Labelled State Transition Systems

Michał Trybulec YAC Software Warsaw, Poland

Summary. This article introduces labelled state transition systems, where transitions may be labelled by words from a given alphabet. Reduction relations from [4] are used to define transitions between states, acceptance of words, and reachable states. Deterministic transition systems are also defined.

MML identifier: REWRITE3, version: 7.11.02 4.125.1059

The articles [1], [8], [2], [11], [6], [17], [7], [9], [16], [15], [14], [4], [10], [13], [3], [12], and [5] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: $x, x_1, x_2, y, y_1, y_2, z, z_1, z_2, X, X_1, X_2$ are sets, E is a non empty set, e is an element of $E, u, v, v_1, v_2, w, w_1, w_2$ are elements of E^{ω} , F, F_1, F_2 are subsets of E^{ω} , and k, l are natural numbers.

Next we state a number of propositions:

- (1) For every finite sequence p such that $k \in \text{dom } p$ holds $(\langle x \rangle \cap p)(k+1) = p(k)$.
- (2) For every finite sequence p such that $p \neq \emptyset$ there exists a finite sequence q and there exists x such that $p = q \cap \langle x \rangle$ and $\operatorname{len} p = \operatorname{len} q + 1$.
- (3) For every finite sequence p such that $k \in \text{dom } p$ and $k+1 \notin \text{dom } p$ holds len p = k.
- (4) Let R be a binary relation, P be a reduction sequence w.r.t. R, and q₁, q₂ be finite sequences. Suppose P = q₁ ∩ q₂ and len q₁ > 0 and len q₂ > 0. Then q₁ is a reduction sequence w.r.t. R and q₂ is a reduction sequence w.r.t. R.

163

C 2009 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

- (5) Let R be a binary relation and P be a reduction sequence w.r.t. R. Suppose len P > 1. Then there exists a reduction sequence Q w.r.t. R such that $\langle P(1) \rangle \cap Q = P$ and len Q + 1 = len P.
- (6) Let R be a binary relation and P be a reduction sequence w.r.t. R. Suppose len P > 1. Then there exists a reduction sequence Q w.r.t. R such that $Q \cap \langle P(\ln P) \rangle = P$ and $\ln Q + 1 = \ln P$.
- (7) Let R be a binary relation and P be a reduction sequence w.r.t. R. Suppose len P > 1. Then there exists a reduction sequence Q w.r.t. R such that len Q + 1 = len P and for every k such that $k \in \text{dom } Q$ holds Q(k) = P(k + 1).
- (8) For every binary relation R such that $\langle x, y \rangle$ is a reduction sequence w.r.t. R holds $\langle x, y \rangle \in R$.
- (9) If $w = u \cap v$, then $\operatorname{len} u \leq \operatorname{len} w$ and $\operatorname{len} v \leq \operatorname{len} w$.
- (10) If $w = u \cap v$ and $u \neq \langle \rangle_E$ and $v \neq \langle \rangle_E$, then $\operatorname{len} u < \operatorname{len} w$ and $\operatorname{len} v < \operatorname{len} w$.
- (11) If $w_1 \cap v_1 = w_2 \cap v_2$ and if len $w_1 = \text{len } w_2$ or len $v_1 = \text{len } v_2$, then $w_1 = w_2$ and $v_1 = v_2$.
- (12) If $w_1 \cap v_1 = w_2 \cap v_2$ and if $\operatorname{len} w_1 \leq \operatorname{len} w_2$ or $\operatorname{len} v_1 \geq \operatorname{len} v_2$, then there exists u such that $w_1 \cap u = w_2$ and $v_1 = u \cap v_2$.
- (13) If $w_1 \cap v_1 = w_2 \cap v_2$, then there exists u such that $w_1 \cap u = w_2$ and $v_1 = u \cap v_2$ or there exists u such that $w_2 \cap u = w_1$ and $v_2 = u \cap v_1$.

Let us consider X. We introduce transition-systems over X which are extensions of 1-sorted structure and are systems

 $\langle a \text{ carrier, a transition} \rangle$,

where the carrier is a set and the transition is a relation between the carrier $\times X$ and the carrier.

2. Transition Systems over Subsets of E^ω

Let us consider E, F and let \mathfrak{T} be a transition-system over F. We say that \mathfrak{T} is deterministic if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) The transition of \mathfrak{T} is a function,

- (ii) $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T}), \text{ and }$
- (iii) for every element s of \mathfrak{T} and for all u, v such that $u \neq v$ and $\langle s, u \rangle \in \text{dom}$ (the transition of \mathfrak{T}) and $\langle s, v \rangle \in \text{dom}$ (the transition of \mathfrak{T}) it is not true that there exists w such that $u \cap w = v$ or $v \cap w = u$.

We now state the proposition

(14) For every transition-system \mathfrak{T} over F such that dom (the transition of \mathfrak{T}) = \emptyset holds \mathfrak{T} is deterministic.

Let us consider E, F. Observe that there exists a transition-system over F which is strict, non empty, finite, and deterministic.

3. Productions

Let us consider X, let \mathfrak{T} be a transition-system over X, and let us consider x, y, z. The predicate $x, y \to_{\mathfrak{T}} z$ is defined by:

(Def. 2) $\langle \langle x, y \rangle, z \rangle \in$ the transition of \mathfrak{T} .

We now state several propositions:

- (15) Let \mathfrak{T} be a transition-system over X. Suppose $x, y \to_{\mathfrak{T}} z$. Then
 - (i) $x \in \mathfrak{T}$,
- (ii) $y \in X$,
- (iii) $z \in \mathfrak{T}$,
- (iv) $x \in \text{dom dom}$ (the transition of \mathfrak{T}),
- (v) $y \in \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T}), \text{ and}$
- (vi) $z \in \operatorname{rng}(\text{the transition of } \mathfrak{T}).$
- (16) Let \mathfrak{T}_1 be a transition-system over X_1 and \mathfrak{T}_2 be a transition-system over X_2 . Suppose the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 . If $x, y \to_{\mathfrak{T}_1} z$, then $x, y \to_{\mathfrak{T}_2} z$.
- (17) Let \mathfrak{T} be a transition-system over F. Suppose the transition of \mathfrak{T} is a function. If $x, y \to_{\mathfrak{T}} z_1$ and $x, y \to_{\mathfrak{T}} z_2$, then $z_1 = z_2$.
- (18) For every deterministic transition-system \mathfrak{T} over F such that $\langle \rangle_E \notin \operatorname{rng dom}(\operatorname{the transition of } \mathfrak{T})$ holds $x, \langle \rangle_E \not\to_{\mathfrak{T}} y$.
- (19) Let \mathfrak{T} be a deterministic transition-system over F. If $u \neq v$ and $x, u \to_{\mathfrak{T}} z_1$ and $x, v \to_{\mathfrak{T}} z_2$, then it is not true that there exists w such that $u^{\frown}w = v$ or $v \frown w = u$.

4. Direct Transitions

Let us consider E, F, let \mathfrak{T} be a transition-system over F, and let us consider x_1, x_2, y_1, y_2 . The predicate $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, y_2$ is defined as follows:

- (Def. 3) There exist v, w such that $v = y_2$ and $x_1, w \to_{\mathfrak{T}} y_1$ and $x_2 = w \cap v$. The following propositions are true:
 - (20) Let \mathfrak{T} be a transition-system over F. Suppose $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, y_2$. Then $x_1, y_1 \in \mathfrak{T}$ and $x_2, y_2 \in E^{\omega}$ and $x_1 \in \text{dom dom}$ (the transition of \mathfrak{T}) and $y_1 \in \text{rng}$ (the transition of \mathfrak{T}).
 - (21) Let \mathfrak{T}_1 be a transition-system over F_1 and \mathfrak{T}_2 be a transition-system over F_2 . Suppose the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 and $x_1, x_2 \Rightarrow_{\mathfrak{T}_1} y_1, y_2$. Then $x_1, x_2 \Rightarrow_{\mathfrak{T}_2} y_1, y_2$.

- (22) For every transition-system \mathfrak{T} over F such that $x, u \Rightarrow_{\mathfrak{T}} y, v$ there exists w such that $x, w \rightarrow_{\mathfrak{T}} y$ and $u = w \cap v$.
- (23) For every transition-system \mathfrak{T} over F holds $x, y \to_{\mathfrak{T}} z$ iff $x, y \Rightarrow_{\mathfrak{T}} z, \langle \rangle_{F}$.
- (24) For every transition-system \mathfrak{T} over F holds $x, v \to_{\mathfrak{T}} y$ iff $x, v \cap w \Rightarrow_{\mathfrak{T}} y, w$.
- (25) For every transition-system \mathfrak{T} over F such that $x, u \Rightarrow_{\mathfrak{T}} y, v$ holds $x, u \cap w \Rightarrow_{\mathfrak{T}} y, v \cap w$.
- (26) For every transition-system \mathfrak{T} over F such that $x, u \Rightarrow_{\mathfrak{T}} y, v$ holds len $u \ge$ len v.
- (27) Let \mathfrak{T} be a transition-system over F. Suppose the transition of \mathfrak{T} is a function. If $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, z$ and $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_2, z$, then $y_1 = y_2$.
- (28) For every transition-system \mathfrak{T} over F such that $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom}$ (the transition of \mathfrak{T}) holds $x, z \not\Rightarrow_{\mathfrak{T}} y, z$.
- (29) For every transition-system \mathfrak{T} over F such that $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom}$ (the transition of \mathfrak{T}) holds if $x, u \Rightarrow_{\mathfrak{T}} y, v$, then $\operatorname{len} u > \operatorname{len} v$.
- (30) For every deterministic transition-system \mathfrak{T} over F such that $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, z_1$ and $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_2, z_2$ holds $y_1 = y_2$ and $z_1 = z_2$.

5. REDUCTION RELATION

In the sequel \mathfrak{T} is a non empty transition-system over F, s, t are elements of \mathfrak{T} , and S is a subset of \mathfrak{T} .

Let us consider E, F, \mathfrak{T} . The functor $\Rightarrow_{\mathfrak{T}}$ yielding a binary relation on (the carrier of $\mathfrak{T}) \times E^{\omega}$ is defined as follows:

(Def. 4) $\langle \langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \rangle \in \Rightarrow_{\mathfrak{T}} \text{ iff } x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, y_2.$

The following propositions are true:

- (31) If $\langle x, y \rangle \in \Rightarrow_{\mathfrak{T}}$, then there exist s, v, t, w such that $x = \langle s, v \rangle$ and $y = \langle t, w \rangle$.
- (32) Suppose $\langle \langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$. Then $x_1, y_1 \in \mathfrak{T}$ and $x_2, y_2 \in E^{\omega}$ and $x_1 \in \text{dom dom}$ (the transition of \mathfrak{T}) and $y_1 \in \text{rng}$ (the transition of \mathfrak{T}).
- (33) If $x \in \Rightarrow_{\mathfrak{T}}$, then there exist s, t, v, w such that $x = \langle \langle s, v \rangle, \langle t, w \rangle \rangle$.
- (34) Let \mathfrak{T}_1 be a non empty transition-system over F_1 and \mathfrak{T}_2 be a non empty transition-system over F_2 . Suppose the carrier of \mathfrak{T}_1 = the carrier of \mathfrak{T}_2 and the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 . Then $\Rightarrow_{\mathfrak{T}_1} = \Rightarrow_{\mathfrak{T}_2}$.
- (35) If $\langle \langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$, then there exist v, w such that $v = y_2$ and $x_1, w \to_{\mathfrak{T}} y_1$ and $x_2 = w \cap v$.
- (36) If $\langle \langle x, u \rangle, \langle y, v \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$, then there exists w such that $x, w \to_{\mathfrak{T}} y$ and $u = w \cap v$.
- (37) $x, y \to_{\mathfrak{T}} z \text{ iff } \langle \langle x, y \rangle, \langle z, \langle \rangle_E \rangle \rangle \in \mathfrak{I}.$
- (38) $x, v \to_{\mathfrak{T}} y$ iff $\langle \langle x, v \cap w \rangle, \langle y, w \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$.

- (39) If $\langle \langle x, u \rangle, \langle y, v \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$, then $\langle \langle x, u \cap w \rangle, \langle y, v \cap w \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$.
- (40) If $\langle \langle x, u \rangle, \langle y, v \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$, then len $u \ge \text{len } v$.
- (41) If the transition of \mathfrak{T} is a function, then if $\langle x, \langle y_1, z \rangle \rangle$, $\langle x, \langle y_2, z \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$, then $y_1 = y_2$.
- (42) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$, then if $\langle \langle x, u \rangle, \langle y, v \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$, then $\operatorname{len} u > \operatorname{len} v$.
- (43) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T}), \operatorname{then} \langle \langle x, z \rangle, \langle y, z \rangle \rangle \notin \mathfrak{I}_{\mathfrak{T}}$.
- (44) If \mathfrak{T} is deterministic, then if $\langle x, y_1 \rangle$, $\langle x, y_2 \rangle \in \mathfrak{T}$, then $y_1 = y_2$.
- (45) If \mathfrak{T} is deterministic, then if $\langle x, \langle y_1, z_1 \rangle \rangle$, $\langle x, \langle y_2, z_2 \rangle \rangle \in \mathfrak{T}$, then $y_1 = y_2$ and $z_1 = z_2$.
- (46) If \mathfrak{T} is deterministic, then $\Rightarrow_{\mathfrak{T}}$ is function-like.

6. Reduction Sequences

Let us consider x, E. The functor $\dim_2(x, E)$ yields an element of E^{ω} and is defined as follows:

(Def. 5) dim₂(x, E) =
$$\begin{cases} x_2, \text{ if there exist } y, u \text{ such that } x = \langle y, u \rangle, \\ \emptyset, \text{ otherwise.} \end{cases}$$

Next we state a number of propositions:

- (47) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. If $k, k+1 \in \text{dom } P$, then there exist s, v, t, w such that $P(k) = \langle s, v \rangle$ and $P(k+1) = \langle t, w \rangle$.
- (48) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. If $k, k+1 \in \operatorname{dom} P$, then $P(k) = \langle P(k)_1, P(k)_2 \rangle$ and $P(k+1) = \langle P(k+1)_1, P(k+1)_2 \rangle$.
- (49) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. Suppose $k, k+1 \in \text{dom } P$. Then
 - (i) $P(k)_1 \in \mathfrak{T}$,
 - (ii) $P(k)_2 \in E^{\omega}$,
- (iii) $P(k+1)_1 \in \mathfrak{T}$,
- (iv) $P(k+1)_2 \in E^{\omega}$,
- (v) $P(k)_1 \in \text{dom dom}$ (the transition of \mathfrak{T}), and
- (vi) $P(k+1)_1 \in \operatorname{rng}(\text{the transition of } \mathfrak{T}).$
- (50) Let \mathfrak{T}_1 be a non empty transition-system over F_1 and \mathfrak{T}_2 be a non empty transition-system over F_2 . Suppose the carrier of \mathfrak{T}_1 = the carrier of \mathfrak{T}_2 and the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 . Then every reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}_1}$ is a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}_2}$.
- (51) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If there exist x, u such that $P(1) = \langle x, u \rangle$, then for every k such that $k \in \operatorname{dom} P$ holds $\operatorname{dim}_2(P(k), E) = P(k)_2$.
- (52) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(\operatorname{len} P) = \langle y, w \rangle$, then for every k such that $k \in \operatorname{dom} P$ there exists u such that $P(k)_{\mathbf{2}} = u \cap w$.

- (53) For every reduction sequence P w.r.t. $\Rightarrow_{\mathfrak{T}}$ such that $P(1) = \langle x, v \rangle$ and $P(\operatorname{len} P) = \langle y, w \rangle$ there exists u such that $v = u \cap w$.
- (54) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1) = \langle x, u \rangle$ and $P(\operatorname{len} P) = \langle y, u \rangle$, then for every k such that $k \in \operatorname{dom} P$ holds $P(k)_2 = u$.
- (55) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. Suppose $k, k+1 \in$ dom P. Then there exist v, w such that $v = P(k+1)_{\mathbf{2}}$ and $P(k)_{\mathbf{1}}, w \to_{\mathfrak{T}} P(k+1)_{\mathbf{1}}$ and $P(k)_{\mathbf{2}} = w \cap v$.
- (56) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. Suppose $k, k+1 \in \text{dom } P$ and $P(k) = \langle x, u \rangle$ and $P(k+1) = \langle y, v \rangle$. Then there exists w such that $x, w \rightarrow_{\mathfrak{T}} y$ and $u = w \cap v$.
- (57) $x, y \to_{\mathfrak{T}} z$ iff $\langle \langle x, y \rangle, \langle z, \langle \rangle_E \rangle \rangle$ is a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$.
- (58) $x, v \to_{\mathfrak{T}} y$ iff $\langle \langle x, v \cap w \rangle, \langle y, w \rangle \rangle$ is a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$.
- (59) For every reduction sequence P w.r.t. $\Rightarrow_{\mathfrak{T}}$ such that $P(1) = \langle x, v \rangle$ and $P(\operatorname{len} P) = \langle y, w \rangle$ holds $\operatorname{len} v \geq \operatorname{len} w$.
- (60) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1) = \langle x, u \rangle$ and $P(\operatorname{len} P) = \langle y, u \rangle$, then $\operatorname{len} P = 1$ and x = y.
- (61) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1)_{\mathfrak{T}} = P(\operatorname{len} P)_{\mathfrak{T}}$, then $\operatorname{len} P = 1$.
- (62) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1) = \langle x, u \rangle$ and $P(\operatorname{len} P) = \langle y, \langle \rangle_E \rangle$, then $\operatorname{len} P \leq \operatorname{len} u + 1$.
- (63) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1) = \langle x, \langle e \rangle \rangle$ and $P(\operatorname{len} P) = \langle y, \langle \rangle_E \rangle$, then $\operatorname{len} P = 2$.
- (64) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1) = \langle x, v \rangle$ and $P(\operatorname{len} P) = \langle y, w \rangle$, then $\operatorname{len} v > \operatorname{len} w$ or $\operatorname{len} P = 1$ and x = y and v = w.
- (65) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. If $k, k+1 \in \operatorname{dom} P$, then $P(k)_{\mathfrak{T}} \neq P(k+1)_{\mathfrak{T}}$.
- (66) Suppose $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k, l. If $k, l \in \operatorname{dom} P$ and k < l, then $P(k)_2 \neq P(l)_2$.
- (67) Suppose \mathfrak{T} is deterministic. Let P, Q be reduction sequences w.r.t. $\Rightarrow_{\mathfrak{T}}$. If P(1) = Q(1), then for every k such that $k \in \operatorname{dom} P$ and $k \in \operatorname{dom} Q$ holds P(k) = Q(k).
- (68) If \mathfrak{T} is deterministic, then for all reduction sequences P, Q w.r.t. $\Rightarrow_{\mathfrak{T}}$ such that P(1) = Q(1) and len P = len Q holds P = Q.
- (69) Suppose \mathfrak{T} is deterministic. Let P, Q be reduction sequences w.r.t. $\Rightarrow_{\mathfrak{T}}$. If P(1) = Q(1) and $P(\operatorname{len} P)_{\mathbf{2}} = Q(\operatorname{len} Q)_{\mathbf{2}}$, then P = Q.

7. Reductions

The following propositions are true:

- (70) If $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, v \rangle$ to $\langle y, w \rangle$, then there exists u such that $v = u \cap w$.
- (71) If $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, u \rangle$ to $\langle y, v \rangle$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, u \cap w \rangle$ to $\langle y, v \cap w \rangle$.
- (72) If $x, y \to_{\mathfrak{T}} z$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, y \rangle$ to $\langle z, \langle \rangle_E \rangle$.
- (73) If $x, v \to_{\mathfrak{T}} y$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, v \cap w \rangle$ to $\langle y, w \rangle$.
- (74) If $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, y_2$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x_1, x_2 \rangle$ to $\langle y_1, y_2 \rangle$.
- (75) If $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, v \rangle$ to $\langle y, w \rangle$, then len $v \ge \text{len } w$.
- (76) If $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, w \rangle$ to $\langle y, v \cap w \rangle$, then $v = \langle \rangle_E$.
- (77) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$, then if $\Rightarrow_{\mathfrak{T}} \operatorname{reduces} \langle x, v \rangle$ to $\langle y, w \rangle$, then $\operatorname{len} v > \operatorname{len} w$ or x = y and v = w.
- (78) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$, then if $\Rightarrow_{\mathfrak{T}} \operatorname{reduces} \langle x, u \rangle$ to $\langle y, u \rangle$, then x = y.
- (79) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$, then if $\Rightarrow_{\mathfrak{T}} \operatorname{reduces} \langle x, \langle e \rangle \rangle$ to $\langle y, \langle \rangle_E \rangle$, then $\langle \langle x, \langle e \rangle \rangle, \langle y, \langle \rangle_E \rangle \rangle \in \Rightarrow_{\mathfrak{T}}$.
- (80) If \mathfrak{T} is deterministic, then if $\Rightarrow_{\mathfrak{T}}$ reduces x to $\langle y_1, z \rangle$ and $\Rightarrow_{\mathfrak{T}}$ reduces x to $\langle y_2, z \rangle$, then $y_1 = y_2$.

8. TRANSITIONS

Let us consider $E, F, \mathfrak{T}, x_1, x_2, y_1, y_2$. The predicate $x_1, x_2 \Rightarrow_{\mathfrak{T}}^* y_1, y_2$ is defined as follows:

(Def. 6) $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x_1, x_2 \rangle$ to $\langle y_1, y_2 \rangle$.

We now state a number of propositions:

- (81) Let \mathfrak{T}_1 be a non empty transition-system over F_1 and \mathfrak{T}_2 be a non empty transition-system over F_2 . Suppose the carrier of \mathfrak{T}_1 = the carrier of \mathfrak{T}_2 and the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 . If $x_1, x_2 \Rightarrow^*_{\mathfrak{T}_1} y_1, y_2$, then $x_1, x_2 \Rightarrow^*_{\mathfrak{T}_2} y_1, y_2$.
- (82) $x, y \Rightarrow_{\mathfrak{T}}^* x, y.$
- (83) If $x_1, x_2 \Rightarrow^*_{\mathfrak{T}} y_1, y_2$ and $y_1, y_2 \Rightarrow^*_{\mathfrak{T}} z_1, z_2$, then $x_1, x_2 \Rightarrow^*_{\mathfrak{T}} z_1, z_2$.
- (84) If $x, y \to_{\mathfrak{T}} z$, then $x, y \Rightarrow_{\mathfrak{T}}^* z, \langle \rangle_E$.
- (85) If $x, v \to_{\mathfrak{T}} y$, then $x, v \cap w \Rightarrow_{\mathfrak{T}}^* y, w$.
- (86) If $x, u \Rightarrow_{\mathfrak{T}}^* y, v$, then $x, u \cap w \Rightarrow_{\mathfrak{T}}^* y, v \cap w$.
- (87) If $x_1, x_2 \Rightarrow_{\mathfrak{T}} y_1, y_2$, then $x_1, x_2 \Rightarrow_{\mathfrak{T}}^* y_1, y_2$.
- (88) If $x, v \Rightarrow_{\mathfrak{T}}^* y, w$, then there exists u such that $v = u \cap w$.
- (89) If $x, v \Rightarrow^*_{\mathfrak{T}} y, w$, then $\operatorname{len} w \leq \operatorname{len} v$.
- (90) If $x, w \Rightarrow^*_{\mathfrak{T}} y, v \cap w$, then $v = \langle \rangle_E$.

- (91) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T}), \operatorname{then} x, u \Rightarrow^*_{\mathfrak{T}} y, u \text{ iff } x = y.$
- (92) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$, then if $x, \langle e \rangle \Rightarrow_{\mathfrak{T}}^* y, \langle \rangle_E$, then $x, \langle e \rangle \Rightarrow_{\mathfrak{T}} y, \langle \rangle_E$.
- (93) If \mathfrak{T} is deterministic, then if $x_1, x_2 \Rightarrow^*_{\mathfrak{T}} y_1, z$ and $x_1, x_2 \Rightarrow^*_{\mathfrak{T}} y_2, z$, then $y_1 = y_2$.

9. Acceptance of Words

Let us consider $E, F, \mathfrak{T}, x_1, x_2, y$. The predicate $x_1, x_2 \Rightarrow_{\mathfrak{T}}^* y$ is defined as follows:

(Def. 7) $x_1, x_2 \Rightarrow_{\mathfrak{T}}^* y, \langle \rangle_E.$

We now state several propositions:

- (94) Let \mathfrak{T}_1 be a non empty transition-system over F_1 and \mathfrak{T}_2 be a non empty transition-system over F_2 . Suppose the carrier of \mathfrak{T}_1 = the carrier of \mathfrak{T}_2 and the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 . If $x, y \Rightarrow^*_{\mathfrak{T}_1} z$, then $x, y \Rightarrow^*_{\mathfrak{T}_2} z$.
- $(95) \quad x, \langle \rangle_E \Rightarrow^*_{\mathfrak{T}} x.$
- (96) If $x, u \Rightarrow_{\mathfrak{T}}^* y$, then $x, u \cap v \Rightarrow_{\mathfrak{T}}^* y, v$.
- (97) If $x, y \to_{\mathfrak{T}} z$, then $x, y \Rightarrow_{\mathfrak{T}}^* z$.
- (98) If $x_1, x_2 \Rightarrow_{\mathfrak{T}} y, \langle \rangle_E$, then $x_1, x_2 \Rightarrow_{\mathfrak{T}}^* y$.
- (99) If $x, u \Rightarrow^*_{\mathfrak{T}} y$ and $y, v \Rightarrow^*_{\mathfrak{T}} z$, then $x, u \cap v \Rightarrow^*_{\mathfrak{T}} z$.
- (100) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T})$, then $x, \langle \rangle_E \Rightarrow^*_{\mathfrak{T}} y$ iff x = y.
- (101) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\operatorname{the transition of} \mathfrak{T}), \operatorname{then} \operatorname{if} x, \langle e \rangle \Rightarrow_{\mathfrak{T}}^* y, \operatorname{then} x, \langle e \rangle \Rightarrow_{\mathfrak{T}} y, \langle \rangle_E.$
- (102) If \mathfrak{T} is deterministic, then if $x_1, x_2 \Rightarrow^*_{\mathfrak{T}} y_1$ and $x_1, x_2 \Rightarrow^*_{\mathfrak{T}} y_2$, then $y_1 = y_2$.

10. Reachable States

Let us consider E, F, \mathfrak{T}, x, X . The functor x-succ $\mathfrak{T}(X)$ yields a subset of \mathfrak{T} and is defined as follows:

 $(\text{Def. 8}) \quad x\text{-}\text{succ}_{\mathfrak{T}}(X) = \{s: \bigvee_t (t \in X \land t, x \Rightarrow^*_{\mathfrak{T}} s)\}.$

The following propositions are true:

- (103) $s \in x$ -succ $\mathfrak{T}(X)$ iff there exists t such that $t \in X$ and $t, x \Rightarrow_{\mathfrak{T}}^* s$.
- (104) If $\langle \rangle_E \notin \operatorname{rng} \operatorname{dom} (\text{the transition of } \mathfrak{T}), \text{ then } \langle \rangle_E \operatorname{-succ}_{\mathfrak{T}}(S) = S.$
- (105) Let \mathfrak{T}_1 be a non empty transition-system over F_1 and \mathfrak{T}_2 be a non empty transition-system over F_2 . Suppose the carrier of \mathfrak{T}_1 = the carrier of \mathfrak{T}_2 and the transition of \mathfrak{T}_1 = the transition of \mathfrak{T}_2 . Then $x\operatorname{-succ}_{\mathfrak{T}_2}(X) = x\operatorname{-succ}_{\mathfrak{T}_2}(X)$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
 [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153–159, 2006, doi:10.2478/v10037-006-0019-7.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- Michał Trybulec. Formal languages concatenation and closure. Formalized Mathematics, 15(1):11–15, 2007, doi:10.2478/v10037-007-0002-y.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [15] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825–829, 2001.
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 5, 2009