
TITLE PAGE 

 

TITLE  

Visual search task immediate training effects on task-related functional connectivity  

 

AUTHORS 

Elisenda Bueichekú (bueichek@uji.es)
 a

, César Ávila (avila@uji.es)
 a

, Anna Miró-

Padilla (amiro@uji.es)
 a
, Jorge Sepulcre (sepulcre@nmr.mgh.harvard.edu)

 b c
 

 

AFFILIATIONS  

a
 Neuropsychology and Functional Neuroimaging Group, Department of Basic 

Psychology, Clinical Psychology and Psychobiology. University Jaume I. 12071, 

Castellón. Spain.  

b
 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital and Harvard Medical School, Charlestown, 

Massachusetts. 

c
 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, 

Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. 

 

AUTHOR RESPONSIBLE FOR CORRESPONDENCE 

Elisenda Bueichekú  

Basic Psychology, Clinical Psychology and Psychobiology. University Jaume I. 

Avda. Sos Baynat, s/n. E-12071. 

Castellón de la Plana, Spain. 

(bueichek@uji.es) / +34964387665 / ORCID: 0000-0002-3059-9806 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/200987375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bueichek@uji.es
mailto:avila@uji.es
mailto:amiro@uji.es
mailto:sepulcre@nmr.mgh.harvard.edu
mailto:bueichek@uji.es


2 

 

ABSTRACT 

Brain plasticity occurs over the course of the human lifetime. Learning and training 

modify our neuronal synapses and adapt our brain activity, from priming effects in 

modal areas to higher-order changes in the association cortex. The current state of the 

art suggests that learning and training effects might induce large-scale brain 

connectivity changes. Here, we used task-fMRI data and graph-based approaches to 

study the immediate brain changes in functional connections associated with training on 

a visual search task, and the individual differences in learning were studied by means of 

brain-behavior correlations. In a previous work, we found that trained participants 

improved their response speed on a visual search task by 31%, whereas the control 

group hardly changed. In the present study, we showed that trained individuals changed 

regional connections (local links) in cortical areas devoted to the specific visual search 

processes and to areas that support information integration, and largely modified 

distributed connections (distant links) linking primary visual areas to specific attentional 

and cognitive control areas. In addition, we found that the individuals with the most 

enhanced connectivity in the dorsolateral prefrontal cortex performed the task faster 

after training. The observed behavioral and brain connectivity findings expand our 

understanding of large-scale dynamic readjustment of the human brain after learning 

experiences.  

 

KEYWORDS: Attention; Cognitive training; Functional Connectivity; Functional 

Magnetic Resonance Imaging; Graph-theory; Visual search task. 



3 

 

MAIN DOCUMENT 

 

1. INTRODUCTION 

For years, behavioral psychological experiments have found practice related gains 

in the performance of cognitive tasks after training completion (Shiffrin and Schneider 

1977; Logan 1988; Kramer and Willis 2002), opening the possibility of generating 

hypothesis about how task practice affects brain functioning. Indeed, Buonomano and 

Merzenich (1998) signaled that plasticity changes due to life experiences, including 

learning and training, can occur at different brain levels: synaptic level, cortical maps or 

large-scale neural networks. Great progress has been made in relation to structural and 

task-evoked brain plasticity (e.g.s, reviews: Kelly and Garavan 2005; Pascual-Leone et 

al. 2005; Lövdén et al. 2013), yet it remains less studied how brain functional 

connectivity is modified due to practice, and mixed results emerge after sensory, motor 

and cognitive training (Kelly and Castellanos, 2014). The purpose of the present work 

was to study the immediate modifications in brain connectivity after intensive practice 

in visual search task (VST), as these changes could provide the bases for short- and 

long-term modifications.  

In terms of task-evoked brain activity, training on cognitive tasks usually leads to 

extensive reductions in activity in the association areas, whose function is linked to 

exercising attentional control (Chein and Schneider 2005; Kübler et al. 2006). These 

reductions have been associated with improved brain functioning (Kelly and Garavan 

2005), and some authors have drawn relations between post-training diminished activity 

and efficiency of the neuronal synapses (Petersen et al. 1988; Poldrack 2000). In this 

sense, the objective of our previous work was to study behavioral and task-evoked brain 

activity changes associated with intensive cognitive task training (Bueichekú et al. 

2016). In agreement with previous studies (Chein and Schneider 2005; Kübler et al. 

2006), we found that intensive VST training, which involves visual processing, 

attention and working memory components (Eimer 2014), leads to significantly 

improvement in task performance, and to general brain activity reductions in regions 

involved in task performance. As a novelty, we introduced some control measures in 

our study that made it possible to specifically locate the training related changes in the 

posterior parietal cortex (PPC) and inferior occipital cortex (Bueichekú et al. 2016) (i.e., 
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the behavior and brain changes related to training were studied by controlling for 

repetition effects using between-subjects controls, that is, comparing the trained 

participants and the control participants). Now, as we know that brief but intensive VST 

training leads to cognitive gains, our focus moves from studying training effects in 

behavioral performance and task-evoked activity to functional connectivity.  

In relation to functional connectivity, increased brain connectivity has been found 

after training on different tasks (e.g., Sami and Miall 2013; Mohr et al. 2016; Thompson 

et al. 2016; for a review: Guerra-Carrillo et al. 2014). Although other outcomes are 

possible, like decreased connectivity or complex network reorganization (Kelly and 

Castellanos, 2014), there is a growing corpus of evidence that associates better 

performance with increased network coherence (e.g.s., Tian et al. 2012; Mackey et al. 

2013; Alavash et al. 2015; Bueichekú et al. 2015; Miró-Padilla et al. 2017). 

Connectivity changes usually affect the task-dependent regions, association areas, and 

higher-order cognitive areas (i.e., lateral and medial aspects of the parietal, premotor, 

and prefrontal cortices). When reaching a high level of performance, or even asymptotic 

performance, increased connectivity is only found between task-dependent regions 

(Kelly and Castellanos 2014). However, despite the progress made in this field, not 

much is known about how brain connectivity changes in a very short time to integrate 

new learning experiences, whether training induces large-scale brain connectivity 

changes, and particularly, whether the new specific functional networks that emerge are 

associated with behavioral training processes. 

The main goal of this study was to investigate the training effects of a VST on brain 

connectivity. To accomplish our objective, we studied the changes in regional and 

distributed connections using a graph-based approach (i.e., segregation of local and 

distant links), comparing a group of trained participants to a control group. Graph-based 

approaches allow us to analyze individual properties of networks or global connectivity, 

making them flexible analytic approaches (Achard et al. 2006; Rubinov and Sporns, 

2010). Degree centrality (or degree) is a brain network measure that quantifies the 

number of connections (i.e., links) departing from a voxel (i.e., node) (Rubinov and 

Sporns 2010). Some nodes (i.e., hubs) display a large number of links and are thought to 

converge the information from diverse pathways (Buckner et al. 2009; Sepulcre et al. 

2012). In addition, it is possible to differentiate whether the links departing from each 

node are targeting local neighbors or distant regions during both active and passive task 
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states (Sepulcre et al. 2010). We hypothesized that: 1) the cerebral areas related to the 

attention-control system would exhibit a restructuring of local and distant functional 

connections after training, specifically increased connectivity, as the VST is supported 

by this system, and a reassembling of its functional connections would be expected after 

training; 2) the brain changes would be positively correlated with the behavioral 

improvement.   

 

2. MATERIALS AND METHODS 

The data sample used in the present work is the same data sample used in Bueichekú 

et al. (2016). The former study was focused on studying behavioral and task-evoked 

brain changes. Here we have a different objective, which is solely to study the task-

related functional connectivity modifications associated with intensive training. For this 

reason, data analysis is centered on brain networks analysis, and behavioral analysis 

results have been omitted and can be found in our previous work.  

2.1. Participants 

Thirty-eight healthy undergraduate students from the Universitat Jaume I 

participated in this study and were paid for their participation. All the participants were 

right-handed (Oldfield 1971), had normal or corrected-to-normal vision, and reported no 

neurological or psychiatric history, or past or current use of any drugs. Participants were 

randomly assigned to a trained group (N = 19, 10 men; age: M = 20.84 SD = 1.45) or to 

a control group (N = 19, 10 men; age: M = 20.84, SD = 2.01). A between-groups t-test 

was used to determine that the experimental groups did not differ in age (t(36) = 0 p = 

1). Intellectual level was evaluated with the Matrix Reasoning Test (WAIS-III-R) 

(Trained group: M = 21.58 SD = 2.11; Control group: M = 21.74 SD = 1.49). A 

between-groups t-test was used to determine that the experimental groups did not differ 

in intellectual level (t(36) = -0.27 p = 0.79). All the participants provided written 

informed consent prior to scanning. The study was approved by the Ethics Committee 

of the Universitat Jaume I.  

2.2. Experiment 

The experimental task and the experimental procedure were originally described and 

studied with a different focus in Bueichekú et al. (2016), thus, here we include a brief 
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summary of the experiment details (see also Supplementary Figure 1). We used a 

letter-based consistent mapping VST, which was adapted to a block design and 

presented with E-Prime Software (Schneider et al. 2002), and in scanner it was visually 

presented through MRI-compatible goggles (VisuaStim, Resonance Technology, Inc., 

Northridge, CA, USA).  

The task consisted in a control condition (a detection task) and two visual search 

conditions (two sets of targets: B,C,D,F,G,H and L,M,N,P,Q,R), which were 

counterbalanced. For the search tasks, distractors were: J,K,Ñ,S,T,V,W,X,Y,Z. Each 

condition have 14 blocks with 12 trials (300 ms of a fixation point, 1500 ms of a search 

frame, and 200 ms of a blank screen), followed by a passive block, in which the screen 

remained completely blank (8000 ms). Stimuli were arranged circularly around a 

fixation cross. In control condition, the search frame were either a six A-letters array 

(target) or a six X-letters (no-target). In search conditions, the search frame consisted of 

the presentation of either six distractors or five distractors and one target. The frames 

were counterbalanced, and in all the blocks, fifty per cent of the trials constituted a 

target-present frame.  

In all conditions, the participants gave manual responses only with their right hand: 

target detection was indicated with their right thumb, and target absence with their right 

forefinger (using MRI-compatible response-grips; NordicNeuroLab, Bergen, Norway). 

During task performance, there were no restrictions to eye movement. Even if eye 

movements could be problematic in some fMRI studies, we believe that in the present 

study eye movements did not affect our design because the distance between the 

fixation point and the stimuli (visual angle =1.21º) was small enough to make it possible 

to perform the task without eye movements. Participants were asked to answer as 

quickly as possible, but without compromising accuracy. Stimulus presentation timing 

and duration, and participants’ accuracy and reaction times (RTs) to each stimulus were 

saved in the E-Prime’s logfile.  

The experiment was conducted on one day. The task was identical before and after 

training, and it lasted 25 minutes. Between pre-training session and post-training session 

there was a 45-minute period. In this period, the trained group did the training task 

outside the scanner, which was similar to the VST used in the scanner (840 trials 

divided in 20 blocks, and lasted on average M = 29.97 minutes SD = 2.13), and the 
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control group did nothing. Randomly, half the participants from the trained group were 

trained to search for one set of targets or the other.  

2.3. Image acquisition 

The fMRI data were acquired in a 1.5 T Siemens Avanto scanner (Erlangen, 

Germany). The same protocol was used during the Pre- and Post-training sessions. All 

the participants were placed in the scanner in the supine position. Fixation cushions 

were used to reduce head motion. A gradient-echo T2*-weighted echo-planar MR 

sequence was used to obtain 602 volumes for the fMRI task (29 interleaved ascending 

slices, 3.5 x 3.5 mm in-plane voxel size, slice thickness of 3.6 mm, interslice gap of 0.4 

mm, TR = 2500 ms, TE = 50 ms, flip angle 90 º,  64 x 64 matrix). Prior to task-fMRI 

data acquisition, one high-resolution T1-weighted MPRAGE anatomical image was 

obtained per participant (TR = 2200 ms, TE = 3.8 ms,  256 x 256 x 160 matrix, 1 x 1 x 1 

mm in-plane voxel size). All the scanner acquisitions were performed in parallel to the 

anterior commissure-posterior commissure plane (AC-PC), and they covered the entire 

brain.  

2.4. Analysis 

2.4.1. Functional MRI connectivity pre-processing analysis 

Prior to pre-processing, each subject’s fMRI data set was aligned to the AC-PC 

plane by using its own anatomical image. A total of 154 fMRI volumes per session 

corresponding to the trained condition were pre-processed and used in subsequent 

analyses. The volumes were concatenated as a function of session by using the stimulus 

onset time, that is, the 154 fMRI volumes that corresponded to the trained condition 

data were isolated from the total number of task-fMRI volumes and processed as a time 

series. To isolate the 154 fMRI volumes, we used the stimulus presentation timing and 

duration, which were saved in the E-Prime logfile.  

DPARSF Advanced software (Chao-Gan and Yu-Feng 2010) was used for pre-

processing. Standard pre-processing was conducted, which included the correction of 

the slice timing differences for interleaved ascending acquisitions (using the middle 

slice, which was the 29
th

, as the reference slice) and a two-pass procedure in 

realignment (first registration to the first image, then registration to the mean image) to 

correct head motion during acquisition. None of the participants had more than 2.0 mm 
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of maximum displacement in any direction or 2.0° of any angular motion while the scan 

lasted. In order to control the movement effect throughout the experiment, the Root 

Mean Squared movement values (RMS, of translation and rotation parameters) were 

used to conduct a repeated-measures 2x2 ANOVA with the Experimental Group 

(Trained group vs. Control group) as the between-subjects factor, and Session (Pre-

training session vs. Post-training session) as the within-subjects factor. No significant 

differences were found (RMS: F(1,36) = 0.061 p = 0.806). Then, within the nuisance 

regression step, and in order to reduce respiratory and cardiac effects on the blood-

oxygenation level-dependent (BOLD) signal, several sources of spurious variance were 

removed: the linear trend in the time series, six parameters from rigid body head motion 

(obtained from motion correction), and three parameters corresponding to the global 

mean signal, the white matter signal, and the cerebrospinal fluid signal (Biswal et al. 

1995). Spatial normalization to the Montreal Neurological Institute (MNI) space (3 

mm
3
) was conducted using echo-planar image (EPI) templates. The temporal band-pass 

filtering step removed low and high frequency drift effects (retaining the fMRI signal 

between 0.01–0.08 Hz). Finally, for computational efficiency, the data were down-

sampled from a 3 mm to a 6 mm voxel size by means of the SPM Image Calculator 

(ImCalc Toolbox, http://robjellis.net/tools.html).  

2.4.2. Post-processing analysis: individual local and distant degree maps 

Post-processing analyses were conducted with Matlab coding (v7.9, The 

Mathworks, Inc, Natick, MA). At the individual level, a whole-brain matrix Pearson 

Correlation Coefficient between each voxel pair’s time course was estimated for each 

participant and session. A mask of 6332 voxels was used that covered the entire brain. 

Each participant had a total of four matrices, two of them containing the r-values, and 

the other two containing the p-values. According to previous graph-based functional 

connectivity approaches (Sepulcre et al. 2010), the functional connectivity matrices of 

positive correlations represent the strength of the connectivity between each pair of 

voxels across the brain (i.e., the degree), and the pattern of these connections represents 

the functional connectivity network supporting task-performance at each time point. 

Therefore, we used the positive correlations in the following steps of the analysis, and 

we removed the negative r-values due to their controversial interpretation in functional 

connectivity MRI (Murphy et al. 2009; Van Dijk et al. 2010).  

http://robjellis.net/tools.html
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Degree analyses were used to study the effects of training on task-related 

functional connectivity and its spatial distribution. Degree analyses make it possible to 

extract the spatial distance information from the connectivity patterns, differentiating 

between regional connections (local links) and interregional connections (distant links). 

This method was previously used to study the connectivity patterns underlying human 

information processing. To achieve this aim, a recently developed whole-brain voxel-

wise method to differentiate between spatial local and distant connectivity in resting and 

task-evoked BOLD fMRI data was used (Sepulcre et al. 2010). This method was 

applied in the present study, as our goal was to study both local and large-scale 

functional connectivity changes due to cognitive training. As it is described in the 

original method, we used a restriction on degree centrality analysis based on physical 

distance, thus, the whole-brain voxel pairwise functional connectivity analyses results 

were spatially organized according to a neighborhood threshold. In Sepulcre et al. 

(2010), the authors investigated different distance thresholds until they determined that 

the optimal neighborhood threshold for analogous dimensional data is 3 voxels 

(>14mm) around the target neighborhood. The segregation of local and distant 

connections in physical distance allows the optimal separation between different types 

of cerebral cortex (such as primary modal vs. heteromodal cortex). Therefore, in the 

present manuscript, because we are applying the same technique and the voxel size of 

the functional MR images was down-sampled from 3 mm to 6 mm (to reduce the 

computational processing cost), the optimal neighborhood threshold was set to 21 mm 

to segregate local (<21mm radius) and distant (>21mm radius) connectivity on each 

individual matrix [radius of a sphere = 3mm from the center of the target voxel + 18 

mm of three neighboring voxels (6mm each)]. Then group comparison analyses were 

conducted.  

2.4.3. Post-processing analysis: pre-training session group comparison 

We used the SPM8 software (Wellcome Department of Imaging Neuroscience, 

London, England) for pre-training group comparison, and later to study the training 

effects. In this analysis, a between-groups two-sample t-test was conducted with pre-

training session data (comparison: pre-training session trained group vs. control group). 

This comparison was performed separately for the local degree maps and for the distant 

degree maps. 
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2.4.4. Post-processing analysis: training effects  

To study the training effects, we used SPM8 software and conducted a 2x2 

ANOVA with the Experimental Group (Trained group vs. Control group) as the 

between-subjects factor and Session (Pre-training session vs. Post-training session) as 

the within-subjects factor. This analysis allowed us to study the differences in degree 

connectivity between the pre-training and post-training sessions, while controlling for 

repetition effects using between-subjects controls (i.e., the data for the control group). 

The results of the ANOVA analysis represent the change in the number of local or 

distant links of a given voxel from one session to the other. The results of all the 

analyses had a threshold of p<0.025 Family Wise Error (FWE)-voxel corrected for 

multiple comparisons using SPM 8. SPM 8 implements Random Field Theory (Worsley 

et al. 1992; Worsley et al. 2004) to control the FWE rate (i.e., the rate of false positives 

in all the results reported due to multiple testing).  

2.4.5. Degree map visualization and network layout 

Firstly, the degree maps’ images were spatially smoothed with an isotropic 

Gaussian kernel of 6 mm, full-width at half-maximum (FWHM), by means of SPM8. 

Then, the Computerized Anatomical Reconstruction Toolkit (CARET, Van Essen and 

Dierker, 2007) was used to project the degree maps on the cerebral hemispheres of the 

PALS-B12 surface (Van Essen, 2005). More details about the projection can be found 

in Fig. 1 legend.  

2.4.6. Overlap analysis using network parcellation maps  

The 7-network estimate parcellation liberal mask of the human cerebral cortex (Yeo 

et al. 2011) was applied to our degree maps in order to classify and describe the results. 

In Yeo et al. (2011), the 7-network map was obtained from fMRI data from 1000 

subjects, and the clustering analysis yielded the convergence of brain voxels in resting-

state known networks. The map includes an early sensory visual network (Vis), a 

sensorimotor network (Mot), the dorsal and the ventral attention network (dATN and 

vATN), a limbic system network (LMB), the frontoparietal control network (FPN), and 

the default mode network (DMN). Here, we used in-house developed MATLAB code to 

conduct overlap analysis, which allowed us to classify the results for the degree of 

training effects in different networks and estimate the percentage of change in each 
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network. The analysis was performed separately for the local degree map and for the 

distant degree map in a voxel-wise manner.  

The method consisted of finding the voxels that changed within each network. 

Thus, bearing in mind that each network extends over a spatial portion of the brain (i.e., 

visual network), and that the entire brain surface is spatially subdivided into the 7-

network estimate parcellation mask, each voxel that changed had to fall into one 

network (e.g., a voxel located in the medial occipital cortex falls into the visual 

network). Therefore, we calculated the number of voxels that changed within each 

network (i.e., voxels that showed a change in the number of distant links). Afterwards, a 

correction based on the total number of voxels in each network was applied, thus 

obtaining the proportion of change in each network. That is, the number of voxels that 

changes within each network was multiplied by 100 and divided by the total number of 

voxels in that network, obtaining the percentage of change. This final step is important 

because the association cortex extends over the majority of the brain’s surface, but the 

networks have different extensions; for example, the DMN is the largest network, and 

the dATN the smallest. This percentage of network change must not be confused with 

the degree analysis, where the change in the number of links at each voxel was 

analyzed, making it possible to evaluate and characterize the VST training effects on the 

whole-brain.  

2.4.7. Brain behavior correlation analysis 

The aim of the correlation analysis was to examine individual differences in 

learning. We studied the relationship between relevant VST brain areas that showed 

increased connectivity in distant links and improved performance after training.  

Behavioral variable. We used the behavioral data from the scanner that 

corresponded to the trained condition in the trained participants (and the equivalent 

condition in the control participants). The control condition data was used as a control 

measure. For each participant, the mean RT value for the trained condition and for the 

control condition data was calculated for each experimental session. Only the correct 

answers were used to calculate the mean RT values. Then, a subtraction between 

experimental conditions and experimental sessions was calculated to reflect the change 

in RT values from pre-training to post-training session: [Pre-training session (trained 
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condition - control condition) - Post-training session (trained condition - control 

condition].  

ROI selection. To delimit the brain areas that presented greatest connectivity 

change, and were directly related to VST performance, we used the result of the task 

contrast (visual search task - control task) from Bueichekú et al. (2016), which serves 

as a localizer. By means of SPM 8, the image was converted to a binary mask and 

introduced as an inclusive mask in the brain connectivity analysis that compared the 

effects of training between groups and across sessions (i.e., 2x2 ANOVA described in 

2.4.4 Post-processing analysis: training effects; specifically, in the contrast trained 

group - control group and pre-training - post-training session). From this analysis, we 

selected the three areas within the VST map that showed greatest enhancement in 

connectivity for the trained group compared to the control group: the right dorsolateral 

prefrontal cortex (rDLPFC, MNI: x=42 y=38 z=38 BA 46), the right posterior parietal 

cortex (rPPC, MNI: x=18 y=-70 z=56, BA 7), and the precuneus (MNI: x=12 y=-64, 

z=38). Around their coordinates, a binary 6-mm radius sphere mask, or region of 

interest (ROI), was defined using SPM Wake Forest University PickAtlas software 

(Maldjian et al. 2003) to extract the connectivity values for each participant.  

Correlation analysis. After ROI selection and definition, a linear bivariate Pearson’s 

correlation analysis was conducted using IBM SPSS Statistics software. The correlation 

analysis was done for each group separately between each ROI connectivity values 

(rDLPFC, rPPC or precuneus), and the change in response speed values [Pre-training 

session (trained condition - control condition) - Post-training session (trained condition 

- control condition] > 0. The connectivity values for each ROI were the distant links 

values in pre-training session, the distant links values in post-training session or the 

change in distant links values (a subtraction was calculated: Post-training session 

distant link values - Pre-training session distant link values).  

ANCOVA analysis. To further investigate the relation between the brain functional 

connectivity changes and the behavioral performance (i.e., response speed) a Potthoff 

analysis was conducted according to Wuensch, 2016, 

http://core.ecu.edu/psyc/wuenschk/MV/multReg/Potthoff.pdf). In this analysis, an 

ANCOVA model was defined to study the connectivity by experimental group effect by 

means of IBM SPSS Statistics software. For the model: Y=a+b1X+b2G+b3X*G, the 

variables were defined as following: Y = criterion variable, the behavioral variable 

http://core.ecu.edu/psyc/wuenschk/MV/multReg/Potthoff.pdf
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(change in response speed); X = predictor variable, the connectivity variable (values of 

DLPFC distant links in post-training session); and G = grouping variable, the two 

experimental groups (trained group data and control group data). In addition, within the 

Potthoff analysis, two reduced models were studied for testing: a) whether predicting 

the response speed from the connectivity values is the same at the different levels of the 

grouping variable (Y=a+b1X) and; b) whether predicting the response time from the 

connectivity values is the same for the trained group and for the control group 

(Y=a+b1X+b2G). 

 

3. RESULTS 

3.1. Brain results  

3.1.1. Pre-training session group comparison analysis results  

The pre-training session group comparison analysis was conducted to verify that 

the groups had no brain response differences while performing the VST during the pre-

training session. The between-groups t-tests were performed separately for the local and 

the distant degree maps and yielded no significant differences (p < 0.05 FWE voxel-

corrected).   

3.1.2. Training effects: degree map results  

The results of the degree analyses appear in Fig. 1. An interaction analysis was 

conducted to study the brain connectivity changes due to training effects. Therefore, a 

2x2 ANOVA was conducted, with the Experimental Group (Trained group vs. Control 

group) as the between-subjects factor, and Session (Pre-training session vs. Post-

training session) as the within-subjects factor. Repetition effects were controlled by 

introducing the control group data in the analysis.  

When studying the local changes [contrast: Trained group (post-training - pre-

training session) - Control group (post-training - pre-training session)] > 0 (left part of 

the Fig. 1a), increases in the number of links were found in the occipito-temporal cortex 

(BA 19, 21 and 37), including some portions of inferior occipital gyrus and fusiform 

gyrus; the bilateral PPC, including the superior parietal cortex (BA 7), supramarginal 

gyrus (BA 40), angular gyrus (BA 39) and medial portions like the precuneus, left 

posterior cingulate gyrus; the bilateral anterior temporal lobe and right posterior insular 
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cortex; and the bilateral dorsomedial (mPFC, BA 8/9), bilateral DLPFC (BA 9 / 46) and 

left ventrolateral prefrontal cortex (VLPFC, BA 45 / 47) prefrontal cortex. That is, the 

number of short links in these regions increased due to the training effects (i.e., nodes 

within the local neighborhood). This result was p<0.025 FWE voxel-corrected (with a 

minimum t-score = 4.98). The reverse contrast yielded no significant differences.  

Some changes associated with distant links were found in similar regions [contrast: 

Trained group (post-training - pre-training session) - Control group (post-training - 

pre-training session)] > 0 (right part of the Fig. 1a), but increases in the number of links 

were extended to a greater proportion of the cortical surface than on the local degree 

maps. The distant degree maps represent the nodes whose connectivity beyond the 

specified neighbor changed due to training. These increases were found in the occipital 

cortex (more in medial than in lateral regions), inferior temporal gyrus, PPC (including 

the lateral surface of the superior parietal lobule, the intraparietal sulcus, the 

supramarginal gyrus, and the precuneus), posterior to anterior mPFC, including the 

supplementary and pre-supplementary motor area (SMA), DLPFC (BA 9/46), and the 

VLPFC, along with the anterior insular cortex (aI, BA 47/ 48). This result was p<0.025 

FWE voxel-corrected (with a minimum t-score = 4.98). The reverse contrast yielded no 

significant differences. 

A force-directed graph was used to represent the connectivity using Pajek software 

(De Nooy et al. 2004). The Kamada-Kawai (K-K) algorithm was used. The K-K 

algorithm is a force-directed graph drawing approach that assigns spring-like forces 

among all edges based on geodesic distances. The K-K algorithm pulls nodes that are 

not connected further apart and arranges nodes that share connections together. The 

mathematical properties of the K-K algorithm are explained in detail elsewhere 

(Kamada and Kawai, 1989). Our force-directed graph was created with the aim of 

visualizing the links in the areas that showed an increased number of distant links after 

training (see Fig. 1b). This graphic representation shows that, after training, there are 

some brain areas with a high degree number, or cortical hubs (i.e., the nodes in red 

color). Note that big nodes in Fig. 1b correspond to red areas on the Distant Map in Fig. 

1a. The links departing from the hubs were mostly directed to the other hubs, (see Fig. 

1c). Therefore, while participants improved their performance, the training also 

enhanced the connectivity of the specific brain network that underlies the VST 

performance.  
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The overlap analysis results using the 7-network estimate parcellation map, which 

focused on describing the percentage of each network’s change, are presented in bar 

charts in Fig. 2. Regarding local links, it can be observed that the proportions of change 

in the visual network, the dATN, the FPN, and the DMN are similar (see Fig. 2d). As 

for distant links, the visual network and the dATN had the greatest number of changed 

voxels, followed by the sensorimotor network, the vATN, the FPN, and the DMN, with 

all of them having a similar proportion of change (see Fig. 2e). Therefore, it could be 

said that as a consequence of VST training and the development of automaticity, local 

changes were found in the visual sensory cortex, but also in the association cortices, and 

new large-scale connections were developed that mostly came from visual networks or 

from the dATN. 

3.1.3. Brain behavior correlation analysis results 

Please see Table 1 which shows all these correlation analyses results. The 

relationship between performance improvement and brain connectivity values of each 

ROI was studied by means of bivariate Pearson’s correlation analysis. In relation to the 

connectivity of the right DLPFC after training, a positive correlation was found for the 

trained group’s data (r = 0.497 p = 0.031 N = 19), and no correlation was found for the 

control group’s data (r = -0.223 p = 0.169 N = 19).  Thus, the participants with more 

connections after training also had more improvement in VST performance after 

training (see Fig. 3).  

After performing the correlation analyses, and finding a significant correlation 

between performance improvement and right DLPFC’s connectivity values after 

training, we studied whether the difference in correlation coefficients between groups 

was significant. In order to calculate the difference between correlations, we used the 

procedure developed by Fisher (1921) implemented in the Cocor package (Diedenhofen 

and Musch, 2015). Specifically, the null hypothesis was set as (rtrained group - rcontrol group) = 

0, and an alpha value of 0.05 was used. We found that the difference between 

correlation coefficients is rtrained group – rcontrol group = 0.729, z = 2.2107 and p = 0.014 one-

sided; the confidence interval (95%) for the difference is CI = 0.0764 – 1.2076 (Zou, 

2007). Based on this result, we rejected the null hypothesis and concluded that the 

correlation coefficients are different. Finally, the coefficient of determination and the 

slope of the regression were also calculated and the results are summarized in Table 2. 

The slopes of the curves were compared using the Free Statistics Calculators (version 4, 
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software and formulas available at http://www.danielsoper.com/statcalc). Specifically, 

the null hypothesis was set as (Btrained group - Bcontrol group) > 0, and an alpha value of 0.05 

was used. We found that the slopes of the regression were different: t = 1.92 and p = 

0.031 one-sided, degrees of freedom = 34, concluding that the slopes of the regression 

are different. 

In addition, and to further support the bivariate Pearson’s correlation analysis, a 

Potthoff analysis testing the connectivity by experimental group effect was conducted. 

The model Y=a+b1X+b2G+b3X*G was defined and the analysis results at the p<0.05 

level found that R
2
=0.419, R

2
 corrected=0.368 and the corrected model F(3,34)=8.17, 

p<0.001 indicating that individual differences in response speed were predicted by the 

functional connectivity values of DLPFC which were modulated by the training. Next, 

we tested whether predicting the response speed from the connectivity values is the 

same at the different levels of the grouping variable. We defined a reduced model 

(Y=a+b1X) removing the grouping variable and the interaction term. At p<0.05 level, it 

was found R
2
=0.328, R

2
 corrected=0.309 and the corrected model F(1,36)=17.55, 

p<0.001. The null hypothesis was rejected, therefore, predicting the response speed 

from the connectivity values is not the same at all levels of the grouping variable.  The 

comparison of the full model against this reduced model yielded t=2.31 p<0.01. 

Therefore, the full model is the best model to explain the prediction of the response 

speed. Finally, we tested whether predicting the response speed from the connectivity 

values is the same for the trained group and for the control group. We defined the 

reduced model (Y=a+b1X+b2G), including again the grouping variable but not the 

interaction term. At p<0.05 level it was found R
2
=0.353, R

2
 corrected=0.316 and the 

corrected model: F(2,35)=9.55, p<0.001. The null hypothesis was rejected, therefore, 

predicting the response speed from the connectivity values is different for each group. 

The comparison of the full model against this reduced model yielded t=1.96 p<0.02. 

Therefore, the full model is the best model to explain the prediction.   

Based on these results, we believe that the differences between the correlation 

coefficients are due to the experimental treatment, and that the effect of training leads to 

a relationship between right DLPFC’s connectivity and the improvement in task 

performance in the trained group.  No other significant correlations were found between 

response speed and the connectivity values of the PPC or the precuneus. 

 

http://www.danielsoper.com/statcalc
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4. DISCUSSION 

At present, systems neuroscience research is advancing our comprehension of brain 

mechanisms associated with learning by incorporating large-scale connectivity 

approaches to existing behavioral and task-fMRI training studies. In this study, we 

investigated the effects of learning new experiences and cognitive training on brain 

functional connectivity systems. VST training led to changes in task-related functional 

connectivity, specifically it was found an increased number of local and large-scale 

connections in visual networks and the association cortices.  

4.1. Training effects on brain connectivity  

Our brain imaging results showed that, after a short but intensive training, the 

number of local and distant connections increased on a distributed cortical surface. 

These results were controlled with the data from a passive control group, and were 

accompanied by performance improvements (reported in Bueichekú et al. 2016), which 

were later correlated with the task-related functional connectivity enhancement.  

In general, similar patterns of changes were found in local and large-scale 

connections, but the changes shown on the distant links degree map were more widely 

distributed (Fig. 1). The effects of training were associated with changes in the 

connectivity of networks that have been previously linked to the visual attention system 

(Corbetta and Shulman 2002; Shulman et al. 2003; Cole and Schneider 2007): the visual 

network (lateral and medial networks), the dATN, and the FPN (Fig. 2). We noticed 

that when classifying the results into networks and studying the proportion of change in 

these networks, the change in local connections was similar for all of them, but for 

large-scale connections, the change was more prominent in the visual network and in 

the dATN. On the one hand, the results for local connections could be associated with 

an improvement in general cognitive functioning with better intra-area communication. 

In addition, these results could provide support for the idea that measures of local 

connectivity during task performance constitute indicators of the engagement of brain 

areas in task performance (Sepulcre et al. 2010). In other words, enhancement in local 

connectivity could indicate better engagement in task performance or better intra-area 

communication in visual networks, in addition to the dATN, FPN, and DMN. On the 

other hand, the increased number of distant connections might be more related to 

improved mechanisms of information processing and integration across cognitive 
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systems, which would explain the major changes in the higher-order association cortices 

and areas like the PPC and DLPFC.  

Among others, the PPC and DLPFC are of special interest in VSTs. The PPC has 

been widely associated with the control of attention on priority maps, where bottom-up 

and top-down information converge, and the focus of attention is biased toward 

completing the task goals (Deco and Rolls 2005; Ipata et al. 2009; Bisley and Goldberg 

2010). Moreover, the PPC has also been related to the maintenance of task rules and the 

specific features of visual objects (Rasposo et al. 2014; Ester et al. 2015). Meanwhile, 

the DLPFC transforms the representations of the visual stimuli into memory traces, 

which can be sustained over time according to the task demands and then transformed 

into action representations for task performance (Cole and Schneider 2007). The 

DLPFC has also been related to target detection, and it is a source of top-down 

attentional control because it has cognitive information about the target that is sent to 

the PPC and other association areas (Bisley and Goldberg 2010; Noudoost et al. 2010; 

Katsuki and Constantinidis 2012). Indeed, among the trained participants, those who 

had the greatest number of connections in the right DLPFC had the greatest 

improvement in response speed performance from pre-training to the post-training 

session (Fig. 3). In general, the brain-behavior correlation we found could imply that 

the right DLPFC is a neural marker of individual differences in performance on goal-

directed tasks mediated by visual attention processes, which would agree with the top-

down modulation role of the DLPFC in other attention areas like the PPC (Katsuki and 

Constantinidis 2012). Some authors have argued that functional connectivity at rest 

could reflect neural functions involved in learning, brain reorganization and preparation 

to action (Buckner and Vincent, 2007) and in off-line processing and processes that 

support consolidation of memories (Miall and Robertson, 2006). More recently, it has 

been found out that the individuality observed in resting-state functional connectivity 

measures remains present during the performance of tasks (Shah et al. 2016; Gonzalez-

Castillo and Bandenttini, 2017). In relation to this, the Spontaneous Trait Reactivation 

hypothesis proposes that brain functional connectivity captures the personal experiences 

and, thus, reflects individual cognitive differences (Harmelech and Malach, 2013). This 

theory could be supported by neuroimaging learning studies where individuals show 

functional connectivity and behavior associations after the completion of sensory, 

motor, or cognitive training programs (e.g., Albert et al., 2009; Powers et al., 2012; 
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Takeuchi et al., 2013; Thompson et al., 2016; Taubert et al. 2011; Ventura-Campos et 

al., 2013). In our particular case, post-training connectivity was related to changes in 

behavior. Within all participants that were trained, those who improved more had 

greatest number of connections in DLPFC. This association between enhanced 

connectivity after training (i.e., increased number of connections) and better task 

performance might be seen as a hallmark of individuality, as all the trained participants 

improved their response speed due to training but behavioral and functional 

connectivity differences were observed amongst them.  The improved connectivity of 

the DLPFC probably has a determining effect on the visual search processes, and so the 

brain-behavior correlation was found for the trained participants, but not for the 

controls.  

In addition, we observed increased connectivity in areas that belong to the DMN 

network. In our opinion, areas like the precuneus/posterior cingulate cortex, the mPFC, 

and the lateral temporal cortex could have a role in scaffolding the VST performance 

improvement.  Some authors have found increased connectivity in DMN areas when 

task automaticity is developing (Shamloo and Helie 2016). It seems that the pattern of 

connectivity of the DMN is task dependent, and it is linked to the FPN in order to 

support the cognitive processes involved in goal-directed tasks (Spreng et al. 2010). 

Regarding our results, an increased number of local and distant connections in DMN 

regions, along with a similar proportion of change compared to the FPN (Fig. 2), show 

that the DMN may play a central role in globally integrating the information (van den 

Heuvel and Sporns 2011; Braga et al. 2013). Therefore, considering that brain changes 

observed in this study affected a wide variety of brain systems, our findings agree with 

the notion that the development of expertise in VST performance involves complex 

interactions among attention, control, memory, and task-specific systems (Eimer 2014).  

4.2. Training effects on brain functioning and the neural efficiency hypothesis 

Another topic of discussion is related to how to interpret the training effects at the 

brain activity and brain connectivity levels. In the case of our VST training effects on 

brain activity, there were decreases in general and specific task-related areas (i.e., PPC 

and occipital cortex), especially when the control group’s data were used as a control 

measure for possible repetition effects (Bueichekú et al. 2016). According to the neural 

efficiency hypothesis, gaining experience in performing a task leads to improved 

information processing, along with less use of brain resources in task-related brain areas 
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(Haier et al. 1992). Reductions in brain activity have been associated with efficient 

functioning or enhanced neural efficiency due to improved utilization of regional 

resources or reallocation of the resources (Chein and Schneider 2005; Patel et al. 2013). 

For instance, from the cognitive control areas and the attentional areas to other brain 

areas, such as the DMN areas, it has been suggested that these cerebral changes indicate 

greater task automaticity (Patel et al. 2013).  

In the present study, we found increased connectivity in terms of the number of 

connections (Fig. 1), which in our opinion does not contradict our previous findings, but 

rather supports the general idea of enhanced cognitive functioning after training. Having 

more connections within and between areas should be interpreted as an improved flow 

of communication (e.g., more channels of communication), and could be interpreted as 

a strategy to become more efficient in the transmission of information, perhaps by 

improving the information processing speed and/or increasing the direct paths between 

nodes. Indeed, one possibility is that the availability of more connections facilitates 

global brain functioning, enhancing information processing, integration, and large-scale 

communication, and reducing the response of brain areas, in order to properly perform 

the task. In this regard, functional connectivity changes could be the basis for activation 

changes. Therefore, enhanced connectivity but reduced activation could be interpreted 

as an improved system that makes less effort and is more efficient when performing the 

same task. This notion agrees with Bullmore and Sporns (2012), as the brain is thought 

to be a system that adapts in response to environmental demands by making changes in 

its network organization to become more efficient in information processing.  

4.3. Limitations and future directions 

Finally, we would like to mention that a possible limitation of the present study is 

the use of a passive control group. When designing the study, we took into 

consideration that the selection of the proper control group is a main issue in training 

studies. In their experimental designs, some authors include an active control group that 

completes a training program with a low-level task, a sub-domain task, or an adaptive 

task (Green et al. 2014). However, and as far as we know, there is no evidence about the 

most appropriate control group for carrying out cognitive training fMRI studies in the 

attention domain. Previous cognitive training fMRI studies with a focus on the attention 

domain used no control group or a passive control group (e.g., Jansma et al. 2001; 

Kübler et al. 2006). When considering the most suitable task for the control group, our 
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main concern was to find a task that: 1) was cognitively similar enough to our VST 

(e.g., stimulus-response relation, difficulty, domain); 2) was able to control all the no-

interest possible reasons for an improvement; 3) did not produce similar or identical FC 

effects in the post-training session to the ones produced by our attention task when the 

control participants completed the training program. To our knowledge, there are very 

few, if any, cognitive tasks that truly meet all of these requirements. Therefore, we 

decided to include a passive control group that at least allowed us to control the 

behavioral and brain response changes due to test-retest effects. It is our hope that future 

fMRI studies will address the use of active control groups when studying brain changes 

produced by cognitive training on attention tasks.  

4.4. Conclusions 

In the present study, we describe how intensive training in VST modifies the 

organization of functional connections, providing insight into the information 

processing theories, the cognitive efficiency hypothesis, and the study of individual 

differences. Training led to increased local connectivity in areas typically involved in 

VSTs, such as visual areas, the PPC, and the DLPFC, along with areas belonging to the 

DMN. In general, the improved within-region connectivity could be indicating better 

task engagement and the attainment of task automaticity. In addition, cognitive training 

induced large-scale connectivity changes mostly in the visual network and the dATN, 

which would be related to improved integration and information processing. Finally, the 

DLPFC might be a neural marker of individual differences because better task 

performance after training was associated with enhanced DLPFC connectivity. 
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TABLE CAPTIONS 

 

Table 1. Pearson correlation analyses results. The Pearson correlation analysis results 

between training induced changes in behavior and distant link values in the right dorsolateral 

prefrontal cortex (rDLPFC) in the pre-training session, post-training session, or the difference 

between sessions are presented below for each experimental group. The behavioral variable is 

the difference in reaction time (RT) values between conditions (search condition and control 

condition) and sessions (pre-training session - post-training session): RT values [Pre-training 

session (Trained condition - Control condition)- Post-training session (Trained condition - 

Control condition)]>0. 

 

Table 2. Coefficient of determination and slope of the main Pearson correlation analyses 

results.  In relation to the results of the correlation analyses between training induced changes 

in behavior and distant link values in the right dorsolateral prefrontal cortex (rDLPFC) in the 

post-training session, the coefficient of determination, the slope of the curve and the 

confidence interval of the slope have been calculated for each experimental group.  
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FIGURE CAPTIONS 

 

Fig. 1 Functional connectivity changes after training on VST. (a) It was found increased 

local and distant connectivity after training on a distributed cortical surface. The degree 

maps were projected on the cerebral hemispheres of the PALS-B12 surface using CARET. 

The interpolated voxel algorithm and multi-fiducial mapping of the metrics were used, 

along with SPM’s native space specification and the 2% to 98% scale. A medial wall mask 

was also included only when projecting the images to cover non-cortical regions (Van 

Essen, 2005, Van Essen and Dierker, 2007). (b) The brain nodes have been represented 

according to the number of functional links that depart from each node, the brain hubs are 

the areas with greatest change. (c) The brain network formed within the hubs has been 

represented, revealing high connectivity between hubs. The statistical contrast of these 

results corresponds to: [Trained group (post-training - pre-training session) - Control 

group (post-training session - pre-training session)]>0.  Results are p<0.025 FWE voxel-

corrected (with a minimum t-score = 4.98). The color bar represents t-values. L = left. R = 

right.  

 

Fig. 2 Cortical networks change after cognitive training on VST. (a) The analysis was 

based on the 7-network estimate parcellation map of the cerebrum (Yeo et al. 2011). The 

black lines on (b) the local degree map and (c) the distant degree map represent the 

boundary of each network. The percentage of change for each network was estimated and 

plotted. (d) Similar percentages of change were found for the dATN, FPN and DMN in 

local connections. (e) The visual network and the dATN had the greatest changes in distant 

connections. Network legend: Vis: visual network; Mot: sensorimotor network; dATN: 

dorsal attention network; vATN: ventral attention network; LMB: limbic system network; 

FPN: fronto-parietal network; DMN: default mode network 

 

Fig. 3 Correlation analysis results reveal individual differences in task learning. The 

participants with more connections in the right DLPFC after training had greater 

performance improvement on the VST from pre-training to the post-training session 
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TABLES 

Table 1 

 
Pearson correlation analysis results with training induced 

changes in behavior 

 

Pre-training session 

Distant-links 

rDLPFC 

Post-training 

session 

Distant-links 

rDLPFC 

Post minus Pre-

training distant-

links rDLPFC 

    

Trained 

Group 

r = 0.049 

p = 0.842 

r = 0.497 * 

p = 0.031 

r = 0.364 

p = 0.126 

    

Control 

Group 

 

r = -0.220 

p = 0.365 

 

r = -0.232 

p = 0.339 

 

r = 0.061 

p = 0.804 

 

 

 

Table 2 

     

 N 

Pearson 

Correlation 

coefficient 

Corrected 

Coefficient of 

determination 

R2 

Unstandardized 

slope B  

(standard error 

of the estimate) 

Unstandardized 

slope’s confidence 

interval (95%) 

      

Trained 

Group 
19 

r = 0.497 * 

p = 0.031 
0.202 0.401 (0.170) 0.042 – 0.759 

      

Control 

Group 

 

19 

r = -0.232 

p = 0.339 

 

-0.002 -0.334 (0.339) -1.050 – 0.382 
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Supplementary Figure 1. Schematic representation of the experimental procedure. 

In the top part of the figure, the organization of the experiment has been represented. 

The experiment was conducted in one day, and, as can be observed, each participant 

completed two fMRI sessions that took place 45 minutes apart. The trained participants 

are represented in blue (dots and lines), and the control participants in red (squares and 

lines). Note that only the trained group performed the training session between the 

fMRI scans, but both experimental groups had 45 minutes between scanning sessions.  

The control group participants did nothing but rest (i.e., no cognitive or mental tasks). 

In the bottom part of the figure, the organization of the visual search task is displayed.  

The experimental design consisted of 42 active blocks and 42 passive blocks. The active 

blocks consisted of: 14 control task blocks, 14 search blocks that corresponded to 

targets B C D F G H, and 14 search blocks that corresponded to targets L M N P Q R. 

The image has been adapted with permission from Bueichekú et al., 2016, NeuroImage 

135, 204–213. 

 

mailto:bueichek@uji.es


36 

 

 

 


