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Summary. In this article, we formalize polynomially bounded sequences
that plays an important role in computational complexity theory. Class P is a
fundamental computational complexity class that contains all polynomial-time
decision problems [I1], [I2]. It takes polynomially bounded amount of computa-
tion time to solve polynomial-time decision problems by the deterministic Turing
machine. Moreover we formalize polynomial sequences [3].
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(13, [20], 27], [28], [21], [25], and [9]

1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider natural numbers m, k. If 1 < m, then 1 < m*.

Let us consider natural numbers m, n. Now we state the propositions:
(2) m<mntL
(3) If2<m,thenn+1<m".
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(4) Let us consider a natural number k. Then 2 - k < 2F,
PROOF: Define P[natural number] = 2-$; < 2%, For every natural number
n such that P[n] holds Pln + 1] by [20, (25)], [24, (5)], [L, (14)], (2). For
every natural number n, P[n] from [I, Sch. 2]. O
(5) Let us consider natural numbers k, n. If £ <n, then n + &k < 2",
PROOF: Define P[natural number] = $; + k + k < 281+k 9. | < 2k For
every natural number n such that P[n] holds P[n + 1] by [20, (27), (25),
(24)]. For every natural number n, P[n| from [I, Sch. 2]. O
(6) Let us consider natural numbers k, m. If 2- k41 < m, then 2F < 27/,,..
The theorem is a consequence of (5).
(7) Let us consider real numbers a, b, ¢. If 1 < a and 0 < b < ¢, then
log, b < log, c.
Let us consider a natural number n and a real number a. Now we state the
propositions:
(8) If1 < a, then a™ < a™*!.
(9) If 1< a, then a™ < a™tl.
(10) There exists a partial function g from R to R such that

(i) domg = |0, +oo[, and
(ii) for every real number x such that = € |0, +oo[ holds g(z) = log, z,
and
(iii) g is differentiable on ]0, 4o00[, and
(iv) for every real number x such that = € |0, +o00[ holds g is differentiable
in z and ¢'(z) =logy e/, and 0 < ¢'(x).

PROOF: Set g = logy e - (the function In). For every real number d such
that d € ]0, +oo[ holds g(d) = logy d by [20, (56)]. For every real number
x such that = € |0, +o00[ holds g is differentiable in z and ¢'(z) = logy /5
and 0 < ¢'(z) by [23, (18)], [22} (15)], [20, (57)], [23, (11)]. O

(11) There exists a partial function f from R to R such that
(i) Je,+oo[ = dom f, and
(ii) for every real number x such that 2 € dom f holds f(z) = 2/1og, 2,
and
(iii) f is differentiable on |e, +00|, and

(iv) for every real number zp such that z¢ € ]e,+oo[ holds 0 < f/(xo),
and

(v) f is non-decreasing.
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ProoOF: Consider g being a partial function from R to R such that dom g =
10, +o00] and for every real number z such that x € |0, +oo[ holds g(z) =
logy x and g is differentiable on ]0, +o00[ and for every real number x such
that z € ]0,+o00[ holds g is differentiable in x and ¢'(z) = logy e/, and
0 < ¢'(z). Set go = gl]e,+oo[. For every object z such that = € Je, +o0]
holds x € ]0,+o0[ by [23, (11)]. Set f = idag/go- 90 1({0}) = 0 by [23,
(11)], [, (49)], [4, (10)], [20} (52)]. For every real number x such that = €
dom f holds f(x) = x/16g, by [T, (49)]. For every real number z such that
z € Je, 400 holds f is differentiable in z and f'(z) = logy z—logs €/ 10g, 2)2
by [23, (11)], [7, (49)], [, (10)], [20, (52)]. For every real number x such
that € |e, +oo[ holds 0 < f'(x) by [20, (57)], [23, (11)]. O

(12) Let us consider real numbers z, y. If e <z <y, then x/15, 2 < y/10g, y-
The theorem is a consequence of (11).

(13) Let us consider a natural number k. Suppose e < k. Then there exists
a natural number N such that for every natural number n such that N < n
holds 2% < n/iog, n. The theorem is a consequence of (12) and (6).

Let us consider a natural number z. Let us assume that 1 < z.

(14) There exists a natural number N such that for every natural number n
such that N < n holds 4 < n/jog_ -

(15) There exist natural numbers N, ¢ such that for every natural number n
such that N < n holds n* < c-z"

(16) Let us consider a natural number z. Suppose 1 < x. Then there exist
no natural numbers N, ¢ such that for every natural number n such that
N < n holds 2" < c¢-n*

ProoOF: Consider N bemg a natural number such that there exists a natu-
ral number ¢ such that for every natural number n such that N < n holds
2" <c-n®. N #0 by [20, (42), (24)]. Consider ¢ being a natural number
such that for every natural number n such that N < n holds 2" < ¢-n”*
There exists an element n of N such that N < n and 0 < n — (z/4) by
[24, (6), (3)]. Consider n being an element of N such that N < n and
0 <n—(x/4). 0<cby [20, (34)]. For every natural number k such that
1 < k holds 28" < ¢- (k- n)®. For every natural number k such that 1 < k
holds k- n < logy ¢+ -logy k+ x - logy n by [201 (34)], (7), [20, (55), (52),
(53)]. Consider Z being an element of N such that for every natural number
k such that Z < k holds 4 < k/ log, k- Lhere exists a natural number k such
that Z < k and logy c+z-logan/p,—(z/,) < k by [24, (6), (3)]. There exists
a natural number k such that Z < k and logy c+x-logyn/,,—(5/,) < k and
1 < k by [1, (11)]. Consider k being a natural number such that Z < k
and 1 < k and logy ¢+ -logan/p_(z/,) < k. O
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(17) Let us consider natural numbers a, b. If a < b, then {n},en € O({n’}nen).

(18) Let us consider a natural number z. Suppose 1 < x. Then there exist
no natural numbers N, ¢ such that for every natural number n such that
N < n holds 2" < c-n”.
PROOF: There exist natural numbers N, ¢ such that for every natural
number n such that N < n holds 2" < ¢-n* by [24, (7)]. O

(19) Let us consider a non negative real number a, and a natural number n.
If 1 < n, then 0 < {n%}en(n).

2. POLYNOMIALLY BOUNDED SEQUENCES

Let p be a sequence of real numbers. We say that p is polynomially bounded
if and only if
(Def. 1) there exists a natural number k such that p € O({n*},en).
Now we state the propositions:

(20) Let us consider a sequence f of real numbers. Suppose f is not polyno-
mially bounded. Let us consider a natural number k. Then f ¢ O({n*},en).

(21) Let us consider a sequence f of real numbers. Suppose for every natural
number k, f ¢ O({n*},en). Then f is not polynomially bounded.

(22) Let us consider a positive real number a. Then {a'"*0}, cy is positive.
Let us consider a real number a. Now we state the propositions:

(23) If 1 < a, then {a!™*9}, cn is non-decreasing. The theorem is a consequ-
ence of (9).

(24) If 1 < a, then {a'™*0}, ¢y is increasing. The theorem is a consequence
of (8).

(25) Let us consider a natural number a. If 1 < a, then {a'!™"%},cy is not
polynomially bounded.
PrOOF: Consider k£ being a natural number such that {a'"*0},cn €
O({n*},en). Reconsider f = {n*},cn as an eventually positive sequen-

Ln+01 N as an eventually non-

ce of real numbers. Reconsider t = {a
negative sequence of real numbers. ¢ € O(f) and for every element n
of N such that 1 < n holds 0 < f(n). Consider ¢ being a real number
such that ¢ > 0 and for every element n of N such that n > 1 holds
({a' ™Y en)(n) < ¢+ {nF}en(n). For every natural number n such that
n > 1 holds 2" < ¢-n* by [24] (7)]. There exist natural numbers N, b such
that for every natural number n such that N < n holds 2" < b-n* by [24,

(3)]. O
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3. POLYNOMIAL SEQUENCES

Now we state the proposition:

(26) Let us consider a finite 0-sequence = of R, and a sequence y of real
numbers. Then

(i) -y is a finite transfinite sequence of elements of R, and
(ii) dom(z -y) = domz, and
(iii) for every object ¢ such that i € doma holds (x - y)(i) = x(4) - y(4).

Let x be a finite 0-sequence of R and y be a sequence of real numbers.
Observe that the functor z - y yields a finite 0-sequence of R. Now we state the
proposition:

(27) Let us consider a finite O-sequence d of R, and natural numbers z, i.
Suppose i € domd. Then (d - {z'™°},cn) (i) = d(i) - 2°. The theorem is a
consequence of (26).

Let ¢ be a finite O0-sequence of R. The functor Seqy,qy (c) yielding a sequence
of real numbers is defined by

(Def. 2) for every natural number z, it(z) = 3. (c - {x!"*0},en).

Let us consider a finite 0-sequence d of R and a natural number k. Now we
state the propositions:

(28) Suppose lend = k+1. Then there exists a real number a and there exists
a finite O-sequence d; of R and there exists a sequence y of real numbers
such that lend; = k and dy = d[k and a = d(k) and d = dy ™ (a) and
Sedpory (d) = Seqpe, (d1) +y and for every natural number 4, y(i) = a - i*.
PRroo¥F: Consider a being a real number, d; being a finite 0-sequence of R
such that lend; = k and dy = d[k and a = d(k) and d = d; ™ (a). Define
F(natural number) = a - $¥. Consider y being a sequence of real numbers
such that for every natural number z, y(z) = F(z) from [I5, Sch. 1]. For
every element z of N, (Seq,qy(d))(x) = (Seqpey(d1) + y)(z) by (26), [1,
(13), (44)], (27). O

(29) If lend = 1, then there exists a real number a such that a = d(0)
and for every natural number z, (Seq,,(d))(x) = a. The theorem is a
consequence of (26).

(30) Iflend = 1and dis non-negative yielding, then Seqpq, (d) € O({n*}nen).
The theorem is a consequence of (29).

(31) Let us consider a natural number k, a real number a, and a sequence y of

real numbers. Suppose 0 < a and for every natural number i, y(i) = a - i¥.

Then y € O({n*}nen).
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(32) Let us consider natural numbers k, n. If k& < n, then O({n*},en) C
O({n" Inen)-
ProOF: Consider i being a natural number such that n = k + i. Define
Plnatural number] = O({n*},en) € O({nF+3D}, cy). For every natural
number z such that P[z] holds P[z + 1]. For every natural number z, P[z]
from [II, Sch. 2]. O

(33) Let us consider a natural number k, and a non-negative yielding finite
0-sequence ¢ of R. Suppose lenc = k + 1. Then Seqy, (¢) € O({n*}nen).
PROOF: Define P[natural number| = for every non-negative yielding finite
0-sequence c of R such that lenc = $; + 1 holds Seqy,,, (c) € O({n*},en).
P[0]. For every natural number k such that P[k] holds P[k + 1] by (28),
[7, (47)], [I (13), (39)]. For every natural number k, P[k] from [Il, Sch. 2].
0

(34) Let us consider a natural number k, and a finite O0-sequence c of R. Then
there exists a finite 0-sequence d of R such that

(i) lend = lenc, and
(ii) for every natural number ¢ such that i € domd holds d(i) = |¢(7)].

PROOF: Define F(natural number) = |¢($1)](€ R). Consider d being a fi-
nite 0-sequence of R such that lend = len ¢ and for every natural number
j such that j € lenc holds d(j) = F(j) from [I8] Sch. 1]. O

(35) Let us consider a finite O-sequence ¢ of R, and a finite 0-sequence d
of R. Suppose lend = lenc and for every natural number ¢ such that
i € domd holds d(i) = |c(7)|. Let us consider a natural number n. Then
(Seqpoly(c))(n) < (Seqpoly(d))(n)'
PrOOF: dom(d - {z'"*%}, cn) = domd. For every natural number i such
that i € dom(c-{z""%},en) holds (c-{z" "0} ,en) (7) < (d-{z' " }nen) (i)
by (26), (27), [19, (4)]. O

(36) Let us consider a natural number k, and a finite O-sequence ¢ of R.
Suppose lenc = k + 1 and Seqy,y(c) is eventually nonnegative. Then
Seqpoly(c) S O({nk}nEN)'
PRrOOF: Consider d being a finite 0-sequence of R such that lend = lenc
and for every natural number ¢ such that ¢ € domd holds d(i) = |¢(i)|. For
every natural number i such that ¢ € domd holds 0 < d(z) by [6l (46)].
For every real number r such that r € rngd holds 0 < r. Seqq,(d) €
O({n*}nen). Consider ¢ being an element of RY such that Seqp, (d) = t
and there exists a real number ¢ and there exists an element N of N such
that ¢ > 0 and for every element n of N such that n > N holds ¢(n) <
c-{n*},en(n) and t(n) > 0. Consider N; being a natural number such that
for every natural number n such that N < n holds 0 < (Seqp,(c))(n).
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Consider a being a real number, N3 being an element of N such that a > 0
and for every element n of N such that n > N holds t(n) < a-{n*},en(n)
and t(n) > 0. Set N = Ny + Na. For every element n of N such that n > N
holds (Sedpey(¢))(n) < a-{n*}nen(n) and (Sedyony (¢))(n) > 0 by [I, (11)],
(35). O

(37) Let us consider natural numbers k, n. If 0 < n, then n - {n*},en(n) =
{n(kJrl)}neN(n)'

(38) Let us consider a finite 0-sequence ¢ of R. Suppose lenc = 0. Let us
consider a natural number z. Then (Seqy,(c))(z) = 0.

(39) Let us consider an eventually nonnegative sequence f of real numbers,
and a natural number k. Suppose f € O({n*},en). Then there exists
a natural number N such that for every natural number n such that N < n
holds f(n) < {n*+t1},cn(n). The theorem is a consequence of (37).

(40) Let us consider a finite 0-sequence ¢ of R. Then there exists a finite
0-sequence aq of R such that

(i) a1 = lc|, and
(ii) for every natural number n, (Seqp,(c))(n) < (Seqyary(a1))(n).

PROOF: Reconsider a; = |c| as a finite O-sequence of R. Set m; = ¢ -
{ntnt0Y cN. Set ma = ay - {n'™*9},,cn. For every natural number 2 such
that € domm; holds m;(x) < ma(z) by [19, (4)]. O

(41) Let us consider finite O-sequences ¢, a1 of R. Suppose a; = |c|. Let us
consider a natural number n. Then |(Seq,(c)) ()] < (Seqpery (a1))(n).
PROOF: Define P[natural number| = for every finite 0-sequences ¢, a;
of R such that lenc = $; and a; = |¢| for every natural number z,
(Sepaty (€))(@)] < (Seapary(@1))(z). P[0] by (26), [6, (44)). For every na-
tural number k such that P[k] holds P[k + 1] by (28), [7, (47)], [I5, (7)],
[6, (56), (65)]. For every natural number n, P[n| from [I, Sch. 2]. O

(42) Let us consider a real number a. Suppose 0 < a. Let us consider a natural
number k, and a non-negative yielding finite 0-sequence d of R. Suppose
lend = k. Then there exists a natural number N such that for every
natural number x such that IV < x for every natural number ¢ such that
i € domd holds d(i) - 2* - k < a - xF.

PROOF: For every natural number 4 such that ¢ € domd holds 0 < d(i) by
7, (3)]. O

(43) Let us consider a natural number k, a finite O-sequence d of R, a real
number a, and a sequence y of real numbers. Suppose 0 < a and lend = k
and for every natural number z, y(x) = a-z*. Then there exists a natural
number N such that for every natural number z such that N < z holds
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|(Sedpoly (d)) ()] < y(x). The theorem is a consequence of (38), (42), (26),
(27), and (41).

(44) Let us consider a natural number &, and a finite 0-sequence d of R. Sup-
pose lend = k+1 and 0 < d(k). Then Seqy,, (d) is eventually nonnegative.
ProOF: Consider a being a real number, d; being a finite 0-sequence of
R, y being a sequence of real numbers such that lend; = k and d; = d[k
and a = d(k) and d = di ~ (a) and Seqp,,(d) = Seqyay(d1) + y and
for every natural number i, y(i) = a - i*. Consider N being a natural
number such that for every natural number ¢ such that N < ¢ holds
|(Sedpory(d1))(4)| < y(i). For every natural number i such that N < i
holds 0 < (Seqy,,(d))(7) by [19 (4)], [15, (7)]. O

Let us consider a natural number k£ and a finite 0-sequence ¢ of R.

Let us assume that lenc = k+1 and 0 < ¢(k). Now we state the propositions:

(45) Seqpoly(c) € O({nk}HEN)
(46) Seqpy(c) is polynomially bounded. The theorem is a consequence of
(36) and (44).
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