

Commutativeness of Fundamental Groups of Topological Groups

Artur Korniłowicz Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok Poland

Summary. In this article we prove that fundamental groups based at the unit point of topological groups are commutative [11].

MSC: 55Q52 03B35

Keywords: fundamental group; topological group

MML identifier: $TOPALG_7$, version: 8.1.02 5.17.1179

The notation and terminology used in this paper have been introduced in the following articles: [3], [19], [9], [10], [16], [20], [4], [5], [22], [23], [21], [1], [6], [17], [18], [2], [25], [26], [24], [15], [12], [13], [8], [14], and [7].

Let A be a non empty set, x be an element, and a be an element of A. Let us observe that $(A \mapsto x)(a)$ reduces to x.

Let A, B be non empty topological spaces, C be a set, and f be a function from $A \times B$ into C. Let b be an element of B. Let us note that the functor f(a, b)yields an element of C. Let G be a multiplicative magma and g be an element of G. We say that g is unital if and only if

(Def. 1) $g = \mathbf{1}_G$.

One can check that $\mathbf{1}_G$ is unital.

Let G be a unital multiplicative magma. Let us note that there exists an element of G which is unital.

Let g be an element of G and h be a unital element of G. One can check that $g \cdot h$ reduces to g. One can check that $h \cdot g$ reduces to g.

Let G be a group. One can verify that $(\mathbf{1}_G)^{-1}$ reduces to $\mathbf{1}_G$.

The scheme *TopFuncEx* deals with non empty topological spaces S, T and a non empty set \mathcal{X} and a binary functor \mathcal{F} yielding an element of \mathcal{X} and states that

127

C 2013 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online) (Sch. 1) There exists a function f from $S \times T$ into \mathcal{X} such that for every point s of S for every point t of T, $f(s,t) = \mathcal{F}(s,t)$.

The scheme TopFuncEq deals with non empty topological spaces S, \mathcal{T} and a non empty set \mathcal{X} and a binary functor \mathcal{F} yielding an element of \mathcal{X} and states that

(Sch. 2) For every functions f, g from $S \times T$ into \mathcal{X} such that for every point s of S and for every point t of T, $f(s,t) = \mathcal{F}(s,t)$ and for every point s of S and for every point t of T, $g(s,t) = \mathcal{F}(s,t)$ holds f = g.

Let X be a non empty set, T be a non empty multiplicative magma, and f, g be functions from X into T. The functor $f \cdot g$ yielding a function from X into T is defined by

(Def. 2) Let us consider an element x of X. Then $it(x) = f(x) \cdot g(x)$.

Now we state the proposition:

(1) Let us consider a non empty set X, an associative non empty multiplicative magma T, and functions f, g, h from X into T. Then $(f \cdot g) \cdot h = f \cdot (g \cdot h)$.

Let X be a non empty set, T be a commutative non empty multiplicative magma, and f, g be functions from X into T. Observe that the functor $f \cdot g$ is commutative.

Let T be a non empty topological group structure, t be a point of T, and f, g be loops of t. The functor $f \bullet g$ yielding a function from I into T is defined by the term

(Def. 3) $f \cdot g$.

In this paper T denotes a continuous unital topological space-like non empty topological group structure, x, y denote points of \mathbb{I} , s, t denote unital points of T, f, g denote loops of t, and c denotes a constant loop of t.

Let us consider T, t, f, and g. One can check that the functor $f \bullet g$ yields a loop of t. Let T be an inverse-continuous semi topological group. Observe that \cdot_T^{-1} is continuous.

Let T be a semi-topological group, t be a point of T, and f be a loop of t. The functor f^{-1} yielding a function from I into T is defined by the term

(Def. 4) $\cdot_T^{-1} \cdot f$.

Let us consider a semi topological group T, a point t of T, and a loop f of t. Now we state the propositions:

- (2) $(f^{-1})(x) = f(x)^{-1}$.
- (3) $(f^{-1})(x) \cdot f(x) = \mathbf{1}_T.$
- (4) $f(x) \cdot (f^{-1})(x) = \mathbf{1}_T.$

Let T be an inverse-continuous semi topological group, t be a unital point of T, and f be a loop of t. One can check that the functor f^{-1} yields a loop of

- t. Let s, t be points of I. One can check that the functor $s \cdot t$ yields a point of
- I. The functor $\otimes_{\mathbb{R}^1}$ yielding a function from $\mathbb{R}^1 \times \mathbb{R}^1$ into \mathbb{R}^1 is defined by
- (Def. 5) Let us consider points x, y of \mathbb{R}^1 . Then $it(x, y) = x \cdot y$.

Observe that $\otimes_{\mathbb{R}^1}$ is continuous.

Now we state the proposition:

(5) $(\mathbb{R}^1 \times \mathbb{R}^1) \upharpoonright (R^1[0,1] \times R^1[0,1]) = \mathbb{I} \times \mathbb{I}.$

The functor $\otimes_{\mathbb{I}}$ yielding a function from $\mathbb{I} \times \mathbb{I}$ into \mathbb{I} is defined by the term (Def. 6) $\otimes_{\mathbb{R}^1} \upharpoonright R^1[0, 1]$.

Now we state the proposition:

(6) $(\otimes_{\mathbb{I}})(x,y) = x \cdot y.$

One can verify that $\otimes_{\mathbb{I}}$ is continuous.

Now we state the proposition:

(7) Let us consider points a, b of \mathbb{I} and a neighbourhood N of $a \cdot b$. Then there exists a neighbourhood N_1 of a and there exists a neighbourhood N_2 of b such that for every points x, y of \mathbb{I} such that $x \in N_1$ and $y \in N_2$ holds $x \cdot y \in N$. The theorem is a consequence of (6).

Let T be a non empty multiplicative magma and F, G be functions from $\mathbb{I} \times \mathbb{I}$ into T. The functor F * G yielding a function from $\mathbb{I} \times \mathbb{I}$ into T is defined by

(Def. 7) Let us consider points a, b of \mathbb{I} . Then $it(a, b) = F(a, b) \cdot G(a, b)$.

Now we state the proposition:

(8) Let us consider functions F, G from $\mathbb{I} \times \mathbb{I}$ into T and subsets M, N of $\mathbb{I} \times \mathbb{I}$. Then $(F * G)^{\circ}(M \cap N) \subseteq F^{\circ}M \cdot G^{\circ}N$.

Let us consider T. Let F, G be continuous functions from $\mathbb{I} \times \mathbb{I}$ into T. Observe that F * G is continuous.

Now we state the propositions:

- (9) Let us consider loops f_1 , f_2 , g_1 , g_2 of t. Suppose
 - (i) f_1, f_2 are homotopic, and
 - (ii) g_1, g_2 are homotopic.

Then $f_1 \bullet g_1, f_2 \bullet g_2$ are homotopic.

- (10) Let us consider loops f_1 , f_2 , g_1 , g_2 of t, a homotopy F between f_1 and f_2 , and a homotopy G between g_1 and g_2 . Suppose
 - (i) f_1, f_2 are homotopic, and
 - (ii) g_1, g_2 are homotopic.

Then F * G is a homotopy between $f_1 \bullet g_1$ and $f_2 \bullet g_2$. The theorem is a consequence of (9).

- (11) $f + g = (f + c) \bullet (c + g).$
- (12) $f \bullet g, (f+c) \bullet (c+g)$ are homotopic. The theorem is a consequence of (9).

Let T be a semi topological group, t be a point of T, and f, g be loops of t. The functor HopfHomotopy(f, g) yielding a function from $\mathbb{I} \times \mathbb{I}$ into T is defined by

(Def. 8) Let us consider points a, b of \mathbb{I} . Then $it(a,b) = (((f^{-1})(a \cdot b) \cdot f(a)) \cdot g(a)) \cdot f(a \cdot b)$.

Note that HopfHomotopy(f, g) is continuous.

In the sequel T denotes a topological group, t denotes a unital point of T, and f, g denote loops of t.

Now we state the proposition:

(13) $f \bullet g, g \bullet f$ are homotopic.

Let us consider T, t, f, and g. Let us note that the functor HopfHomotopy(f, g) yields a homotopy between $f \bullet g$ and $g \bullet f$.

Now we are at the position where we can present the Main Theorem of the paper: $\pi_1(T, t)$ is commutative.

References

- [1] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
- [2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Adam Grabowski. Introduction to the homotopy theory. *Formalized Mathematics*, 6(4): 449–454, 1997.
- [10] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. Formalized Mathematics, 12(3):251–260, 2004.
- [11] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [12] Artur Korniłowicz. The fundamental group of convex subspaces of \mathcal{E}_{T}^{n} . Formalized Mathematics, 12(3):295–299, 2004.
- [13] Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.
- [14] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117–124, 2005.
- [15] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261–268, 2004.
- [16] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [19] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4): 535–545, 1991.
- [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.

130

- [21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341–347, 2003.
- [22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [23] Wojciech A. Trybulec. Subgroup and cosets of subgroups. *Formalized Mathematics*, 1(5): 855–864, 1990.
- $\label{eq:constraint} [24] \ \ \mbox{Zinaida Trybulec. Properties of subsets. Formalized Mathematics}, 1 (1):67-71, 1990.$
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 19, 2013