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Summary. The Mazur-Ulam theorem [15] has been formulated as two regi-
strations: cluster bijective isometric -> midpoints-preserving Function
of E,F; and cluster isometric midpoints-preserving -> Affine Function
of E,F; A proof given by Jussi Väisälä [23] has been formalized.

MML identifier: MAZURULM, version: 7.11.07 4.160.1126

The notation and terminology used in this paper have been introduced in the
following papers: [19], [18], [4], [5], [20], [11], [10], [14], [17], [1], [6], [16], [24],
[25], [21], [13], [12], [22], [2], [9], [8], [3], and [7].

For simplicity, we use the following convention: E, F , G are real normed
spaces, f is a function from E into F , g is a function from F into G, a, b are
points of E, and t is a real number.

Let us note that I is closed.
Next we state four propositions:

(1) DYADIC is a dense subset of I.
(2) DYADIC = [0, 1].

(3) a+ a = 2 · a.
(4) (a+ b)− b = a.

Let A be an upper bounded real-membered set and let r be a non negative
real number. Observe that r ◦A is upper bounded.

Let A be an upper bounded real-membered set and let r be a non positive
real number. Note that r ◦A is lower bounded.

Let A be a lower bounded real-membered set and let r be a non negative
real number. Observe that r ◦A is lower bounded.
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Let A be a lower bounded non empty real-membered set and let r be a non
positive real number. One can check that r ◦A is upper bounded.

Next we state three propositions:

(5) For every sequence f of real numbers holds f + (N 7−→ t) = t+ f.

(6) For every real number r holds lim(N 7−→ r) = r.

(7) For every convergent sequence f of real numbers holds lim(t + f) =
t+ lim f.

Let f be a convergent sequence of real numbers and let us consider t. One
can check that t+ f is convergent.

Next we state three propositions:

(8) For every sequence f of real numbers holds f · (N 7−→ a) = f · a.
(9) lim(N 7−→ a) = a.

(10) For every convergent sequence f of real numbers holds lim(f · a) =
lim f · a.

Let f be a convergent sequence of real numbers and let us consider E, a.
Note that f · a is convergent.

Let E, F be non empty normed structures and let f be a function from E

into F . We say that f is isometric if and only if:

(Def. 1) For all points a, b of E holds ‖f(a)− f(b)‖ = ‖a− b‖.
Let E, F be non empty RLS structures and let f be a function from E into

F . We say that f is affine if and only if:

(Def. 2) For all points a, b of E and for every real number t such that 0 ≤ t ≤ 1
holds f((1− t) · a+ t · b) = (1− t) · f(a) + t · f(b).

We say that f preserves midpoints if and only if:

(Def. 3) For all points a, b of E holds f(1
2 · (a+ b)) = 1

2 · (f(a) + f(b)).

Let E be a non empty normed structure. Observe that idE is isometric.
Let E be a non empty RLS structure. Note that idE is affine and preserves

midpoints.
Let E be a non empty normed structure. Observe that there exists a unary

operation on E which is bijective, isometric, and affine and preserves midpoints.
Next we state the proposition

(11) If f is isometric and g is isometric, then g · f is isometric.

Let us consider E and let f , g be isometric unary operations on E. One can
verify that g · f is isometric.

The following proposition is true

(12) If f is bijective and isometric, then f−1 is isometric.

Let us consider E and let f be a bijective isometric unary operation on E.
One can check that f−1 is isometric.

We now state the proposition
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(13) If f preserves midpoints and g preserves midpoints, then g · f preserves
midpoints.

Let us consider E and let f , g be unary operations on E preserving midpo-
ints. Note that g · f preserves midpoints.

The following proposition is true

(14) If f is bijective and preserves midpoints, then f−1 preserves midpoints.

Let us consider E and let f be a bijective unary operation on E preserving
midpoints. Observe that f−1 preserves midpoints.

Next we state the proposition

(15) If f is affine and g is affine, then g · f is affine.

Let us consider E and let f , g be affine unary operations on E. Observe that
g · f is affine.

One can prove the following proposition

(16) If f is bijective and affine, then f−1 is affine.

Let us consider E and let f be a bijective affine unary operation on E.
Observe that f−1 is affine.

Let E be a non empty RLS structure and let a be a point of E. The functor
a-reflection yields a unary operation on E and is defined as follows:

(Def. 4) For every point b of E holds a-reflection(b) = 2 · a− b.
The following proposition is true

(17) a-reflection · a-reflection = idE .

Let us consider E, a. Note that a-reflection is bijective.
We now state several propositions:

(18) a-reflection(a) = a and for every b such that a-reflection(b) = b holds
a = b.

(19) a-reflection(b)− a = a− b.
(20) ‖a-reflection(b)− a‖ = ‖b− a‖.
(21) a-reflection(b)− b = 2 · (a− b).
(22) ‖a-reflection(b)− b‖ = 2 · ‖b− a‖.
(23) a-reflection−1 = a-reflection.

Let us consider E, a. Observe that a-reflection is isometric.
Next we state the proposition

(24) If f is isometric, then f is continuous on dom f.

Let us consider E, F . Observe that every function from E into F which is
bijective and isometric also preserves midpoints.

Let us consider E, F . One can check that every function from E into F

which is isometric and preserves midpoints is also affine.
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