Normal Subgroup of Product of Groups

Hiroyuki Okazaki Shinshu University Nagano, Japan Kenichi Arai Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all $j \in I$, the group $G = \prod_{i \in I} G_i$ has a normal subgroup isomorphic to G_j . Moreover, we show some relations between a family of groups and its direct product.

MML identifier: GROUP_12, version: 7.11.07 4.156.1112

The papers [2], [4], [5], [3], [8], [9], [7], [10], [11], [6], [1], [13], and [12] provide the terminology and notation for this paper.

1. NORMAL SUBGROUP OF PRODUCT OF GROUPS

Let I be a non empty set, let F be a group-like multiplicative magma family of I, and let i be an element of I. Note that F(i) is group-like.

Let I be a non empty set, let F be an associative multiplicative magma family of I, and let i be an element of I. Observe that F(i) is associative.

Let I be a non empty set, let F be a commutative multiplicative magma family of I, and let i be an element of I. Note that F(i) is commutative.

In the sequel I is a non empty set, F is an associative group-like multiplicative magma family of I, and i, j are elements of I.

We now state the proposition

(1) Let x be a function and g be an element of F(i). Then dom x = I and x(i) = g and for every element j of I such that $j \neq i$ holds $x(j) = \mathbf{1}_{F(j)}$ if and only if $x = \mathbf{1}_{\prod F} + (i, g)$.

Let I be a non empty set, let F be an associative group-like multiplicative magma family of I, and let i be an element of I. The functor ProjSet(F, i) yields a subset of $\prod F$ and is defined by:

(Def. 1) For every set x holds $x \in \text{ProjSet}(F, i)$ iff there exists an element g of F(i) such that $x = \mathbf{1}_{\prod F} + (i, g)$.

Let I be a non empty set, let F be an associative group-like multiplicative magma family of I, and let i be an element of I. Observe that $\operatorname{ProjSet}(F,i)$ is non empty.

Next we state several propositions:

- (2) Let x_0 be a set. Then $x_0 \in \operatorname{ProjSet}(F, i)$ if and only if there exists a function x and there exists an element g of F(i) such that $x = x_0$ and $\operatorname{dom} x = I$ and x(i) = g and for every element j of I such that $j \neq i$ holds $x(j) = \mathbf{1}_{F(j)}$.
- (3) Let g_1 , g_2 be elements of $\prod F$ and z_1 , z_2 be elements of F(i). If $g_1 = \mathbf{1}_{\prod F} + (i, z_1)$ and $g_2 = \mathbf{1}_{\prod F} + (i, z_2)$, then $g_1 \cdot g_2 = \mathbf{1}_{\prod F} + (i, z_1 \cdot z_2)$.
- (4) For every element g_1 of $\prod F$ and for every element z_1 of F(i) such that $g_1 = \mathbf{1}_{\prod F} + (i, z_1)$ holds $g_1^{-1} = \mathbf{1}_{\prod F} + (i, z_1^{-1})$.
- (5) For all elements g_1 , g_2 of $\prod F$ such that g_1 , $g_2 \in \text{ProjSet}(F, i)$ holds $g_1 \cdot g_2 \in \text{ProjSet}(F, i)$.
- (6) For every element g of $\prod F$ such that $g \in \text{ProjSet}(F, i)$ holds $g^{-1} \in \text{ProjSet}(F, i)$.

Let I be a non empty set, let F be an associative group-like multiplicative magma family of I, and let i be an element of I. The functor ProjGroup(F, i) yields a strict subgroup of $\prod F$ and is defined as follows:

(Def. 2) The carrier of ProjGroup(F, i) = ProjSet(F, i).

Let us consider I, F, i. The functor 1 ProdHom(F, i) yielding a homomorphism from F(i) to P rojGroup(F, i) is defined as follows:

- (Def. 3) For every element x of F(i) holds $(1\operatorname{ProdHom}(F,i))(x) = \mathbf{1}_{\prod F} + (i,x)$. Let us consider I, F, i. Note that $1\operatorname{ProdHom}(F,i)$ is bijective. Let us consider I, F, i. One can check that $\operatorname{ProjGroup}(F,i)$ is normal. One can prove the following proposition
 - (7) For all elements x, y of $\prod F$ such that $i \neq j$ and $x \in \text{ProjGroup}(F, i)$ and $y \in \text{ProjGroup}(F, j)$ holds $x \cdot y = y \cdot x$.

2. Product of Subgroups of a Group

In the sequel n denotes a non empty natural number. One can prove the following propositions:

(8) Let F be an associative group-like multiplicative magma family of Seg n, J be a natural number, and G_1 be a group. Suppose $1 \leq J \leq n$ and $G_1 = F(J)$. Let x be an element of $\prod F$ and s be a finite sequence of elements of $\prod F$. Suppose len s < J and for every element k of Seg n

- such that $k \in \text{dom } s \text{ holds } s(k) \in \text{ProjGroup}(F, k) \text{ and } x = \prod s.$ Then $x(J) = \mathbf{1}_{(G_1)}$.
- (9) Let F be an associative group-like multiplicative magma family of Seg n, x be an element of $\prod F$, and s be a finite sequence of elements of $\prod F$. Suppose len s=n and for every element k of Seg n holds $s(k) \in \operatorname{ProjGroup}(F,k)$ and $x=\prod s$. Let i be a natural number. Suppose $1 \leq i \leq n$. Then there exists an element s_1 of $\prod F$ such that $s_1=s(i)$ and $x(i)=s_1(i)$.
- (10) Let F be an associative group-like multiplicative magma family of Seg n, x be an element of $\prod F$, and s, t be finite sequences of elements of $\prod F$. Suppose that
 - (i) $\operatorname{len} s = n$,
 - (ii) for every element k of Seg n holds $s(k) \in \text{ProjGroup}(F, k)$,
- (iii) $x = \prod s$,
- (iv) len t = n,
- (v) for every element k of Seg n holds $t(k) \in \text{ProjGroup}(F, k)$, and
- (vi) $x = \prod t$. Then s = t.
- (11) Let F be an associative group-like multiplicative magma family of $\operatorname{Seg} n$ and x be an element of $\prod F$. Then there exists a finite sequence s of elements of $\prod F$ such that $\operatorname{len} s = n$ and for every element k of $\operatorname{Seg} n$ holds $s(k) \in \operatorname{ProjGroup}(F, k)$ and $x = \prod s$.
- (12) Let G be a commutative group and F be an associative group-like multiplicative magma family of Seg n. Suppose that
 - (i) for every element i of Seg n holds F(i) is a subgroup of G,
 - (ii) for every element x of G there exists a finite sequence s of elements of G such that len s = n and for every element k of Seg n holds $s(k) \in F(k)$ and $x = \prod s$, and
- (iii) for all finite sequences s, t of elements of G such that len s = n and for every element k of Seg n holds $s(k) \in F(k)$ and len t = n and for every element k of Seg n holds $t(k) \in F(k)$ and $\prod s = \prod t$ holds s = t. Then there exists a homomorphism f from $\prod F$ to G such that
- (iv) f is bijective, and
- (v) for every element x of $\prod F$ there exists a finite sequence s of elements of G such that len s=n and for every element k of Seg n holds $s(k) \in F(k)$ and s=x and $f(x)=\prod s$.
- (13) Let G, F be associative commutative group-like multiplicative magma families of Seg n. Suppose that for every element k of Seg n holds F(k) = ProjGroup(G, k). Then there exists a homomorphism f from $\prod F$ to $\prod G$ such that
 - (i) f is bijective, and

for every element x of $\prod F$ there exists a finite sequence s of elements of $\prod G$ such that len s = n and for every element k of Seg n holds $s(k) \in F(k)$ and s = x and $f(x) = \prod s$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [6] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.
- [7] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955–962, 1990.
- Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
- [10] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
- [11] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(**1**):73–83, 1990.

Received July 2, 2010