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Summary. This article introduces labelled state transition systems, where
transitions may be labelled by words from a given alphabet. Reduction relations
from [4] are used to define transitions between states, acceptance of words, and
reachable states. Deterministic transition systems are also defined.

MML identifier: REWRITE3, version: 7.11.02 4.125.1059

The articles [1], [8], [2], [11], [6], [17], [7], [9], [16], [15], [14], [4], [10], [13], [3],
[12], and [5] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention: x, x1, T2, ¥, Y1, Y2, 2, 21,
z9, X, X1, Xo are sets, F is a non empty set, e is an element of E, u, v, vy, va,
w, wi, we are elements of B, F', I}, Fy are subsets of E“, and k, [ are natural
numbers.

Next we state a number of propositions:

(1) For every finite sequence p such that k € domp holds ((z) " p)(k+1) =
p(k).

(2) For every finite sequence p such that p # ) there exists a finite sequence
g and there exists z such that p = ¢~ (z) and lenp = leng + 1.

(3) For every finite sequence p such that k € domp and k+ 1 ¢ dom p holds
lenp = k.

(4) Let R be a binary relation, P be a reduction sequence w.r.t. R, and ¢z,
g2 be finite sequences. Suppose P = ¢q; ~ ¢2 and leng; > 0 and lengs > 0.
Then ¢ is a reduction sequence w.r.t. R and ¢2 is a reduction sequence
w.r.t. R.
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(5) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose len P > 1. Then there exists a reduction sequence @) w.r.t. R
such that (P(1)) " Q = P and len@ + 1 =len P.

(6) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose len P > 1. Then there exists a reduction sequence @ w.r.t. R
such that @ ~ (P(len P)) = P and len@ + 1 = len P.

(7) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose len P > 1. Then there exists a reduction sequence @ w.r.t. R
such that len@ + 1 = len P and for every k such that k& € dom () holds
Q(k)=P(k+1).

(8) For every binary relation R such that (z,y) is a reduction sequence w.r.t.
R holds (z, y) € R.

(9) Ifw=wu" v, then lenu <lenw and lenv < len w.

(10) fw=u"vand u# () and v # ()p, then lenu < lenw and lenv <
len w.
(11) Ifw;"v; = we"wg and if len wy = lenwsg or len v1 = len vy, then wy = wo
and vy = vg.
(12) If w; ~v; = we " ve and if lenw; < lenwy or lenv; > lenwy, then there
exists u such that w; ~u = wg and v1 = u "~ va.
(13) If wy ~ vy = wy " ve, then there exists u such that w; ™~ u = wy and
v1 = u ~ vy or there exists u such that wg ~ v = wy and v9 = u ~ v1.
Let us consider X. We introduce transition-systems over X which are exten-
sions of 1-sorted structure and are systems
( a carrier, a transition ),
where the carrier is a set and the transition is a relation between the carrier x
X and the carrier.

2. TRANSITION SYSTEMS OVER SUBSETS OF EY

Let us consider E, F' and let ¥ be a transition-system over F'. We say that
T is deterministic if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i)  The transition of ¥ is a function,
(i) ()p ¢ rngdom (the transition of T), and
(iii)  for every element s of ¥ and for all u, v such that u # v and (s,
u) € dom (the transition of T) and (s, v) € dom (the transition of ¥) it is
not true that there exists w such that u >~ w =v orv "~ w = u.
We now state the proposition

(14) For every transition-system T over F' such that dom (the transition of
%) = 0 holds ¥ is deterministic.
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Let us consider E, F. Observe that there exists a transition-system over F'
which is strict, non empty, finite, and deterministic.

3. PRODUCTIONS

Let us consider X, let T be a transition-system over X, and let us consider
x, 1y, z. The predicate z,y —« z is defined by:

(Def. 2)  ((xz, y), z) € the transition of .
We now state several propositions:

(15) Let ¥ be a transition-system over X. Suppose z,y —« z. Then
(i) z€%,
(i) yeX,
(i) z€4,
)
)
)

.

(iv) 2 € domdom (the transition of T),
(v) y € rngdom (the transition of T), and
(vi)  z € rng (the transition of ¥).
(16) Let T; be a transition-system over X; and T9 be a transition-system over
Xo. Suppose the transition of ¥; = the transition of To. If z,y — <, 2, then
T,y —, 2.
(17) Let ¥ be a transition-system over F. Suppose the transition of ¥ is a
function. If x,y —«< 21 and x,y —« 29, then z; = 29.
(18) For every deterministic transition-system ¥ over F' such that (), ¢
rng dom (the transition of T) holds z, () 3 y.
(19) Let T be a deterministic transition-system over F. If u # v and z,u —«
z1 and x, v —« 29, then it is not true that there exists w such that «~w = v
orv” w=u.

4. DIRECT TRANSITIONS

Let us consider E, F', let T be a transition-system over F', and let us consider
1, T2, Y1, y2. The predicate x1, s =« Y1,y is defined as follows:
(Def. 3) There exist v, w such that v = ys and z1,w —< y; and 9 = w " v.
The following propositions are true:
(20) Let ¥ be a transition-system over F. Suppose x1,T2 =< y1,y2. Then
x1, y1 € T and x9, y2 € E¥ and 21 € domdom (the transition of T) and
y1 € rng (the transition of ).

(21) Let ¥ be a transition-system over F} and ¥ be a transition-system over
F». Suppose the transition of T; = the transition of T9 and z1,z2 =g,

y1,y2. Then x1, 22 =5, Y1, y2.
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(22) For every transition-system ¥ over F' such that z,u =« y, v there exists
w such that z,w —sy and v =w "~ v.

(23) For every transition-system ¥ over F holds z,y —< z iff z,y =< 2, () 5.

(24) For every transition-system T over F' holds x,v —« y iff z,v"w =5 y, w.

(25) For every transition-system ¥ over F' such that z,u =< y,v holds z,u "™
w =g Y, v w.

(26) For every transition-system ¥ over F' such that x,u =5 y, v holds lenu >
lenv.

(27) Let T be a transition-system over F. Suppose the transition of T is a
function. If x1, 22 =% y1, 2 and x1, 2 = Y2, 2, then y; = yo.

(28) For every transition-system ¥ over F'such that () ; ¢ rngdom (the trans-
ition of ¥) holds z,z A< y, 2.

(29) For every transition-system ¥ over F' such that (), ¢ rngdom (the trans-
ition of ¥) holds if z,u =< y, v, then lenu > lenwv.

(30) For every deterministic transition-system ¥ over F' such that z1, 9 =<
Y1, 21 and x1, x2 =< Y2, 22 holds y; = yo and 21 = 29.

5. REDUCTION RELATION

In the sequel ¥ is a non empty transition-system over F, s, t are elements
of ¥, and S is a subset of ¥.

Let us consider E, F', T. The functor =« yielding a binary relation on (the
carrier of ¥) x E¥ is defined as follows:

(Def. 4) ((xl, J}Q), (yl, y2>) € =g iff z1,20 =< Y1, Y2.
The following propositions are true:

(31) If (z, y) € =<, then there exist s, v, ¢, w such that x = (s, v) and
y = (t, w).

(32) Suppose ({1, x2), (y1, y2)) € =z. Then =1, y1 € T and z9, y2 € E¥
and x; € dom dom (the transition of ¥) and y; € rng (the transition of ).

(33) If x € =, then there exist s, t, v, w such that z = ((s, v), (t, w)).

(34) Let %) be a non empty transition-system over F; and Ty be a non empty
transition-system over Fh. Suppose the carrier of ¥; = the carrier of %o
and the transition of T = the transition of 3. Then =g, = =g,.

(35) If ({z1, x2), (Y1, y2)) € =«, then there exist v, w such that v = y2 and
r1,w —gyr and 2 = w " w.

(36) If ((x, u), (y, v)) € =<, then there exists w such that z,w —z y and
u=w" .

(B7) z,y —z ziff {(z, y), (2, (p)) € ==

(38) z,v —gyiff ({x, v " w), (y, w)) € =<.
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(39) If ((z, u), (y, v)) € =, then ((z, u " w), (y, v " w)) € =«.

(40) If ((x, u), (y, v)) € ==, then lenu > lenwv.

(41) If the transition of ¥ is a function, then if (z, (y1, 2)), (z, (2, 2)) € ==,
then y; = yo.

(42) If ()p ¢ rngdom (the transition of ¥), then if ((z, u), (y, v)) € ==,
then lenu > lenv.

(43) If () ¢ rng dom (the transition of ¥), then ((z, 2), (y, 2)) ¢ ==.

(44) 1If T is deterministic, then if (z, y1), (z, y2) € ==, then y; = yo.

(45) If T is deterministic, then if (x, (y1, 21)), (x, (y2, 22)) € =«, then y; =
yo and z1 = 29.

(46) If T is deterministic, then =« is function-like.

6. REDUCTION SEQUENCES

Let us consider x, E. The functor dimg(x, F) yields an element of E“ and
is defined as follows:

. xo, if there exist y, u such that x = (y, u),
(Def. 5) - dimy(z, B) = { @,2 otherwise. ’ )
Next we state a number of propositions:
(47) Let P be a reduction sequence w.r.t. =g and given k. If k, k+1 € dom P,
then there exist s, v, ¢, w such that P(k) = (s, v) and P(k + 1) = (¢, w).
(48) Let P be a reduction sequence w.r.t. =< and given k. If k, k+1 € dom P,
then P(k) = (P(k)1, P(k)2) and P(k+ 1) = (P(k+ 1)1, P(k+1)2).

(49) Let P be a reduction sequence w.r.t. =« and given k. Suppose k, k+1 €

dom P. Then
(i) P(hef,
(i) P(k)s € ¥,
(iii) Pk+1); €%,
(iv) P(k+1)2 € EY,
(v) P(k)1 € domdom (the transition of ¥), and
(vi)  P(k+ 1)1 € rng (the transition of ¥).

(50) Let %1 be a non empty transition-system over F; and T3 be a non empty
transition-system over Fh. Suppose the carrier of €1 = the carrier of %o
and the transition of ¥; = the transition of 5. Then every reduction
sequence w.r.t. =g, is a reduction sequence w.r.t. =g,.

(51) Let P be a reduction sequence w.r.t. =. If there exist x, u such
that P(1) = (z, u), then for every k such that & € dom P holds
dima(P(k), E) = P(k)2.

(52) Let P be a reduction sequence w.r.t. =«. If P(len P) = (y, w), then for
every k such that k£ € dom P there exists u such that P(k)s = u ™~ w.
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(563) For every reduction sequence P w.r.t. =< such that P(1) = (z, v) and
P(len P) = (y, w) there exists u such that v = u ™ w.

(54) Let P be a reduction sequence w.r.t. =¢. If P(1) = (z,u) and
P(len P) = (y, u), then for every k such that k& € dom P holds P(k)2 = u.

(55) Let P be a reduction sequence w.r.t. =« and given k. Suppose k, k+1 €
dom P. Then there exist v, w such that v = P(k+ 1)2 and P(k)1,w —<
P(k+1)1 and P(k)2 = w " v.

(56) Let P be a reduction sequence w.r.t. = and given k. Suppose k, k+1 €
dom P and P(k) = (x, u) and P(k+1) = (y, v). Then there exists w such
that z,w -z y and u = w " v.

(67) z,y —z 2z iff ((x, y), (2, ()p)) is a reduction sequence w.r.t. =«.

(58) z,v —zyiff ({(x, v " w), (y, w)) is a reduction sequence w.r.t. =z.

(59) For every reduction sequence P w.r.t. =< such that P(1) = (z, v) and
P(len P) = (y, w) holds lenv > lenw.

(60) Suppose () ¢ rng dom (the transition of ¥). Let P be a reduction sequ-
ence w.r.t. =«<. If P(1) = (z, u) and P(len P) = (y, u), then len P =1
and z = y.

(61) Suppose () ¢ rng dom (the transition of ¥). Let P be a reduction sequ-
ence w.r.t. =«. If P(1)2 = P(len P)2, then len P = 1.

(62) Suppose ()p ¢ rngdom (the transition of ¥). Let P be a reduction
sequence w.r.t. =g. If P(1) = (z, u) and P(len P) = (y, ()g), then
len P <lenu+1.

(63) Suppose () ¢ rng dom (the transition of ¥). Let P be a reduction sequ-
ence w.r.t. =¢. If P(1) = (x, (e)) and P(len P) = (y, () ), thenlen P = 2.

(64) Suppose () ¢ rngdom (the transition of T). Let P be a reduction sequ-
ence w.r.t. =. If P(1) = (z, v) and P(len P) = (y, w), then lenv > lenw
orlenP=1and r =y and v =w.

(65) Suppose () ¢ rngdom (the transition of T). Let P be a reduction sequ-
ence w.r.t. = and given k. If k, k + 1 € dom P, then P (k)2 # P(k + 1)2.

(66) Suppose () ¢ rngdom (the transition of ¥). Let P be a reduction
sequence w.r.t. =5 and given k, [. If k, | € dom P and k < [, then
P(k)2 # P(l)2.

(67) Suppose T is deterministic. Let P, @) be reduction sequences w.r.t. =«.
If P(1) = Q(1), then for every k such that k¥ € dom P and k € dom @
holds P(k) = Q(k).

(68) If T is deterministic, then for all reduction sequences P, Q w.r.t. =«
such that P(1) = Q(1) and len P = len @ holds P = Q.

(69) Suppose T is deterministic. Let P, @ be reduction sequences w.r.t. =g.
If P(1) = Q(1) and P(len P)g = Q(len Q)2, then P = Q.
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7. REDUCTIONS

The following propositions are true:

(70) If =< reduces (x, v) to (y, w), then there exists u such that v =u ~w.
(71) If =« reduces (x, u) to (y, v), then =< reduces (z, u”w) to (y, v~ w).
(712) If z,y —< 2z, then =g reduces (z, y) to (2, () z)-

(73) If x,v —<y, then = reduces (z, v~ w) to (y, w).

(74) If 1,22 =< y1,y2, then =« reduces (z1, x2) to (y1, y2).

(75) If =< reduces (z, v) to (y, w), then lenv > lenw.

(76) If = reduces (z, w) to (y, v~ w), then v = () .

(77) If () ¢ rngdom (the transition of ), then if =< reduces (z, v) to (y,

w), then lenv > lenw or x =y and v = w.

(78) 1If () ¢ rngdom (the transition of ¥), then if =« reduces (z, u) to (y,
u), then x = y.

(79) If () p ¢ rngdom (the transition of ¥), then if =< reduces (z, (e)) to (y,
k), then ((z, (€)), (y, Op)) € ==

(80) If ¥ is deterministic, then if =« reduces x to (yi1, z) and =« reduces x
to (ye, z), then y; = yo.

8. TRANSITIONS

Let us consider E, F', €, x1, x2, y1, y2. The predicate x1,x2 =% y1,y2 is
defined as follows:
(Def. 6) =z reduces (1, x2) to (y1, y2).
We now state a number of propositions:

(81) Let %1 be a non empty transition-system over F; and T3 be a non empty
transition-system over Fy. Suppose the carrier of T = the carrier of Ty
and the transition of ¥; = the transition of To. If x1, 29 :>*r£1 Y1, Y2, then
T1,T2 =%, Y1, Y2

T,y =% T,Y.

oo o
w N

If 21,00 =% y1,y2 and y1,y2 =% 21, 22, then x1, 13 =% 21, 20.

0e)
=~

If 2,y —z 2z, then 2,y =% 2, () -

co
at

If z,v =z y, then z,v " w =% y, w.
If x,u =% y,v, then z,u " w =% y,v " w.

0.9]
J

If 21,22 =< y1,¥2, then z1, 22 =% y1, Y.

Qo
oo

If z,v =% y,w, then there exists u such that v =u "~ w.

[09]
Ne)

If x,v =% y,w, then lenw < lenwv.

N N N N N N /N /N /N
e oo
(==} D
~— — N '

If 2, w =% y,v " w, then v = () 5.
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(91) If () ¢ rng dom (the transition of ¥), then z,u =% y,u iff x = y.

(92) If ()p ¢ rngdom (the transition of T), then if z,(e) =% v, ()p, then
z,(e) =<y, (g

(93) If T is deterministic, then if x1,22 =% y1,2 and 21,22 =% y2,2, then
Y1 =12

f
f

9. ACCEPTANCE OF WORDS

Let us consider E, F', €, x1, w2, y. The predicate x1, 22 =% y is defined as
follows:
(Def. 7) 1,20 =%y, () -
We now state several propositions:
(94) Let %1 be a non empty transition-system over F; and T3 be a non empty
transition-system over Fy. Suppose the carrier of ¥; = the carrier of Ty and
the transition of Ty = the transition of To. If z,y =% z, then z,y =%, 2.

(95) €, <>E :>*T L.
(96) If z,u =%y, then z,u " v =% y,v.
(97) If x,y —g 2, then z,y =% 2.
(98) If 21,20 =gy, (), then z1, 20 =% v.
(99) Ifz,u=%yandy,v =%z, then z,u " v =% 2.
(100) If () ¢ rngdom (the transition of ¥), then z, (), =5 y iff x = y.
(101) If () 5 ¢ rngdom (the transition of T), then if x, (e) =% y, then z, (¢) =<

Y, <>E'
(102) If T is deterministic, then if 1, 2o =% y1 and x1, x2 =% yo, then y; = yo.

10. REACHABLE STATES

Let us consider F, F, ¥, x, X. The functor z-succg(X) yields a subset of T
and is defined as follows:

(Def. 8)  z-succg(X) ={s:V, (te€X A t,xz=%s)}.
The following propositions are true:
(103) s € x-succg(X) iff there exists ¢ such that t € X and ¢,z =% s.
(104) If () ¢ rng dom (the transition of ¥), then () z-succz(S) = S.

(105) Let %7 be a non empty transition-system over F} and T be a non empty
transition-system over Fs. Suppose the carrier of T = the carrier of Ty
and the transition of ¥; = the transition of ¥3. Then z-succe, (X) =
x-succs, (X).
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