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Summary. In this article, we formalize operations of points on an elliptic
curve over GF(p). Elliptic curve cryptography [7], whose security is based on a
difficulty of discrete logarithm problem of elliptic curves, is important for infor-
mation security. We prove that the two operations of points: compellpyq jCo and
addellprojCo are unary and binary operations of a point over the elliptic curve.
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The terminology and notation used here are introduced in the following papers:

(51, (171, [3], [1], [13], [4], [2], [12], [14], [10], [9], [16], [15], [8], [11], and [6].

1. ArRITHMETIC IN GF(p)

For simplicity, we adopt the following convention: i, j denote integers, n
denotes a natural number, K denotes a field, and a1, a9, a3, a4, as, ag denote
elements of K.

One can prove the following propositions:

(1) If a; = —ag, then a;? = a?.
2) (1x) ™' =1k
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(3) Ifay # 0k and ay # Ox and a1 -az ' = az-as~ ", then a; - ag4 = as - as.
(4) Ifas # Ok and a4 # O and a1 - ag = as - a3, then ay -as™' = az-as~!.
(5) If ag =0 and n > 1, then a;™ = Ok.

(6) If a; = —ag, then —aj = as.

(7) a1+as+as+ay = ag+as+as+ay and ay+as+as+ag = a1 +ag+az+as.
(8) (a1 +az2+az)+as=a1+(az+az+as) and (a1 + a2 +az +aq) +as =

a1 + (ag + az + as + as).

(9) (a1 +azx+as+ag+as)+ag =ay + (az + az + ag + a5 + ag).

(10) ay-az-a3-as=aq-az-ag-ay and aj -az-as-aqs =ay - a4 - ag - as.
)
)

(1) (
(

(12
ay - (a2 - as - aq) - as - ag.
n

(13) (a1 -ag - ag)” = aln . agn -asg .

ay-ag-ag)-ag = a1-(az-as-aq) and (aj-az-as-aq)-as = aj-(az-as-aq-as).

ay-ag-as-as-as)-ag = ay-(ag-as-as-as-ag) and aj -az-az-aq-as-ag =

(14) aj-(ag+as+aqg) =a1-az+aj-a3+a;-aq and a1 - ((ag + az) —aq) =
(a1-ag+a1-a3) —ai-aq and ay - ((a2 —az) +as4) = (a1-a2 —a1-a3) +ai-aq
and a1 - (ag —ag—aq) =ay-a2 —aj-az3—ay-aq and ay - (—ag +az+aq) =
—ay - ag+aj-az+ai-aq and a;-((—ag+as)—aq) = (—ay - ag+ai-az)—ai-aq
and a;-((—ag—as)+aq) = (—a1 - ag—ai-az)+ai-aq and a1-(—ag—ag—ay) =
—aj-a —ai-az —aj - a4.

(15) ((11 + CLQ) . (a1 — ag) = a12 — (122.

(16) (a1 + ag) . ((a12 —aj - ag) + a22) = a13 + a23.

(17) (a1 — az) . (a12 + a1 -as + a22) = (113 — (123.

Let n, p be natural numbers. We say that p is n or greater if and only if:
(Def. 1) n <p.
Let us note that there exists a natural number which is 5 or greater and
prime.
The following propositions are true:

(18) For all elements g1, g2, g3, a of GF(p) such that g; = ¢ mod p and
g2 =j mod p and g3 = (i + j) mod p holds g1 -a+ g2 - a = g3 - a.

(19) For all elements g1, g2, a of GF(p) such that ¢g; = ¢ mod p and g2 =
jmod pand j=¢+1holds g1 -a+a=gs-a.

(20) For all elements g4, a of GF(p) such that g4 = 2 mod p holds a+a = g4-a.

(21) For all elements g1, g2, g3, a of GF(p) such that g1 = ¢ mod p and
g2 =j mod p and g3 = (i — j) mod p holds g1 -a — g2 - a = g3 - a.

(22) For all elements gi, g2, a of GF(p) such that g = ¢ mod p and g2 =
jmod pandi=j+1holdsg;-a—gs-a=a.

(23) For all elements gi, g2, a of GF(p) such that gy = ¢ mod p and g2 =
jmodpandi=j+1holds g1 -a—a=gs-a.



OPERATIONS OF POINTS ON ELLIPTIC CURVE IN ... 89

(24) For all elements g4, a of GF(p) such that g4 = 2 mod p holds g4-a—a = a.

(25) For all elements g4, a, b of GF(p) such that g4 = 2 mod p holds (a + b)* =
a’?+gs-a-b+ b2

(26) For all elements g4, a, b of GF(p) such that g4 = 2 mod p holds (a — b)* =
(a®> — g4-a-b)+ b2

(27) For all elements g4, a, b, ¢, d of GF(p) such that g4 = 2 mod p holds
(a-c+b-d?=a2-+gs-a-b-c-d+b*d2

(28) Let p be a prime number, n be a natural number, and g4 be an element
of GF(p). If p > 2 and g4 = 2 mod p, then g4 # Ogp(p) and g4™ # Ogr(p)-

(29) Let p be a prime number, n be a natural number, and g4, g5 be elements
of GF(p). If p > 3 and g5 = 3 mod p, then g5 # Ogp(y) and g5" # Ogr(p)-

2. PARAMETERS OF AN ELLIPTIC CURVE

Let p be a 5 or greater prime number. The parameters of elliptic curve p
yielding a subset of (the carrier of GF(p)) x (the carrier of GF(p)) is defined as
follows:

(Def. 2) The parameters of elliptic curve p = {{a, b); a ranges over elements of
GF(p), b ranges over elements of GF(p): Disc(a) # Ogp(p)}-

Let p be a 5 or greater prime number. Observe that the parameters of elliptic
curve p is non empty.

Let p be a 5 or greater prime number and let z be an element of the parame-
ters of elliptic curve p. Then z7 is an element of GF(p). Then z2 is an element
of GF(p).

The following proposition is true

(30) Let p be a 5 or greater prime number and z be an element of the para-
meters of elliptic curve p. Then p > 3 and Disc(z1) # Ogr(p)-
For simplicity, we adopt the following rules: pi, p2, p3 denote sets, P, P,
P5 denote elements of GF(p), P denotes an element of ProjCo(GF(p)), and O
denotes an element of ECgetprojco(a).
Let p be a prime number, let a, b be elements of GF(p), and let P be an
element of ECsetprojco(a). The functor Py yields an element of GF(p) and is
defined as follows:
(Def. 3) If P = (p1, p2, p3), then Py = py.

The functor Ps yielding an element of GF(p) is defined as follows:
(Def. 4) If P = (p1, p2, p3), then Py = po.

The functor Ps yielding an element of GF(p) is defined by:
(Def. 5) If P = (p1, p2, p3), then P = ps.

We now state three propositions:
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(31) For every prime number p and for all elements a, b of GF(p) and for
every element P of ECgetprojco(a) holds P = (P, P, P3).

(32) Let p be a prime number, a, b be elements of GF(p), P be an element
of ECgetprojco(a), and @ be an element of ProjCo(GF(p)). Then P = Q if
and only if the following conditions are satisfied:

i) Pr=Q1,
(i) P2 =Q2,and
(iii) Ps = Qs.

(33) Let p be a prime number, a, b, P;, Py, P3 be elements of GF(p), and P
be an element of ECgetprojco(a). If P = (P1, P, P3), then P; = P; and
P2 = PQ and P3 = Pg.

Let p be a prime number, let P be an element of ProjCo(GF(p)), and let Cy
be a function from (the carrier of GF(p)) x (the carrier of GF(p)) x (the carrier
of GF(p)) into GF(p). We say that P is on curve defined by an equation Cj if
and only if:

(Def 6) Cl(P) = OGF(p)
The following two propositions are true:

(34) P is on curve defined by an equation ECwgqprojco(a) iff P is an element
of ECSetProjCo(a)‘

(35) Let p be a prime number, a, b be elements of GF(p), and P be an element
of ECsetprojco(a). Then (P2)? Ps—((P1)*+a-Py-(P3)*+b:(P3)°) = Ogr(y)-

Let p be a prime number and let P be an element of ProjCo(GF(p)). The
represent point of P yields an element of ProjCo(GF(p)) and is defined by:
(Def. 7)(i)  The represent point of P = (Py - (P3)~!, Py - (P3)~!, 1) if P35 # 0,
(ii)  the represent point of P = (0, 1, 0) if P3 =0,
(iii) P =0, otherwise.
The following propositions are true:

(36) Let p be a5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P be an element of ECgetprojco(21). Then the
represent point of P = P and the represent point of P € ECgetprojco(21)-

(37) Let p be a prime number, a, b be elements of GF(p), and P be an ele-
ment of ProjCo(GF(p)). Suppose (the represent point of P)g = 0. Then
the represent point of P = (0, 1, 0) and P3 = 0.

(38) Let p be a prime number, a, b be elements of GF(p), and P be an ele-
ment of ProjCo(GF(p)). Suppose (the represent point of P)g # 0. Then
the represent point of P = (Py - (P3)~!, Py - (P3)~!, 1) and P3 # 0.

(39) Let p be a5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECsetprojco(21). Then P = Q
if and only if the represent point of P = the represent point of ().
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3. OPERATIONS OF POINTS ON AN ErLLiPTIC CURVE OVER GF(p)

Let p be a 5 or greater prime number and let z be an element of the para-
meters of elliptic curve p. The functor compellp,,;c, (2, p) yields a function from
ECgetProjco(z1) into ECgetprojco(#1) and is defined as follows:

(Def. 8) For every element P of ECgetprojco(21) holds (compellprojco(z,p))(P) =
(P1, —Pa, P3).

Let p be a 5 or greater prime number, let z be an element of the pa-
rameters of elliptic curve p, let F' be a function from ECsetprojco(21) into
ECsetpProjco(21), and let P be an element of ECgetprojco(z1). Then F(P) is an
element of ECgetprojco(21)-

We now state a number of propositions:

(40) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and O be an element of ECgetprojco(21)- If O = (0, 1,
0), then (compellp,,;c0(2,p))(0) = O.

(41) Let p be a 5 or greater prime number, z be an element of the para-
meters of elliptic curve p, and P be an element of ECsetprojco(21). Then

(CompeuPrOjCo(z7p))((compeuPrOjCo(z7p))(P)) =P

(42) Let p be a 5 or greater prime number, z be an element of the parame-
ters of elliptic curve p, and P be an element of ECgetprojco(21). Sup-
pose P3 # 0. Then the represent point of (compellp,ico(2,p))(P) =
(compellp, ;00 (2, p))(the represent point of P).

(43) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECsetprojco(21). Then P = Q
if and Only if (CompeHProjCo(Zap))(P) = (CompeHProjCo(Z’p))(Q)'

(44) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P be an element of ECgetprojco(21). If P3 # 0, then
P = (compellp,ico(2,p))(P) iff P2 =0.

(45) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21)- If P3 # 0,
then Py = Q1 and P3 = Q3 iff P = Q or P = (compellp,,;c0(2,0))(Q)-

(46) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECsetprojco(21). Then P = Q
if and Only if (CompellProjCO(zap))(P) = (CompeuProjCo(Z7p))(Q)‘

(47) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21). Then P =
(CompeuprojCo(zap))(Q) if and Only if (CompeHProjCo(z>p>)(P) = Q

(48) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21)- Suppose P3 #
0 and Q3 # 0. Then the represent point of P = (compellp,;c,(2, p))(the
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represent point of @) if and only if P = (compellp,,;c, (2, P))(Q).

(49) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21). If P = Q,
then P2 . Q3 = Q2 . P3.

(50) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21). Suppose P3 #
0 and Q3 # 0. Then P = Q or P = (compellp,,;c,(2,p))(Q) if and only if
Py-Q3 =01 Ps.

(51) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21). If P3 # 0
and Q3 # 0 and P # 0, then if P = (compellp,y;co(2,p))(Q), then
P2 - Q3 # Q2 - Ps.

(52) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P, @ be elements of ECgetprojco(21). If P # @ and
P= (compellprojco(z,p))(Q), then Py - Q3 # Q2 - Ps.

(53) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g5 be an element of GF(p), and P be an element of
ECsetProjco(21)- If g5 = 3 mod p and P, = 0 and P3 # 0, then 2 - (P3)2 +
g5 (P1)” #0.

(54) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g, g7, gs be elements of GF(p), P, Q be elements
of ECgetprojco(#1), and R be an element of (the carrier of GF(p)) x (the
carrier of GF(p)) x (the carrier of GF(p)). Suppose that

(i) g4 =2 mod p,
(ii) g6 =Q2-P3— P2-Qs,

(iii) gr=Q1-Ps— P1-Qs,

(iv) gs=g6> P3-Q3—g7° —ga-g7*- Pr-Qs, and

(v) R={(g7-98, 96 (97° - Pr- Qs —gg) — g7° - P2 - Q3, g7° - P3 - Q3).
Then g7 - P3- Ry = —(g6 - (R1- P3 — P1- R3) +g7- P2 - R3).

(55) Let p be a 5 or greater prime number, z be an element of the parameters

of elliptic curve p, g4, g6, g7, gs be elements of GF(p), P, @ be elements

of ECsetProjco(#1), and R be an element of (the carrier of GF(p)) x (the
carrier of GF(p)) x (the carrier of GF(p)). Suppose that

) ga=2mod p,

) 96 =Q2-P3— P2-Qs,
(iii) gr=Q1-P3— P1-Qs,

) 98=96" Ps-Q3—gr® —ga-g7° - Pr-Q3, and

) R=1{(97-9s 96 (97°- P1- Q3 —g8) — g7° - P2 - Q3, g7° - P3- Q3).
Then —g7* - (P3- Qs R1+ P3- Q1+ Rs+ P1 - Qs - Rg)+P5-Q3-R3-g¢* =
Ocr(p)-
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(56) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g, g7, gs be elements of GF(p), P, Q be elements
of ECgetProjco(#1), and R be an element of (the carrier of GF(p)) x (the
carrier of GF(p)) x (the carrier of GF(p)). Suppose that

(i)  94=2 mod p,

(i) g6 =Q2-P3— P2-Qs3,

(ili) gr=Q1-P3s—P1-Qs,

(iv) g8 =g6" Ps-Q3—g7° —ga-97°- P1-Qs, and

(v) R={g7-9s, 96 (97" Pr- Qs —gs) —g7° - P2 - Qs, g7° - P3- Q3).
Then z9-g7%-(P3)*-Q3-R3 = —g7> - P3- Py - Q1 - Ri+(g7- P2 — g6 - P1)*-
Qs - Rs3.

(57) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g, g7, gs be elements of GF(p), P, Q be elements
of ECgetProjco(#1), and R be an element of (the carrier of GF(p)) x (the
carrier of GF(p)) x (the carrier of GF(p)). Suppose that

(i) g4 =2 mod p,

(ii) g6 =Q2-P3— P2-Qs,

(iii) gr=Q1-P3— P1-Qs,

(iv) gs=g6" Ps-Q3—g7° —ga-g7°- Pr-Qs, and

) R={(g7-98 96 (97" Pr-Q3—gs) —97° - P2~ Q3, g7° - P3- Q3).
Then z1 - g7° - P3-Q3- Rz =g7° - (P1-Q1-R3+P3-Q1-R1i+P1-Q3-
R1)+94-96-Q3-R3- (g7 P2 —gs- P1).

(58) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g6, g7, gs be elements of GF(p), P, @ be elements
of ECgetProjco(#1), and R be an element of (the carrier of GF(p)) x (the
carrier of GF(p)) x (the carrier of GF(p)). Suppose that

(v

(i) g4 =2 mod p,

(ii) g6 =Q2-P3— P2-Qs,

(iii) gr=Q1-P3— P1-Qs,

(iv) gs=ug6" Ps-Q3—g7° —ga-g7°- Pr-Qs, and

(v) R={(g7-98, 96 (97" Pr- Qs —gs) — g7° - P2 - Q3, g7° - P3 - Q3).
Then g72‘(P3)2‘Q3'((R2)2'R3—((R1)3+21'Rl'(R3)2+22'(R3)3)) = OGF(p)-

(59) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, 95, 911, 99, 96, 97, 93, 910 be elements of GF(p), P
be an element of ECgetprojco(21), and R be an element of (the carrier of
GF(p)) x (the carrier of GF(p)) x (the carrier of GF(p)). Suppose that
ga =2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p
and g6 = 21+ (P3)> + g5 - (P1)” and g7 = P2 - P3 and gs = P; - P2 - g7 and
910 = 96> — g9 - gs and R = (g1~ g10- 97, g6 - (911 93 — g10) — go - (P2)* - g7°,
99-97°). Then gy4-g7-Ps-Ra = —(g6 - (P3 - R1 — P1 - R3) + ga - g7- P2 R3).
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Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, 911, 99, 96, 97, gs, gio be elements of GF(p), P
be an element of ECgetprojco(21), and R be an element of (the carrier of
GF(p)) x (the carrier of GF(p)) x (the carrier of GF(p)). Suppose that
g4 =2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p
and g6 = 21 - (P3)> + g5 - (P1)? and g7 = P, - Py and gs = Py - P - g7 and
gio = 962 —go-gs and R = (g4-9g10- 97, 96 - (911 - 98 — 910) — g9 - (Pz)2 '972,
g9 - 97°). Then g1 - g7* - P3 - Ry = Rs - (96> - Ps — go - g7° - P1).

Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, 911, 99, 6, 97, g3, gio be elements of GF(p), P
be an element of ECgctprojco(21), and R be an element of (the carrier of
GF(p)) x (the carrier of GF(p)) x (the carrier of GF(p)). Suppose that
g4 = 2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p and
g6 = 21+ (P3)* +g5- (P1)* and g7 = Py P and gs = Py - P2 - g7 and g1 =
96>—g9-9s and R = (g1-910-97, g6 (911-9s—910)—go(P2)*-g7%, g9-97*). Then
g11-97%(P3)*(22-R3) = R3 (94 - g7 P2 — g6 - P1)* —g11- 97> - (1) Ra.

Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, 911, 99, 96, 97, 93, 910 be elements of GF(p), P
be an element of ECgctprojco(21), and R be an element of (the carrier of
GF(p)) x (the carrier of GF(p)) x (the carrier of GF(p)). Suppose that
g4 =2 mod p and g5 = 3 mod p and g1; = 4 mod p and g9 = 8 mod p
and g6 = 21 - (P3)? + g5 - (P1)* and g7 = Py - Ps and gs = Py - Py - g7 and
910 = 96> — g0 - gs and R = (g4~ g10- 97, g6 - (911 gs — g10) — g0 - (P2)* - g7°,
g9 - 97°). Then g4 - g72 - (P3)* - (21 Rs) = g6 - P3 - R3 - (94 97 P2 — g6 -
Pi)+g7% (911 P1-Ps-Ri+ga- (P1)° Rs).

Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, 911, 99, 96, 97, 93, 910 be elements of GF(p), P
be an element of ECgetprojco(21), and R be an element of (the carrier of
GF(p)) x (the carrier of GF(p)) x (the carrier of GF(p)). Suppose that
g4 =2 mod p and g5 = 3 mod p and g1; = 4 mod p and g9 = 8 mod p and
g6 =21 (P3)* +g5- (P1)” and g7 = Py - P3 and gs = Py - P2 - g7 and g1o =
962 —g9-gs and R = (g1-g10- 97, 96 (911 9s — 910) — 9o - (P2)* - g7%, g9 g7°).
Then g11-g7%(P3)*-((Rz)* Rs—((R1)’+21-Ra-(Rs)*+22+(R3)°)) = Ocr(y)-

Let p be a 5 or greater prime number and let z be an element of the para-
meters of elliptic curve p. The functor addellp,ojco(2,p) yields a function from

ECSet

ProjCo(Zl) X ECSetProjCo(Zl) into ECSetProjCo(Zl) and is defined by the

condition (Def. 9).

(Def. 9)

(i)
(i)

Let P, @, O be elements of ECgetprojco(21) such that O = (0, 1, 0).
Then
if P = O, then (addellpyojco(2,p))(P, Q) = Q,
if @ = O and P # O, then (addellpyojco(2,p))(P, Q) = P,
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(iii) if P # O and Q # O and P # @, then for all elements g4, g¢, g7,
gs of GF(p) such that g4 = 2 mod p and g¢ = Q2 - P3 — P2 - Q3 and
g7 =Q1-Ps—P1-Qs and gs = g¢* - Ps- Q3 — g7° — g4~ g7° - P1 - Q3 holds
(addellprojco(2,p)) (P, Q) = {97 - g8, g6 - (97% - P1- Q3 — g8) — g7° - P2 - Qs,
g7% - P3 - Q3), and

(iv) if P# O and @ # O and P = @Q, then for all elements g4, g5, 911,
99, 96, 97, 9s, gio of GF(p) such that g4 = 2 mod p and g5 = 3 mod p
and g11 = 4 mod p and g9 = 8 mod p and gg = 21 - (P3)2 + g5 - (Pl)2
and g7 = P, - P3 and gs = Py - P2 - g7 and gi0 = g6° — go - gs holds
(addellprojco (2, p)) (P, Q) = (g4~ g10- 97, g6 - (911 gs — 910) — go - (P2)” - g7%,
99 - g7°).

Let p be a 5 or greater prime number, let z be an element of the parameters
of elliptic curve p, let F' be a function from ECgetprojco(21) X ECsetprojco(21)
into ECsetpProjco(21), and let @, R be elements of ECgetprojco(21). Then F(Q, R)
is an element of ECgetprojco(#1)-
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