬ a · xk.
Proof: For every natural number i such that i ∈ dom d holds 0 ¬ d(i) by
[7, (3)]. �

(43) Let us consider a natural number k, a finite 0-sequence d of R, a real
number a, and a sequence y of real numbers. Suppose 0 < a and len d = k
and for every natural number x, y(x) = a ·xk. Then there exists a natural
number N such that for every natural number x such that N ¬ x holds
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|(Seqpoly(d))(x)| ¬ y(x). The theorem is a consequence of (38), (42), (26),
(27), and (41).

(44) Let us consider a natural number k, and a finite 0-sequence d of R. Sup-
pose len d = k+1 and 0 < d(k). Then Seqpoly(d) is eventually nonnegative.

Proof: Consider a being a real number, d1 being a finite 0-sequence of
R, y being a sequence of real numbers such that len d1 = k and d1 = d�k
and a = d(k) and d = d1 a 〈a〉 and Seqpoly(d) = Seqpoly(d1) + y and
for every natural number i, y(i) = a · ik. Consider N being a natural
number such that for every natural number i such that N ¬ i holds
|(Seqpoly(d1))(i)| ¬ y(i). For every natural number i such that N ¬ i
holds 0 ¬ (Seqpoly(d))(i) by [19, (4)], [15, (7)]. �

Let us consider a natural number k and a finite 0-sequence c of R.

Let us assume that len c = k+1 and 0 < c(k). Now we state the propositions:

(45) Seqpoly(c) ∈ O({nk}n∈N).

(46) Seqpoly(c) is polynomially bounded. The theorem is a consequence of
(36) and (44).
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