
Pedro Miguel Lima de Jesus Vieira

BsC in Computer Science and Engineering

A Persistent Publish/Subscribe System for
Mobile Edge Computing

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Hervé Miguel Cordeiro Paulino, Assistant Professor,
NOVA University of Lisbon

Júri

Presidente: Vitor Manuel Alves Duarte
Vogais: João Coelho Garcia

Hervé Miguel Cordeiro Paulino

November, 2018

A Persistent Publish/Subscribe System for Mobile Edge Computing

Copyright © Pedro Miguel Lima de Jesus Vieira, Faculdade de Ciências e Tecnologia, Uni-

versidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “novathesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my mother.

Acknowledgements

First, I would like to start by thanking my thesis advisor, Hervé Paulino, for his complete

availability and the many insightful discussions during the concession and development

of the ideas presented in this thesis. Hervé also provided me with the necessary hardware

equipment and helped me fix some of the bugs I encountered in the simulator, both

aspects being absolutely crucial to performing the dissertation’s real-life and simulated

evaluation scenarios, respectively. A very special gratitude goes out to João Silva. His

hands-on approach, whether by brainstorming solutions, suggesting alterations as well

as the immense help on the creation of trace files, was very much appreciated. This is

extended to all past and present members of the “Hyrax: Crowd-Sourcing Mobile Devices

to Develop Edge Clouds” project [1] for their incredible hard work, which I was able to

utilize in my solution.

Thanks to the entire FCT NOVA’s Informatics department, its teachers and all the

valuable knowledge that was transmitted to me.

To my mother, who has sacrificed a lot to provide me with an higher education, for

supporting and believing in me, no matter what, but most importantly for raising and

shaping me into the man I am today.

A special thank you to my soul mate, Ana Simão, for her constant presence and pa-

tience to endure me in my ups and downs. For supporting me, pushing and motivating

me to go further even when I was tired and frustrated. For always cheering me up. Thank

you for making this journey all worthwhile.

And finally, last but by no means least, also to all the close friends I made during this

five-year adventure who positively contributed, one way or another, to my academic and

personal success.

Thank you.

vii

Abstract

In recent times, we have seen an incredible growth of users adopting mobile devices

and wearables, and while the hardware capabilities of these devices have greatly increased

year after year, mobile communications still remain a bottleneck for most applications.

This is partially caused by the companies’ cloud infrastructure, which effectively repre-

sents a large scale communication hub where all kinds of platforms compete with each

other for the servers’ processing power and channel throughput. Additionally, wireless

technologies used in mobile environments are unreliable, slow and congestion-prone by

nature when compared to the wired medium counterpart.

To fix the back-and-forth mobile communication overhead, the “Edge” paradigm has

been recently introduced with the aim to bring cloud services closer to the customers,

by providing an intermediate layer between the end devices and the actual cloud infras-

tructure, resulting in faster response times. Publish/Subscribe systems, such as Thyme,

have also been proposed and proven effective for data dissemination at edge networks,

due to the interactions’ loosely coupled nature and scalability. Nonetheless, solely rely-

ing on P2P interactions is not feasible in every scenario due to wireless protocols’ range

limitations.

In this thesis we propose and develop Thyme-Infrastructure, an extension to

the Thyme framework, that utilizes available stationary nodes within the edge infrastruc-

ture to not only improve the performance of mobile clients within a BSS, by offloading a

portion of the requests to be processed by the infrastructure, but also to connect multiple

clusters of users within the same venue, with the goal of creating a persistent and global

end-to-end storage network. Our experimental results, both in simulated and real-world

scenarios, show adequate response times for interactive usage, and low energy consump-

tion, allowing the application to be used in a variety of events without excessive battery

drainage. In fact, when compared to the previous version of Thyme, our framework

was generally able to improve on all of these metrics. On top of that, we evaluated our

system’s latencies against a full-fledged cloud solution and verified that our proposal

yielded a considerable speedup across the board.

Keywords: Mobile Edge Computing, Infrastructure, Android, Framework, Distributed

ix

Storage, Peer-to-peer, Publish/Subscribe

x

Resumo

Recentemente, tem-se observado um enorme crescimento de utilizadores de dispositi-

vos móveis e, apesar das suas características do hardware sejam cada vez mais otimizadas

ano após ano, as comunicações móveis ainda são consideradas como um bottleneck para

a maioria das aplicações. Isto deve-se parcialmente à própria infraestrutura cloud, que

representa um ponto central de comunicação em que todas as plataformas competem

entre si pelo processamento e taxa de transferência dos servidores. Adicionalmente, as

tecnologias sem fios habitualmente utilizadas em ambientes móveis são, por natureza,

instáveis, lentas e suscetíveis a congestionamento.

Para atenuar a sobrecarga inerente às comunicações móveis, o paradigma “Edge” foi

recentemente introduzido, com o intuito de aproximar os serviços da cloud aos consumi-

dores, através da disponibilização de uma camada intermédia entre os dispositivos e a

própria infraestrutura cloud, resultando em tempos de resposta bastante mais rápidos.

Sistemas Publicador/Subscritor, como o Thyme, têm sido recentemente propostos como

métodos eficazes para a disseminação de dados em redes “edge”, devido à escalabilidade

das suas interações. Ainda assim, depender apenas de comunicações P2P não é factível

em todos os cenários devido às limitações de alcance dos protocolos de redes sem fios.

Nesta dissertação propomos e desenvolvemos o Thyme-Infrastructure, uma ex-

tensão ao Thyme, que utiliza nós estacionários que estejam disponíveis na infrastrutura

“edge” para melhorar a performance dos clientes móveis dentro de um BSS, ao transferir

uma porção dos pedidos para serem processados pela infraestrutura, mas também para

conectar múltiplos grupos de utilizadores dentro do mesmo complexo, tudo com o obje-

tivo de criar uma rede global de armazenamento persistente ponta-a-ponta. Os nossos

resultados experimentais, ambos em cenários simulados e reais, mostram tempos de res-

posta adequados a utilizações interativas e um baixo consumo energético, permitindo que

a aplicação possa ser utilizada em diversos eventos sem que apresente gastos excessivos

de bateria. De facto, quando comparada à versão anterior do Thyme, a nossa framework
apresentou, de forma geral, melhorias em todas estas métricas. Para além disto, avaliámos

as latências do nosso sistema face às de uma solução implementada na cloud e verificámos

que a nossa proposta exibiu um speedup considerável em todos os aspetos.

xi

Palavras-chave: Mobile Edge Computing, infraestrutura, Android, framework, armazena-

mento distribuído, ponto-a-ponto, publicador/subscritor

xii

Contents

List of Figures xvii

List of Tables xxi

Listings xxiii

1 Introduction 1

1.1 Context & Motivation . 1

1.2 Problem & Challenges . 4

1.3 Proposed Solution . 5

1.4 Contributions . 6

1.5 Document Outline . 7

2 State-of-the-Art 9

2.1 Collaborative Storage in Edge Networks 9

2.1.1 What to Cache . 10

2.1.2 Where to Place the Data . 14

2.1.3 How/When to Transmit Data/Updates 19

2.2 Final Remarks . 22

3 Thyme 23

3.1 Overview . 23

3.2 Publishing Data . 24

3.3 Replication . 25

3.4 Subscription & Data Retrieval . 25

3.5 Mobility-Awareness & Mitigation . 26

3.6 Worlds . 27

4 Thyme-Infrastructure 29

4.1 General Overview . 29

4.2 System Model . 30

4.3 System Architecture . 31

4.3.1 Thyme . 31

4.3.2 Thyme-Infrastructure . 34

xiii

CONTENTS

4.3.3 Interaction Between Thyme-Infra Components 37

4.4 A Revision of Thyme’s Core Features . 39

4.4.1 Logical Cells . 39

4.4.2 Creation and Discovery of Global Worlds 40

4.4.3 Augmenting the MetaData Object 41

4.5 Estimation and Dissemination of Local Subscriptions and File Popularity 42

4.5.1 Cell Stable Nodes . 44

4.6 Global Publish/Subscribe Process . 45

4.6.1 Infrastructure Non-Overlap Dissemination Contract 48

4.6.2 Bringing Time-Awareness to the Infrastructure 49

4.7 Infrastructure Publish/Subscribe Caches 50

4.7.1 Adaptive Multipart Caching . 50

4.7.2 Caches Structural Definition . 52

4.7.3 Lookup by Tag . 54

4.8 An (Infra)structured Modification of Thyme’s P/S Operations 55

4.8.1 Subscription . 55

4.8.2 Download . 56

4.8.3 Unpublish . 58

4.9 Implementation Details . 58

4.9.1 Protocol Buffers . 58

4.9.2 Concurrency . 59

4.9.3 Retrieving Local Popular Items to Cache in the Infrastructure . . . 61

4.9.4 Caffeinated Data . 64

4.9.5 Mobile Address Translation Store 65

4.9.6 Mobile Nodes Notification on Nearest Infrastructure’s Storage Changes 67

4.9.7 Infrastructure-to-Mobile Nodes Communication Workflows 67

4.9.8 Time outs . 69

4.9.9 Configurations File . 70

4.10 Summary . 72

5 Evaluation 73

5.1 Evaluation Methodologies . 73

5.2 Logical Evaluation . 77

5.3 Absolute Metrics Evaluation . 77

5.3.1 Mobile Address Translation Store 78

5.3.2 Popularity Ranking Algorithm Evaluation 80

5.3.3 Adaptive Multipart Caching . 82

5.3.4 Impact of the Consumption Notification Mechanism 83

5.3.5 LPC Batch-Insert Approach Validation 85

5.3.6 Global Unpublish . 88

5.3.7 Self-established Cell Stable Node Failover 89

xiv

CONTENTS

5.4 Comparison with the Previous Version of Thyme 89

5.4.1 Simulated Evaluation . 89

5.4.2 Real-world Evaluation . 92

5.5 Comparison with the Cloud Infrastructure 100

6 Conclusions 105

6.1 Conclusions . 105

6.2 Future Work . 107

6.2.1 System Improvements . 108

6.2.2 Novel Research Opportunities . 109

Bibliography 113

xv

List of Figures

1.1 Smartphones worldwide installed base from 2009 to 2017. Adapted from [2]. 2

1.2 Monthly exabytes produced by mobile users. Adapted from [5]. 2

1.3 Example of a materialization of the proposed solution in a context of a football

stadium. Nodes inside an AP’s BSS form a fully complete local collaborative

network but are also able to obtain and influence data items from other areas

of the same venue via the AP’s link. 6

3.1 Example of Thyme’s publish and subscribe operations. The tags’ hashing de-

termines the cells responsible for managing the object metadata (cells 2 and 5)

and the subscription (cells 2 and 13). If a subscription has overlapping tags

with a publication (and vice versa) it will also have overlapping (responsible)

cells, guaranteeing the matching and sending of notifications to the subscriber.

Adapted from [17]. 25

3.2 Thyme’s subscription notification & data retrieval process. Adapted from

[18]. 27

3.3 Overlapping Thyme Worlds. Adapted from [18]. 28

4.1 Thyme’s Updated Architecture. Adapted from [18]. 31

4.2 Thyme-Infrastructure Architecture. 34

4.3 A symmetrical system where each infrastructure node runs its own indepen-

dent Thyme-Infra instance. 37

4.4 Interactions between the Thyme-Infrastructure modules. 38

4.5 Conversion from a Geographic-based cells layout of Thyme to the newly

introduced Logical cells in Thyme-Infra. 40

4.6 Example sequence of the stable node determination and dissemination process

of the cell data. 43

4.7 Example sequence of the stable node determination and dissemination process

of the cell data when a to-be self-established stable node terminates unexpect-

edly. 43

4.8 Global Publish/Subscribe execution process. 47

4.9 Optimal Non-Overlap Dissemination Contract Breakdown. 49

4.10 Example definition of the Adaptive Multipart Caching. 51

4.11 Example definition of the Local Popularity Cache structure. 52

xvii

List of Figures

4.12 Example definition of the Prefetch Cache structure. 52

4.13 Example definition of the Global Cache structure. 54

4.14 Example of Thyme and Thyme-Infra’s subscription workflow when a

client executes a subscription operation for the tag “goal”. 56

4.15 Simplified workflow of the download operation triggered by a mobile node

(salmon-colored circle). The color in the decision flows indicates which actor

is executing them. 57

4.16 Example of Thyme and Thyme-Infra’s unpublish workflow, considering

that the system is composed of two infrastructure nodes and the item to be

unpublished has the tag “goal”. 58

4.17 Timer definition for the process of retrieving local popular items to cache in

the infrastructure. 63

4.18 Caffeine’s Window TinyLFU scheme. Adapted from [52]. 64

4.19 Sequence diagram showcasing the generic workflow used by the infrastructure

node to communicate with a specific mobile node within its BSS. 68

4.20 Sequence diagram showcasing the simplified workflow used by the infrastruc-

ture node to disseminate messages to all nodes within a cell in its BSS. 69

5.1 Showcase of the use case application. Adapted from [18]. 74

5.2 Execution of all unit tests in Thyme-Infra. 78

5.3 Total InfraRouting messages sent by the infrastructure as the MATS capacity

increases. 79

5.4 Memory overhead caused by the MATS as its capacity increases. 79

5.5 Number of mobile items requested by the infrastructure per popularity deci-

sion cycle when using a popularity ranking algorithm versus no algorithm at

all. 81

5.6 Local Popularity Cache hit ratio comparison between using a popularity ranking

algorithm to decide which items to offload and no algorithm at all. 82

5.7 Outcome of the Adaptive Multipart Caching mechanism for worlds with dis-

parate population needs. 83

5.8 Impact on the traffic generated between infrastructure nodes when the Item

Consumption Notification mechanism is enabled and disabled. 84

5.9 Evaluation Scenarios for the “Validation for our Batch-Insert Approach on the

LPC Cache”. 86

5.10 Total number of items served by the infrastructure depending on the batch

insert method utilized by Thyme-Infra. 87

5.11 Total CPU time spent by the infrastructure processing the AMC algorithm

depending on the batch insert method utilized by Thyme-Infra. 88

5.12 Comparison of total messages sent between both versions of Thyme when

executing the same trace. 90

xviii

List of Figures

5.13 Comparison of the generated traffic size between both versions of Thyme

when executing the same trace. 90

5.14 Total messages sent by the system (Geographical Thyme) when a single mo-

bile node moves from one cell to another. 92

5.15 Operations latency comparison between both version of Thyme. 93

5.16 Download latency comparison between Thyme Geographic and our iteration

of Thyme for multiple file sizes. 94

5.17 Cumulative battery consumption during each Publish/Subscribe operation in

the previous iteration of Thyme. 96

5.18 Cumulative battery consumption during each Publish/Subscribe operation in

our proposed iteration of Thyme. 97

5.19 Battery consumption of Thyme operations specific to the addition of Thyme-

Infra nodes. 98

5.20 Evolution of the number of items retrieved, through mobile means, in each

subscription. 99

5.21 Average battery consumption on the over-utilized cell nodes during the sub-

scription scenario. 100

5.22 Evaluation Scenarios for the Thyme + Thyme-Infra part of “Comparison

with the Cloud Infrastructure”. 102

5.23 Comparison of the download operation latency between multiple files from

Thyme + Thyme-Infra and AWS. 103

5.24 Showcase of how much faster, on average, each Thyme download operation

is compared to sending the same download request to the cloud. 104

xix

List of Tables

1.1 Comparison of Edge layers. Adapted from [9]. 3

2.1 “What to Cache” approaches comparison. 14

2.2 Data placement strategies comparison. 18

4.1 Thyme-Infrastructure Configurations File Specification. Bold entry

keys represent optional values. 72

5.1 Mobile devices used for the real-world evaluation scenarios. 74

5.2 Computer laptops for running Thyme-Infra in the real-world evaluation

scenarios. 76

5.3 Number of operations required to be executed in order to reach a 1% battery

consumption (the higher the better). 97

xxi

Listings

4.1 Incorrect ConcurrentHashMap execution flow. 60

4.2 Sound ConcurrentHashMap execution flow. 60

4.3 Thyme-Infra example configurations file. 71

xxiii

C
h
a
p
t
e
r

1
Introduction

1.1 Context & Motivation

In recent times, we have seen an incredible growth of users adopting mobile devices

and wearables, such as smartphones and smartwatches, for communicating with friends,

performing day-to-day activities or even work-related procedures, going from 1.46 billion

users in 2013 to 2.89 billion customers in 2017 [2] (Fig. 1.1) and this trend is poised to

keep rising every year.

In 2016, analysts disclosed that mobile devices finally surpassed desktop in terms of

internet usage worldwide (mobile traffic accounted for 51.3% of the global interactions,

while desktop traffic represented 48.7%) [3]. Although this is generally not the case in

developed countries, where desktop usage is still widely prevalent, third world countries

often have the highest smartphone usage percentage, like India for instance, reaching to

values up to 79% of the country’s internet usage [4].

Consequently, along with the soaring introduction of mobile-tailored applications and

services as well as the paradigm shift of working on-the-go, Cisco predicts that the global

traffic originated from non-stationary devices will grow 600% to 49 exabytes per month

in 2021, from the 7 monthly exabytes value recorded in 2016 [5] (Fig. 1.2). Furthermore,

the researchers convey that the exponential mobile traffic growth is directly linked to the

expected increase in consumable contents, namely (live) video, that is bound to repre-

sent the largest chunk percentage in mobile interactions, as well as the mainstreaming

of data-heavy experiences, in the likes of Virtual and Augmented Reality (AR & VR) on-

line applications. In the same research, the company also notes that mobile clients will

increasingly start to offload their online interactions and data requests to nearer infras-

tructure stations, such as public Wi-Fi hotspots, instead of using cellular networks. Based

on this findings, they are predicting that the deployment of Wi-Fi hotspots will grow

1

CHAPTER 1. INTRODUCTION

2009
2011

2013
2015

2017

1,000

2,000

3,000

In
st

al
le

d
ba

se
in

m
il

li
on

s

Figure 1.1: Smartphones worldwide in-
stalled base from 2009 to 2017. Adapted
from [2].

2016
2017

2018
2019

2020
2021

10

20

30

40

E
xa

by
te

s
p

er
m

on
th

Figure 1.2: Monthly exabytes produced
by mobile users. Adapted from [5].

six-fold to 541.6 million in 2021 (up from 94.0 million in 2016) in order to accommodate

this offloading trend.

Even though smartphones’ hardware capabilities have greatly increased year after

year, mobile communications still remain a bottleneck for most applications, both on the

client and the server side. Regarding the servers aspect, while using geo-replicated data

centers do indeed help in minimizing latency, the company’s cloud infrastructure repre-

sents a communication hub which potentially receives messages from every kind of client,

mobile or desktop, effectively causing the requests from all platforms to compete with

each other for the servers’ processing power and channel throughput. Additionally, by

forcing the requests to go through the entire network infrastructure in order to reach the

company servers, it obviously carries additional routing and propagation delays. On the

other hand, wireless communication technologies used in mobile environments — such

as Wi-Fi, Bluetooth and 3G — are unreliable, slow and congestion-prone by nature when

compared to the wired medium counterpart. By adding the characteristics from both

sides, mobile interactions are particularly susceptible to the back-and-forth communica-

tion overhead, which is particularly crucial to eradicate in delay-sensitive applications

such as the ones from the AR and VR categories mentioned previously.

In order to increase performance for mobile applications and interactions, there has

been a major paradigm shift, specifically the introduction of “Edge networks”. This novel

concept brings cloud services to the edge of the network, i.e. closer to the customers, by

leveraging the storage and processing capabilities of multiple decentralized “mini-cloud”

devices with the purpose of providing an intermediate layer between the end devices and

the actual cloud infrastructure.

With the continuous rise of mobile devices, sensors, actuators and the huge amount

of generated data as a byproduct of that, Edge nodes are deployed in places like factory

floors, vehicles and on top of buildings with the purpose of quickly processing infor-

mation and act accordingly, if needed. As a consequence of their proximity to the data

source and by eliminating the back-and-forth traffic between the devices and the cloud,

2

1.1. CONTEXT & MOTIVATION

nodes are able to provide much faster response times since the requests do not need to

go through the entire global infrastructure, saving backbone bandwidth and minimizing

the occurrences of bottlenecks in the network and the cloud service itself [6, 7].

There are currently three types of Edge layer implementations, with distinct actors,

proximity scale and communication protocol specifications, namely Mobile Edge Com-

puting (MEC), Fog Computing (FC) and Cloudlet Computing (CC) [8, 9] (Table 1.1).

Table 1.1: Comparison of Edge layers. Adapted from [9].

Node Devices Proximity Communication Protocols

FC Routers, Switches, Access Points, Gateways One or Multiple Hops Bluetooth, Wi-Fi, Mobile Networks
MEC Servers running in base stations One Hop Mobile Networks
CC Data Center in a box One Hop Wi-Fi

The Fog Computing paradigm presents a computing layer that mainly utilizes devices

like gateways and wireless routers, which are used to compute and store data from end-

costumers’ devices locally before forwarding to the cloud. MEC, on the other hand,

proposes the deployment of intermediate nodes with storage and processing capabilities

in the base stations of cellular networks in order to offer cloud computing capabilities

inside the Radio Area Network. The Cloudlets are based on dedicated devices with

capacities similar to a data center but on a much lower scale present in close proximity

to the consumers [9].

Although these Edge computing approaches were developed with a cloud backend

connection in mind, other implementations have been presented that do not need any

kind of server infrastructure, such as [10]. Furthermore, other iterations are moving away

from single node access points to using the client’s mobile devices as actual Edge nodes,

harnessing their processing, storage and routing/communication capabilities, in order to

create a complete local system.

Ultimately, implementing an Edge infrastructure can bring huge improvements to

end-users but, due to its novelty, this paradigm comes with multiple challenges on key

aspects that haven’t been solved yet, such as heterogeneity, standardization, security and

discoverability. Most of the issues lie on the fact that the majority of mobile devices, which

are easily accessible by any person, are able to be used as Edge nodes in certain imple-

mentations, effectively lowering the entry barrier to aiding the Edge. Thus contributing

to the heterogeneity of the network and, as a consequence of that, standardization be-

comes a problem to a lot of devices, running different Operating Systems with disparate

kinds of hardware, that might need to communicate with each other. Likewise, another

issue resides on the security of the system, since ultimately any device will be allowed

to contribute to the computation, where malicious users can perform eavesdropping and

tampering attacks on the packets received. Finally, the discoverability aspect of Edge

nodes and services in the network is very low due to the absence of a centralized point

where costumers can connect to, in order to search for available services.

Furthermore, with the introduction of 5G technologies and smart bases stations which

3

CHAPTER 1. INTRODUCTION

have processing capabilities and allow the offloading of applications’ specific computing

and caching strategies the station itself [11, 12], a whole new world opens up for the

creation of highly performant and tailored mobile applications at the Edge.

1.2 Problem & Challenges

The problem that we are aiming to fix with the development of this thesis is focused on

cases where a large number of users are located in the same geographical area and want

to use their mobile devices to share and view, in real-time and in a persistent manner,

generated content associated with their location. One of the most common scenarios

are venue events, such as a football match in a stadium. Nonetheless, in this use cases,

users often use cloud storage services, such as Dropbox [13], Google Drive [14] or even

Instagram [15], to share their content. Although this approach works, it is not ideal

since all the data transfers would have to traverse the entire backbone infrastructure to

reach the cloud servers. Similarly, all of the other users that are interested in these items

would also have to communicate with remote data centers, even though they are currently

located right next to the content source.

Due to the high mobility, resource-limited, unpredictability, and out-of-order nature

of edge devices and their respective over-the-air communication channels, creating a

shared storage system spanning a wide geographical area that is simultaneously correct,

energy conscious and performant is not a trivial task. This becomes particularly intricate

in large capacity venues, where attendants are expected to consume and produce high

volumes of data.

Frameworks and algorithms specifically designed for wired and static actors are not

ideal for this new kind of network specification due to the intrinsic low tolerance to

network congestion. Thus, replication and update schemes borrowed from those wired

systems that tend to require a high message exchange ratio between clients, along with a

packet order integrity, would not be useful nor efficient.

Multiple peer-to-peer edge-tailored storage architectures have been introduced to al-

low the creation of collaborative storage systems in bound-restricted geographical areas,

such as Thyme [16–18]. This particular solution presents a novel approach to Pub-

lish/Subscribe systems for inherently mobile devices where the publish and subscription

brokers are the clients themselves, which was proven to be very effective for data dissem-

ination in edge networks, due to the interactions’ loosely coupled nature and scalability.

For instance, a framework like Thyme is able to establish and maintain a “shared folder”

within a university department for students to share class notes or even photos. Conse-

quently, if we wish to augment the created folder by linking more shared folders, and

their content, generated in other distant departments with the goal of achieving one end-

to-end shared folder, Thyme is unable to do so in scenarios like this since it relies entirely

on P2P communication means, which are limited in range, as those departments could

be located too far away from each other.

4

1.3. PROPOSED SOLUTION

Furthermore, as a consequence of the novelty of this paradigm, a major problem lies

on the fact that the research in this area, although growing in the last years, is still in its

infancy without any kind of standardization from a third-party entity with regard to the

offered services, protocols and privacy concerns. Therefore, the main challenges lie on

the following topics:

• How to use infrastructure resources to increase performance and availability?

• What should be cached in the infrastructure nodes and in the clients’ mobile de-

vices?

• How to disseminate data to neighboring replicas as well as clients that are located

farther away?

• How to guarantee that nodes will be able to continue to interact and view a consis-

tent state of the storage system even without infrastructure?

1.3 Proposed Solution

For this thesis, the proposed solution is a collaborative storage framework, built on top

of Thyme, specifically for Android [19] devices, with the goal of achieving a reliable and

persistent infrastructure without the backend of a cloud service. By creating an open

library, we intend to provide a simple and easy to use interface to allow any application

developer to incorporate a fully collaborative storage scheme in their software.

We propose an extension to Thyme to allow utilization, when available, of previously

deployed and stationary infrastructure nodes to aid the generated system, in terms of

storage, logic and routing to other populated areas inside the same venue where using

regular off-the-shelf wireless protocols would be infeasible or underperforming. Thus,

nodes within the same local area (represented by the Basic Service Set of an infrastructure

AP) can freely retrieve data objects. Additionally, each node can obtain items globally, i.e.

from one local region to another, via the link provided by the infrastructure (Fig. 1.3).

As a consequence of the inclusion of infrastructure resources into the system, several

major additions are employed by our solution:

• An Overhaul to Thyme and its Publish/Subscribe scheme to include the ability to

interact with the infrastructure layer in a way that is completely transparent to the

user;

• A Local & Global Retrieval Method where each a node will have the ability to get

items from the same local network through direct peer-to-peer communication but

will also be able to ask the associated AP for help to retrieve matching/relevant

items from other locations;

5

CHAPTER 1. INTRODUCTION

Figure 1.3: Example of a materialization of the proposed solution in a context of a football
stadium. Nodes inside an AP’s BSS form a fully complete local collaborative network but
are also able to obtain and influence data items from other areas of the same venue via
the AP’s link.1

• A Complex Caching Mechanism employed by the infrastructure node to store not

only the local items that are considered popular by its mobile clients as well as items

originated in other venues areas that are of interest of its clients;

• A Popularity Ranking Algorithm to decide which items should be offloaded to the

infrastructure caches for an higher availability.

Finally, our solution will be decoupled from the infrastructure, meaning that if an

Access Point unexpectedly terminates or if none are available near the client, the system

will continue executing normally.

1.4 Contributions

First, we develop Thyme-Infrastructure, a novel approach for infrastructure nodes

in edge storage systems, such as access points or base stations, which is composed of com-

plex caching mechanisms, structures and algorithms, linked together with the processing

and routing capabilities built right in. Furthermore, this system connects users within

the coverage of one node to share and obtain data from other infrastructure nodes’ clients

in the same venue, essentially establishing an end-to-end storage system to all clients,

independently of their location. To achieve this, we propose a custom implementation

of the Publish/Subscribe paradigm to be deployed on these low-resource infrastructure

nodes, when compared to cloud systems, that orchestrates the entire dissemination work-

flow from one area to another with only the data that is relevant to the users from that

area.

1Image contains icons made by Vignesh Oviyan, Freepik and Gregor Cresnar. Licensed under CC 3.0 BY.

6

1.5. DOCUMENT OUTLINE

Second, we update the Thyme mobile framework to search, make use and interact

with the nearest infrastructure nodes running the Thyme-Infrastructure software

stack. As described, Thyme employs a P/S scheme to aid its data discovery and dis-

semination through peer-to-peer interactions. With the addition of resources from the

infrastructure, we amplify that particular Publish/Subscribe implementation by extend-

ing each P/S operation, that would have been only disseminated to peer nodes, to also be

transmitted and executed in the infrastructure, such as the subscribe and the download

operation.

Third, we perform an extensive performance study and evaluation of the proposed

system in both real-world environments, using smartphones running Thyme and lap-

tops to simulate infrastructure nodes running Thyme-Infrastructure, as well as

simulated ones. In the case of simulated scenarios, we showcase how the entire system

operates during diverse workloads and parameters. On the other hand, in real-world sce-

narios, we focus on gathering and exhibiting metrics like the overall battery consumption

and transmission latency throughout the system execution. Further, we expand our eval-

uation suite by directly comparing our system with the previous specification of Thyme

and with a cloud infrastructure.

Fourth, we highlight the proposal of other novel paradigms that we believe to be

research-worthy to the entire scientific community.

1.5 Document Outline

The remainder of this document is organized as follows. In Chapter 2 we introduce the

major areas of interest regarding the context of this thesis and state-of-the-art implementa-

tions of technologies and frameworks from those areas. Then, the Thyme project, which

is the building block of the proposed solution, and its features are presented in Chapter 3.

In Chapter 4, we describe a deep dive specification of the proposed solution, along with

some implementation details. Consequently, we present a performance evaluation of our

system, as well as a direct comparison of the system with the old version of Thyme and

with the cloud, in Chapter 5. Finally, to conclude this thesis document, in Chapter 6 we

raise some conclusions we gathered throughout the development of our framework as

well as some future work that we believe would greatly improve the proposed system.

7

C
h
a
p
t
e
r

2
State-of-the-Art

The purpose of this chapter is to present related work, concepts and im-

plementations of multiple technologies and systems of computational and

storage offloading in edge networks that are relevant to the development of

this thesis. In order to successfully develop the proposed solution, most of

the research was focused on specific areas of interest related to Storage Edge

Networks in a peer-to-peer fashion, where mobility and context-awareness

are crucial. Simultaneously, since we want our protocol to be as flexible as

possible considering the characteristics of the network, systems where all the

decisions are taken by the participant nodes themselves or by a local central

node were also taken into account during each phase of the research. All of

the researched frameworks that utilize these paradigms are fully described in

Section 2.1. To finalize this Chapter, in Section 2.2, we will present some final

remarks and takeaways from this research.

2.1 Collaborative Storage in Edge Networks

Regarding the collaborative storage aspect, for this thesis, we are especially interested

in researching state-of-the-art implementations of systems created for edge networks,

with a focus on mobile devices rather than static nodes. Furthermore, we want to have a

technical overview of the most recently proposed solutions on where to place and retrieve

data at the edge of the network, what should each client cache and when/how should the

data objects be updated given the properties of the nodes themselves and the network.

Although our focus lies on mobile devices to create a totally collaborative and indepen-

dent storage infrastructure, some of the architectures presented in this section are related

to networks composed of mostly stationary devices or extensions to already developed

9

CHAPTER 2. STATE-OF-THE-ART

cloud solutions where some of the decisions are actually sent to the cloud to be processed.

The reason for this is related to the novelty of the edge and the associated mobile edge

concepts, where these areas are rather unexplored and are yet to reach their full potential.

Therefore, despite the fact that communication patterns and network stability tend to be

widely disparate when comparing to highly mobile peer-to-peer networks, we consider

that it is crucial to approach and study different solutions to learn and improve on, due to

the absence of a standardized edge storage protocol elected by the research community.

Thus, we have the following groups of state-of-the-art implementations:

• Data Sharing at the Edge for Mobile Clients: Propagation- and Mobility-Aware

D2D Social Content Replication [20], EdgeBuffer [21], Mobility-Aware Caching in

D2D Networks [22], Peer Data Sharing [23], Nebula [24], SDMEC Storage [25],

MECCAS [26], HDUM [27] and REAP [28];

• Creation of Cloud Infrastructures at the Edge: PopPub [29] and CoPro-CoCache

[30].

2.1.1 What to Cache

A fundamental question in storage networks, specifically the ones located in low resource

environments — when compared to a cloud corporate-grade infrastructure — like the

networks located at the edge, is what should be stored and cached by the participants

and/or the infrastructure in order to maximize the cache-hit ratio to a point where it is

not detrimental to the overall performance of the network.

2.1.1.1 Popularity-based Approach

One of the simplest approaches, but the most common one, to decide which of the data

objects should receive a high priority and become widely available through caching is the

popularity-based approach [20–22, 29, 31].

In Propagation- and Mobility-Aware D2D Social Content Replication (PMAD2DSCR)

[20], the authors define a novel device-to-device replication strategy through information

obtained via social graphs. The proposed solution allows edge peers, in multiple regions,

to cache data items based on estimates such as:

• Inherent Content Popularity: the estimated popularity of a given file taking only its

content into consideration;

• Influential Popularity states that, after a content is published over social connections,

its popularity will be determined by the social networks (shares, interactions, etc)

and, as a consequence of this, the influence of each user over the entire network also

needs to be measured;

10

2.1. COLLABORATIVE STORAGE IN EDGE NETWORKS

• Regional Migration Model: an evaluation of how popular each file is with respect

to the regions (since different users in multiple geographical areas could lead to

different interests) and the migration ratio between each pair of regions;

• User Regional Mobility Prediction, which represents the probability that a user will

move from one region to another after a given time slot.

Each edge node will be assigned to replicate, in an on-demand manner, a subset of all

the available content to its peers based on the above popularity-based estimates that it

was able to calculate with the information that is locally available. Those contents could

be retrieved by directly receiving them from other nearby edge nodes (which will need

to notify the coordinator server for it to be aware of the locations of each file within the

entire network) or by receiving them from the content server. Additionally, when a user

wishes to obtain a copy of a particular file, it will first inquire the coordinator server to

find which users in the same region have replicated the content and can randomly choose

one to download the content from.

Similarly, EdgeBuffer [21] is a caching and prefetching method, culminating from the

collaboration between geographically distant access points, that also uses the popularity

of each data and the prediction of users’ mobility as the main criteria to choose the best

cache strategy. In this system each AP maintains a table and, for each entry (i.e. a block of

data), associates a counter which represents the number of times that particular item was

accessed by other nodes. Whenever the AP’s cache reaches the total amount of available

storage space and an incoming storage request is received, if the lowest item counter in

local storage is lower than the received counter, that item will be swapped by the new

one. By performing this on-the-fly disposal and update process, the designed framework

guarantees that only the most accessed items are effectively stored and retrieved by the

clients.

PopPub [29], a lightweight distributed collaborative caching strategy, is conceptually

equivalent to EdgeBuffer, where nodes leverage the popularity aspects of each data to

make caching decisions, but this framework is developed for a particular kind of network,

such as Content-Centric Networks [32] — a specification of the widely deployed Content

Delivery Networks [33] — which is a novel approach that utilizes various Edge Network

concepts and properties, such as the caching and routing collaboration of infrastructure

nodes. In CCNs, broadcasted messages lie in two specific types: interest packets (which

are essentially request messages) and data packets (the response, containing the data, to

an interest packet). Upon processing a data request, the content sources then transmit

the data packet back to the client along the same path as the interest packets.

In order to compute the popularity of each item, the authors propose that every time

a low traffic edge node receives an interest packet to be routed, it also maintains and

counts the request rates associated with that item. By limiting this functionality to only

11

CHAPTER 2. STATE-OF-THE-ART

the routers with the lowest workload, the most active nodes are not impacted by a perfor-

mance downgrade as a consequence of the additional step of incrementing the value, and

caching redundancy is minimized.

To transmit the popularity information (Popularity Information Base, PIB) of a content

to other nodes, instead of periodically broadcasting that information network-wide —

which would culminate in a huge communication overhead —, that knowledge is only

published to the nodes along the interest packet forwarding path. That is, edge routers

update their PIBs upon an interest packet arrival and other routers, such as aggregation

and core routers, update their PIBs upon a pub packet, which contains multiple data

items grouped together — based on the original transmission path — and their popularity

counts in one single message. Thus, during a packet forwarding operation, each router

checks their local PIB and decides whether the data packet is popular enough to be cached

locally or simply routed back to the user.

The Pattern Based Popularity Assessor (PBPA) [31] — although not a full-fledged edge

framework — is a ranking algorithm especifically designed to be deployed on top of edge

(storage) systems with the goal of determining and predicting the popularity of mobile

files to, ideally, be offloaded. To achieve this, Elgazar et al. studied and analyzed real-

world access traces of several different mobile device users, and multiple file types (such

as video, audio and image), in order to gain knowledge about access patterns at the edge

and construct a formula tailored for the necessities of these clients.

With the authors’ findings, the proposed algorithm is composed of the following steps:

1. Divides accessed files into two file sets: files not accessed in the most recent time

period (stale files), and files accessed in that period (active files);

2. Sorts the active files by their number of accesses, and considers the top portion of

those files as popular;

3. Analyzes the clustering patterns of the selected popular files, and among the re-

maining active files it deems those who have similar access patterns to be popular

as well, while the remainder would be unpopular.

Finally, the solution proposed in Mobility-Aware Caching in D2D Networks (MACD2DN)

[22] brings new additions to popularity-based caching algorithms by fully taking ad-

vantage of edge users’ mobility-aware characteristics, such as movement patterns and

context-awareness’ inter-contact times between different users (the time that they can

contact with each other and, possibly, exchange data), in order to compute a caching

strategy to maximize the data offloading ratio (percentage of data transmitted through

peer-to-peer interactions than through base stations).

The authors then define a dynamic programming algorithm to achieve the proposed

near-optimal caching performance and placement by taking into consideration some

observations from real-life data-sets and interactions, specifically: users that tend to

12

2.1. COLLABORATIVE STORAGE IN EDGE NETWORKS

move slowly within the network tend to cache the most popular files to indulge their own

needs, while fast-moving clients tend to cache popular files as well, but with the purpose

of fulfilling requests from other users, since more opportunities to communicate with

other peers are presented. On the other hand, medium velocity users showed that they

cache less popular files to take advantage of device-to-device communications.

2.1.1.2 Metadata

Another approach to caching data in a collaborative storage environment lies on the

creation and maintenance of metadata information, which tends to use a fraction of the

size of the original data, and is used to broadcast knowledge to the entire grid without

the performance overhead caused by the transmission of messages with a considerable

amount of bytes. One example of an edge solution using metadata is Peer Data Sharing

[23], which refers to a model where edge clients can dynamically discover which data

exists in nearby peers’ local storage and, from all the items returned from the network,

choose which one(s) he/she is most interested in.

Song et al. refer that whenever a node is interested in generating a new data item to be

accessed by the entire network, a data descriptor (i.e. metadata) is created and associated

to it which consists of multiple attributes such as the name, the GPS coordinates where it

was originated and, if the data represents a large item, the total number of chunks.

In order to obtain a previously created piece of information, the requesting node needs

to trigger the get operation by broadcasting a query message to the network, specifying

which data items should be retrieved: each node that receives this request should reply to

the original node the list of all metadata items that it currently holds. During this entire

process, whenever an edge device receives, relays or overhears a message containing the

metadata entries from a neighboring node, it will also cache this information to serve

potential future requests. Thus, nodes, including the one initiating the request operation,

will be smart enough to be able to make best-effort routing decisions to forward the

messages in the directions where the requested data should exist. On the other hand, if

such information is not present (a newly formed network or a node that recently joined

it), a flood operation should be performed in order to obtain an overview of what was

already shared.

After receiving the initial round of metadata items, the consumer dynamically decides

whether and when to start a new round or terminate the data discovery if it determines

that almost all data entries are returned. If, for instance, the client considers that the infor-

mation received is not enough, he/she is able to explicitly tell, during the next broadcast,

which nodes that already answered successfully and should be ignored, minimizing the

number of packets sent.

Having all the information needed, the node broadcasts a message asking which of

its closest neighbors contains a block of data, corresponding to the requested item, and

performs a chunk query to each one of them.

13

CHAPTER 2. STATE-OF-THE-ART

2.1.1.3 Discussion

Table 2.1: “What to Cache” approaches comparison.

Predominant Cached Data Uses File Metadata Caching Decision Data Request Model

[20] PMAD2DSCR Whole file No Popularity-based Pull model
[21] EdgeBuffer Whole file No Popularity-based Pull model
[29] PopPub Whole file No Popularity-based Pull model
[31] PBPA Whole file No Popularity-based N/A
[22] MACD2DN Whole file No Popularity-based w.r.t location & velocity Pull model
[23] Peer Data Sharing Metadata Yes N/A: All metadata are cached Pull model

In Table 2.1 we show a focused comparison of the previously detailed approaches

regarding the “what to cache” primitive. As we can observe, the majority of the re-

searched systems employ a whole file-only paradigm for their caching mechanism. While

this approach is clearly the simplest to implement, we believe that only relying on this

methodology would not be ideal for our solution: having to constantly transmit files with

a considerable size, in the case of photos for instance, from one node to another can

have huge implications in such networks as the ones we are considering for this thesis,

specifically due to the congestion and unreliability aspects already mentioned. Therefore,

we intend to combine the usage of both whole file and metadata information, where the

latter will be predominant throughout the network whereas the former should ideally be

used on the nodes that actually wish to receive the data object.

Regarding the caching decision aspect, it is also possible to verify that the bulk of

edge storage systems use some kind of assessment to choose what should be cached

and available for the rest of the network, particularly popularity-based estimates. As

described in Section 1.3 we are interested in exploiting infrastructure nodes to support

the network storage and routing requests. Thus, implementing estimates like the ones

used in the PMAD2DSCR project, such as the Inherent Content Popularity and Influential
Popularity, and in the PBPA algorithm could be proven highly useful for dissecting the

shared data items and select the top k objects to be stored on each infrastructure node,

based on each BSS local traffic, for easy access and discoverability.

In terms of the data request model, most of the recently proposed collaborative edge

systems use an on-demand client-by-client pull model, as we can corroborate with the

findings in Table 2.1. Since we are using the Thyme framework, a Publish/Subscribe

system, as the base communication protocol for our collaborative storage network, we

will effectively use a mix of both push (when nodes receive a broadcasted notification that

a relevant item has been created) and pull models (after receiving the content notification,

the client will then individually inquire a replicating node for to retrieve that data).

2.1.2 Where to Place the Data

As with the decision of what should be stored in the network, whether it is the original

data or a representation of it, estimating where the actual items should be stored has an

equally important role on Edge networks. In this type of system, it is crucial to take into

14

2.1. COLLABORATIVE STORAGE IN EDGE NETWORKS

consideration the volatility and inconsistency of the over-the-air communication channels

used at the edge, which are highly conducive to congestion. Ideally, frameworks should

be able to dynamically perform a best-effort cache placement decision to counteract the

inherent issues presented above, by utilizing the nodes’ location and possible congestion

areas, with the goal of increasing data locality and minimizing the number of network

requests when obtaining the object.

2.1.2.1 Origin-placement

The simplest approach to a problem of this nature is to use an origin-placement strategy

where, in terms of effective availability for the rest of the network, the generated data

does not leave the producer node’s local storage. This methodology is employed by the

previously referred Peer Data Sharing [23] model.

2.1.2.2 Reliable Nodes

An alternative implementation is based on offloading data to reliable nodes on the Edge

infrastructure. As a consequence of the low entry barrier for devices to be able to collab-

orate on the Edge, any client, including ones with malicious intent, could easily connect

and tamper processing/storage procedures. This particular behavior would not be a major

concern in a cloud service context since the administrators would have full control over

where data would be stored and available, by using trusted servers. A materialization of

this particular approach is performed in Nebula [24].

The Nebula system is composed of multiple services/actors, such as the Nebula Central
(central node which acts as an entry point for other nodes to join the infrastructure), the

DataStore and ComputePool (set of edge devices that specified to the Nebula Central that

they would like to contribute with storage and processing, respectively, or both) and

the Nebula Monitor (which acts as a supervisor that monitors the performance and the

characteristics of each volunteer node).

On the other hand, it might also be crucial to provide dedicated nodes in addition

to the volunteer devices, by the infrastructure administrator, due to reasons like privacy

concerns, where owners of the generated data might only want to explicitly save them

in trusted dedicated nodes, and the necessity to save items in locations that provide

higher reliability, since volunteer-based nodes tend to be less reliable and/or have a direct

contribution to the overall churn of the system. To manage each of the data nodes, the

Nebula Central itself or an elected DataStore Master keeps track of all active devices, the

files metadata, file replication information and the data placement policy.

The proposed infrastructure also provides load balancing, with the help of the DataS-
tore Master, by logically ordering all nodes by the percentage of their occupied storage, so

that new data can be stored in a data node that has the lowest load, and locality awareness

by maintaining a data structure with the effective bandwidth between each pair of nodes.

This way, whenever a node wants to determine which other node has the highest locality

15

CHAPTER 2. STATE-OF-THE-ART

to a given data item, it will send a query to the DataStore Master and the maintained data

structure will be returned, in an ordered manner.

2.1.2.3 Infrastructure Offloading

Other frameworks have been implemented to take advantage of previously built and

deployed infrastructure nodes, by preferring to save data in those places over other

customer devices, which is the case of SDMEC Storage [25] and EdgeBuffer [21]. These

particular nodes usually have higher processing and storage capabilities and are more

reliable than regular mobile gadgets.

The authors of SDMEC propose a cooperative Mobile Edge Computing storage archi-

tecture for MEC nodes consisting of three layers: the Data Layer (the storage infrastruc-

ture containing the assets), the Control Layer (which is responsible for managing and

controlling storage resources - Storage Controller - and controlling the network requests

and access policies - Network Controller) and the Application Layer (which interacts with

the MEC services).

The system allows any node inside the radio coverage of a given MEC to store some

data of a specific size. Before starting the store process, the local MEC’s Storage Controller

verifies if has enough storage space to fully serve the node’s request. If so, the data is

successfully stored in the MEC. Inversely, if the local MEC is incapable of handling the

storage request due to a shortage in size of the available resources, it stores all possible

blocks of data locally, while the remaining blocks are transmitted to other neighboring

MEC nodes, searching from closest to farthest in order to maintain efficiency, until all

chunks are stored.

One downside of this approach resides on the possibility that all of the closest MEC

nodes could also be full and unable to process the storage request, leading to cases where

only the farthest nodes could respond to the request. As a consequence of that, chunks

of the same file would be scattered across a considerable geographical area, having a

negative impact on the performance of a get operation. To overcome this, the framework

gives the MEC node the right to perform an auto-scale request to the infrastructure and

increase the storage capacity of each MEC if the described search process surpasses a

given threshold of MECs inquired.

Additionally, EdgeBuffer [21] — introduced in Section 2.1.1 — incorporates the sense

of mobility-aware prediction to the above methodology by forcing each infrastructure

AP to assess, after a client performs a join operation, how long will it stay in the same

Basic Service Set and which will probably be the next access point it will connect to. To do

this, each access point has a private table with items for each user, containing its last AP,

the residence time in that base station and the next AP it moved towards to. Furthermore,

during the user’s transition between one location to another, the current AP will forward

the contents of its private table so the next actor will be able to estimate and transfer the

blocks that the user will demand during its expected residency duration.

16

2.1. COLLABORATIVE STORAGE IN EDGE NETWORKS

2.1.2.4 Offload to Neighbors based on Hardware Information

Another novel solution for the data placement problem, proposed by the authors of MEC-

CAS (Mobile Edge Cloud Collaborative Storage) [26], leverages the hardware informa-

tion of each neighboring node, with regard to the intrinsic characteristics of the actual

published data, to dynamically decide which of the clients will be assigned to store the

objects. This is performed with the goal of minimizing the delay of task execution and

total costs for the overall storage operation, while maximizing the utilization of local

information of nodes and system reliability.

In the MECCAS architecture, the edge network is composed of request and storage

nodes, where the former are the devices that will eventually ask the system to store

data and the latter being the clients that will only lend storage resources to the entire

infrastructure. Furthermore, nodes can be of type “request” and “storage” at the same

time.

In order to avoid distinct criteria to measure the size of a storage request, which could

be highly biased to the hardware of a device, the authors introduce a basic unit, which is

comprised of multiple elements such as the storage capacity, standby time and bandwidth,

that is made to define how much resources a storage node will need to execute a request.

With this information provided by the neighbors, the requesting node will then calculate

the optimal way of storing its data within the network.

Additionally, requesting nodes also need to consider other constraints to make their

decisions as solid as possible, namely: system reliability, defined by the failure rate of

each node, the probability that the same node will be restored in case of storage failure

and the risk associated with the request itself; power usage effectiveness which takes into

account the power usage of each storage node at idle and peak states; and the risk of nodes
withdrawal in order to avoid allocating tasks to nodes with higher probability of leaving

the network. Since these particular constraints are critical to maintaining a healthy

network state, they are constantly being updated.

2.1.2.5 Along the Routing Path

The formerly introduced popularity-based cache framework, PopPub [29], also imple-

ments a placement strategy, which differs from the rest of presented proposals, by storing

the data along the routing path of the request. Since in CCNs there are multiple content

sources for different topics, the creators discuss that by caching the objects on the nodes

along the way, between the requesting client and the source, will lead to better results due

to the fact that each particular item will only be present in one of the available content

sources in a given geographical area. Thus, independently of the user that requests the

object, the routing path will tendentially collide with the majority of routes formed from

requests of other nodes in the same area.

17

CHAPTER 2. STATE-OF-THE-ART

2.1.2.6 Discussion

Table 2.2: Data placement strategies comparison.

Local Nodes’ Storage Usage Uses Infrastructure Storage Data Placement Strategy

[23] Peer Data Sharing Origin + Distributed (metadata) No Origin-placement
[24] Nebula Distributed No Reliable Nodes + Volunteers
[25] SDMEC Storage — Yes Nearest Infrastructure Node
[21] EdgeBuffer — Yes Mobility-Aware Prediction
[26] MECCAS Distributed No Neighbors’ hardware information
[29] PopPub — Yes Along the routing path

One major takeaway from the data placement strategies comparison in Table 2.2 is

associated with the fact that fully collaborative storage systems that utilize both local

nodes’ storage plus infrastructure base stations’, in the sense that all standard actions are

available — create, delete, get and update — in both places, is still widely unexplored.

Although none of the studied systems present a similar infrastructure to what we are

trying to achieve in Section 1.3, there are certain strategies employed by the above frame-

works that could be particularly interesting to implement in our solution, such as Peer

Data Sharing’s origin-placement, Nebula’s reliable nodes and PopPub’s caching along the

routing path.

With the origin-placement, we believe that maintaining the produced data object in

the source node has multiple benefits, particularly by eradicating the need to redirect the

entirety of the data to another place inside the network and, most importantly, location-

awareness. By taking into consideration real-life interactions, the latter paradigm is

guaranteed by keeping the generated data at the origin since neighboring users will have

a high probability of being interested in receiving the content that is shared in their local

geographical area, e.g. within their range, which also minimizes the requesting messages’

travel time.

By utilizing infrastructure equipment in our proposed solution to aid and collaborate

with the surrounding edge devices, it is possible to effectively see them as “reliable nodes”

since they were provided by the network engineers in the current venue. Thus, such nodes

can be considered reliable with respect to their stability, e.g. will not shut down due to

shortage of battery and will be able to effectively handle multiple requests at the same

time, but also to their impartiality over privacy concerns regarding data that is shared

in the network. Therefore, it could be interesting to take advantage on-the-fly of these

notions and improve the network’s quality of life. One example would be to automatically

offload data that are associated with a particular location where the majority of the nodes

are leaving, meaning that the local files could be effectively lost as a consequence of the

churn, to the nearest base station in order to guarantee data longevity.

As shown in Fig. 1.3, if the current network presents a similar topology, i.e. infrastruc-

ture nodes are deployed throughout the geographic location of the venue and be directly

or indirectly connected to each other, it is our belief that exploiting the connectivity and

routing ability between those static nodes to place specific data items on the base stations

18

2.1. COLLABORATIVE STORAGE IN EDGE NETWORKS

along the routing path of requests, such as the most popular ones, could be very effective

in the long run and decrease the round-trip time of requests to those objects.

2.1.3 How/When to Transmit Data/Updates

One of the most important aspects in edge networks, when considering data updates,

is that the process should be as simple as possible without the need of a globally strict

replication and consistency scheme due to the high volatility of communication channels

used by nodes near the edge of the network. Furthermore, since edge devices are also

expected to be unpredictable with regard to their mobility and needs, updates to shared

data objects should be applied in an opportunistic manner whenever possible, with the

goal of achieving high performance while minimizing the number of messages to be

flooded through the mesh in order to achieve a consistent view of each item.

During this research, one of the challenges faced was tied to this particular topic since

most of the proposed solutions do not offer data updates at the edge or, if this action is

indeed offered by the system, it is a full overwrite function masked as an update, which

is not ideal in this type of ecosystem since the entire data needs to be sent whenever an

update action is triggered.

The following frameworks represent the most interesting approaches, found during

this research, related to the transmission of information.

HDUM [27]: one example of an edge-optimized solution is the Heuristic Data Update

Mechanism, an opportunistic data update mechanism for peer-to-peer edge networks. In

this proposal, the authors note that the network itself is partitioned in multiple distinct

geographical groups which contain various Member Nodes (MN) and at least one leader

(the Group Node, GN), and the latter is elected, among all local MNs, based on its storage

capacity, bandwidth, computing power and retention time.

Periodically, each GN broadcasts a beacon messages with a limited hop count, in

order to collect all the shared data items in its group. Thus, when a MN receives that

beacon packet it automatically determines which of the groups it belongs to. Although

this approach is conceptually and programmatically very simple to implement, it bears

major drawbacks due to the possibility of over flooding the networking with the routing

messages. One solution proposed by the authors is to maintain a holder list in each of the

nodes, which contains the set all of the neighbors that currently store a particular data

item, that needs to be updated from time to time. Nonetheless, another issue arises in

alternative modern solutions when updates are performed in distinct areas of the same

infrastructure, as a consequence of all the messages that need to be sent throughout the

entire network in order for each node to maintain a consistent view of the data that it

currently holds, resulting in a waste of bandwidth and performance detriment.

In order to minimize the number of messages transmitted, the proposed solution

combines two distinct approaches:

19

CHAPTER 2. STATE-OF-THE-ART

• Safe-time Derivation: temporal prevision of when a neighboring node will leave

its radio range and become disconnected, in order to schedule the best time (safe
time) to update and verify the consistency of its data with respect to the data stored

in the disconnecting node. To achieve this, each node exchanges the location and

speed/GPS information of itself with its neighbor nodes when it joins the network.

• Relative Ability Filter: best-effort estimate of a given node’s stability (relative abil-
ity), using the gathered information such as its network connectivity, access fre-

quency to a specific data item by that node and its residual battery capacity (this

last one was considered to be the most important by the authors). That is, if the

relative ability of a given node is below a certain threshold (meaning that the device

might be leaving soon due to its battery running out, or it cannot spread data effi-

ciently or it scarcely accesses the data item, so it is not urgent to update its local

copy) it will not receive any data updates.

By combining the above estimates, HDUM is able to optimize the update process by

only choosing to execute it if it indeed is worth the network overloading and by choosing

the most convenient time to perform the action. This proposal is particularly interesting

due to its novelty, but also because it fully leverages the mobility & context-awareness

characteristics of edge devices.

REAP [28]: on the other hand, REAP is another reliable and efficient ad-hoc network

protocol that leverages the Publish/Subscribe mechanism to notify edge nodes on data

submissions through means of delta compression. When a REAP producer transmits a

new message to the network, it starts by checking its cache containing previously pub-

lished documents. Then, the MultiDiff algorithm proposed by the authors identifies

matching character sequences between the stored documents and the new one, and, by

choosing the best subset of documents for the matching algorithm, creates the smallest

patch possible that needs to be applied on those documents in order to generate the one

that was recently created. If no relevant character sequences were found, the document

is transmitted as a whole after applying a zlib [34] compression pass.

When a patch is successfully generated, meaning that it references one or more doc-

uments as well as the new data content, and received by a subscriber, due to the out-of-

order nature of edge networks the client may need to wait for a few moments if he/she

does not have some of the documents referenced in the patch. Thus, in this case, the

patch will need to be momentarily stored on the side until those absent files are received

by the user for the patch to be retried.

The key mechanism in the REAP protocol lies in the decision of how many and which

documents should be cached in order to be referred inside patch messages. The authors

propose two distinct approaches: a time-bounded or size-bounded window. In the first

specification, the producer’s MultiDiff instance will attempt to use the documents sent

within the last k seconds to calculate a patch. For instance, if a window of 60 seconds

20

2.1. COLLABORATIVE STORAGE IN EDGE NETWORKS

is specified, a full document will only need to be sent every minute. Therefore, if a new

document is published every second, only the first packet will contain the full bytes and

the next 59 will contain small patches. On the other hand, when using the latter approach,

the producer will only be able to utilize the last n messages sent for the diff. Nonetheless,

independently of the implementation used, a small number of bytes are associated with

each packet to inform the consumers when to flush their document caches.

We considered this specification to be worth studying due to its similarity with our

proposed solution, specifically the Publish/Subscribe module. The fact that this frame-

work utilizes deltas, that refer to previously sent files, in order to build a newly created

object is a rather compelling approach to greatly decrease messages size. In spite of this,

we recognize that the authors’ approach is highly vulnerable to packet loss and would

not perform as well on storage networks where the published content structure and spec-

ification is widely disparate. By taking into account the latter, the algorithm would not

be able to create patches, falling back to a compressed whole file transfer in most of the

cases, which would be inefficient.

CoPro-CoCache [30] is another implementation of a cloud service at the edge, materi-

alized as a framework that allows infrastructure nodes to collaborate on video streaming

caching and processing. The proposed solution is based on a single MEC server in each

location that acts as a caching and transcoding node. Furthermore, the servers keep track

of the most popular videos and each of them is evenly distributed among all the APs

in a predetermined bitrate quality (tending towards higher bitrates). However, when

a user asks one of those videos but in a lower quality, whether it is preferable due to

network congestion, low battery percentage or diminished processing capabilities, the

associated MEC will be responsible for applying an on-the-fly transcoding function to

respond with the desired quality. The node is able to do this by checking if its local

storage contains the requested video or by asking its neighboring MEC servers, without

the need to communicate with the cloud infrastructure and obtain a new video file for

the given quality.

One of the major takeaways from the CoPro-CoCache specification that we acknowl-

edge as an asset to our system lies on the idea of being able to adaptively create smaller

representations, in size an quality, of a data item. Furthermore, we could implement an

iteration of this proposal in our solution to place specific quality-diminished data items

(e.g. based on popularity) inside each infrastructure AP. This approach would be able to

greatly increase system responsiveness on requests for those particular objects, while, at

the same time, having a mechanism that would eventually send the object in its original

quality to the user, in a later, more opportunistic, time frame.

21

CHAPTER 2. STATE-OF-THE-ART

2.2 Final Remarks

Throughout this chapter we performed a survey related to state-of-the-art systems and

implementations that we consider relevant for the development of our proposed solution.

With this research, we were able to gather insights on solutions for novel obstacles related

to Edge networks, a broad area that still remains fully unexplored. In the next chapter we

will introduce another state-of-the-art edge framework, Thyme, which will be used as

the foundation for our specification. Then, in Chapter 4, we will present a detailed view

of the framework that we are proposing which aims to solve the problems introduced in

Section 1.2.

22

C
h
a
p
t
e
r

3
Thyme

In this chapter we present the Thyme system, starting with a technical

overview in Section 3.1, followed by in-depth description of each of its fea-

tures, like the publishing of data, replication procedures, subscriptions and

data retrieval, mobility-awareness and mitigations in Sections 3.2, 3.3, 3.4 and

3.5 respectively.

3.1 Overview

Thyme [16–18] is a topic-based time-aware publish/subscribe system, tailored specifi-

cally for mobile edge networks, which forms a persistent collaborative peer-to-peer stor-

age ecosystem. In this scheme, users are able to specify, on their subscriptions, whether

they wish to receive items that were published in the past, data that is currently being

created or be notified of future topic occurrences. The authors note that Thyme is the

first P/S interface with support for subscriptions within a time scope that can refer to the

past.

As with regular publish/subscribe systems, this novel T-P/S approach also offers the

publish, subscribe, subscription cancellation and previously published data retrieval

operations. Furthermore, since Thyme considers time to be a first order dimension,

additional custom operations were added to this framework, such as the ability for a

node to unpublish a previously shared data, effectively deleting it from the shared storage,

since it would not make sense for a future node to able to retrieve a data from the past that

was deleted. On the other hand, modern P/S systems offer limited subscribe functionality

capabilities by only allowing each client to state a single topic keyword per subscription,

whereas Thyme supports a more complex set of features by allowing logic formulas with

topics/keywords as literals.

23

CHAPTER 3. THYME

In Thyme, nodes are considered to be functionally symmetric, sharing the same re-

sponsibilities and having no particular roles, meaning that there are no centralized or

specialized components, and each node can be a publisher, a subscriber, or both. More-

over, in this approach, the geographical space where the system lies is logically divided

into multiples cells with equal size, where all nodes inside a given cell collaborate with

each other to form a virtual node. To fully take advantage of this network layout, the

framework also uses a geographic hash table (GHT) to check which logical cell is respon-

sible for managing and storing the published objects’ metadata for a given tag.

This framework was developed in the context of the “Hyrax: Crowd-Sourcing mobile
devices to develop edge cloud” project [1] and acts as a foundation for the purpose of this

thesis.

3.2 Publishing Data

For each data object that is shared by the users in the network a new metadata item has

to be created, associated to it and transmitted by the author, which consists in a tuple

〈idobj,T , s, ts
pub, idowner〉 where:

• idobj acts as the object’s identifier;

• T is a set of tags or keywords related to the object, e.g., hashtags used in social

networks;

• s is a summarized representation of the shared object, e.g., a thumbnail of an image

in the case of a photo sharing network;

• tspub is the object’s publication timestamp to guarantee temporal perception, used

to bootstrap the time-aware functionality of the developed solution;

• idowner is the publisher’s node identifier.

When a publish operation is executed, the owner’s Thyme instance leverages the

information provided by the GHT and, for each keyword contained in T , sends the meta-

data information to the cell that is mapped by the hash of each tag and every single one of

its inner nodes will permanently store the given tuple. On the other hand, the actual data

object stays stored in the owner’s node, ensuring that only the metadata is sent through

the network, saving bandwidth and overall network resources since the metadata tends

to be much smaller than its data counterpart. Figure 3.1 illustrates the process of the

usage of the GHT as well as the selection of the geographical areas which will receive the

data’s metadata information given the tags chosen by the owner, in this case “beach” and

“summer”.

One shortcoming of the approached solution in Thyme is that objects are read-only,

meaning that they can never be edited after the original publish operations.

24

3.3. REPLICATION

hash(“beach”)

hash(“summer”)

publish(, “beach.jpg”,

<“beach”, “summer”>)
13

5

2
hash(“beach”)

subscribe((“sun” & “sand”) | “beach”,

tsstart, tsend)

hash(“sun”)

Figure 3.1: Example of Thyme’s publish and subscribe operations. The tags’ hashing
determines the cells responsible for managing the object metadata (cells 2 and 5) and
the subscription (cells 2 and 13). If a subscription has overlapping tags with a publica-
tion (and vice versa) it will also have overlapping (responsible) cells, guaranteeing the
matching and sending of notifications to the subscriber. Adapted from [17].

3.3 Replication

This framework offers two types of replication mechanisms to ensure that data is not

easily lost, caused by the volatility of edge peer-to-peer networks:

• Active Replication leverages the GHT’s generated clusters to replicated objects

within the network. Upon a publish operation, the owner of the data disseminates

the item to its peers inside the same geographical cell. By doing this, every node that

received the data this way should be able to reply to data requests for that particular

object, effectively maximizing the network’s tolerance to churn, especially if the

publishers leave;

• Passive Replication, on the other hand, enables nodes that are outside of the geo-

graphical fence of the original data publisher to replicate the item from the moment

they download it. This allows the items to be scattered across the network, increas-

ing data availability and performance since a node will ask the closest replicating

device to retrieve a particular data.

In order to fully take advantage of the implemented replication methods, Thyme

adds a new field to the metadata information specified in 3.2, the replication list Lrep,

which contains the set of all nodes, independently of where they reside in the network,

that are currently in possession of the data. As a consequence of this, the metadata is now

composed by 〈idobj,T , s, ts
pub, idowner,Lrep〉, where Lrep is a list of pairs 〈idnode, cellnode〉.

3.4 Subscription & Data Retrieval

To perform a subscription operation, the requesting node needs to send a message to the

network containing the subscription metadata in the form of 〈idsub,q, ts
s, tse, idowner, cellowner〉,

where:

• idsub is the subscription identifier;

25

CHAPTER 3. THYME

• q represents the query’s logic formula which is allowed to contain keyword conjunc-

tions and disjunctions;

• tss is the initial timestamp of published data to be retrieved, 0 if the users want to

get all data from the beginning of the system related to the specified query;

• tse contains the timestamp’s upper of published data to be retrieved,∞ if the user

wishes to receive all future data matching the query;

• idowner represents the requesting node identifier;

• cellowner holds the identifier of the logical cell where the requesting node is located.

Furthermore, the client’s Thyme instance starts by parsing the specified query in the

subscription message with the intent of verifying which of the network cells will receive

the subscription metadata, using the GHT information, while trying to minimize the

number of cells needed to process the subscription — which has a positive impact on the

total amount of packets needed to be sent throughout the entire network.

After these steps are completed, the messages are then sent to selected cells’ nodes

and, from that moment on, they will be responsible for storing and maintaining the list

of active subscription requests and notifying the requesting nodes whenever a new data

item is published that matches the specified parameters, particularly the tags, tss and

tse. Thus, when the notification messages containing the object’s metadata are triggered,

routed to the recipient clients and the users are interested in obtaining the item, each

node will transmit a data retrieval message to the closest replica in the Lrep field (as

depicted in Fig. 3.2). If, after a given threshold, no reply message arrives the requesting

node, possibly due to the fact that the node replicating the object went offline or left the

network, the client will be in charge of iterating the rest of the Lrep list, from the closest

to the farthest replicas, until the data is successfully retrieved.

Moreover, after receiving the item, the current node will contribute to the passive

replication for that particular object.

3.5 Mobility-Awareness & Mitigation

Since edge nodes are expected to have the ability to freely and spontaneously move inside

the geographical space of the network, Thyme is built to embrace this and mitigate

possible issues that could be caused by the mobile characteristics of the clients’ nodes.

To achieve this, whenever a device notices that it starts to move in a considerable way,

Thyme broadcasts a warning message to its cell’s peers stating that it is no longer capable

of aiding the network at the moment, meaning that it will not be chosen to process client

requests but will be able to continue receiving local update messages.

On the other hand, when the framework notices that the user is slowing down, transi-

tioning to a stationary state, Thyme communicates with the neighboring nodes to return

26

3.6. WORLDS

 A B C

1

2

3

 Replicas do
objeto Nó subscritor Célula do no

publicador

 Célula

responsável
 pelos metadados

Notificação

Obtenção do
objeto

Object
Replicas

Subscriber
Node

Object
RetrievalNotification

Node
Responsible
for Metadata

Publisher
Node’s Cell

Cell Nodes
Responsible
for Metadata

Figure 3.2: Thyme’s subscription notification & data retrieval process. Adapted from
[18].

to an available and working state. If the client remained in the same cell, no housekeep-

ing is necessary and it is ready to contribute to the network. Otherwise, the transitionary

node has to perform additional steps in order to harmonize its own and the entire net-

work state. First, it needs to update its own state with the state of the entire cell in order

to be able to process the cell’s incoming requests. To do this, it communicates with one

of its neighbors and asks its whole state.

Secondly, if the moving node is passively replicating at least one data object, it is

necessary to inform the respective cells that index the metadata information of the items

in order for the nodes to update the Lrep field, since the replica location has changed.

Then, for each active subscription, Thyme will also notify the cells that are responsi-

ble for processing the subscriptions and notifying the user on new submissions, in order

for the inner devices to update their local state with the most recent location. This means

that subscription notifications will not be transmitted or get lost in the previous location.

Finally, in case the current node has previously performed a publish operation on the

network, the framework takes the initiative to transmit management messages to all of the

cells that index and maintain the items’ metadata information with the latest publisher

location, also updating the replica locations as a byproduct of that. Consequently, the

node will then be considered a passive replica of the data.

Those clients that decide to leave the geographical space of the network will stop

receiving messages and be disconnected from the system.

3.6 Worlds

The authors of Thyme define “World” as the geographical space where the network

operates, which is mapped by the GHT. Furthermore, the framework also allows multiple

worlds to coexist in the same, or overlapping, areas without any kind of issues regarding

27

CHAPTER 3. THYME

 A B C D E

1

2

3

4

5

Figure 3.3: Overlapping Thyme Worlds. Adapted from [18].

synchronization and shared resources, although users can only be part of one world at a

time.

When activated, Thyme allows the client to join an ongoing world or create a new

one from scratch. To join one, the device first listens to the packets that are transmitted

via the network (i.e. “hello” messages), for a predetermined amount of time, to check if

there are active worlds to join. If no worlds were found, or if the user intends to start

one, multiple parameters have to be specified, such as its geographical area, including

the central point, its name for others to search and join, and how long should the world

be active. At the same time, a unique identifier is also generated and the size of each

cell is calculated based on the communication protocol that will be used inside the world

(Wi-Fi, Bluetooth, etc).

In order to fully take advantage of overlapping networks, nodes from different worlds

that are currently located in the same geographical space can collaborate to increase

performance and availability. Thus, those nodes will be able to store objects and metadata

from both worlds but are only allowed to reply to data requests from nodes that reside

where the requested item lies (Fig. 3.3).

28

C
h
a
p
t
e
r

4
Thyme-Infrastructure

In this chapter we will present, in detail, our proposed solution, Thyme-

Infrastructure (subsequently referred as Thyme-Infra), including its

model definition, architecture as well as a description of its core features. Ad-

ditionally, some of the most relevant implementation details will be outlined.

Throughout this chapter, we will interchangeably use the terms infrastruc-

ture node, Thyme-Infra node, base station (BS) and access point (AP) to

denote an infrastructure hardware component that is running an instance of

Thyme-Infrastructure.

4.1 General Overview

The solution that we have developed, in the context of this thesis, is a fully collaborative

storage edge network infrastructure, built on top of the work developed for the Thyme

system, allowing any mobile node to create, retrieve and delete any object inside the

network without the need of an active cloud service to manage interactions and store

data. Furthermore, we are exploiting the use of stationary nodes whenever possible or

available, namely venues’ base stations, that are located near the mobile clients. These

base stations are deployed in a fully or partially connected mesh-like topology, through

wired means (Fig. 1.3), and are able to aid the system in terms of storage, processing

and routing. Therefore, by having infrastructure nodes take an active role in the edge

network, it is possible for clients to communicate and interact with other nodes in a

geographically distant place, although in the same venue, where using wireless off-the-

shelf communication means, e.g. Wi-Fi Direct and Bluetooth, would be underperforming

or even impossible due to range limitations. Thus, we are proposing an overhaul to

the Thyme’s mobile system in order to interact and utilize the resources within the

29

CHAPTER 4. THYME-INFRASTRUCTURE

infrastructure as well as the creation of a whole new software stack built in Java that will

run on those infrastructure nodes, namely Thyme-Infrastructure, thus culminating

in an intricate two-layered system. While both of these components make up the Thyme

ecosystem, we will further call Thyme to describe the mobile portion of the system and

Thyme-Infra as the infrastructure side, in order to facilitate the distinction between

those parties.

Although we are making use of infrastructure services, it is not our intention to over-

whelm them with data storage requests nor offloading the entirety of data synchronization

process to them, effectively transforming those nodes in cloud-like devices. As stated

throughout the rest of this chapter, our goal is to utilize the available wired links between

local basic service sets to provide the least amount of metadata and data in order to serve

subscriptions from nodes in distinct areas with relevant information.

4.2 System Model

Adding to the Thyme system model [17], we consider a classical asynchronous model

comprised of Π = {n1, . . . ,nk} portable nodes, with no mobility restrictions, other than

those imposed by the venue they are in, and the natural speed limits of humans. We do

not assume any specific radio technology. Nodes communicate by exchanging messages

through a wireless medium (e.g., Bluetooth, Wi-Fi ad-hoc, Wi-Fi Direct), and have no

access to any form of shared memory. Nonetheless, nodes should be able to establish

communication channels with (all) their neighbors. We also consider the classical crash-

stop failure model, in which nodes can fail by crashing but do not behave maliciously.

Likewise, the system will incorporate γ = {i1, . . . , im} infrastructure nodes, ideally

connected through wired means among themselves, wherein each one is responsible for

managing, overlapping or disjoint, basic service sets in different areas. These nodes

are also able to communicate with cloud services or external databases for long-term

persistent storage or analytics purposes, if desired by the infrastructure engineer.

Published object data is considered immutable. Due to the unreliable nature of wire-

less communication mediums, our system notifies subscribers of all relevant published

data as completely and faithfully as possible, i.e., missing some notifications is permitted

because applications are not expected to be mission-critical. We also assume nodes’ clocks

to be synchronized (with a negligible skew). At the same time, mobile nodes are able to

publish data to/subscribe to items from other areas of the venue, by communicating with

the infrastructure nodes in order to reach distant BSS’s.

30

4.3. SYSTEM ARCHITECTURE

Application

Thyme Interface

Time-Aware
Publish/Subscribe

Storage
Replication

Manager
Grid

Manager
Cell Data

DisseminatorLocalization

Network Layer

Mobile Nodes

Routing

Geographical Logical
Infrastructure

Link Layer

Bluetooth Wi-Fi Wi-Fi Direct

Thyme

Services

Connectivity

NetworkNetwork

Outside the scope of this dissertation Within the scope of this dissertation (edited/enhanced already developed component)
Within the scope of this dissertation (created component from scratch)

Figure 4.1: Thyme’s Updated Architecture. Adapted from [18].

4.3 System Architecture

4.3.1 Thyme

In this section, we present and describe the augmented Thyme architectural structure

(Fig. 4.1), based on the authors’ proposal in [18], focusing on the layers that were recently

created or enhanced during the context of this thesis. The current iteration of Thyme

contains the following layers:

Application. Thyme was developed to be a mobile application-agnostic framework

with the goal of offering a generic service at the Edge to power a variety of use cases.

Therefore, Thyme can be directly imported into any kind of Android 5.0+ application’s

software stack.

In [18], the authors created a photo sharing application to showcase not only what

the framework can do but also as a way of testing Thyme’s performance in a real-world

scenario (Section 5.1). In this dissertation, we performed some slight changes to the

backend of application itself, such as its module dependencies and configurations file, in

order to accommodate for the addition of Thyme-Infra nodes and its interactions.

Time-Aware Publish/Subscribe. This module provides the Time-Aware Publish/Sub-

scribe interface to the application in order for the user to be able to persistently share

content between devices. As defined in [18], through this P/S layer it is possible to spec-

ify a time interval in which subscriptions will be active, whether that interval is in the

past, present or future. Furthermore, this layer is responsible for managing the client’s

subscription and publish requests as well as all the notifications associated with them.

31

CHAPTER 4. THYME-INFRASTRUCTURE

Within the context of this dissertation, this architectural layer suffered an enormous

amount of changes, enhancements, bug fixes and additions in order to also take into

account the utilization of resources from the infrastructure layer during the execution of

the P/S operations.

Storage. Thyme fuses the Publish/Subscribe infrastructure with the actual storage

system by using the virtual nodes to store published content and subscriptions, while

cells act as virtual P/S brokers. Although minimally, this layer was updated throughout

the course of this thesis in order to allow the transmission of download operations from

the mobile nodes to the infrastructure, and vice-versa. These processes will be outlined

in greater detail in Sections 4.8.2 and 4.9.7.1, respectively.

Grid Manager. This module is responsible for dividing and managing the geographical

space divided by cells, which act as virtual nodes representing every physical node that

resides within the same geographical space. However, with our proposal of “Logical Cells”

(Section 4.4.1), we no longer define cells as a strict geographical boundary in which nodes

must lie within to be considered active members of that cell. Thus, this component was

heavily updated to comply with the newly introduced paradigm.

Cell Data Disseminator. This newly introduced component is responsible for keeping

track of the subscriptions and downloads arriving at the device’s associated cell and peri-

odically broadcasting the subscription needs and popularity information to the nearest

infrastructure node. Furthermore, the Cell Data Disseminator will also execute a co-

ordination scheme with the rest of the cell nodes in order to elect only one of them to

effectively disseminate this knowledge to the Thyme-Infra instance, avoiding the du-

plication of transmissions. This component, replication scheme and associated data will

be described in Section 4.5.

Network Layer. This super-layer was created to support the asynchronous communica-

tion between Thyme instances in order to establish the P/S storage system as well as the

discovery process of neighboring nodes through the broadcast of hello messages. Initially,

in the first iteration of Thyme [18], this layer was simply composed of the mobile nodes

networking layer for peer-to-peer interactions. However, as the goal of this dissertation is

to augment the mobile framework by making use of previously deployed infrastructure

resources, there was a need to update this layer and create the respective sublayers for

the mobile and infrastructure interactions.

Mobile Nodes Network Layer. As previously described, the Mobile Nodes Network

layer allows the communication between mobile devices running Thyme in their front-

most application. This component was proposed [35] and fully developed by a third-

party group associated with our research project, “Hyrax: Crowd-Sourcing mobile devices

32

4.3. SYSTEM ARCHITECTURE

to develop edge cloud.” [1], and was imported into Thyme to act as its communication

foundation. Furthermore, this layer also offers a custom node identification service that

uses logical addresses, instead of more classical approaches such as a TCP/IP address for

each device. This topic will be discussed in Section 4.9.5.

Nonetheless, this component did not receive any updates since the last iteration of

Thyme.

Routing. The Routing layer was developed with the goal of managing the trans-

mission of messages from one point of the system to another, by choosing the most

appropriate dissemination route. In the previous version of Thyme, this layer was sim-

ply composed of a Geographical Routing component but, as what happened to the Grid

Manager layer, the introduction of the “Logic Cells” paradigm led to the segmentation of

this layer into two distinct modes: the previously created Geographical Routing and the

recently implemented Logical Routing. Furthermore, in order to use this module within

any of the components of the system, independently of the mode it is currently running

on, we fundamentally changed the structure of this service by creating an abstract com-

ponent, Routing, in which GeographicalRouting and LogicalRouting both descend from in

order to make its utilization as transparent as possible to all other system components.

• Geographical Routing: As described in Chapter 3, the network’s physical space

is divided into a grid and all nodes within the geographic boundaries of a cell

collaboratively act as a virtual node. Messages are addressed to geographic locations,

thus routed to the cell that contains the location of the message destination through

a multi-hopping routing algorithm.

• Logical Routing: On the other hand, the Logical Routing subcomponent no longer

needs to create a multi-hopping dissemination strategy since cells are no longer de-

fined by a geographical “fence” and each node can contribute to any of the available

cells independently of its physical location. Therefore, by using the infrastructure

node’s Wi-Fi communication means, it is possible to send a message from one node

directly to another, without any intermediate routing.

Infrastructure Network Layer. This component, created especially for the latest ver-

sion of Thyme, allows the communication with the nearest infrastructure node running

an instance of Thyme-Infra, if present. By utilizing the resources from the infrastruc-

ture, the Publish/Subscribe paradigm implemented by Thyme needed to be augmented

to also take into consideration this new type of resources. Thus, components like the T-

P/S heavily rely on this network layer to transmit its P/S operations to the infrastructure.

33

CHAPTER 4. THYME-INFRASTRUCTURE

Network Layer

Mobile Nodes Infrastructure

Infrastructure Time-Aware Publish/Subscribe

Client Server

Link Layer
Wi-Fi Wired

Routing

Prefetch Cache

Storage
Local Popularity

Cache Global Cache
Mobile Address

Translation Store

Worlds
Manager

Figure 4.2: Thyme-Infrastructure Architecture.

4.3.2 Thyme-Infrastructure

On the other hand, the proposed framework (Fig. 4.2), Thyme-Infra, to be used on top

of previously deployed infrastructure Base Stations is composed of the following layers:

Infrastructure Time-Aware Publish/Subscribe. This layer is the materialization of our

proposal to bring Thyme’s Time-Aware Publish/Subscribe component to the infrastruc-

ture, by leveraging the computational, storage and energetic capacity of these type of

resources for this new P/S which are much more powerful when compared to the mo-

bile nodes. At its core, the Infrastructure T-P/S layer will process regular subscription,

download and unpublish operations from its clients, just like Thyme would (workflows

described in Section 4.8). However, our novel implementation for the Publish/Subscribe

paradigm at the infrastructure uses a proactive approach to eventually serve relevant

items to the clients’ subscriptions by probing the entire infrastructure layer: the Thyme-

Infra node will keep track of what its clients are currently subscribing to and periodi-

cally disseminate this trend to all other infrastructure nodes with the goal of receiving

items that are considered popular within their users, but still relevant to the current

node’s local users interests, in the near future. By doing so, we augment the amount of

information any user can access to by expand a subscription’s range to the entire system.

We call this entire process “Global Publish/Subscribe” and will be detailed in Section 4.6.

The functionalities of the Infrastructure Time-Aware Publish/Subscribe component

are logically divided into two distinct pieces: the client and the server. The Infra T-P/S

Client module is responsible for receiving the subscription needs from the mobile nodes

connected to the current infrastructure node and broadcasting those needs to all other

infrastructure nodes in the system. Contrarily, the Server module is responsible for reply-

ing to regular subscription requests from local nodes as well as download operations from

both local clients as well as other nodes from the infrastructure. Furthermore, in order

to serve those requests, this component is also responsible for deciding which local items

are going to be replicated in its local storage. Finally, the Server will process incoming

34

4.3. SYSTEM ARCHITECTURE

subscription needs requests, originated from other infrastructure nodes’ respective T-P/S

Client layers, and reply to them with relevant local popular items to be consumed.

Worlds Manager. Unlike Thyme’s core world discovery process, which involves users

communicating with their peers to know which worlds are currently running, in Thyme-

Infra mobile nodes need to inquire with the nearest infrastructure node to obtain the

list of available Thyme worlds. This layer is responsible for maintaining a global view

of the system, in terms of the active worlds, as well as serving incoming “world probe”

messages from the users. Furthermore, this component will need to notify every other

Thyme-Infra node when one of its local clients decide to create a world that will be

available system-wide. This layer and its workflow will be described in depth in Section

4.4.2.

Storage. The Storage service intent is to maintain and provide an interface to the mul-

tiple Thyme-Infra underlying Publish/Subscribe caches, used for different stages/in-

teractions, to all of the system’s components, whether to perform simple lookups or to

edit their contents altogether. Since these caches will be used to augment and support

Thyme’s T-P/S paradigm, as well as their associated data types, in the infrastructure,

each of them was implemented to be capable of storing a predetermined amount of both

metadata and data entries. The Storage layer contains the following caches:

• Local Popularity Cache: Cache containing the most popular items within the AP’s
BSS for easier access, allowing the local clients to obtain those objects quickly and

directly from the infrastructure instead of having to inquire their neighbors for a

replica. This cache will also be used to serve the subscription needs from remote

clients (Section 4.6, Step 1 and 2);

• Prefetch Cache: This cache has the purpose of storing data and metadata entries

from objects originated from remote clients. Since this cache will periodically and

constantly receive data from the rest of the system, its goal is to allow the current

Thyme-Infra node’s local clients to discover and obtain items from other parts of

the system (Section 4.6, Step 3);

• Global Cache: Cache used to store entries that were initially inside the Prefetch
Cache and were later considered relevant (i.e. specifically downloaded) by at least

one of the infrastructure node’s mobile clients. As described, the contents of the

Prefetch Cache are expected to have a considerable turnover rate. Thus, moving

objects from the former cache, that were deemed relevant, into the Global Cache
guarantees that the specified data is stored in a more persistent way for later access

and discovery from other users (Section 4.6, Step 3).

Moreover, the inner logical structure of the caches themselves will be outlined in

Section 4.7.

35

CHAPTER 4. THYME-INFRASTRUCTURE

Mobile Address Translation Store. As previously stated, Thyme’s Mobile Nodes Net-

work layer utilizes a custom address definition which is used to identify each of the

participating mobile nodes, instead of a more classical approach such as a TCP/IP ad-

dress. However, that particular networking layer was developed in the context of the

Hyrax research project [1] with only mobile devices in mind, therefore we were not able

to utilize it within Thyme-Infra which meant using a distinct approach for the com-

munication layer. Thus, the Mobile Address Translation Store has the single purpose of

translating those logical addresses into physical ones that the infrastructure is able to

comprehend and use when trying to establish a communication channel with a mobile

node. This component will be described in greater detail in Section 4.9.5.

Network Layer. Just like Thyme, Thyme-Infra’s Network layer is divided into two

parts, the Mobile Nodes’ and the Infrastructure’s, and has the goal of allowing not only the

infrastructure nodes to communicate wirelessly with its mobile clients and through wired

links with other base stations but to also process incoming messages from those sources.

In order to achieve a system that is able to process multiple requests concurrently, each

Network layer’s subcomponents were developed with multithreading in mind. Further-

more, the infrastructure developer is able to specify the concurrency level of the Mobile

Nodes and Infrastructure layer independently, in order to best fit to its system’s needs

(Section 4.9.2).

This component was developed to be a general-purpose networking layer with the

goal of receiving and transmitting messages of any kind and format, avoiding hard-coded

checks and parsing mechanisms, by having each system component register a listener,

for every type of message that it is interested in receiving, which will be called when a

message matching the listener’s associated identifier arrives at the infrastructure. Thus,

when a message is received by Thyme-Infra, the Network layer starts by reading all

the data, parses the first header bytes which indicate the message’s type and then, using

this information, searches all active listeners for that type and calls them with the raw

message bytes and the identifier as parameters. Therefore, the parsing and repackaging

procedure to convert the raw bytes into a concrete message object is delegated to the

respective component that registered the listener.

Routing. Depending on which of the components that call it, whether it is Mobile Nodes

Network Layer or the Infrastructure Network layer, the Routing layer will execute custom

algorithms to choose the best way to communicate with a specific mobile node — whether

directly or indirectly — or a cell as whole (processes described in greater detail in Section

4.9.7), and wired routing mechanisms to propagate infrastructure packets to the correct

access point, respectively.

Link Layer. The layer responsible for receiving the messages generated by the Network,

and subsequently the Routing Layer, converting them into the correct packet definition

36

4.3. SYSTEM ARCHITECTURE

Figure 4.3: A symmetrical system where each infrastructure node runs its own indepen-
dent Thyme-Infra instance.

depending on the requested type of communication protocol, such as Wi-Fi and wired,

and flushing/forwarding to the specified destination. When communicating with other

infrastructure nodes it will use the wired communication protocol, while using the Wi-Fi

protocol when transmitting messages to the mobile clients.

Finally, just like the Thyme scheme, each infrastructure node will run its own inde-

pendent Thyme-Infra instance, without any form of direct access to a shared storage

or computational unit, or even a central coordination system (Fig. 4.3).

4.3.3 Interaction Between Thyme-Infra Components

As seen in Fig. 4.4, there is an entire web of interconnections between the Thyme-Infra

layers that allows the whole system to work in coordination.

Starting with the core component of the Thyme-Infra system, the Time-Aware

Publish/Subscribe layer is responsible for receiving and processing subscription needs,

subscriptions, downloads and unpublish messages from the users as well as messages

from other Thyme-Infra nodes, which leads to a direct dependency of the Network to

perform all of this I/O operations.

Regarding Time-Aware Publish/Subscribe’s Client sublayer, the utilization of the

Storage’s Local Popularity Cache is directly tied with its dissemination of its clients sub-

scription needs trend to all other infrastructure nodes. It also communicates with the

Server counterpart to pass on other relevant information sent from its mobile users. On

the other hand, the Server submodule also interacts with the Storage layer in a more

complete way, when compared to the module’s Client: stores, looks up and updates its

P/S caches based on the clients’ needs during multiple stages of the system, effectively

maintaining and managing the Storage component.

As described previously, the Thyme-Infra Network layer was created to be a general-

purpose component and therefore does not contribute to the maintenance and population

37

CHAPTER 4. THYME-INFRASTRUCTURE

<<component>>
Time-Aware Publish/Subscribe

Client Server

<<component>>
Storage

Local
Popularity

Cache

Prefetch
Cache

Global
Cache

<<component>>
Worlds Manager

<<component>>
Mobile Address
Translation Store

<<component>>
Network Layer

Mobile
Nodes

Infrastructure

<<component>>
Routing

<<component>>
Link Layer

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>
<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 4.4: Interactions between the Thyme-Infrastructure modules.

of the Mobile Address Translation Store since it does not know how to parse incoming

messages and extract the logical address information relevant to the translation store,

thus the population of the latter component needs to be delegated to other components

that know how to perform those activities. Since both the Client and Server submodules

of the T-P/S layer are expected to receive a considerable amount of messages from the

mobile nodes throughout the execution of the system, both of these parties will be re-

sposible for communicate directly with the Mobile Address Translation Store to store the

messages’ origin logical address and the associated physical address.

In order to receive “world probe” messages from the local mobile clients and reply to

them with the list of active world in the system, the Worlds Manager component directly

uses of the Network layer to execute this request/reply workflow. In addition, just like

the T-P/S layer, this layer also communicates with the Mobile Address Translation Store

whenever it receives a message from a mobile node with the goal of contributing to the

address store by caching the node’s logical and physical address.

The Network component is composed of two distinct submodules, Mobile Nodes

Network and Infrastructure Network, and depending on the communication workflow,

transmission initiated by the infrastructure itself or a reply to an incoming message, this

layer will interact with the Routing module in order to perform the appropriate routing

mechanism or directly communicate with the Link layer to flush the reply to the already

38

4.4. A REVISION OF THYME’S CORE FEATURES

open communication channel, respectively.

Consequently, the Routing module will outline the appropriate routing mechanism

depending on which of the Network submodule that called it. Therefore, if the Infrastruc-

ture Network module interacted with the Routing layer, the latter will compute which

is the correct infrastructure node destination address and pass this knowledge on to the

Link layer to transmit the packet. Alternatively, if the Mobile Nodes Network sublayer

was the one that initiated the routing interaction, this module will lookup the contents of

the Mobile Address Translation Store, that were populated by all the other components

that use it, to be able to translate the logical address specified by the Network ’s destina-

tion address into a physical one that the bottom layer, namely the Routing layer, is able

to comprehend and process the transmission.

4.4 A Revision of Thyme’s Core Features

With the introduction of a whole new set of powerful resources, namely infrastructure

nodes, there was a need to implement some changes to the Thyme specification in order

to accommodate to the new paradigm. Among all alterations made to the Thyme’s core

functionality, the most radical ones where: transforming the geographical-based cells

grid to a logical layout, the creation and discovery of worlds and the enhancement to the

MetaData object used throughout the entire system.

4.4.1 Logical Cells

A fundamental property of Thyme is the fact that it makes use of a geographical division

system, in the form of a grid, composed of multiple disjoint and distinct cells. In order

to achieve and manage this distribution, Thyme uses the concept of a Geographic Hash
Table. For the context of the system this approach is extremely advantageous, considering

the range limitations of peer-to-peer communication means, since the guarantee that the

nodes within the same cell are relatively close to each other ensures, with a certain degree

of confidence, the successful communication between these parties in order to allow a

correct and persistent maintenance of each cell’s indexed data. For requests addressed

outside the scope of the current node’s cell, Thyme uses the GHT to calculate a multi-

hopping strategy from the origin to the destination cell.

However, this approach becomes inappropriate with the introduction of the infras-

tructure layer, which in turn, provides the Wi-Fi interface to its mobile nodes. Thus,

independently of the device location within the access point’s coverage area, the commu-

nication cost of point-to-point interactions using this technology will tend to a negligible

value. Consequently, the previously employed geographical grid, and the respective geo-

graphic routing algorithms and mechanisms, was removed and the concept of a Logical

Grid and corresponding Logic Hash Table (LHT) were introduced: the cells, and their

nodes, are no longer defined by strict geographic borders but through a UUID [36] that

39

CHAPTER 4. THYME-INFRASTRUCTURE

Cell #1 Cell #2 Cell #3 Cell #4

Figure 4.5: Conversion from a Geographic-based cells layout of Thyme to the newly
introduced Logical cells in Thyme-Infra.

is generated per device during its startup which will be used for each node to know and

inform its neighbors the cell, calculated via that unique identifier, which it belongs to

(Fig. 4.5).

With the introduction of this new communication protocol and partitioning logic, one

of the biggest preoccupations of Thyme, i.e. mobility-awareness and mitigation (Section

3.5), becomes essentially irrelevant within an AP’s BSS: nodes can freely move within

the range of the infrastructure node as there won’t be any housekeeping or mobility

notifications involved since cells are logically-defined. Nonetheless, churn continues to

be an ongoing threat to the health of the system, reason why we will still employ the

replication mechanisms (Section 3.3) in our proposed updated solution.

4.4.2 Creation and Discovery of Global Worlds

Considering the fact that we are trying to join multiple groups of users in different loca-

tions, within the same venue, it no longer makes sense to confine the world search process,

as described in Section 3.6, to only the nearest clients. This is due to the fact that there

is a possibility that a world was already created in another BSS which the current client

might be interested in joining, even though no other neighbor is currently participating

in it. With this in mind, before the new user is ready to join the system, it will start its

journey by sending a World Probe message through Multicast to the nearest infrastructure.

Since the clients do not initially have knowledge of which infrastructure node is clos-

est to them, when the infrastructure node boots up it will start to listen indefinitely to

messages in a predefined Multicast group specified by the framework itself (of which the

clients also know the IP and port of this group beforehand). In order to avoid network

congestion as a result of the routing process of the Multicast messages sent by the mobile

nodes, the messages will only have 1 TTL as we are expecting the infrastructure node,

if present/available, to be the one offering the Wi-Fi service or another device directly

connected to the access point.

When the infrastructure node receives the probe message, it will then reply to the

40

4.4. A REVISION OF THYME’S CORE FEATURES

client with the global list of all worlds created within the entire system, in the format

〈idworld, name, nrcells〉. Consequently, when the user receives this information it will have

the option to directly join one of the received worlds or, if none is considered relevant by

the client, create a new one. In the event that two, or more, infrastructure nodes are within

one TTL away from the user, the client will consider the one that replies first with the

worlds data to be the nearest. Furthermore, since this is the first message received by the

infrastructure itself, the client will also cache the infrastructure node’s physical address

(i.e. IP and port), from the incoming packet, for future communications and, from this

point on, will interact directly with it without the need to use multicast dissemination.

To create a new world that will be available to all current and future users, in any

location of the venue, the client will send a Global World Creation message to the nearest

infrastructure, with the corresponding world name. Then, the AP will generate a unique

ID in order to avoid conflicts with the already available worlds and, in parallel, will

confirm the creation of the world to the user and notify all other infrastructure nodes in

order for them to locally mark the existence of this world.

As explained, the infrastructure node is the one that specifies and returns the number

of cells of each world (nrcells), instead of the client during the creation process (as em-

ployed by the previous version of Thyme). With this addition, the infrastructure node

can modify on-the-fly the number of cells by increasing it when the estimated number

of clients connected is high or decrease when this number is low, with the goal of main-

taining the system performance and per-node and cell usage, independently of the total

number of users.

4.4.3 Augmenting the MetaData Object

The MetaData object is one of the most important data types in Thyme. It acts as a

small preview of a given file that the client always needs to obtain first and only then it

is able to request the associated file bytes. The usage of something like this is ideal for

the system’s P2P Publish/Subscribe system since it contains a small amount of primitive

fields (as specified in Section 3.2), thus MetaData objects can be transferred freely around

the system without degrading the overall performance, seeing that they are expected to

have much smaller sizes than actual data items, such as pictures or movies.

However, with the addition of infrastructure nodes and the ubiquitous nature of the

MetaData itself within the system, this data type required small enhancements during

the development of Thyme-Infra. Among all added fields, the most important one is

the sourceInfrastructure which holds the nearest infrastructure physical address where the

specified item was created. The relevance of this change is twofold:

1. As the number of infrastructure nodes grows in the system, it is expected that the

number of users connected to them will also increase and, consequently, the number

of published items will potentially follow this trend. Therefore, as files flow from

one BSS to another, the probability of an hash collision for two different objects

41

CHAPTER 4. THYME-INFRASTRUCTURE

is significantly higher. Thus, we will include the sourceInfrastructure field while

calculating an object’s hash in order to avoid such complications;

2. On the other hand, by appending the nearest infrastructure address to an item’s

MetaData object it will be possibly for any AP to route a download request to the

correct infrastructure node.

4.5 Estimation and Dissemination of Local Subscriptions and

File Popularity

Each cell in the LHT will maintain and periodically batch-disseminate its cell data, which

is composed of the popularity index (number of downloads, by object, whose data is in-

dexed by the current cell) and the subscription needs (total number of subscriptions re-

ceived by tag), to the nearest infrastructure node.

In order to determine a single cell node that will be responsible for disseminating

these informations to the AP without any kind of strict and computationally-heavy coor-

dination mechanism within all nodes of the same cell, we will make use of something that

we internally call a stability index. Each device will locally store hardware information

from itself and its neighbors (properties such as the battery percentage and others [26,

27]) which will indicate the probability of a node leaving the network voluntarily (e.g.

through movement) or involuntarily (e.g. through shutdown due to low battery). These

informations will then be appended to the hello messages that are already periodically

sent as part of Thyme’s nodes maintenance process. Whenever the cell data dissemina-

tion timer triggers, each node within the cell will compare its calculated stability index
with the ones that were received by its neighbors: if one considers to have the highest

value it will take the initiative to start the dissemination process. In the event that two

or more nodes have the exact same stability index during the comparison check, the one

with the lowest identifier will win.

With the goal of implementing a fault-tolerant mechanism to prevent unwanted be-

havior when nodes that would have been established as the stablest would crash, before

the other neighbors noticing the failure, we will employ an approach based on timestamps.
Thereby, each cell data transmission cycle will have assigned a unique timestamp which

will also be transmitted to the infrastructure node along with all the cell data. Then, af-

ter a successful transmission to the infrastructure, the self-established stable node will

append the timestamp that was just successfully disseminated to its hello messages, to

act as a confirmation, for the other cell nodes to delete their local data with confidence

upon arrival, since they were already transmitted (Fig. 4.6). Even if the to-be established

node for the current cycle terminates unexpectedly, its neighbors will have enough time

to acknowledge this situation and, therefore in the next dissemination cycle, a new node

will be designated and will disseminate not only the cell data of the current timestamp but

all other cell data’s from timestamps that did not receive any confirmation (Fig. 4.7).

42

4.5. ESTIMATION AND DISSEMINATION OF LOCAL SUBSCRIPTIONS AND

FILE POPULARITY

Device #1

Tn Tn+1
Subi Downk

current_timestamp = Tn+1
last_disseminated_timestamp = Tn
cell_data[Tn+1] = < >Cell 1

Device #2

Tn Tn+1

Subi Downk

current_timestamp = Tn+1
last_disseminated_timestamp = Tn-1
cell_data[Tn] = <Subi, Downk>
cell_data[Tn+1] = < >

HELLO {
 …
 last_disseminated_timestamp = Tn
}

delete cell_data[Tn]
last_disseminated_timestamp = Tn

Self-established stable node

cell_dataTn
= <Subi, Downk>

Figure 4.6: Example sequence of the stable node determination and dissemination process
of the cell data.

Tn
Subi Downk

Device #2

Tn Tn+1

Subi SubyDownk

current_timestamp = Tn+1
last_disseminated_timestamp = Tn-1
cell_data[Tn] = <Subi, Downk>
cell_data[Tn+1] = < >

Tn+2

current_timestamp = Tn+2
last_disseminated_timestamp = Tn+1
cell_data[Tn+2] = < >

Self-established stable nodeNode crashed

cell_dataTn
= <Subi, Downk>

cell_dataTn+1
= <Suby> Device #1

Cell 1

Figure 4.7: Example sequence of the stable node determination and dissemination process
of the cell data when a to-be self-established stable node terminates unexpectedly.

Thus, a node that joins the network will have to wait for a predetermined amount of

time with the goal of tracking the stability index of all other cell nodes before being able

to join the pool of stable-ready nodes and contribute to the dissemination process.

Since the described process has weak and eventual coordination properties, it is possi-

ble for more than one node within a cell to be considered and self-established as a stable

node. Let’s consider the following scenario: device 1 has a stability index of 77 and device

2 has 68; both devices send hello messages to each other and device 1 considers itself as

the stable node at the moment; then, the user of the second device uses a power bank to

charge its equipment and, as a consequence of that, increases its stability index to 81; in

the meantime the cell data dissemination timer triggers for both of the devices before a

new round of hello messages are transmitted with the latest data; consequently, device 1

43

CHAPTER 4. THYME-INFRASTRUCTURE

considers itself as a stable node since it is comparing its 77 value to device’s 2 old 68 value,

while device 2 also considers itself as a stable node since its current stable value is 81,

resulting in both devices potentially sending the exact same cell data to the infrastructure.

To avoid duplicating and skewing subscription and popularity information in cases like

this, the infrastructure node itself will keep track of the latest received timestamp for each

cell and will ignore cell data messages if the associated timestamp was or is already being

processed.

Furthermore, when the infrastructure node receives cell data, the associated subscrip-

tion needs and popularity data will be stored and incremented locally in two private

tables (localSubscriptionNeeds and localPopularityInformation, respectively). Later on, after

receiving a significant amount of popularity information, the infrastructure node will

periodically choose the top N most popular items, send a download request for the as-

sociated files (MetaData and bytes) to the mobile replicas and store them in the Local
Popularity Cache with the goal of facilitating the access to this items by its clients. Thus,

by storing the most popular files directly in the nearest AP, the number of download

requests to these items processed by the local nodes will drop drastically, resulting in a

considerable battery consumption cutback, as they will be served by the infrastructure

itself. After caching the popular items in the infrastructure, it will notify the cells that

are currently indexing the items’ metadatas stating that they are currently stored in the

nearest infrastructure.

As a result of the periodic nature of this popular retrieval mechanism by the infras-

tructure, the cache contents will change and follow the needs and trends of the mobile

clients as they evolve.

4.5.1 Cell Stable Nodes

The realization of the Cell Stable nodes is not only used to operate the mobile part of

the system, by being in charge of disseminating the cell data information to the nearest

infrastructure node, but also considered critical to the execution and performance of the

infrastructure side of Thyme. Consequently, each Thyme-Infra instance will keep

track of all the current self-established Cell Stable nodes within its BSS and will use

this information to its advantage since this type of nodes are expected to be more stable

when compared to rest of the clients, specifically due to their longevity within the system

as well as their battery levels and capacity: whenever the infrastructure node wishes

to disseminate information to an entire cell, without a specific destination address, or

wants to communicate directly with one of the clients but does not currently know the

node’s physical address (issue described in Section 4.9.5) it will prioritize, if possible,

communicating directly with the cell’s stable node for it to locally broadcast the cell-

addressed message to the rest of its neighbors or route the node-addressed message to the

right destination, respectively (Section 4.9.7). In doing so, the Thyme-Infra instance

is able to reduce the amount of times it communicates with stale nodes or clients that are

44

4.6. GLOBAL PUBLISH/SUBSCRIBE PROCESS

offline or already left the system which would eventually lead to the transmission of an

unnecessary number of messages that would fail and to the execution of a retry workflow

in search of an active and capable client, by trading off the over-utilization of a single

node’s resources within each cell. Nonetheless, since the cells’ determination of stable

nodes is an ongoing process, stable nodes are expected to periodically swap between

themselves as their stability index will decrease at a faster rate when compared to other

nodes. Thus, in the grander scheme of things, the system will eventually benefit from the

resources of a wider range of users’ devices as time goes on.

4.6 Global Publish/Subscribe Process

Since we are using infrastructure nodes to join multiple remote groups of clients within

the same venue and their data into one cohesive and consistent end-to-end storage net-

work, we need to adapt the Publish/Subscribe system adopted by Thyme to have not

only local, but also global interactions into consideration. Thus, a global publish/subscribe
approach will need to be employed on the infrastructure layer.

This P/S implementation is composed of three steps (Fig. 4.8): 1. global dissemination

of subscription needs; 2. global provisioning of subscription needs; 3. local dissemination

of incoming subscription needs reply’s data to the mobile nodes.

Step 1: Global Dissemination of Subscription Needs. With the goal of allowing mo-

bile clients within each BSS to receive and access not only objects published locally but

also relevant items published by other users in distinct venue locations, each infrastruc-

ture node will start by periodically broadcasting its clients’ subscription needs to all other

APs, via SubscriptionNeeds messages. Each message consists of:

〈Tsubs, Scache, SNworld〉

where

SNworld =map〈worldid, entrySN〉

entrySN =map〈tag, subcount〉

• Tsubs holds the total amount of subscriptions, across all worlds, executed by the

mobile clients within the infrastructure node’s BSS up until the moment of trans-

mission;

• Scache denotes the infrastructure node’s maximum prefetch cache size;

• SNworld represents the users’ subscription needs, by world, which, in its turn, con-

tains the total amount of subscriptions (subcount) for each tag (tag).

45

CHAPTER 4. THYME-INFRASTRUCTURE

Step 2: Global Provisioning of Subscription Needs. Upon receiving a Subscription-
NeedsMessage from other infrastructure nodes, the AP will cache all of this information

locally. Subsequently, each access point will periodically initiate its data dissemination

and provisioning process to all other infrastructure nodes based on their previously broad-

casted subscription needs. Thus, the current Thyme-Infra node will lookup its Local
Popularity Cache (LPC) for objects relevant to each AP’s needs (the specified tags) and

send, in batch, all of the data and metadata entries found during this process through

SubscriptionNeedsReplyMessages. This message’s format is defined by:

〈map〈tag, {pairm,d | pairm is metadata and paird is data} 〉 〉

By making use of the Local Popularity Cache to provision content based on the in-

frastructure nodes’ subscriptions, we can achieve a much better network utilization and

performance since we guarantee that only the most interesting (i.e. popular) data is trans-

mitted through the network. Furthermore, the node’s lookup process is directly executed

in-memory instead of having to request the items to its mobile clients in an on-demand

manner which would have a direct impact on the delay of the entire process.

However, as the maximum size of each nodes’ caches are totally configurable (Sec-

tion 4.9.9) and hardware-dependent, and thus possibly distinct, this can potentially lead

to cases where infrastructure node A sends a SubscriptionNeedsReplyMessage with a lot

more entries than destination node B can hold in its Prefetch Cache, resulting in an over-

utilization of the network and unnecessarily large packets being sent when a percentage

of that data will ultimately be discard by B’s overflowing cache. Therefore, we will capi-

talize on the received SubscriptionNeedsMessage’s Scache field and trim the data to be sent,

by removing exceeding entries, in order to meet the destination’s cache size demands.

Another optimization process we employ during the provisioning and creation pro-

cess of SubscriptionNeedsReplyMessages is to use the subscription count for each tag, which

effectively represents the subscription popularity, or relevance, for each tag and calcu-

late/reserve the appropriate size within the packet to hold the relevant entries found.

Thus, more popular subscription tags will have more space in the SubscriptionNeedsRe-
plyMessage while the opposite end will have less entries or even none. The formula used

to calculate each tag’s maximum packet entries is as follows

Entriestag = min(
Scache × subcount

Tsubs
, #LPCtag)

where #LPCtag represents the amount of entries considered relevant to the specified tag

within the infrastructure node’s Local Popularity Cache.

Hence, if we consider the following scenario where an infrastructure node receives

a SubscriptionNeedsMessage from another AP which notes that its Prefetch Cache has a

maximum size of 50 (Scache = 50), its clients executed 100 subscriptions so far (Tsubs = 100)

in which 70 of them were for tag GOAL (〈GOAL, subcount = 70〉), the number of entries

for tag GOAL to be returned to that node will be 35 (if we recognize that #LPCGOAL ≥ 35).

46

4.6. GLOBAL PUBLISH/SUBSCRIBE PROCESS

S

S

S = Subscription Needs
C = Consumption Notification

S

Prefetch
Cache

Global
Cache

C

Figure 4.8: Global Publish/Subscribe execution process.

Step 3: Local Dissemination of Incoming Subscription Needs Reply’s Data to the Mo-

bile Nodes. When the original Thyme-Infra node receives a SubscriptionNeedsRe-
plyMessage, it will start by mapping the received items’ tags into the logical cells and

send to each one a notification message, namely InfraNotificationMessage, with the entries’

metadata in order for the cells’ nodes to check the ongoing subscriptions and notify the

corresponding subscribers of the arrival of the data, depending on their interests. Simul-

taneously, the received items will also be stored in its Prefetch Cache while the local clients

get notified and the data will remain there until it receives another SubscriptionNeedsRe-
plyMessage that will potentially override the contents of this cache.

Afterwards, if a local client finds one of the received metadata entries relevant and

decides to download the associated item’s data, by looking at the metadata’s “description”

field (which acts as a miniature or a preview of the whole item data), it will manifest

its intent by sending a download message to the nearest infrastructure node in order

to get the bytes and to effectively host a local replica of that data within the current

infrastructure’s BSS. Upon receiving this download request, which means that an object

originated in another area was consumed locally, the AP will remove that entry from the

Prefetch Cache and move it to the Global Cache. As the turnover rate of the contents of

the former cache is expected to be quite high due to the intrinsic nature of the Global

Publish/Subscribe Process, which will be even more accentuated when the total number

of infrastructure nodes in the system increases, moving the consumed item to the Global
Cache allows it to be stored in a more persistent manner and be easily accessed by other

clients. Further requests to the same item from other clients in the access point’s BSS will

result in obtaining the object directly from this cache. Additionally, since only the items

considered relevant by the local users are moved from one cache to the other, there is

a high probability for the item to also be considered relevant by other clients since it is

expected for geographically-adjacent users to share similar interests to some degree.

Finally, when an entry is successfully inserted into the Global Cache as a result of

the previous process, the current Thyme-Infra node will notify the item’s original

infrastructure node that it was consumed by its clients. By doing this, the original AP will

47

CHAPTER 4. THYME-INFRASTRUCTURE

save this information and will not send the specified item again in the next n (configurable

value - Section 4.9.9) “Global Provisioning of Subscription Needs” dissemination cycles,

thus saving network bandwidth since the item is already in that infrastructure node’s

cache.

4.6.1 Infrastructure Non-Overlap Dissemination Contract

As explained in the previous section, each infrastructure executes the “Global Provision-

ing of Subscription Needs” step which represents the transmission of the AP’s data to

all other Thyme-Infra nodes in the system based on their clients’ needs. However, if

we consider a worst-case scenario where all infrastructure nodes but one decide to send

their SubscriptionNeedsReplyMessage to the remainder node, at the same time, the system

network and the latter AP will be overwhelmed with the amount of packets, and their

considerable size. The expected outcome would be an over-saturation of the Prefetch
Cache, since multiple data items will compete with each other for cache space, in a short

amount of time, and will evict and overwrite each other. Furthermore, mobile clients

will be bombarded with the arrival of metadata to be viewed and filtered (i.e. marked as

relevant to be further downloaded), which will also result in an unnecessarily substantial

battery consumption peak as well as a poor user experience.

To avoid scenarios like this and the complications associated with them, we will em-

ploy a non-overlap dissemination contract: during the startup of each AP node, each

Thyme-Infra instance will compute its unique, non-overlapping and repeatable dis-

semination time-slots while taking into consideration all other nodes that will be available

in the system. Thus, every infrastructure node will be able to transmit their Subscrip-
tionNeedsReplyMessages knowing that, with a certain degree of confidence, no other AP
will thwart their process and that the destination Thyme-Infra nodes, and their clients,

will receive and process the incoming data smoothly and without disturbance.

Although each dissemination window is totally configurable by the infrastructure

developer (Section 4.9.9), the duration of an optimal contract should take the following

components into consideration (Fig. 4.9)

∆contract ≥ ∆i +∆pi +∆tm +∆d +∆dt +∆it

where:

• ∆i is the average transmission duration of SubscriptionNeedsReplyMessages from one

infrastructure to another;

• ∆pi represents the time used by the infrastructure node to process the incoming

message and choose which mobile clients to notify about the items arrival;

• ∆tm denotes the transmission delay of incoming items to the mobile nodes that are

potentially interested in them;

48

4.6. GLOBAL PUBLISH/SUBSCRIBE PROCESS

∆i

∆pi

∆it

∆tm

∆d
∆dt

Figure 4.9: Optimal Non-Overlap Dissemination Contract Breakdown.

• ∆d represents the mobile clients’ average decision time to choose whether to down-

load the received item(s) or not;

• ∆dt describes the transmission duration of the user’s decision to download the item

to the nearest infrastructure;

• ∆it delineates the requested item’s transmission latency from the infrastructure to

the client.

4.6.2 Bringing Time-Awareness to the Infrastructure

One of the major features of Thyme compared to other edge peer-to-peer storage frame-

works is its time-awareness: users are able to specify, on their subscriptions, whether they

wish to receive items that were published in the past, data that is currently being created

or be notified of future topic occurrences.

During the entirety of the design and planning phase of this thesis, it was one of our

main priorities to bring this paradigm into the newly developed processes and algorithms

of the infrastructure layer. Thus, time-awareness was implemented throughout Thyme-

Infra, specifically in the following areas:

• Cell Data. Instead of only tracking the subscriptions and downloads, each logical

cell’s nodes also tracks the subscriptions’ time interval (minimum start time and the

maximum end time) and appends that to the cell data message, described in Section

4.5, to be disseminated to the nearest infrastructure node by the elected stable node

in each transmission cycle;

• SubscriptionNeedsMessage. The nearest infrastructure listens to all cell data mes-

sages and stores the minimum subscription start time and maximum subscription

end time across all subscriptions, across all cells. Then, when transmitting the

clients’ subscription needs to all other infrastructure nodes, the current Thyme-

Infra instance also appends those values to the disseminated SubscriptionNeedsMes-
sage;

49

CHAPTER 4. THYME-INFRASTRUCTURE

• SubscriptionNeedsReplyMessage. Now with each infrastructure time-aware infor-

mation, during the Global Publish/Subscribe’s “Global Provisioning of Subscription

Needs” step, the current Thyme-Infra node takes into account the subscription

times when looking up its Local Popularity Cache for data to supply to the infras-

tructure nodes based on their needs, filtering the entries that have publish dates

outside of the received time intervals.

4.7 Infrastructure Publish/Subscribe Caches

As was introduced in Section 4.2 and referred to in subsequent sections, each Thyme-

Infra instance contains three different-purpose caches: the Local Popularity Cache, the

Prefetch Cache and the Global Cache.

Due to the inherent paradigm features of Thyme, in most cases, using a simple one

dimensional caching approach would not achieve an optimal performance and storage

utilization for the system. Thus, we proposed and developed a new caching method called

Adaptive Multipart Caching that best fits the system needs (Section 4.7.1). Furthermore,

we will define the structure of each of the three caches in Section 4.7.2. Finally, we will

disclose the enhancement of each cache through additional auxiliary data structures for

better single-purpose lookups (Section 4.7.3).

4.7.1 Adaptive Multipart Caching

A World in Thyme can be seen as simple photo galleries or shared folders where a user

might want to join a single one of them or both, while they can also be seen in a more

complex manner, such as distinct applications’ environments with disparate data types,

flows and even types of users. Thus, since each infrastructure node will be able to ac-

commodate their service to all connected clients, independently of the world/application

they are part of, the Thyme-Infra instance has to provide a storage system that is able

to adapt to each world’s clients needs and, specifically, its population size.

Initially, we considered using a simple one dimensional cache design approach, where

there were no disjoint containers to store the data for each world independently. But in

doing that, the cache would not take into account each world’s needs and every client

would blindly compete with users from other worlds for storage space. Instead, we

decided to take another storage approach, namely the Adaptive Multipart Caching or

AMC.

In AMC there is no single unidimensional cache, but an array of distinct caches, one

for each populated world within the AP’s BSS. The idea is that each container’s data is

totally independent from the others and its size is completely flexible. That is, if the

overall needs of one world changes and it needs a bigger cache size than what it currently

has, due to an increase of the world’s population for instance, the AMC will adaptively

increase its size by decreasing the size of the other containers, if needed, in order to

50

4.7. INFRASTRUCTURE PUBLISH/SUBSCRIBE CACHES

cache
world1

AMC’s
Max
Total
Cache
Size

cache
world2

cache
world3

cache
world4

AMC

Figure 4.10: Example definition of the Adaptive Multipart Caching.

make space for it without ever exceeding the maximum total cache size specified by the

developer. The result will be something similar to Fig. 4.10.

When Thyme-Infra triggers the AMC’s execution, the system recalculates each

inner cache’s size based on the following formula:

AMCw, t =
(#entriesw, t−1 + #putw)∑

ww
#entriesww, t−1 + #putww

× Scache , ww ∈ AMC (4.1)

where Scache represents the maximum total cache size, #putw holds the number of entries

to be inserted in world’s w cache and entriesw, t−1 indicates the number of entries in

world’s w cache after the previous execution of AMC. Essentially, AMC calculates the

fraction between the world’s to-be expected cache size (#entriesw, t−1 + #putw) and the

total expected cache size (
∑
ww

#entriesww, t−1 + #putww), if we were to not limit the number

of entries being inserted in both cases, and then scales this value to the correct and final

world cache size using the maximum cache size (Scache) as the upper bound.

Let’s consider the following scenario: an AMC cache currently has two world contain-

ers, for “gallery” and “myapp” (ww = {gallery,myapp}), with sizes 150 (#entriesgallery, t =

150) and 50 (#entriesmyapp, t = 50), respectively, with 200 acting as the overall cache size

limit (Scache = 200). Then, the system decides to batch-insert 100 new items that are now

suddenly considered highly popular, 80 of which are from world “myapp” (#putmyapp =

80) and the rest are from the “gallery” (#putgallery = 20), therefore meaning that the

total expected cache size for this particular AMC, if we were not to limit by its upper

bound after the insertions, would be 300 (
∑
ww

#entriesww, t + #putww = 300). Consequently,

“gallery”’s new size would be approximately 113 (#entriesgallery, t+1 = 150+20
300 × 200 ≈ 113)

while “myapps”’s would slightly increase its storage capacity from 50 entries to 87

(#entriesmyapp, t+1 = 50+80
300 × 200 ≈ 87).

As we can see, one of the greatest advantages of using a technique like AMC, other

51

CHAPTER 4. THYME-INFRASTRUCTURE

cache
world1

cache
world2

cache
world3

M
e
t
a
d
a
t
a

D
a
t
a

M
e
t
a
d
a
t
a

D
a
t
a

M
e
t
a
d
a
t
a

D
a
t
a

AMC

Figure 4.11: Example definition of the
Local Popularity Cache structure.

M
e
t
a
d
a
t
a

D
a
t
a

Figure 4.12: Example definition of the
Prefetch Cache structure.

than the ability to create multiple application-purpose containers within one general

cache, is that it dampens the negative impact of scenarios when there is a short burst

of a large amount of downloads made from users within a single world on the caches’

divisions. Without any additional logic, these scenarios could lead Thyme-Infra to

offload a considerable amount of entries to the infrastructure’s caches, due to their rising

local popularity, resulting in an overshadowing and ultimately an overwrite of other

cached data in order to make space for the incoming ones, when this could simply be a

non-recurring and a stand-alone event. Thus, with the addition of the AMC mechanism,

these short bursts will not be able to strip away an high amount of cache space in one

sitting, but in a gradual manner. Therefore, if this popular behavior continues, the world’s

users will be able to gradually increase their world’s cache size to fit their needs.

4.7.2 Caches Structural Definition

Local Popularity Cache. The Local Popularity Cache is composed of a single Adaptive
Multipart Cache where each inner caches’ entry represents a pair of data and metadata

objects, entities which are crucial and ubiquitous to the Thyme system (Fig. 4.11). Thus,

this AMC is defined by:

〈worldid, cache〈objectid, {pairm,d | pairm is metadata and paird is data} 〉〉

Furthermore, in this cache, the AMC’s partition sizing mechanism is executed at insert-

time, during each batch-insert window of the Local Popularity Cache (as will be described

in Section 4.9.3).

52

4.7. INFRASTRUCTURE PUBLISH/SUBSCRIBE CACHES

Prefetch Cache. On the other hand, as previously described, the Prefetch Cache is used

to store the incoming data from each other infrastructure node that replied the current

Thyme-Infra instance’s subscription needs requests. This is the only cache, out of all

three specified in the Thyme-Infrastructure definition, that does not make use of

the Adaptive Multipart Caching approach. The reasoning behind this design decision is

that AMC would have no real benefit on this particular cache since the data received, as

part of Global Publish/Subscribe’s “Global Provisioning of Subscription Needs” step, is

already processed and packed by a pseudo-Adaptive Multipart Caching algorithm which

divides all entries by world, according to each one’s needs. Instead, the Prefetch Cache
contains two inner one-dimensional disjoint caches, one for the metadata objects and an-

other for the data entries (Fig. 4.12). By having distinct caches for the metadata and data

counterparts, and allowing the infrastructure developer to fine-tune and give different

maximum sizes to each of them, the goal is to increase and encourage the discoverability

of new items that are created throughout the entire system since each inner caches evict

items independently of each other. This is possible since metadata objects are expected

to be considerably lower in size when compared to data entries, thus the metadata cache

can store a lot more entities before reaching the same memory/storage footprint of that of

the data cache. Consequently, if one data entry is evicted to make space for another, but

the associated metadata entry is still cached in the metadata disjoint cache, it is possible

for a client to still obtain that data: when asking the infrastructure to return that item,

the infrastructure node will verify that the requested data is not stored locally, check

the data’s metadata information and, based on that, route the download request to the

original infrastructure where the item was created.

As there is no explicit separation between worlds’ data entries at the cache level, logi-

cally, each item in each of the inner caches is indexed by the composite key 〈worldid, objectid〉.

Global Cache. Regarding the Global Cache, its structural definition is similar to the

one used in the Prefetch Cache, carrying the same discoverability advantages as the latter

approach, but each of the disjoint caches — metadata and data — uses the AMC parti-

tioning mechanism (Fig. 4.13). Thus, the metadata and data AMCs are logically defined

by, respectively:

〈worldid, cache〈objectid, metadata〉〉

〈worldid, cache〈objectid, data〉〉

Unlike the Local Popularity Cache which executes the AMC during each batch-insert,

entries inserted into the Global Cache, as we have explained before, are done so in an

individual manner. Consequently, re-executing AMC in an item-to-item basis would not

be optimal in terms of the performance of the system. Thus, we implemented a new

layer to mitigate this issue by only executing the repartitioning workflow after a specific

number of puts are executed in a world’s cache. This procedure is described in Algorithm

1. In essence, while the entire AMC cache is not full, items are directly inserted into the

53

CHAPTER 4. THYME-INFRASTRUCTURE

AMCmetadata

cache
world1

cache
world3

cache
world2

cache
world1

cache
world2

cache
world3

AMCdata

Figure 4.13: Example definition of the Global Cache structure.

associated world cache (metadata or data) and its inner size is incremented. When it is

full, the item is also inserted in the respective cache, eventually triggering the cache’s

eviction policy to maintain its maximum size. Simultaneously, the system increments a

counter which indicates how many items, for each of the inner world caches, were inserted

above its size limit. When this upper bound reaches a predetermined value, specified

by MAX_PUT S_ABOVE_LIMIT which is a variable parameter set by the developer

(Section 4.9.9), that counter is reset and the AMC execution is triggered with the goal of

increasing the size of that world cache by the specified value while decreasing the size of

the rest of the inner caches to make space for it.

Algorithm 1 Global Cache AMC Workflow

1: putsAboveCacheLimit : 〈worldid , integer〉 ← 〈〉
2:

3: procedure cache(world, item)
4: if totalItems() <maxCacheSize() then
5: incrementWorldCacheSize(world)
6: else if currentCacheSize(world) ≥maxCacheSize(world) then
7: putsAboveCacheLimit[world]← putsAboveCacheLimit[world] + 1
8: if putsAboveCacheLimit[world] =MAX_PUT S_ABOVE_LIMIT then
9: putsAboveCacheLimit[world]← 0

10: executeAMC(world→ increase by MAX_PUT S_ABOVE_LIMIT)

11: put(item, getCache(world))

4.7.3 Lookup by Tag

Aside from direct object lookups using the object’s identifier, there is no built-in way

of searching all available metadata entries for a specific world, given a tag, which is

54

4.8. AN (INFRA)STRUCTURED MODIFICATION OF THYME’S P/S

OPERATIONS

essential to support operations like subscriptions (see Section 4.8.1). Thus, each of the

three described caches also have an auxiliary data structure specifically created to allow

lookups to metadata objects based on a given search tag. This structure is defined by

map〈〈worldid, tag〉, set{objectid} 〉

where each objectid can be used to retrieve the real metadata object from the appropri-

ate metadata cache, whether it is an AMC or a plain one-dimensional cache. To maintain

the consistency of this structure in regards to the metadata entries available in the cache,

the maintenance process is twofold:

• During insertion-time: every time a new metadata object is inserted into the as-

sociated high-level cache, the process loops through all the object’s tags and, for

every single one of them, inserts the metadata’s object identifier into the appropriate

〈worldid, tag〉’s set;

• During removal-time: on the other hand, when a metadata entry is evicted due to

a manual or passive (substituted to make space for a new item) removal, the process

executes the inverse of the previous operations, which consists of looping through

all the metadata tags and removing the associated object identifier’s set entry, in the

auxiliary structure, within each 〈worldid, tag〉.

4.8 An (Infra)structured Modification of Thyme’s P/S

Operations

By introducing the infrastructure layer to Thyme, most of the core Publish/Subscribe

operations’ received a paradigm shift, in Thyme-Infra, in order to accommodate to

these new types of resources. Furthermore, since files can freely move around the entire

system and be obtained even if the user is outside the source’s BSS, operations need

to be executed in a local (within an infrastructure node’s BSS) and global (from one

infrastructure node to another) manner. Thus, the following operations received major

modifications: subscribe, download and unpublish operations.

4.8.1 Subscription

In addition to sending the subscription message to each cell that is currently indexing the

specified subscription tags, as defined by Thyme (Section 3.4), in Thyme-Infra the

client will also simultaneously disseminate the same operation to the nearest infrastruc-

ture node. However, in the latter case, the infrastructure will process the subscription

in a transient manner and will consider it to be a simple lookup operation on the data

available within all its caches. Hence, upon receiving a subscription message, the AP will

obtain every cached item that is relevant to the user, by looking up entries associated with

55

CHAPTER 4. THYME-INFRASTRUCTURE

hash(goal) = ●

subscribe(goal)

subscribe(goal)
Igoal = lookup(LocalPopularityCache, “goal”)

∪ lookup(PrefetchCache, “goal”)
 ∪ lookup(GlobalCache, “goal”)Igoal

Egoal∖Igoal

Igoal = entries from the infrastructure relevant to the tag “goal”

Egoal = entries indexed by mobile node ● relevant to the tag “goal”

Figure 4.14: Example of Thyme and Thyme-Infra’s subscription workflow when a
client executes a subscription operation for the tag “goal”.

the specified subscription tags, and reply to client all metadata items found during this

process.

However, considering the fact that the same subscribe operation will be transmitted

to the mobile nodes as well as the infrastructure layer, there is a high probability of the

mobile nodes replying to the subscriber with duplicate entries that were already sent by

the infrastructure, or vice-versa. Therefore, in order to avoid the transmission of duplicate

data during a subscription process, and the network degradation as a consequence of that,

we prioritize the usage of the infrastructure resources, since they can be considered a bit

more unrestricted when comparing to the mobile counterpart, with the goal of saving

battery consumption of mobile devices. Consequently, the mobile devices will only reply

to a subscription message with metadata entries that are currently not available in the

nearest infrastructure storage (Section 4.9.6), while the AP itself will transmit every item

obtained during the described process (Fig. 4.14).

4.8.2 Download

Compared to the previous version of Thyme, the new iteration of this particular op-

eration suffered the most radical transformations due to the increased complexity as a

result of the growing number of storage resources and locations by making use of the

infrastructure layer. A simplified version of the workflow executed during a download

operation can be seen in Fig. 4.15.

In essence, the requesting mobile node starts by inquiring the nearest infrastructure

node to check whether the requested item is currently stored in one of its caches: if so, the

client obtains the object directly from the infrastructure, otherwise it disseminates the

request to the mobile replicas within the same BSS. Further, we introduce the distinction

between a regular download and a “force download”. Let’s consider the scenario where a

user transmits a download request for an item that was originally published in another

BSS to its Thyme-Infra node but that object is currently not available there. This

would result in the infrastructure not knowing whether the client wants the download

56

4.8. AN (INFRA)STRUCTURED MODIFICATION OF THYME’S P/S

OPERATIONS

is item replicated in current BSS ? Download(item) : ForceDownload(item)

Start

[yes]

item

End

[no]

[yes][no]

has item

is force
download

Download(item)

[yes]

Mobile Replica

has item

[yes]

item

End

is item from
another

infrastructure

[yes]

Route ForceDownload(item)

has item

Farther
Infrastructure's
Mobile Replica

Download(item)

[no]

[yes]

item

item

[no]

End

Fail

item was originated
in another BSS[no]

[no]

[yes]

ForceDownload(item)

Nearest
Infrastructure

Farther
Infrastructure

Requesting
Mobile Node

is item replicated
in current BSS

[no]

Figure 4.15: Simplified workflow of the download operation triggered by a mobile node
(salmon-colored circle). The color in the decision flows indicates which actor is executing
them.

to be routed to the infrastructure node where the item was originally created or not:

routing the download request to another area if that item is not replicated by any mobile

nodes locally would be considered correct, but doing the same thing while having mobile

clients with the item stored in their devices would be inefficient and underperforming.

Therefore, the download operations sent from the mobile nodes to the infrastructure are

defined as follows:

• Regular Download: informs the infrastructure to only lookup for the specified item

in its local caches and return either the data or a failure notification right away;

• Force Download: informs the infrastructure to lookup for the specified item in its

local caches but, if the item is not present and was originated in another BSS from

another infrastructure node, the current infrastructure will route the download

request to be processed there.

Additionally, when an infrastructure node receives the reply to a mobile client-initiated

force download with data from another infrastructure, before routing the requested item

to the end-user it will proactively cache the incoming object in the Global Cache since it

is considered relevant. Thus, consequent requests to the same item, by users in the same

BSS, will be served directly by the nearest infrastructure node’s storage.

Regarding the simplified aspects of the presented diagram, made to streamline the

comprehension of the described procedure, when a mobile or an infrastructure node tries

to download the item from another mobile replica, instead of asking just one — like the

green and the purple circles — as is visible in the image, the actual implementation of

this workflow takes into account all the possible local mobile replicas for that item and

iteratively asks a subset of them, during the retry procedure, until the data is successfully

retrieved.

57

CHAPTER 4. THYME-INFRASTRUCTURE

hash(itemtags) = ● hash(itemtags) = ●

unpublish(item)

unpublish(item)

unpublish(item)

unpublish(item) delete item from local caches
delete references to item in local popularity table

unpublish(item)

unpublish(item)

Figure 4.16: Example of Thyme and Thyme-Infra’s unpublish workflow, considering
that the system is composed of two infrastructure nodes and the item to be unpublished
has the tag “goal”.

4.8.3 Unpublish

When a mobile node triggers an unpublish operation, the message is transmitted to

the item’s indexing LHT cells and processed normally, according to the specification of

Thyme [18]. Nonetheless, since the same file could have been obtained by users in other

BSS’s (through the process described in Section 4.6), the updated Thyme framework

will also, in parallel, notify the nearest infrastructure node in order for the operation to

be propagated to the entire system. Thus, whenever another AP receives the unpublish

message it will start by deleting, if present, the associated entries of the referenced object

in any of its caches and propagate the same message to the respective indexing cells for

them to execute the operation locally. This workflow (Fig. 4.16) effectively guarantees

that an object is indeed unpublished and persistently prohibited from reappearing to any

user throughout the lifetime of the system.

4.9 Implementation Details

In this section we will disclose some of the design decisions and implementation details of

Thyme-Infra that, while not needed for the overall comprehension of the system, dis-

play several engineering aspects and feats involved throughout the development process

of this thesis.

4.9.1 Protocol Buffers

In order to facilitate the transition and interconnection between Thyme and Thyme-

Infra, as well as the creation of eventual features on both systems, all new and updated

messages throughout the development of this thesis were built on top of the Protocol

Buffers serialization mechanism, which was already being used by Thyme. Although

there is a plethora of serialization mechanism and formats, such as XML, JSON and Java

58

4.9. IMPLEMENTATION DETAILS

Serialization, the authors of Thyme note that using Protocol Buffers would best fit their

needs [18].

Protocol Buffers [37] is a data serialization mechanism developed by Google, which

is platform and programming language-agnostic, enabling a large array of hardware and

software solutions to be able to use it interchangeably. As noted by the authors of Thyme

during their serialization research, Protocol Buffers has a very strong focus on speed,

beating XML by 20 to 100 times faster during transmissions. Furthermore, the packets

generated by this protocol are incredibly small when compared to other similar solutions.

Unlike Java Serialization where the class specification also works as the serialization

specification [38], Protocol Buffers requires the developer to create an additional .proto
file which contains a general specification of the object’s fields, types and their order

within the message. Then, this file needs to be compiled into real serialization code with

Google’s provided toolchain which, consequently, allows the developer to directly use the

generated class and convert its objects into bytes, ready to be transmitted.

4.9.2 Concurrency

Due to the nature of the proposed solution, much like a client-server model which is I/O

bound, one of the main goals defined for this thesis was to create a solution that fully

utilizes the multithreading architecture of modern hardware to allow the processing of

multiple clients’ requests at the same time, but also a solution that is concurrently sound.

To achieve this, we make use, throughout the entire system, of Java’s atomic package [39]

classes, such as AtomicBoolean [40], AtomicInteger [41] and AtomicLong [42], to guarantee

that specific flags and counters which can be modified by any number of incoming clients’

requests are correctly modified and incremented, respectively.

On the other hand, the majority of the data structures employed by Thyme-Infra

are from the Java concurrent family [43], like the ConcurrentHashMap [44] and Concur-
rentLinkedQueue [45]. Regarding the ConcurrentHashMap, we make extensive use of its

compute [46], computeIfAbsent [47] and putIfAbsent [48] methods, with the goal of guaran-

teeing the atomicity of operations, avoiding scenarios like Listing 4.1, where, even though

the data structure and the operations themselves are thread-safe, this logic definition is

not, which can lead to incorrect executions flows and outcomes: if two threads execute

line 5 concurrently, the outcome will be value 1 in key test when the expected outcome

would have value 2 (one thread initializes the value at 1 and the other increments it to 2).

Thus, using ConcurrentHashMap’s compute method, for instance, would fix the previous

behavior (Listing 4.2).

59

CHAPTER 4. THYME-INFRASTRUCTURE

Listing 4.1: Incorrect ConcurrentHashMap execution flow.

1 ConcurrentHashMap <String, Integer> map = new ConcurrentHashMap <>();

2

3 // populate map

4

5 if (!map.containsKey("test")) {

6 map.put("test", 1);

7 } else {

8 map.put("test", map.get("test") + 1);

9 }

Ultimately, several Thyme-Infra critical sections have been analyzed during the

development phase in search of potential issues, like the previous example, and adopted

a more sound atomic approach.

Listing 4.2: Sound ConcurrentHashMap execution flow.

1 ConcurrentHashMap <String, Integer> map = new ConcurrentHashMap <>();

2

3 // populate map

4

5 map.compute("test", (key, value) -> value == null ? 1 : value + 1);

Furthermore, in Thyme-Infra’s MobileNodesNetwork and InterInfrastructureNetwork
classes, which act as the communication layers and points of entry to clients’ and infras-

tructure nodes’ requests, each of them has an inner ThreadPoolExecutor [49] in order to

provide a working thread to execute the messages’ associated computation. By having

distinct ThreadPoolExecutors, the system architect is able to parameterize each one individ-

ually (Section 4.9.9), with respect to the number of threads, according to the system and

hardware needs: more threads for the MobileNodesNetwork if AP is expected to have a lot

of clients and fewer threads for the InterInfrastructureNetwork if the system is composed

of only a few infrastructure nodes.

4.9.2.1 Living in a World Without Infrastructure

As explained in Section 4.4.2, an instance of our updated version of Thyme starts its

pre-join world process by sending a world discovery packet in multicast to the nearest

infrastructure node that is able to process it, i.e. an instance of Thyme-Infra running

in the infrastructure. Simultaneously, the Thyme system will also broadcast “hello” mes-

sages to its neighbors with the same intent of inquiring the currently ongoing worlds

(Section 3.6), whether using the same technology (Wi-Fi) or other peer-to-peer technolo-

gies (like Bluetooth or Wi-Fi Direct). During this procedure, if Thyme does not receive

any reply from a capable infrastructure node after a specified number of broadcasted

retries, or if the device’s user decides to integrate one of the local worlds received by its

peers, the Thyme instance will fallback to a peer-to-peer only mode, essentially convert-

ing to the same behavior as Thyme’s pure classic interactions, without activating any of

60

4.9. IMPLEMENTATION DETAILS

the infrastructure-related logical components to save battery and computing power.

We are able to do this due to the extensive initial planning for both systems where we

tried to idealize a solution that was as less disruptive as possible to the already developed

classes and interactions by employing new features and logic in a purely additive manner.

Furthermore, as previously seen in Section 4.3, the former version of Thyme used a

GeographicalRouting class to process the respective P2P routing mechanisms while in

our proposed iteration the routing is divided in two classes, the GeographicalRouting and

the LogicalRouting, and each one of these is a descendant of a single Routing abstract

superclass that is used in all of the components of the Thyme system. Thus, depending

on the interaction mode and resource availability (peer-to-peer or infrastructure-aided),

the system will instantiate the appropriate geographical or logical routing class for all its

components.

4.9.3 Retrieving Local Popular Items to Cache in the Infrastructure

Initially described in Section 4.5, each Thyme-Infra instance periodically checks its

localPopularityInformation table, which contains references to each object downloaded

by its local clients as well as the number of retrievals, decides the most popular items

for each world, sends download requests to those items and then periodically batch-

inserts the received items in the Local Popularity Cache. This process of Retrieving Local

Popular Items to Cache (RLPIC) in the infrastructure is composed of two different timers

to coordinate the periodic mechanisms: popular decision and batch-insert timers (Fig.

4.17).

Popular Decision Timer (PDT). After the arrival of the first cell data message, the sys-

tem will schedule this timer for repeated fixed-rated executions, with regular intervals

between them, after a specified delay (this value is configurable by the administrator, see

Section 4.9.9). When this timer fires, the process will always increment the global RLPIC

counter but will purposely skip the first execution in order to give the system and its

clients enough time to create meaningful and considerable data before checking the pop-

ularity of the published items to offload to the infrastructure. On further executions, the

Thyme-Infra node will go through its localPopularityInformation table, determine the

top most popular data among its local clients (Section 4.9.3.1) and broadcast a download

message to each individual items’ replicas. This RLPIC counter represents the current

popular decision cycle and is mainly used to guarantee that the items requested within

one popular decision cycle arrive before the next one. To check for this, when the infras-

tructure node sends a local download request as part of this process, it also associates to

that request the current counter. For instance, if the current RFLPIC counter is 10 and

one of the requested items arrive at the infrastructure with the counter also at 10, that

item will be accepted and saved to be batch-inserted in the near future. On the other

hand, if the current RLPIC value is 12 and an incoming item has 10 in its associated

61

CHAPTER 4. THYME-INFRASTRUCTURE

cycle counter, meaning that the replica took too long to process the infrastructure request

due to being busy or resource-throttled (for instance), it will be ignored by the Thyme-

Infra instance since its popularity index could have changed between cycles 10-12 and

no longer considered popular and worthy of cache space.

Batch-Insert Timer. After the execution of each Popular Decision Timer’s cycle, another

timer, the Batch-Insert timer, will be scheduled to fire in a predetermined amount of

regular-intervaled executions (values also configured by the administrator - Section 4.9.9)

until the next PDT activation. This timer has the goal of batch-inserting already received

items that were requested by the previous process into the Local Popularity Cache and

trigger the execution of the cache’s Adaptive Multipart Caching algorithm, as explained in

Section 4.7.2. We believe that this batch-insert approach offers the best benefits both in

terms of user experience and performance. The other two considered alternatives were:

1. Inserting individual items into the cache as they arrive at the infrastructure, which

would make entries more readily available for the AP’s clients but would have a

considerable impact on performance since the AMC would have to be executed for

every single insertion and, depending on its properties, individual puts could have

minimal to no changes on the outcome of Equation 4.1;

2. Inserting all received items right before the next execution of the Popular Decision

cycle which would have a lower impact on performance since the AMC would be

executed only once per cycle but the content would take longer to be available to

the users, degrading the user experience linearly with respect to the PDT’s interval

delay.

Finally, the scheduling of all the Batch-Insert Timer’s intervals, between popularity

decisions, takes into account what we call a “Processing Slack”, γ , at the very end with

the goal of giving enough time for the Thyme-Infra instance to finalize the insertion

process to the Local Popularity Cache before starting the next cycle. Thus, avoiding sce-

narios where a specific item is about to be inserted into the cache and an overlapping

Popularity Decision process determines that the exact same item is not yet cached and

still considered popular and proceeds to ask the replica again for the data, resulting in

an unnecessary duplicate request.

4.9.3.1 Determining the Top Most Popular Data to Offload to the Infrastructure

In order to choose the most relevant items to offload to the infrastructure during every

popularity decision cycle to be cached in the Local Popularity Cache for easier access,

each Thyme-Infra instance executes a custom filtering algorithm to establish a ranking

order of popularity. Among all of the state-of-the-art projects developed in this area that

were studied during the context of this dissertation (Chapter 2), we decided to focus

on approaches that were computationally simple and fast while still offering relevant

62

4.9. IMPLEMENTATION DETAILS

Batch-insert
received items

(B-I RI)

B-I RI B-I RI

increment execution counter
choose most popular items

send download message to chosen items’ replicas

B-I RI B-I RIB-I RI

…
…
…

γ γ

Popular Decision Timer Batch-Insert Timer γ = Processing Slack

Figure 4.17: Timer definition for the process of retrieving local popular items to cache in
the infrastructure.

results. The reasoning behind this is due to the fact that this process will need to be

executed periodically and we do not wish to overwhelm the infrastructure node with

complex computations. Furthermore, due to the periodicity of this decision process, we

are able to use simpler algorithms, which would tend to have lower accuracy as a tradeoff,

since we are expecting to eventually converge to the best items. Thus, considering its

characteristics and positive results, we implemented a simplified approach of [31] by

eradicating the authors’ use of computationally intensive file clustering algorithms and

incorporating Thyme-Infra-specific features and steps. Our vision for the popularity

decision algorithm is composed of the following stages:

1. We start by splitting the items from the localPopularityInformation table into two

distinct groups: active files (files that have been accessed/downloaded recently) and

stale files (files not accessed in the most recent time period). In [31], the authors use

the exact time, right down to the milliseconds, of when an item was downloaded in

order to check whether it is within the active files’ time window. In Thyme-Infra,

we use a coarser granularity approach to time, in order to achieve a better (lower)

space complexity during the execution of this process: whenever a Thyme-Infra

node receives a cell data message, it will set the current RLPIC counter value to

the items that were marked as downloaded in the message as their latest download

timestamp. Therefore, the infrastructure node will consider active files as the ones

that have been accessed in the past activewindow (value configured by the developed

- see Section 4.9.9) popular decision cycles, thus passing the following condition:

0 ≤ RLP IC − itemdownloadTs ≤ activewindow

where itemdownloadTs is the last RLPIC counter associated with the item;

2. Secondly, we take the set of all active files, divide them by world and within each

world’s container we will sort the items further by popularity;

63

CHAPTER 4. THYME-INFRASTRUCTURE

Figure 4.18: Caffeine’s Window TinyLFU scheme. Adapted from [52].

3. Then, for each world container we calculate the sum of the popularity of all the

inner items while also calculating the total amount of downloads throughout every

world. With these values obtained, we will then compute the weight of each world

based on its contribution to the total amount of downloads executed within the BSS;

4. Finally, we will use the upper bound of the number of items that should be consid-

ered popular during each cycle (Section 4.9.9), and then choose the top N items

from each world, with regards to their calculated weights, until that limit is reached.

By the end of the execution of this algorithm, Thyme-Infra will possess the identi-

fiers of the most popular items from this cycle and is now ready to communicate with its

local replicas to download and offload them to the infrastructure. Further iterations of

this algorithm will skip items that are considered popular but are already cached within

the Local Popularity Cache.

4.9.4 Caffeinated Data

All of the Publish/Subscribe caches used by Thyme-Infra are built on top of Caffeine.

Caffeine [50], developed by Ben Manes, is a high performance, thread-safe and near

optimal caching library based on Java 8, which offers features such as size and time-based

eviction policies, notification of evicted entries, ability to propagate writes to external

sources (such as a cloud-backed database) and the automatic accumulation of cache access

statistics.

Unlike simpler and widely used eviction policies like the LRU [51], which keeps track

of the ordering of accesses to then choose the entry that was last obtained to be removed,

and the LFU, which on the other hand keeps track of the number of accesses (or frequency)

of each entry and chooses the entry with the least amount to be removed, Caffeine employs

a novel and a more complex approach with the proposal of the Window TinyLFU (W-

TinyLFU). W-TinyLFU [52] is a frequency-based cache admission policy which consists of

three essential cache areas: an admission window, the TinyLFU admission filter and the

cache itself (Fig. 4.18).

64

4.9. IMPLEMENTATION DETAILS

During the put operation, the new item is inserted into the W-TinyLFU’s admission

window which will give it a chance to build up its popularity to be able to persistently

move to the main cache in the future. When this window is full, a window victim

is chosen, using the LRU policy, and passed on to the TinyLFU admission filter. This

TinyLFU filter, which maintains an approximate representation of the access frequency

— the popularity-sketch — of a large sample of recently accessed items, will then decide,

based on the recent access history, whether it is worth admitting the window’s item item

into the main cache, i.e. if the new item is expected to increase the hit ratio, at the expense

of the eviction of an already stored item. To do this, the TinyLFU estimates and compares

the newest and evicted items’ frequency and recency values, using methodologies similar

to the Counting Bloom Filter [53] and the Count-Min Sketch [54], and if the former’s is

indeed higher, the winner will me transferred to the main cache, excluding the recently

evicted item to make room for it.

On the other end of the spectrum, the main cache is based on the Segmented LRU

policy (SLRU) [55] which, in itself, means that the cache is divided into two parts: the

protected and the probation segments, usually using 80% and 20% of the cache’s size,

respectively. An entry starts in the probationary segment and on a subsequent access it

is promoted to the protected segment and when the protected segment is full it evicts

into the probationary segment, which may trigger a probationary entry to be discarded.

Furthermore, when the TinyLFU executes the described comparison process, the chosen

main cache’s item is retrieved from the probation container.

When compared to other high level Java in-memory caches, like Google’s Guava [56]

and Ehcache [57], extensive real-world and simulated benchmarks show that, regardless

of the workload, Caffeine offers a better read, write and read/write performance (ops/s)

[58] [59] as well as a lower memory overhead [60] while, on the other hand, when com-

pared to other popular eviction policies Caffeine’s W-TinyLFU presents a comparable or

a higher, near optimal, hit rate value [61].

Adding to all of this, the fact that W-TinyLFU does not necessarily remove an item

from the cache during an insertion of another, something that is employed by LRU and

LFU, is highly beneficial. For instance, if we consider a cache where all the items are

highly popular and the difference between the number of accesses of every one of them

is negligible, an approach like LRU or LFU would have no problem in evicting a pop-

ular item to make space for another, even if the latter is not expected to be nowhere

near as popular as the former, something that would not easily happen with W-TinyLFU.

Thus, when we acknowledge its features and flexibility, we decided that using Caffeine

in Thyme-Infra would best fit our needs.

4.9.5 Mobile Address Translation Store

As defined by the authors of Thyme [18], the system utilizes a previously built peer-to-

peer communication layer, developed by other members of the “Hyrax: Crowd-Sourcing

65

CHAPTER 4. THYME-INFRASTRUCTURE

mobile devices to develop edge cloud” project [35]. By using this layer, each Thyme node

has its own logical address, composed of a UUID [36] and the cell identifier where the

client lies in, like the following:

(UUID : idCell)

such as

(123e4567− e89b − 12d3− a456− 426655440000 : 0)

These addresses are used by the communication layer to allow the intercommunica-

tion of mobile nodes within the system. The UUID’s address counterpart is randomly

assigned when a Thyme instance boots up and is not changed throughout its execution.

On the other hand, the cell identifier is set to the value given by the infrastructure and

will essentially remain the same after that, if the system is using the nearest infrastructure

nodes, otherwise the idCell will be changed every time the client physically moves from

one cell to another.

Logical addresses are ubiquitous to the entire workflow of the Thyme system, adopted

not only to allow P2P communication between clients but also used in places such as

metadata items, namely in the replication list field (Lrep - Section 3.3), which holds clients’

logical addresses that are currently replicating the metadata’s object (used for the down-

load operation, for instance).

Since this layer relies heavily on mobile libraries, namely Android [19] ones, it was not

possible to use it directly in the infrastructure layer, which is built in plain Java [62], in

order to facilitate the connection between the Thyme and Thyme-Infra nodes. Thus,

we defaulted to using the simplest communication approach by using physical addresses

(IP addresses and ports) during infrastructure-to-infrastructure communications, as well

as infrastructure-to-mobile transmissions. Consequently, we needed to employ a mecha-

nism that not only allowed Thyme-Infra instances to read and comprehend Thyme’s

logical addresses but also transform them into physical ones for communication. To do

that, we created the Mobile Address Translation Store, or MATS for short.

MATS is a single-purpose one dimensional cache that maps logical address into phys-

ical, usable, addresses for the infrastructure layer. MATS, built on top of the already

described Caffeine cache, is size and time-bounded (both aspects can be entirely con-

figured - Section 4.9.9): each entry has a time-to-live (since mobiles nodes can become

inactive or leave the venue’s coverage) and whenever the infrastructure executes a put

operation of an address that is already in MATS, the entry’s TTL will be refreshed since it

is proof that the device is still operational. Furthermore, the Mobile Address Translation
Store also uses an additional structure, a simple set, that is used to store the latest auto-

elected stable node for each of the available cells. This particular data structure is used

during various communications workflows as will be described in Section 4.9.7.

66

4.9. IMPLEMENTATION DETAILS

To populate this cache, every time the Thyme-Infra node receives an incoming

message from a mobile node it will then insert into MATS the node’s logical address

as well as its physical address, obtained from the opened Socket. To obtain the former

address, we altered all messages’ Protobuf definition file (Section 4.9.1) that are sent from

the mobile nodes to the infrastructure, with the goal of adding an origin field which will

contain the node’s logical address.

Finally, the Thyme-Infra node will then use the MATS when it needs to establish a

direct communication channel with one of its clients, whether it is to perform a download

operation on one of a metadata’s replica nodes or to notify the arrival of data from other

APs. This process will also be described in full detail in Section 4.9.7.

4.9.6 Mobile Nodes Notification on Nearest Infrastructure’s Storage
Changes

As defined in Thyme’s updated subscription workflow specification, the system con-

stantly checks whether a metadata item is stored in the nearest infrastructure node to

optimize and structure its operations behaviors. However, at any given time, a mobile

node does not necessarily know which items are stored in the Thyme-Infra node’s

caches beforehand. To allow this, we first extended Thyme’s metadata object, even fur-

ther than what we have described in Section 4.4.3, to accommodate an additional boolean

field, namely isInNearestInfrastructure, that indicates whether the metadata object itself is

stored in the nearest AP. Secondly, whenever an entry is inserted or removed from one of

Thyme-Infra’s caches, the system will send an InfraStorageUpdate message to the cells

that are currently indexing the added/evicted item in order for the mobile nodes located

within them to be able to update their own metadata’s flags. This message is simply

composed of a boolean flag, where true signals that the metadata item is now stored in

the infrastructure and false when that item was evicted from one of the caches.

4.9.7 Infrastructure-to-Mobile Nodes Communication Workflows

To communicate with its mobile nodes, a Thyme-Infra node needs to employ essen-

tially two types of communication workflows, depending on the operation that needs to

be executed. Such workflows are: communication with a specific node and interaction

with a logical cell as a whole.

4.9.7.1 Communicating With a Specific Node

To communicate with a specific mobile client, an infrastructure node employs a twofold

approach as visible in Fig. 4.19. First, it inquires MATS to try and translate the node’s logic

address (represented as nodeAddress) into a physical one. If MATS indeed contains the

right logical-to-physical translation, the infrastructure node directly sends the message

to that destination. On the other hand, if the Mobile Address Translation Store is unable to

67

CHAPTER 4. THYME-INFRASTRUCTURE

Infrastructure
Publish/Subscribe

Server

Mobile Address
Translation Store

Correct Destination
Thyme

Correct Destination
Application

Cell Stable Node
 Thyme

Cell Stable Node
 Application

1: TranslateToPhysicalAddress(nodeAddress)

2: NodePhysicalAddress

3: Message
4: Message

5: ProcessMessage

6: GetStableNodeAddress(nodeAddressCell)

7: CellStableNodePhysicalAddress

8: Message

alt

[MATS is able to
 translate the
 logical address]

[Else]

9: Message
10: Route(Message)

11: Message

12: ProcessMessage

Figure 4.19: Sequence diagram showcasing the generic workflow used by the infrastruc-
ture node to communicate with a specific mobile node within its BSS.

process that request, i.e. due to other mobile addresses overwriting that specific node’s

address entry or that entry’s TTL expired, the infrastructure then decides to obtain the

stable node’s physical address that is currently part of the same cell as the initial node

(represented as nodeAddressCell) and sends the message to that destination which, in turn,

that node will locally route the message to the correct neighbor/destination.

This particular workflow is currently only used as part of the download operation

initiated by an infrastructure node, i.e. to obtain local popular items and replicate them

within its local storage. Therefore, the entire workflow presented in Fig. 4.19 will be exe-

cuted for each replica until the item is successful obtain from one of them. Consequently,

the messages sent during this operation are DownloadMessages and the ProcessMessage
steps returns the requested object or a failure message back to the infrastructure.

4.9.7.2 Communicating With a Cell as a Whole

This particular workflow, executed during the arrival of SubscriptionNeedsReplyMessages
from other infrastructure nodes as well as part of the infrastructure’s storage changes

notification mechanism, was implemented to facilitate the communication and dissem-

ination of information to all nodes within a cell by the infrastructure. The simplified

version of this procedure is visible in Fig. 4.20. In short, the infrastructure node starts by

asking MATS for the physical address of the specified cell stable node, then sends the cell

message to that mobile node which, in turn, will locally disseminate the same message to

all other nodes within its cell (process referred as ProcessCellMessage in the figure). How-

ever, if MATS does not know the physical address translation for the stable cell node or if

the communication between the infrastructure and the stable node failed, the workflow

68

4.9. IMPLEMENTATION DETAILS

Infrastructure
Publish/Subscribe

Server

Mobile Address
Translation Store

Cell Stable Node
Thyme

1: GetStableNodeAddress(cell)

Cell Stable Node
Application

2: CellStableNodePhysicalAddress

opt

[CellStableNodePhysicalAddress <> null]
3: CellMessage

4: CellMessage
opt

[message transmitted
to cell node with
success]

5: Acknowledgment

Cell Node
Thyme

Cell Node
Application

6: ProcessCellMessage

Loop

[list of known nodes'
addresses in cell is not
empty]

opt

[CellStableNodePhysicalAddress == null
or infrastructure failed to
communicate with the cell stable
node]

7: GetKnownNodesInCell(cell)

9: CellMessagebreak

[message
transmitted to cell
node with success]

10: CellMessage
11: Acknowledgment

8: ListOfKnownNodesInCell

12: ProcessCellMessage

opt

[cell message is still not
transmitted successfully]

13: SaveCellMessage
ToRetryLater

14: NewStableCellNode
15: CellMessage

16: CellMessage
17: Acknowledgment

18: ProcessCellMessage

Figure 4.20: Sequence diagram showcasing the simplified workflow used by the infras-
tructure node to disseminate messages to all nodes within a cell in its BSS.

will try further by requesting the translation store for all known physical addresses of

nodes in that cell and iteratively execute the same procedure as described above until it

the transmission succeeds. Ultimately, if all of these methods fail, the infrastructure will

put the message dissemination on hold, wait for the Mobile Address Translation Store to

notify it when another stable node is established for that particular cell and, when that

notification is triggered, the dissemination will be retried once again.

4.9.8 Time outs

In order to keep the processing of critical operations as snappy as possible, such as down-

loads and subscriptions that, while performed asynchronously and not considered UI-

bound, the user still expects a visual feedback after executing these operations, we em-

ploy timeouts in all messages sent across the system, whether by mobile or infrastructure

nodes, with the goal of avoiding scenarios where mobile or even infrastructure nodes

may be down or overwhelmed by requests at a given time. Since the number of retries

and the timeouts between each one of them rely heavily on the hardware available within

the venue, as well on the venue’s network specifications, we believe that those values

should not be an hardcoded one-size-fits-all solution. Thus, we give the option to the

architecture developer to fine-tune this controls and choose the most appropriate values

in the Thyme-Infra configurations file (Section 4.9.9).

69

CHAPTER 4. THYME-INFRASTRUCTURE

4.9.9 Configurations File

One of the goals throughout the entire development of Thyme-Infra was to create a

system that would be able to adapt to every scenario and would be able to be fine-tuned

by the infrastructure/application developer to tailor to not only its clients/applications

needs but also to its hardware needs. Therefore, we created a configuration file that

is required by the system during startup whose goal is to provide the infrastructure

application multiple details on how it should run, whether it is timeout values, cache

sizes, etc.

Table 4.1 presents every entry available in the configurations file as well as a brief

description to each one, along with a distinction between required and optional values.

The following represents a concrete example of a possible configurations file:

70

4.9. IMPLEMENTATION DETAILS

Listing 4.3: Thyme-Infra example configurations file.

1 infra.own.ip = 192.168.1.67

2 infra.own.mobile.port = 9500

3 infra.own.mobile.nThreads = 10

4 infra.own.interinfra.port = 9501

5 infra.own.interinfra.nThreads = 5

6

7 infra.own.discoveryMulticast.ip = 227.7.12.95

8 infra.own.discoveryMulticast.port = 8999

9

10 infra.own.cache.localPopularity.size = 100

11 infra.own.cache.prefetch.metadata.size = 101

12 infra.own.cache.prefetch.data.size = 102

13 infra.own.cache.global.metadata.size = 103

14 infra.own.cache.global.data.size = 104

15 infra.own.cache.mobileAddresses.size = 100

16 infra.own.cache.mobileAddresses.writeTTL = 300000

17

18 infra.own.subNeedsDisseminationDelay = 60000

19 infra.own.subNeedsReplyDisseminationTimeWindow = 60000

20 infra.own.retrieveLocalPopItemsToCacheDelay = 30000

21 infra.own.maxLocalPopularItemsToOffload = 100

22 infra.own.popularItemsActiveWindow = 3

23 infra.own.numberOfBatchInsertsToLocalPopularityCache = 3

24 infra.own.localNodesRequestsTimeout = 3000

25 infra.own.infraRequestsTimeout = 3000

26

27 infra.own.popularityEntryMaxStorageLocations = 10

28 infra.own.localDataGloballyConsumedInitialIgnoreCounter = 5

29

30 infra.own.usesPopRankingAlgorithm = false

31 infra.own.usesConsumptionNotification = false

32

33 mobiles.inSimulationEnvironment = true

34

35 infra.other.0.ip = 2.2.2.3

36 infra.other.0.port = 9502

37

38 infra.other.1.ip = 2.2.2.4

39 infra.other.1.port = 9603

To enable the system to read and parse the configurations file, the system adminis-

trator should execute the Thyme-Infra instance while specifying the following Java

Virtual Machine argument, -Dconf.file, with the appropriate configurations’ file path, like

so:

$ java -Dconf.file=<conf-file-path> -jar <thyme-infra-path>.jar

71

CHAPTER 4. THYME-INFRASTRUCTURE

Table 4.1: Thyme-Infrastructure Configurations File Specification. Bold entry keys
represent optional values.

Key Description

infra.own.
ip The IP address of the current infrastructure node
mobile.port The current infrastructure node port used to receive messages from the mobile nodes
mobile.nThreads The number of threads to be allocated to process incoming requests from the mobile

nodes
interinfra.port The current infrastructure node port used to receive messages from other infrastructure

nodes
interinfra.nThreads The number of threads to be allocated to process incoming requests from the infrastruc-

ture nodes
discoveryMulticast.ip The multicast IP address for the mobile nodes to discover the current infrastructure node
discoveryMulticast.port The multicast port for the mobile nodes to discover the current infrastructure node
cache.localPopularity.size Local Popularity Cache max number of entries
cache.prefetch.metadata.size Prefetch cache max number of metadata entries
cache.prefetch.data.size Prefetch cache max number of data entries
cache.global.metadata.size Global cache max number of metadata entries
cache.global.data.size Global cache max number of data entries
cache.mobileAddresses.size Mobile Nodes Address Store max number of entries (as explained in Section 4.9.5)
cache.mobileAddresses.writeTTL Mobile Nodes Address Store entry TTL after a write/put (as explained in Section 4.9.5)
subNeedsDisseminationDelay How long, in ms, should the Thyme-Infra node wait between its own subscription

needs disseminations (as explain in Section 4.6)
subNeedsReplyDisseminationTimeWindow How long, in ms, is the Thyme-Infra node’s non-overlapping subscription needs reply

dissemination time window (as explain in Section 4.6.1)
retrieveLocalPopItemsToCacheDelay Delay, in ms, between popularity decision cycles
maxLocalPopularItemsToOffload The max number of items to be considered popular and offloaded into the infrastructure

during each popularity decision cycle (as explained in Section 4.9.3.1)
popularItemsActiveWindow Value that represents the window of which items need to have been accessed to be consid-

ered as “active”
numberOfBatchInsertsToLocalPopularityCache The number of batch inserts between popularity decision cycles
localNodesRequestsTimeout Timeout, in ms, before a request to a mobile node is considered invalid
infraRequestsTimeout Timeout, in ms, before a request to another infrastructure node is considered invalid
popularityEntryMaxStorageLocations Maximum size for the data structure which keeps track of each item’s storage locations

(or replicas) in the local popularity information table
localDataGloballyConsumedInitialIgnoreCounter The number of dissemination cycles to be executed before being able to start disseminat-

ing a specific item again after it was already consumed (as explain in Section 4.6, Step
3)

usesPopRankingAlgorithm Flag used to indicate whether the popularity ranking algorithm should be executed to de-
cide which items should be offloaded into the infrastructure during each popular decision
cycle. Defaults to true

usesConsumptionNotification Flag used to indicate whether the Thyme-Infra instance should notify an item’s origin
infrastructure node when it is consumed by its local users. Defaults to true

mobiles.
inSimulationEnvironment Flag used to indicate whether the Thyme nodes communicating with the infrastructure

are in a simulation environment (i.e., within a single machine) in order to adapt some
components to work with the simulation. Defaults to false

infra.other.{n : n ∈ N}.
ip The IP address of another infrastructure node from the system
port The port of another infrastructure node from the system

4.10 Summary

In this chapter we presented the updated Thyme model as well as the proposal and the

implementation of the novel Thyme-Infra component. Furthermore, we described

each individual layer of the entire system, alongside a characterization of its behavior

and associated outcome, as well as thorough explanation of the implementation details

and decisions that had to adopt in order to create a solution that is as performant and

sound as possible in the context of edge networks. After reading this chapter, one is able

not only to comprehend how the proposed scheme works on a higher level but also how

each low-level component behaves and interacts with the rest of the system.

72

C
h
a
p
t
e
r

5
Evaluation

In this chapter we will showcase the results of our extensive experimental

evaluation in order to characterize our proposed system, in terms of behavior

and performance. In Section 5.1 the evaluation methodologies are presented,

along with an overview of the use case application that acts as the core of

our entire testing infrastructure. To guarantee the logical soundness of the

proposed solution, we will present, in Section 5.2, our logical evaluation. In

Sections 5.3 and 5.4 we will demonstrate how our system performs, under a

variety of tracked metrics, as well as how it stacks up to the previous version

of Thyme, respectively. Finally, in Section 5.5, the combination of Thyme

and Thyme-Infra will be directly compared to a previously deployed cloud

infrastructure.

5.1 Evaluation Methodologies

To evaluate the entire behavior and workflows of our proposed solution, we segmented the

testing scenarios into two distinct environments: real-world and simulated environments.

Real-world Evaluation. Thyme and Thyme-Infra can be used to implement a plethora

of use cases and applications that run at the edge. One specific use case would be a photo

gallery application for Android devices that allows the user to share photos between

mobile devices interconnected through a wireless network. A photo gallery software ap-

plication was initially developed by the authors of Thyme [18] (Fig. 5.1) to serve as way

of showing how Thyme works and how well it performs in real-world scenarios. This

app supports all regular Publish/Subscribe operations, like the subscription, download,

and publish.

73

CHAPTER 5. EVALUATION

a Main Screen. b Publish Item Screen. c Download Photo Screen.

Figure 5.1: Showcase of the use case application. Adapted from [18].

In the context of this dissertation, we will bootstrap our testing and evaluation envi-

ronment by utilizing the already developed application to collect metrics for the newest

iteration of Thyme and record the impact of the introduction of the Thyme-Infra layer

in the system. Furthermore, with this evaluation methodology, we focused on harvesting

as much data as possible regarding physical-related metrics, in the likes of battery con-

sumption and transmissions latency, which cannot be accurately measured in a simulated

scenario.

To perform this real-world assessment, we utilized a variety of devices, namely An-

droid smartphones, from an array of specific brands with their respective hardware prop-

erties as seen in Table 5.1. Nonetheless, due to hardware limitations, we were only able

to gather a set of 6 physical devices to pursue our evaluation needs.

Table 5.1: Mobile devices used for the real-world evaluation scenarios.

Device Motorola Nexus 6 Motorola Moto G (2nd gen)

CPU
Quad-core 2.7 GHz

Krait 450
Quad-core 1.2 GHz

Cortex-A7
RAM 3 GB 1 GB
Storage 32 GB 8 GB
Battery Li-Po 3220 mAh Li-Ion 2070 mAh
OS Android 7.1.1 (Nougat) Android 7.1.1 (Nougat)
Wi-Fi Wi-Fi 802.11 a/b/g/n/ac Wi-Fi 802.11 b/g/n
Bluetooth 4.1 4.0

74

5.1. EVALUATION METHODOLOGIES

Simulated Evaluation. Regarding the simulated environment, we utilized a custom

trace-based simulation framework, previously developed in-house in pure Java, which

offers a total rework of Thyme’s networking layer to support logical dissemination of

messages between any number of virtual nodes within a single machine. To support this

type of evaluation, we had to adapt a considerable amount of Thyme’s logic, such as

exchanging Android-specific classes and dependencies with their simulated counterparts.

Furthermore, by executing our set of testing scenarios in a simulation environment, we

are able to test, in greater detail, the scalability of the proposed solution without any

hardware limitations. Concerning the Thyme-Infra counterpart, since we designed it

to be a pure Java component from the ground up, we did not need to alter it in any way to

be used within the simulator. Therefore, we just need to execute the Thyme-Infra in-

stance and link all the Thyme simulated nodes to it in order to establish communication

channels between both parties.

Unlike the real-world evaluation where we used a photo sharing application as the

basis of our testbed, in the simulation environment we specifically created custom traces

that would mimic a real-world scenario. This particular scenario is based in a university

setting, where half of the users attend a class in the beginning of the trace, followed by

an intermission and, after that, the rest of the students attend the second daily lecture

of the same class. During each lecture, 15% of the attending students are considered

the “good students” and therefore subscribe to all of the topics that will be lectured right

at the beginning (known as the “class warmup interval”) and are more predisposed to

publishing items throughout the entire duration of the class. The rest of the students

will have a lower interaction rate and will only start to contribute to the system after a

predetermined amount of time into the class. Throughout the entire duration of the trace,

all users will be subscribing and publishing items with tags that are relevant and global

to the entire university.

Each class has a 45 minutes duration while the intermission is 10 minutes long, cul-

minating in a total duration of 100 minutes. In the lectures, the warmup interval takes

10 mins. For the trace generation, subscription operations for most of the class students

were issued randomly throughout the class duration until all of the class tags were met.

Publish operations were generated with a rate of 30 and 5 per user per hour for good

and regular students, respectively. Regarding university related tags, subscriptions were

generated with a rate of 10 per hour, for all students, while publish operations were de-

livered with a rate ranging from 10, for students outside the class, and 2 per hour, for

students currently attending a class. To further simulate real-world interactions and re-

action times, downloads are issued with a 70% probability and within 30 seconds of the

new file notification arrival. Moreover, we generated and focused on trace files with 100

virtual nodes as we believe that number to be an acceptable population size for a single

access point.

To make simulation execution more lively, we compressed the ∼2 hours into 10 min-

utes of simulated time. Proactive routing protocols need time to converge. Thus, in

75

CHAPTER 5. EVALUATION

our simulations, the application running on the nodes only started after 60s, and op-

erations started being issued only after that. At the end of the simulation, nodes only

shutdown 60s after operations stopped being issued in order to give enough time for the

ongoing processes to be executed successfully. The total simulation time was 720s.

With the goal of evaluating the system in the most relevant way possible, regarding

the Thyme-Infra counterpart, we performed an extensive research on current state-

of-the-art 5G-tailored base stations, and respective CPUs, in order to parameterize our

framework’s specifications to match real-world hardware components. One of the pro-

cessors found during our investigation was Intel’s Atom® Processor C3000 Series [63]

specifically designed for ZTE’s [64] 5G base stations. Among all of the CPU series char-

acteristics, the processors range from 2 cores, on the lower-end models, to 16 cores on

the higher-end of the spectrum. By having this information, we decided to artificially

limit the cores used by each Thyme-Infra instance to be 16, in order to grasp how the

system would perform if executed in a real-world 5G equipment. Moreover, to actually

simulate a physical 5G base station executing our infrastructure software stack, we uti-

lized a computer laptop, running an instance of Thyme-Infra, directly connected to

a consumer-grade wireless router (such as the Huawei EchoLife HN8245Q [65]). On top

of that, to implement scenarios where multiple infrastructure nodes are available in the

system, each of the routers will be physically linked by cable to each other. The technical

specifications of the different laptops used for this specific purpose are displayed in Table

5.2.

Table 5.2: Computer laptops for running Thyme-Infra in the real-world evaluation
scenarios.

Model Apple MacBook Pro Mid-2014 Apple MacBook Pro Mid-2010

CPU
Dual-core 2.6 GHz

Intel Core i5
2.4 GHz

Intel Core 2 Duo
RAM 8 GB 4 GB
Storage 120 GB 250 GB
OS macOS 10.14 (Mojave) macOS 10.13.5 (High Sierra)
Wi-Fi Wi-Fi 802.11 a/b/g/n/ac Wi-Fi 802.11 a/b/g/n

Additionally, in order to focus, evaluate and produce a precise overview of the raw

overhead produced by our system running in an edge network setting, we restricted the

size of the data items published by the mobile clients to be precisely 64 bytes long in

nearly all of the tests and in both of the evaluation scenarios (real-world and simulated).

This allowed us to add some small weight to the messages that contain file data and create

a clear distinction between them and the rest of the traffic. On top of that, for every given

evaluation scenario, we reported the average results of at least 3 independent executions.

Ultimately, we seek to answer the following questions:

1. What is the impact of multiple parameterizations of the Mobile Address Translation

76

5.2. LOGICAL EVALUATION

Store?

2. What is the impact on the caches as well as on the system performance while using

our proposed popularity ranking algorithm versus no algorithm at all?

3. How is the system’s performance impacted by using the proposed Items’ Consump-

tion Notification mechanism?

4. How does the Adaptive Multipart Caching system behave under distinct population

needs?

5. What are the tradeoffs of utilizing a multiple batch-insert approach in the Local

Popularity cache when compared to approaches like inserting the item right away

when it reaches the infrastructure or inserting all the received data at once at the

end of each cycle?

6. How does the previous iteration of Thyme compare to the updated Thyme along

with Thyme-Infra in terms of performance and resource utilization?

7. How does the proposed edge system stack up to a full-fledged external cloud infras-

tructure solution?

5.2 Logical Evaluation

Due to the inherent complications associated with software development, namely the

occurrence of “software bugs”, before we started executing our proposed system to gather

performance metrics, the first step in our evaluation scheme was to make sure both of

the developed architectures (the newest iteration of Thyme and the Thyme-Infra)

were programmatically sound and their operations’ outputs and workflows were correct.

To test this, we performed a logical evaluation of our entire software stack by creating

unit tests that made sure each system’s components behaved like they were conceptually

designed to do so.

Throughout the entire development cycle of this thesis, we created over 130 unit

tests (Fig. 5.2), using the JUnit Java library [66], across all core components and their

operations while trying to be as thorough as possible by designing a multitude of use cases

and inputs to logically validate each module during irregular and stressful conditions.

Only then, after we reached a satisfactory code coverage, we felt confident about initiating

the process to track evaluation metrics since our system showed no signs of incorrect

behavior.

5.3 Absolute Metrics Evaluation

The main purpose of this section is to present a comprehensive description, through

plotting of multiple absolute metrics, of how our system behaves and performs during

77

CHAPTER 5. EVALUATION

Figure 5.2: Execution of all unit tests in Thyme-Infra.

distinct scenarios, workflows and workloads, focusing solely on the simulated evaluation.

Further, we will also put some of the features, that were specifically proposed and im-

plemented in Thyme and Thyme-Infra with the goal of increasing the overall system

performance and user experience, to the test in order prove our initial assumptions.

5.3.1 Mobile Address Translation Store

The MATS is one of the most important components of Thyme-Infra which essentially

allows the infrastructure node to be able to communicate with its clients at will, without

being limited to request-and-reply interactions initiated by the mobile nodes. This data

structure is particularly used during each Thyme-Infra’s popularity decision cycle

due to the fact that, during this step, the infrastructure node will try to contact with the

chosen items’ replicas, thus requiring a translation from the replica logical address into a

physical one. As previously explained, when the store is unable to translate an address,

it will force the system to disseminate the message (i.e. InfraRoutingMessage) to a node

within the destination’s cell, such as the cell stable node, and ask it to locally route that

packet to the desired destination.

As the Mobile Address Translation Store is built on top of a bounded in-memory cache,

namely a Caffeine cache, whose size is fully configurable by the developer, in this evalua-

tion scenario we aim to verify the impact of the cache’s size in the traffic generated by the

system when compared to the produced memory overhead. As the testing environment,

we utilized a single Thyme-Infra instance.

Fig. 5.3 showcases the generated traffic results. As we can see, if the infrastructure

used the MATS with a size of 0, meaning that it would only save each cell’s stable node

address, an additional ∼2300 messages would have to be transmitted in order to reach the

desired destinations, at multiple stages of the trace. From that point on, the number of

routing messages sent starts to decrease at an accentuated rate until the MATS is able to

store half of the total mobile population’s addresses. Afterwards, and until the full store

78

5.3. ABSOLUTE METRICS EVALUATION

0 20 40 60 80 100
0

500

1,000

1,500

2,000

MATS Capacity (entries)

In
fr

aR
ou

ti
ng

m
es

sa
ge

s
se

nt

Figure 5.3: Total InfraRouting messages
sent by the infrastructure as the MATS
capacity increases.

0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

MATS Capacity (entries)

M
em

or
y

O
ve

rh
ea

d
(M

B
)

Figure 5.4: Memory overhead caused by
the MATS as its capacity increases.

capacity is reached (which culminates in the transmission of 0 InfraRouting messages),

the performance increases are much less noticeable.

On the other hand, in order to quantify the MATS’s memory usage at different sizes, we

utilized the specialized VisualVM Java Profiler tool [67] which allows the user to glance

at, among other things, a program’s heap space. Consequently, we created a separate Java

program with the intent of simply creating and populating the translation store to gather

memory statistics, by applying the following steps:

1. Running the program and stopping right before the code that instantiates the MATS;

2. On top of that, we manually invoked the execution of the Java garbage collector.

This, in turn, allowed us to snapshot and obtain the baseline of the program’s heap

utilization;

3. Then, we resumed the program and allowed it to create and populate the translation

store;

4. Finally, we paused the process right after the previous step completed, re-executed

the garbage collector once again (in order to get rid of any auxiliary and intermediate

information from the memory) and obtained the heap usage, to which we deducted

the baseline from the first step, of MATS from VisualVM.

The final results, for different store sizes, can be visualized in Fig. 5.4. With a size

of zero, the MATS memory overhead is approximately 0.4 MB. Although in this case

the inner addresses cache is not initialized, other auxiliary data structures are always

instantiated when the translation store is constructed, such as the collection that keeps

track of each cell’s stable node address, which makes up to that amount of heap usage.

When we started to increase the Mobile Address Translation Store we verified that by simply

initializing the Caffeine cache the memory overhead would grow up to 1.15 MB, due to

its intricate inner structures and tasks. Furthermore, for every additional 20 entries the

79

CHAPTER 5. EVALUATION

usage rose by around 0.1 MB, reaching a total of 1.24 MB with the capacity for 100 mobile

addresses.

To conclude, it is possible to verify that the MATS’s capacity has a direct impact on

the performance of the system, namely the additional traffic generated, based on the total

mobile population. From our perspective, in most of the times, the 1.24 MB memory over-

head from a full-capacity translation store is insignificant when compared to the amount

of traffic directed at mobile clients that it avoids, thus saving their battery consumption.

However, if the expected population size that will join the system is considerably larger

or if the deployed infrastructure node has a much more limited amount of available mem-

ory and storage resources, such as a Raspberry Pi [68] or an Arduino [69], our system is

flexible enough to allow the developer to be able to control it at will.

5.3.2 Popularity Ranking Algorithm Evaluation

In Section 4.9.3.1 we introduced our take on an iteration of an edge-related popularity

ranking algorithm with the goal of choosing the most relevant item to offload to the

infrastructure during every popularity decision cycle to be cached in the Local Popularity
Cache for easier access. By considering its characteristics, it is possible to presuppose

some of the potential positive impacts on the performance of the system: a higher cache

hit ratio on the LPC since only the items considered relevant by the algorithm are marked

to be cached by the infrastructure; a lower transmission of download requests to the

mobile nodes due to the algorithm limiting the number of items to download during

each execution as well as ignoring items that, while still possessing popular traits, are no

longer considered active, ultimate saving these nodes’ resources.

Nonetheless, due to our role as researchers throughout the duration of this disserta-

tion, it is imperative to put our algorithm to the test in order to collect palpable metrics

to confirm the validity of our assumptions. Therefore, in this evaluation scenario, we

focused on testing the popularity ranking algorithm and comparing its results to the

same system execution but, this time, the Thyme-Infra node will not utilize any pop-

ularity ranking algorithm and will choose to download all items, without filter, from its

local clients. Consequently, in both cases, we tracked the number of download requests

initiated by the infrastructure with the goal of offloading items into its Local Popularity
Cache as well as its hit ratio.

As a consequence of the asynchronous eviction nature of the Caffeine cache, which is

used in the LPC, we executed the 100-nodes trace in its original duration, 720 minutes,

to offset any misleading results caused by the library’s approach which would be more

common in the reduced simulation time:

“By default the (eviction) policy work is performed asynchronously (...). After a read

or write, an operation is appended to a bounded queue and draining this queue is sched-

uled on an executor. For reads this occurs after a threshold while writes are immediate.

80

5.3. ABSOLUTE METRICS EVALUATION

1 5 10 15 20 25 30
0

100
200
300
400
500
600
700

Popularity Decision Cycle

M
ob

il
e

It
em

s
R

eq
u

es
te

d

No Popularity Ranking Algorithm
Popularity Ranking Algorithm

Figure 5.5: Number of mobile items requested by the infrastructure per popularity deci-
sion cycle when using a popularity ranking algorithm versus no algorithm at all.

This causes the maximum (size) to be exceeded temporarily (...).” [70]

Furthermore, we deployed a single Thyme-Infra instance and chose the first 30

decision cycles to analyze.

Fig. 5.5 presents the number of requests initiated by the infrastructure during each

Popularity Decision cycle, in both scenarios, throughout the execution of the trace. While

in the first few cycles the outcome is essentially the same (i.e. both are filling the cache

while it is not full), subsequent cycles for the scenario without the popularity algorithm

showcase, as expected, a constantly increasing amount of item requests that follows the

rate of which new items are published in the network. Yet, by utilizing our proposed

popularity ranking mechanism, the number of infrastructure requests starts to stabilize

after the cache is full and gradually performing small adjustments to the cache’s contents

throughout the trace, never requesting more than 70 items at any given cycle.

On the other hand, Fig. 5.6 shows that the LCP hit ratio during the scenario with the

popularity ranking algorithm presents far better results, namely a 10% increase, than

when not using it.

Thus, we conclude that even with our coarser approach to calculating file popularity,

we are able to provide a better storage utilization — measured by the cache hit-ratio

— through an acceptable amount of file requests per popularity decision cycle, when

comparing to the alternative unbounded approach. We can further correlate this findings

with a lower battery and processing utilization from the mobile nodes, as we are able to

reduce the amount of times items are mindlessly offloaded into the infrastructure while

still successfully serving 42% of the received download requests, which would have to be

processed by mobile replicas otherwise.

81

CHAPTER 5. EVALUATION

No Popularity
Ranking Algorithm

Popularity Rank-
ing Algorithm

0

10

20

30

40

50

LP
C

H
it

R
at

io
(%

)

Figure 5.6: Local Popularity Cache hit ratio comparison between using a popularity rank-
ing algorithm to decide which items to offload and no algorithm at all.

5.3.3 Adaptive Multipart Caching

The Adaptive Multipart Caching approach is at the core of Thyme-Infra in providing

a more flexible caching partitioning system which accommodates to the users’ needs

on-the-fly, with the goal of optimizing the storage utilization of the infrastructure node.

In this testing environment, we focused on tracking the behavior of the AMC algo-

rithm across multiple population scenarios to verify that it worked as it was originally

intended to do so, i.e. the attributed world cache partition size matches its users interac-

tion rate. Consequently, to create these distinct scenarios, we generated various iterations

of the 100-nodes trace file and created 3 different worlds, wherein all nodes were evenly

distributed across them. Furthermore, in each iteration, we altered the base rate at which

publications were executed by the clients to artificially increase the popularity/intensity

in a world-by-world basis to promote disparities between them.

Fig. 5.7 shows the Local Popularity Cache occupation (%) of each world at the end

of the trace, as a consequence of the continuous execution of the AMC algorithm, for

different popularity rates, where 1/1/1 indicates the baseline popularity for all worlds

while 2/1/1 expresses that “World 1” is twice as popular than the rest of the worlds (i.e.

double the number of publish operations, per hour in real-time).

As we can assert from the observed results, the AMC provides an equivalent size to

all inner caches when each world’s population presents an identical degree of popularity.

On the other hand, when this equality is deteriorated and disparities are introduced into

the worlds’ needs, the Adaptive Multipart Caching is able to adapt and provide an higher

cache size to the more demanding populations by reducing the size of the remaining

containers as a consequence of this, for instance: the world 1 size was increased from 34%

in 1/1/1 to 72% in 2/1/1 while the world 2 and 3 suffered a reduction of 24% and 16%,

respectively.

Therefore, from a pragmatic standpoint, the AMC procedure is working as it was

82

5.3. ABSOLUTE METRICS EVALUATION

1/1/1 2/1/1 2/2/1 5/1/1
0

20

40

60

80

100

Worlds’ Publish Execution Rate

W
or

ld
LP

C
O

cc
u

p
at

io
n

(%
)

World 1
World 2
World 3

Figure 5.7: Outcome of the Adaptive Multipart Caching mechanism for worlds with dis-
parate population needs.

originally intended, i.e. giving more cache real state to worlds with an increased popu-

larity while reducing the size on the other end of the spectrum. Yet, points can be made

about improving the algorithm, especially in scenarios where one of the worlds display

an overwhelming popularity when compared to the rest of the system (as seen in the

5/1/1 scheme). Since the rest of the worlds are only able to amass one to two percent of

the main cache’s total size due to their contrastingly low needs, the partitioning system

could employ additional features to tackle scenarios like this one:

• A predetermined lower bound to each world’s cache size to offset the negative im-

pacts of an overwhelming world, with the goal of ensuring that every distinct pop-

ulation will have a minimum guarantee that some of their items will be offloaded

and served by the infrastructure;

• Another alternative implementation would approach this the other way around, by

imposing a minimum amount of entries that each world needs to have before being

completely evicted from the cache. This could present an acceptable tradeoff if

moving the 1-2% capacity from the lowest caches into the bigger ones would result

in an overall higher traffic and battery consumption reduction to the mobile nodes.

However, due to time constraints, we were not able to perform and build such supple-

mentary tests and features.

5.3.4 Impact of the Consumption Notification Mechanism

In this section we aim to evaluate the advantages and the potential of using the proposed

Item Consumption Notification mechanism in our system, namely its impact on the

generated infrastructure traffic. To test this we used 2 Thyme-Infra nodes with 100

virtual clients in each one and generated two trace files that, although fundamentally

different, incorporated common interests (i.e. same topics) between both clusters of

83

CHAPTER 5. EVALUATION

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

SubNeedsReply Cycle

R
el

ev
an

t
It

em
s

Se
nt

to
ot

he
r

In
fr

as
tr

u
ct

u
re

N
od

e

No Consumption Notification
Consumption Notification

Figure 5.8: Impact on the traffic generated between infrastructure nodes when the Item
Consumption Notification mechanism is enabled and disabled.

users. Fig 5.8 shows the comparison between using the notification approach versus no

notification, in terms of the number of items that are sent from a single infrastructure

node to another during each SubNeedsReply dissemination cycle.

As we can demonstrate, the number of items sent between Thyme-Infra nodes

during every “Global Provisioning of Subscription Needs” step, after the first execution,

is always lower using the implemented mechanism, when compared to the absence sce-

nario. On average, this translated in a reduction of approximately 40% of objects sent

per cycle. Moreover, if we consider that the published files were 1 MB in size, we would

able to reduce the inter-infrastructure traffic by at least 174 MB for the entire duration

of this evaluation and, as a consequence of that, avoid an unnecessary overload of the

infrastructure resources.

While this mechanism provides concrete advantages, through minimizing the traffic

and consequently the processing of infrastructure nodes, we believe that there are certain

environments that the consumption notification would not be as useful, such as:

• Completely distinct interests between populations. Although our mechanism would

provide absolutely no benefits in this situation, it would also not produce any addi-

tional overhead. This is due to the fact that the SubNeedsReply process itself would

verify that no local items are considered relevant by the other infrastructure node’s

population and, therefore, would not send anything. Consequently, since no items

would be transmitted between these actors, there would also not be any consump-

tion messages being disseminated through the wired network. However, we believe

the occurrence of scenarios like this one to be highly uncommon as people partici-

pating in the same event, within the same venue, are likely to have a certain degree

of common interests between them;

84

5.3. ABSOLUTE METRICS EVALUATION

• Populations with common interests and with an incredible amount of published

data, which could cause a full turnover of the Thyme-Infra’s LocalPopularity-
Caches contents between SubNeedsReply cycles. Therefore, since every cycle would

transmit a set of entirely new items, the consumption notification would essentially

have no effect on reducing the number of duplicate items traversing between these

nodes. Nonetheless, even with a setting like this one, we argue that using our mech-

anism could still be beneficial. Again, if we consider the published files to be 1

MB in size, since each consumption message is on average 80 bytes, it would take

the transmission of 125000 of these messages (1MB
80bytes) to stop being advantageous.

That is, if we are able to save a single file from being redundantly sent to the other

infrastructure node, within that transmission limit, the overhead of the notification

mechanism would be entirely worth it.

5.3.5 LPC Batch-Insert Approach Validation

As previously described in Section 4.9.3, we implemented a periodic batch-insert mech-

anism to store items in the Thyme-Infra’s Local Popularity Cache. Furthermore, we

argued that batch-inserting items, at multiple points, during each popularity decision

cycle would provide the best tradeoffs in terms of both system performance — since the

AMC algorithm would only be executed during a handful of times, per cycle, with mul-

tiple objects in each call — as well as user experience, since items would gradually be

available to be downloaded as each batch-insert is performed.

To prove our assertions, we solely focused on validating this feature with the execution

of this evaluation scenario. Consequently, we executed the trace previously specified,

using a single Thyme-Infra node, and kept track of the total time the CPU spent

processing Local Popularity Cache’s AMC as well as the number of download operations,

executed by the mobile nodes, that were served by the infrastructure instead of other

peers. Each popularity decision cycle was 30 seconds apart.

With the goal of simulating the real time that a mobile client would take to reply to a

download request from the infrastructure, each virtual node responds within 20 seconds

with a 80% probability and within 20 to 30s with a 20% probability. We believe that the

20 seconds represents an acceptable interval for most devices which takes into account

the fact the Thyme application could be in the background, and thus be impacted by the

Android OS itself which actively throttles the processing rate of background applications.

With the extended 10s we are considering older mobile devices or devices that simply

froze due to other active high-intensive tasks and therefore are unable to reply earlier.

The evaluation scenarios are as follows:

• Bath-inserting all received items right before the next execution of the Popular

Decision cycle (Fig. 5.9a), which will be referred as “BIBPDC”;

85

CHAPTER 5. EVALUATION

Batch-insert
received items

γ

(a) Insert all before the next Popular Deci-
sion cycle.

Insert

File Arrival

Insert

File Arrival

Insert

File Arrival

Insert

File Arrival

Insert

File Arrival

Insert

File Arrival

Insert

File Arrival

(b) Insert during each individual item ar-
rival.

Batch-insert
received items

(B-I RI)

B-I RI

Varying

B-I RI

γ

(c) Periodically batch-insert items between Popu-
lar Decision cycles.

Figure 5.9: Evaluation Scenarios for the “Validation for our Batch-Insert Approach on the
LPC Cache”.

• Inserting individual items into the cache as soon as they arrive at the infrastructure

(Fig. 5.9b);

• Batch-inserting items that arrived at the infrastructure, at multiple points, during

each popularity decision cycle. This specific approach will be further evaluated by

varying the number of batches executed (Fig. 5.9c).

Regarding the “Insert at Arrival” approach, we acknowledged from our initial tests

with multiple worlds that while the Local Popularity Cache was not full the AMC would

essentially fallback to a one dimensional cache design approach, where each put operation

would always increment its world’s cache container size by one. And while we verified

that until the moment the cache was full the number of items served by the infrastructure

was higher than the other methods, as they were more readily available to the users, each

insert was blindly competing with users from other worlds for storage space. However,

when the cache reached the maximum capacity specified by the developer, the AMC
equation was unable to change (increase or decrease) the containers’ size from that point

on due to the one-by-one nature of inserts with this approach, which have minimal impact

on the outcome of the formula. Therefore, if we consider a scenario where the world 1, 2

and 3 inner caches occupy 60%, 30% and 10% of the main cache, respectively, right when

it becomes full, that particular layout will be unaltered throughout the entire duration of

the event even if the world 1 population drops and the popularity of the rest of the worlds

86

5.3. ABSOLUTE METRICS EVALUATION

2 3 4 5 6 BIBPDC
0

2

4

6

8

10

12

14

————— Number of Batch Inserts per Cycle —————Fi
le

s
Se

rv
ed

by
th

e
In

fr
as

tr
u

ct
u

re
(K

)

Figure 5.10: Total number of items served by the infrastructure depending on the batch
insert method utilized by Thyme-Infra.

greatly increase. Thus, due to the reasons mentioned above, we discarded the “Insert at

Arrival” scenario as it is an unfeasible approach.

Fig. 5.10 exhibits the impact on the number of files that were served by the infrastruc-

ture during download requests from the mobile nodes when using both our Batch-Insert
and BIBPDC approaches. We decided to limit the number of batch inserts to 6 as an

increased number would tend to be similar to the “Insert at Arrival” mechanism. At a

first glance, we verify that utilizing the BIBPDC provides a worse performance in regard

to the studied metric, resulting in the infrastructure to serve approximately 9000 files to

the clients. This outcome was predicted as the cache contents are only updated every 30

seconds. On the other hand, just by changing the approach to the minimum batch-inserts

possible (i.e. two) it is possible to determine an increase of ∼2500 files sent back to the

downloading clients, which translates to a roughly 25% improvement. From that point

on, the number of files served by the infrastructure layer will gradually increase at a

slower rate until the 6 batch-inserts are reached: going from ∼11500 files in the 2-batch

approach to approximately 14000 with 6 batches. Therefore, from this results, we can

affirm that our insertion mechanism always provides better results in terms of files served

than inserting items at the end of each cycle.

However, when we observe the total CPU time to process the re-execution of the AMC
algorithm during both of these approaches, in Fig. 5.11, the increased availability pro-

vided by our solution is correlated with an higher processing overhead, as expected, that

grows exponentially with the amount of batches. That is, in the BIBPDC approach, the

Adaptive Multipart Caching mechanism represented approximately 496 ms in processing

overhead, while batch-inserting 2 and 6 times per cycle accounted for 515 and 729 ms.

Although the difference between all of this workflows are essentially negligible in the

grand scheme of things, it is necessary to take into consideration that the machines that

87

CHAPTER 5. EVALUATION

2 3 4 5 6 BIBPDC
400

500

600

700

800

————— Number of Batch Inserts per Cycle —————

To
ta

lL
PC

A
M

C
C

P
U

ti
m

e
(m

s)

Figure 5.11: Total CPU time spent by the infrastructure processing the AMC algorithm
depending on the batch insert method utilized by Thyme-Infra.

executed the simulation traces contained server-grade hardware, with Intel® Xeon® CPU

E5-2620 v2 @ 2.10GHz and 64 GB of RAM. Therefore, it is expected that the CPU time

dissimilarities will be further accentuated with a more limited Base Station hardware.

Nonetheless, we believe that the flexibility provided by our batch-insert mechanism

will allow the application and infrastructure developer to fine tune the system to its

needs and achieve a better performance. For instance, this can be particularly useful if

a considerable amount of files are published every popularity decision cycle, leading to

a higher content turnover in the Thyme-Infra caches. Therefore the developer will be

able to adjust the properties for this workflow and increase the number of batches per

cycle in order to increase the availability of newly created files.

5.3.6 Global Unpublish

Throughout the execution of the previous testing environments it was possible to evaluate

the effectiveness of the Global Unpublish workflow, due to the fact that every single simu-

lation trace contained multiple unpublish operations, that is: if an unpublish operation

executed by a client is not only processed successfully within its mobile peers and by the

nearest infrastructure node, but also transmitted to every other infrastructure node in the

system and their respective clients. Although we could not find any meaningful metrics to

validate this particular property, we verified that in every scenario, particularly with two

or more Thyme-Infra nodes running simultaneously, all unpublish operations issued

by mobile clients were correctly executed by all infrastructure nodes (i.e. the referenced

item was removed from the local caches, if present, and auxiliary data structures) and all

nodes, from each BSS, residing in the respective indexing cell. Subsequently transmitted

subscriptions related to the unpublished item’s tag did not receive a reply with that par-

ticular item during the notification step. Thus, we can assert that the successful rate of

Global Unpublish mechanism was 100% in every instance, independently of the number

88

5.4. COMPARISON WITH THE PREVIOUS VERSION OF THYME

of mobile nodes as well as infrastructure nodes.

5.3.7 Self-established Cell Stable Node Failover

Similarly to the “Global Unpublish” evaluation, during the execution of our tests we also

forcefully terminated multiple virtual nodes, throughout the execution of the traces, and

confirmed that the process of disseminating each cell’s data to the infrastructure was

properly carried out despite the cessation of the node that would be self-established as

the stablest. Even when we stress tested this functionality by shutting down successive

self-established stable nodes for a given cell in consecutive dissemination cycles, the next

stable node would always be able to propagate not only the current timestamp’s cell data

but also all other previous cell information that the infrastructure was not informed of.

The only scenario where we expect this entire failover process to stop working as intended

is when there are no other mobile nodes within a cell, due to all of them failing or simply

leaving the network.

5.4 Comparison with the Previous Version of Thyme

Unlike the “Absolute Metrics Evaluation”, this section is comprised of a variety of specific

evaluation schemes that will be used to directly compare the execution of the previous

version of Thyme, i.e. the geographical implementations without the infrastructure layer,

against its latest iteration along with newly developed Thyme-Infra counterpart.

5.4.1 Simulated Evaluation

To perform the simulated evaluation, both versions of Thyme will execute the same trace

file (100 nodes) and the produced results will be directly compared. Moreover, for the

geographical version, we will establish a 3 × 3 geographical grid (9 cells) as the layout

of the system. Consequently, to allow a balanced comparison, we will also employ a

9 logical cells-approach for Thyme-Infra. In both versions, nodes will be randomly

assigned to a cell at runtime. However, regarding the latest iteration, we will utilize a

single Thyme-Infra node to aid the system.

Total Mobile Traffic Generated. In this particular evaluation proposal, we aim to com-

pare how much traffic, and its volume in size, is generated by an environment of multiple

mobile nodes executing the previous version of Thyme versus the latest iteration along

with the inclusion of infrastructure resources. Furthermore, in order to establish a fair

comparison between both versions, we did not allow the mobility of nodes throughout

the execution of the trace to avoid the additional traffic, as will be explain in the next

evaluation scenario. Lastly, we increased the size of published files from 64 bytes to 100

KB and their description (i.e. miniature or thumbnail) to 20 KB in order to get a glimpse

of the outcome of the system, on a real-world setting, with more realistic file sizes.

89

CHAPTER 5. EVALUATION

Geographic Infrastructure
0

100
200
300
400
500
600
700

Thyme Version

To
ta

lM
ob

il
e

Tr
affi

c
(#

m
es

sa
ge

s)
(K

)

Figure 5.12: Comparison of total mes-
sages sent between both versions of
Thyme when executing the same trace.

Geographic Infrastructure
0

5

10

15

20

Thyme Version

To
ta

lM
ob

il
e

Tr
affi

c
(G

B
)

Figure 5.13: Comparison of the gener-
ated traffic size between both versions of
Thyme when executing the same trace.

Fig. 5.12 displays the total traffic (number of messages) produced by the mobile nodes

in each of the scenarios. As expected, the introduction of infrastructure resources and

the paradigm change from geographical cells to logical ones results in the reduction of

messages between mobile nodes, namely a ∼10% reduction of around 60000 messages in

this particular trace. This decrement in the traffic from the newest iteration of Thyme

plus Thyme-Infra can be attributed to a variety of factors, such as the absence of

intermediate routing messages as well as the retrieval of published items directly from

the infrastructure.

Similarly, the chart in Fig. 5.13 depicts the comparison between the total size of the

generated traffic between both versions of Thyme. While in the geographical version the

messages sent accounted for ∼19 GB, the infrastructure-aided version generated 13 GB

in traffic for the same trace, essentially providing a ∼31% reduction in the overall mobile

traffic size. The reasons for this discrepancy in the latest iteration are similar to the ones

referred in the previous point:

• Fewer files need to traverse through mobile nodes as they can be retrieved directly

from the nearest infrastructure node;

• No multi-hopping routing strategy, thus no additional routing messages between

cells. This particular detail can have a considerable impact on the size of the traffic:

in the previous version, if a node was about to disseminate a file back to the request-

ing node and they were at least 1 cell apart, the file would essentially be sent in a

cell node-by-cell node basis along the routing path in order to reach the destination,

creating a lot of undesired heavy traffic;

• Reducing the number of items sent by mobile nodes right after a subscription. While

in the Geographical version of Thyme a subscription would lead to a transmission

of an initial notification back to the subscriber containing all relevant metadata

objects of files published so far, that same notification in our solution would contain

90

5.4. COMPARISON WITH THE PREVIOUS VERSION OF THYME

only the relevant items for the subscribed tag that are currently not stored in the

nearest infrastructure node.

Ultimately, we are able to conclude that, regarding the system’s mobile traffic aspect,

the new version of Thyme along with Thyme-Infra provides better results across the

board, presenting a lower traffic as well as traffic size. Thus, it is possible to correlate this

findings with an inferior computing and battery utilization by the mobile nodes.

Mobility Overhead. While the previous version of Thyme allows full mobility of its

clients without compromising the soundness of the system, in order to support it the

system makes use of geographically bounded cells and the respective GHT which directly

imposes some tradeoffs in terms of performance. That is, when a mobile node moves

from one cell to another it initiates a housekeeping process that essentially updates every

piece of information, distributed throughout the system, that contains the previous node

address to reflect the transition to the new cell.

For instance, considering the described 3 × 3 grid layout, if a client currently has at

least one active subscription stored in each of the 9 cells and is a passive replica of at least

one file indexed by each of the cells (which we believe both aspects to be very reasonable),

and moves from one place to another, thus transitioning to a new cell, the following traffic

is generated by the system (being #nodesP erCell the number of mobile nodes within each

of the 9 available cells):

• The transitioning mobile node first notifies all of its original cell neighbors that it is

currently in motion and that it wishes to be excluded from contributing to it while

moving, sending #nodesP erCell − 1 messages to achieve this;

• When the node stops it will then notify all the 9 cells to update its subscriptions

with the new address in order to continue receiving notifications when a relevant

item is published. Therefore, #nodesP erCell × 9 messages are sent during this step;

• On top of that, the mobile node will alert each cell in order to update its currently

replicated items’ metadata storage locations, sending an additional #nodesP erCell×
9 messages;

• Then, since the client will become an active participant in managing and contribut-

ing to the new cell, it will send a request to one of its neighbors to receive all the

cell’s P/S data, such as the active subscriptions indexed by it, totaling in 2 messages

transmitted (request and reply).

Fig. 5.14 showcases the growth in the total traffic generated by the system during

this particular scenario as the number of nodes located within each cell increases. To

facilitate the translation of the previous traffic steps into a graphical format, we ignored

all intermediate multi-hopping routing mechanism, along with their respective messages,

91

CHAPTER 5. EVALUATION

5 25 50 75 100
0

500

1,000

1,500

2,000

2,500

3,000

Mobile Nodes per Cell

M
es

sa
ge

s
Se

nt

Figure 5.14: Total messages sent by the system (Geographical Thyme) when a single
mobile node moves from one cell to another.

as well as we are assuming that each cell has the exact same amount of active mobile

clients.

As we can demonstrate from the gathered metrics, the total number of messages

disseminated grows linearly along with the number of mobile nodes within each cell.

On top of the results displayed in Fig. 5.14, if we were to consider the number of items

previously published by the moving node, the generated traffic would increase by Npubs×
#nodesP erCell messages (where Npubs represents the number of published items by the

client). Ultimately, in this scenario, using the geographical version of Thyme would

culminate in the dissemination of at least 96 housekeeping messages, on the lower end

of the spectrum, and at least 2801, with 100 clients located within each cell, every single

time a mobile node transitions from one cell to another. Moreover, since edge clients

are inherently mobile, we argue that this procedure will occur regularly throughout the

duration of an event.

When compared to our proposed iteration of Thyme, due to the introduction of

infrastructure resources and the logical cells paradigm, there is absolutely no traffic

generated during the movement of mobile clients, saving them computing and energy

resources. Thus, our version presents itself as the clear winner, especially if we consider

events like parties where users are encouraged to be in constant movement.

5.4.2 Real-world Evaluation

Operations Latency. The latency of a system’s operations is one of the most critical

metrics, especially when that system is built for customer-centric applications. Thus,

in this evaluation, we measured the latency of each Thyme P/S operation (Publish,

Subscription, Unpublish, Unsubscription and Download) and compared the outcome of

every single one using the previous implementation of Thyme against ours in order to

quantify the speed improvements with the introduction of infrastructure resources as

well as the logic cells paradigm change. To perform this assessment we utilized very small

92

5.4. COMPARISON WITH THE PREVIOUS VERSION OF THYME

Publish Subscription Unpublish Unsubscription Download
0

0.1

0.2

0.3

0.4

Operations

L
at

en
cy

(s
)

Thyme Geographic
Thyme Infrastructure

Figure 5.15: Operations latency comparison between both version of Thyme.

photographs — with 64 bytes for both the picture itself and its miniature — to determine

the latency baseline without getting affected by an increased file size. Furthermore, we

only utilized the Motorola Nexus 6 smartphones to estimate the operations’ latency to

minimize disparities between hardware readings.

In Fig. 5.15 we showcase the average measured latency of all the mentioned operations.

For the geographical version of Thyme, the base values represent the latency when the

sender is 2 hops away from the operation receiver, while the negative error bar shows the

value when distance between both sender and receiver is just one hop (i.e. neighboring

geographical cells). On the other hand, the error bar in Thyme Infrastructure’s download

operation depicts the latency when the file request is disseminated to the nearest Thyme-

Infra node instead of being transmitted to the mobile nodes.

One of the biggest takeaways from this chart surrounds the fact that the utilization

of a multi-hopping routing strategy has a considerable impact on the overall latency

of an operation, resulting in a 170% increase — on average — in latency. We consider

this outcome to be expected as the routing node essentially has to receive and send the

message from the origin to the destination as well as send the operation’s response from

the destination back to the initial sender, essentially culminating into two Rx and two

Tx transactions just from the routing node. While the routing procedure is logically non-

demanding, its workflow is almost entirely I/O bound which contributes, on a higher

degree, to the delay. Although we were not able to test the impact with an increased

number of hops, due to shortage of testing hardware, we expect the increased delay to be

linear to the number of hops.

However, when eradicate the routing middleman and position both nodes in adjacent

cells, the system falls back to a mode similar to our approach in the latest version of

Thyme, where peer-to-peer communication channels are established directly. Even with

93

CHAPTER 5. EVALUATION

500 KB 1 MB 5 MB
0

0.5

1

1.5

2

Downloaded Images Size

L
at

en
cy

(s
)

Thyme Geographic
Thyme Infrastructure

Figure 5.16: Download latency comparison between Thyme Geographic and our itera-
tion of Thyme for multiple file sizes.

the introduction of infrastructure resources and the additional logic that accompanied

this alteration, such as the management and gathering of the cell’s data to be periodically

disseminated to the infrastructure, we have managed to match the latencies to the ones

obtained in the best case scenario (1 hop) of the previous version of Thyme. We achieved

this by performing any new computations after the operation has been fully executed,

thus not impacting the process-and-reply workflow.

Regarding the download operation, this is further improved in our proposal when the

request is served directly by the nearest infrastructure, which leads to a ∼33% reduction

in the operation’s latency.

Hence, we verify that the infrastructure-aided version of Thyme poses itself as a di-

rect improvement, matching the latency of the best case scenario of geographical Thyme

for every operation while still providing an additional reduction in the download opera-

tion latency by requesting the item from the infrastructure.

Moreover, from the set all of Publish/Subscribe operations in Thyme, the publish

and download (retrieval) are the ones that are more susceptible to larger files, as the file

miniature and the file itself, respectively, are disseminated during each process, resulting

in an increased traffic size and therefore a larger latency. On the other hand, the rest of

the operations are set to present essentially the same latency results, as displayed in Fig.

5.15, for every scenario as they are completely independent of the associated item size.

Therefore, we focused and further tested the download operation with a more realistic

collection of file sizes and displayed the latency results of both version of Thyme in Fig.

5.16, in a similar manner as the previous chart.

As estimated, the download latencies for the 500 KB, 1 and 5 MB files follow approxi-

mately the 170% additional delay when comparing the 2-hop routed workflow against the

peer-to-peer approach. Similarly, we verify that the latency difference by getting the item

94

5.4. COMPARISON WITH THE PREVIOUS VERSION OF THYME

from the nearest Thyme-Infra node, across these files, is consistent with the initially

recorded 33% decrease. Thus, to download a 5 MB file, a client using the Geographic

Thyme will take at least roughly 2 seconds if routing is needed and 0.7 seconds if not,

while our version will take at most 0.7 seconds and approximately 0.34 seconds if the

item is available in the infrastructure, which we consider to be completely adequate for

real-time, interactive applications.

General Battery Consumption. Along with the system’s operations latency, the general

user battery consumption is also a critical metric that needs to be measured and taken

into account. This is particularly important for systems deployed at the edge where not

only will the costumer be able to interact with it but will also be to participate and actively

contribute its resources to it. Therefore, for this evaluation, we tested the battery footprint

of each Thyme client operation (Publish, Subscription, Unpublish, Unsubscription and

Download) — in Joules — with the Geographical version and compared the gathered

results with our proposed iteration of the system. However, since the system is comprised

of a cluster of nodes working together as a way to maintain it, our approach to measuring

battery lies on a cumulative foundation, that is, during the execution of a given operation

we tracked not only the sender’s battery overhead but also every single node’s that were

essential to the transmission and processing of that operation.

To perform the battery measurements we utilized a custom module, developed in-

house, that periodically polls the information from the Android’s BatteryManager class

[71].

Similar to the reasons discussed in the latency evaluation, we also utilized 64-byte

photographs and miniatures and a single Thyme-Infra node to aid the latest version

of Thyme. Moreover, we chose to keep executing this tests only on the Motorola Nexus

6 smartphones to reduce the hardware variance.

Fig. 5.17 shows the average battery utilization for all the mentioned operations using

the previous version of Thyme, from the standpoint of the sender, the singular router and

finally the recipient that processes the request and sends the response back to the client.

From this chart we verify that all of the operations carry an overall very similar cumulative

battery footprint, close to 2 Joules. Individually, the sender uses an average of 0.55 J while

the recipient consumes ∼0.51 J. On the other hand, the router utilizes approximately 0.89

J, which makes up the bulk of the entire operation’s cumulative battery consumption,

at 46%. This was also expected due to the same arguments presented in the latency

evaluation section. On top of that, the routing battery usage component in the graph is

foreseen to grow linearly with the amount of intermediate hops as well.

Alternatively, Fig. 5.18 presents the same operation-by-operation battery consump-

tion evaluation for the infrastructure-aided version of Thyme. The first thing that we

are able to assess is that, due to the absence of the routing mechanism, the cumulative

metric is only comprised of the sender and the recipient actors. Consequently, if at least

one routing hop is needed by the Geographical Thyme to communicate with the sender,

95

CHAPTER 5. EVALUATION

Publish Subscription Unpublish Unsubscription Download
0

0.5

1

1.5

2

Operations

C
u

m
u

la
ti

ve
B

at
te

ry
C

on
su

m
p

ti
on

(J
)

Sender Router Recipient

Figure 5.17: Cumulative battery consumption during each Publish/Subscribe operation
in the previous iteration of Thyme.

our solution presents a much lower battery utilization aggregate for every operation (with

37% improvement on average), ranging from approximately 1.1 J with the Unsubscrip-

tion procedure to ∼1.4 J while subscribing. The lower end is improved even further when

a download is successfully processed by the infrastructure, thus eliminating the recipient

from the equation and becoming the least resource-intensive operation, using a total

of 0.5 J. On the other hand, the downside of including the infrastructure resources is

most noticeable on the Subscription and Unpublish operations as they were altered to

simultaneously transmit the message to the nearest infrastructure, leading to a battery

consumption increase of approximately 61% on the sender node when compared to the

previous iteration.

Regarding the Unpublish operation, while it is indeed worse in terms of energy uti-

lization for the client’s smartphone that initiates the process, we consider that the dissem-

ination of this message will be highly uncommon, therefore the additional impact will

be essentially nonexistent. The same thing cannot be said for the Subscription. However,

our implementation for that operation is able to save battery at a much larger scale on the

recipient side, as will be described in the “Battery Consumption Analysis on Over-utilized

Cell Nodes” testing scenario.

On the recipient side, our system also imposes a bit of a drawback in terms of battery

usage during a Subscription and an Unsubscription, namely an increase of 0.034 J. This

is caused because these operations affect the cell’s data, which forces the recipient node

to update its cell data information, resulting in the additional overhead.

Nonetheless, the presented Joules are incredibly small to paint the full picture and

give a sense of a real-world scenario and utilization. Thus, we calculated how many times

each operation would have to be executed, by each of the system actors, in order to drain

1% of the Motorola Nexus 6’s battery (equivalent to 440 Joules) and showcased the results

96

5.4. COMPARISON WITH THE PREVIOUS VERSION OF THYME

Publish Subscription Unpublish Unsubscription Download
(Mobiles)

Download
(Infra)

0

0.5

1

1.5

2

Operations

C
u

m
u

la
ti

ve
B

at
te

ry
C

on
su

m
p

ti
on

(J
)

Sender Recipient

Figure 5.18: Cumulative battery consumption during each Publish/Subscribe operation
in our proposed iteration of Thyme.

in Table 5.3. As we can verify, there is a direct impact which is bound to happen when the

system is altered to also take into account the infrastructure layer as part of the operations

workflow. However, we believe that the gathered results exhibit an acceptable view of the

system’s performance, proving that our version of Thyme can be used throughout small

to medium duration events without presenting an excessive energy consumption to the

user’s smartphone.

Table 5.3: Number of operations required to be executed in order to reach a 1% battery
consumption (the higher the better).

Publish Subscription Unpublish Unsubscription Download

Sender
Thyme Geo.
Thyme Infra.

761
761

815
493

832
528

819
819

782
782 / 873∗

Router
Thyme Geo.
Thyme Infra.

481
—

497
—

506
—

499
—

493
—

Recipient
Thyme Geo.
Thyme Infra.

833
833

875
812

878
878

875
829

851
851 / —∗

∗ Left indicates if the download was sent to the mobile nodes, while the right value indicates if it was sent to the infrastructure node.

On the other side of the spectrum, Fig. 5.19 illustrates the battery consumption of

some operations that are specific to the latest version of Thyme, namely the process

of finding the nearest infrastructure node(s) through multicast probing and the process

where each mobile node checks whether it should self-establish as the cell’s stable node,

during every cell data dissemination cycle, and actually disseminating that information

to the infrastructure (only for the self-established stable nodes).

From this chart one can identify that the “Infrastructure Probe” workflow is the sys-

tem operation that requires the largest amount of battery power to execute, both from

97

CHAPTER 5. EVALUATION

Infrastructure
Probe

CellData (non-
self-established)

CellData
(self-established)

0

0.5

1

Operations

B
at

te
ry

C
on

su
m

p
ti

on
(J

)

Figure 5.19: Battery consumption of Thyme operations specific to the addition of
Thyme-Infra nodes.

a geographical and infrastructure-aided Thyme standpoint, from a single actor. This

outcome is completely expected as the application needs to explicitly notify the Android

Operating System to allow the device’s Wi-Fi stack to process packets not explicitly ad-

dressed to the mobile device (i.e. multicast messages, which are automatically filtered

as the default behavior), which can cause a noticeable battery drain, in order to probe

for Thyme-Infra nodes [72]. Yet, since this operation is only executed once when a

mobile node is joining the network, we consider its impact to be negligible and essentially

nonexistent.

Concerning the cell data operations, the vast majority of the nodes within the sys-

tem will simply execute the stable checkup process during each dissemination cycle

while only 1 per cell will go further and disseminate the actual data to the infrastruc-

ture. To consume 1% of the device’s battery, a non-self-established node would have to

process approximately 6500 cycles while a self-establish one would have to disseminate

the cell data to the infrastructure 853 times. Thus, we find that the overhead caused by

this infrastructure-only additions are completely acceptable due to the minimal battery

consumption for the “CellData (non-self-established)” operation and the expected low

percentage of nodes that will have to perform the “CellData (self-established)” workflow.

Battery Consumption Analysis on Over-utilized Cell Nodes. One of the disadvan-

tages of Thyme and its respective Publish/Subscribe approach lies on scenarios where

only a handful of tags are relevant and used/subscribed to. For instance, during a football

match in a stadium, users are expected to subscribe and publish most of the data with

a focus on tags related to the name of the playing teams as well as the tag “goal”. As a

consequence of the user behavior in environments like this, the majority of the system

operations are disseminated to the cells that are indexing those tags to be processed, re-

sulting in an over-utilization of the nodes residing in those cells, while leaving others

98

5.4. COMPARISON WITH THE PREVIOUS VERSION OF THYME

1 30 60 90 120 150 180 210 240 270 300
0

50

100

Subscriptions Over Time

M
et

ad
at

a
It

em
s

R
et

ri
ev

ed
fr

om
M

ob
il

e
N

od
es

Thyme Geographic Thyme Infrastructure

Figure 5.20: Evolution of the number of items retrieved, through mobile means, in each
subscription.

and their respective nodes with a much lower workload, which leads to a lower overall

performance. This situation can escalate even further if we consider a worst-case scenario

where the small set of all the popular tags are indexed by a single cell.

Therefore, in this section, we aim to verify the impact of the newly implemented

feature of Thyme where during a subscribe operation the indexing cell node will only

return the items that will be not served by the nearest infrastructure node for the same

subscription, specifically the battery consumption reduction provided by it when com-

pared to the previous version of the system. To achieve this, we implemented a scenario

that would mimic a real-life event at a football stadium: after a team scores a goal, 100

new items with the tag “goal” are published right away and, consequently, users will

start to issue subscribe operations for that tag, one in every second, during a total of

300s. The over-utilized cell was composed of 3 Motorola Nexus 6 smartphones while a

single Motorola Moto G (2nd gen) was used to periodically disseminate the subscription

operations. On top of that, each metadata item contained a miniature of 100 KB and, for

the infrastructure-aided Thyme counterpart, we deployed a single Thyme-Infra node

that offloaded 5 new items into its caches every 10 seconds

In Fig. 5.20 we can automatically verify the direct consequence of having the infras-

tructure node on the items retrieved during each subscription operation. That is, when

the Thyme-Infra instance repeatedly retrieves 5 items to be stored locally and noti-

fies the nodes within the item’s indexed cell, the original mobile node using Thyme

+ Infrastructure starts to receive less and less items through mobile means as they are

increasingly obtained directly from the nearest infrastructure service. On the Geographi-

cal Thyme the presented behavior is expected (i.e. the 100 published items are always

returned during a subscription) as it does not have any functionality that improves this

process.

Consequently, Fig. 5.21 translates the gradual reduction in mobile traffic, with the

addition of the infrastructure resources, into the total battery utilization throughout the

99

CHAPTER 5. EVALUATION

Geographic Infrastructure
0

200

400

600

800

Thyme Version

C
el

lN
od

es
’A

ve
ra

ge
B

at
te

ry
C

on
su

m
p

ti
on

(J
)

Figure 5.21: Average battery consumption on the over-utilized cell nodes during the
subscription scenario.

execution of this scenario. Using the Geographical version of Thyme, each mobile node

within tag “goals”’s indexing cell used, on average, ∼884 J while the latest iteration only

utilized approximately 499 Joules, meaning that our solution resulted in a 44% reduction

in battery consumption. Concretely, each cell node consumed roughly 1% and 2% of

the smartphone’s battery using Thyme + Thyme-Infra and Geographical Thyme,

respectively.

In conclusion, we are able to drastically reduce the mobile nodes battery consumption

with the implementation of our subscription workflow. Even though we are trading off
a bit of the operation sender’s battery life to achieve this, we expect the recipient battery

savings to grow linearly along with the total amount of published items that are stored in

the infrastructure as well as their miniature sizes (which will make up the vast majority of

the subscription’s reply message content). On the other hand, the impact on the sender is

predicted to essentially stay the same since the messages transmitted by it are completely

independent of these variables.

5.5 Comparison with the Cloud Infrastructure

The goal of Thyme and Thyme-Infrastructure, as well as other edge-related sys-

tems, is to provide a better user experience to the nearby clients by having higher perfor-

mance and lower operation latencies when compared to systems deployed in the cloud.

Therefore, since we are expecting the download operation to dominate the mobile clients’

traffic, we compared our system’s latency to a cloud infrastructure when processing down-

loads from the mobile clients, in order to prove the advantages of using our system instead

of relying only on cloud systems.

To set up this evaluation scenario, we utilized Amazon Web Services (AWS) [73] as

our cloud infrastructure and stored multiple files, of different sizes, in AWS’ S3 service.

S3 [74] is an object storage service, essentially acting as a file database, built to store

and retrieve any amount of data from anywhere: web sites and mobile apps, corporate

100

5.5. COMPARISON WITH THE CLOUD INFRASTRUCTURE

applications, and data from IoT sensors or devices. Further, for this testing scenario, we

used the S3 service replica located in AWS’ London data center.

To evaluate the cloud counterpart we manually downloaded each of the files multiples

times, at various parts of the day, and measured how long it took to fully retrieve the

item, in seconds, using the curl [75] command line networking tool:

$ curl -s -w "%{time_total}" -o /dev/null https://s3.eu-west-2.amazonaws.com/thyme.tests/file.dat

On the other hand, to test our system, we chose to perform the following scenarios,

which represent the different possible workflows that can be executed by our system

during to process a download operation from a mobile node, and measured the operation

end-to-end latency in each of them:

C.1 Download from nearest mobile replica: the download request is sent to a neighbor-

ing mobile node that is currently replicating the item within the same BSS. To enact

this scenario, we resorted to using two smartphone devices and one Thyme-Infra

node (Fig. 5.22c);

C.2 Download from nearest infrastructure: the specified item to be downloaded by

a mobile node is served directly by the nearest infrastructure node, from its local

storage. To perform this evaluation scenario, we utilized one smartphone for the

client and a single Thyme-Infra instance with that item already stored in the

Local Popularity Cache (Fig. 5.22a).

C.3 Download from farther infrastructure: the downloaded item is not currently be-

ing replicated by a neighboring mobile node nor it is present in the nearest infras-

tructure node’s storage, but in the LPC of the infrastructure node where the item

was originally published. Thus, the download request is routed from one infrastruc-

ture node to another. To achieve this, we utilized one smartphone device for the

requesting client and two Thyme-Infra instances, client’s nearest and farthest

infrastructure node respectively, with the specified item stored in the second one

(Fig. 5.22b).

C.4 Download from farther infrastructure’s mobile replica: lastly, in this evaluation

scenario, the downloaded item is neither currently being replicated by a neighbor-

ing mobile node, nor it is present in the nearest infrastructure node’s storage, nor

within the farther infrastructure node where the item was originally published.

Therefore, the required object is only replicated by a mobile node in the farther

infrastructure node, i.e. the creator of the item itself. To architect this environment,

we used two mobile devices — one in each of the BSS — where one initiates the

download request and the other is simply replicating the item, and two Thyme-

Infra nodes (Fig. 5.22d).

101

CHAPTER 5. EVALUATION

download(item)

item

Local
Popularity

Cache

(a) Download from nearest in-
frastructure.

download(item)
item

item

download(item)

Local
Popularity

Cache

(b) Download from farther infrastructure.

download(item)

item

= item replica●

(c) Download from near-
est mobile replica.

download(item) download(item)item

itemitem

download(item) = item replica●

(d) Download from farther infrastructure’s mobile replica.

Figure 5.22: Evaluation Scenarios for the Thyme + Thyme-Infra part of “Comparison
with the Cloud Infrastructure”.

In order to establish a fair comparison baseline between our system and the cloud, we

have explicitly deactivated the proactive caching mechanism that would cause the item

to be cached by the infrastructure node, on scenarios C.3 and C.4, before sending it back

to the requesting mobile node. If we kept the proactive caching mechanism enabled, the

download latencies after the first execution in each of the mentioned scenarios would

essentially be equal to the values obtained in C.2. However, by disabling it, each iteration

of each scenario will force a complete execution of the download workflow.

The final latency results across all scenarios are visible in Fig. 5.23. With the gathered

metrics, it is possible for us to conclude multiple aspects.

First, when only considering the latencies from the Thyme operations, it is possible

to verify that retrieving an item from the nearest and the farther infrastructure nodes are

the fastest download methods and are relatively close in terms of results across all file

sizes. This is expected since the equipments used to act as Thyme-Infra nodes (laptops)

contain a more powerful set of Network Interface Controllers with a higher throughput

ratio when compared to the ones utilized in smartphone devices. This behavior is also

predicted to happen with real Base Station equipments.

Second, apart from the 5 KB file, our system presents itself as a clear winner in terms

of latency, providing much lower download speeds across the board than sending the

download through the entire network backbone to reach the cloud infrastructure and

retrieve the same file. Although Thyme also presents better results for the 5 KB file,

102

5.5. COMPARISON WITH THE CLOUD INFRASTRUCTURE

5 KB 500 KB 1 MB 5 MB 10 MB 50 MB
2−6

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

26

Downloaded File Size

To
ta

lO
p

er
at

io
n

L
at

en
cy

(s
)

Download from nearest mobile replica
Download from nearest infrastructure
Download from farther infrastructure

Download from farther infrastructure’s mobile replica
Download from cloud

Figure 5.23: Comparison of the download operation latency between multiple files from
Thyme + Thyme-Infra and AWS.

the overall difference between our system and the cloud is negligible. Nonetheless, the

creation of such small data items in real scenarios will likely be nonexistent if we consider

popular data types, such as text documents, pictures and videos, which are usually much

larger in size.

Third, if we only consider the 1 MB and 5 MB files downloaded from the cloud, the

results obtained through our latency tests are counterintuitive: it was generally faster to

download the latter then the former, even though the latter file is five times larger. We

believe that this outcome is directly linked to one of the disadvantages of using cloud

systems, namely public cloud systems such as AWS: unpredictable traffic at a large scale.

Cloud infrastructures effectively represent a communication hub which potentially re-

ceives messages from every kind of client and application, causing the requests from

all platforms to compete with each other for the servers’ processing power and channel

103

CHAPTER 5. EVALUATION

0 2 4 6 8 10 12 14 16 18 20 22 24 26

5 KB

500 KB

1 MB

5 MB

10 MB

50 MB

0.14

1.1

4.38

3.59

9.03

20.89

0.24

1.23

4.63

4.03

9.89

24.09

0.25

1.26

4.65

4.15

10.08

24.63

0.18

1.13

4.5

3.78

9.43

22.28

AVG(TDownload from Cloud − TThyme Download Operation) (s)

D
ow

nl
oa

d
ed

Fi
le

Si
ze

Download from nearest mobile replica
Download from nearest infrastructure
Download from farther infrastructure

Download from farther infrastructure’s mobile replica

Figure 5.24: Showcase of how much faster, on average, each Thyme download operation
is compared to sending the same download request to the cloud.

throughput. Therefore, there is a strong possibility that, during the time-window when

we performed the latency evaluation on the 1 MB file, Amazon’s London data center was

under a higher incoming/outgoing traffic than usual, which directly impacted our results.

Consequently, for this reason, we conclude that relying solely on cloud processing for

certain latency-sensitive applications is not always adequate.

In Fig. 5.24 we showcase a more streamlined view of the comparison by directly

presenting how much faster, in seconds, each Thyme download operation is on average

when compared to the cloud counterpart. Ultimately, we conclude that our system is able

to provide swifter response times ranging from approximately 4 to 5 seconds faster to

∼9− 10 seconds for the most common file sizes (1 MB through 10 MB) that are expected

to be generated and shared via smartphones during events (i.e. selfies, photos and short

video clips). This difference is even more accentuated when considering larger files.

104

C
h
a
p
t
e
r

6
Conclusions

6.1 Conclusions

In recent times, we have seen an incredible growth of users adopting mobile devices

and wearables, such as smartphones and smartwatches, for communicating with friends,

performing day-to-day activities or even work-related procedures. As a consequence of

this, the global traffic generated by these non-stationary devices represents the majority

of all internet interactions, and is poised to keep growing. While smartphones’ hardware

capabilities have greatly increased year after year, mobile communications still remain a

bottleneck for most applications. We can partially pinpoint this to the companies’ cloud

infrastructure, which effectively represents a communication hub where all kinds of plat-

forms compete with each other for the servers’ processing power and channel throughput.

Additionally, wireless technologies used in mobile environments are unreliable, slow and

congestion-prone by nature when compared to the wired medium counterpart.

To fix the back-and-forth mobile communication overhead, the “Edge” paradigm has

been recently introduced, which aims to bring cloud services closer to the customers, by

providing an intermediate layer between the end devices and the actual cloud infrastruc-

ture, resulting in faster response times. While initially this paradigm was composed of

infrastructure-only solutions, through the deployment of stationary hardware such as

gateways and wireless routers, on hand-picked places like factory floors, vehicles and on

top of buildings, other iterations of this approach have been researched and proposed by

the entire scientific communicate which utilize client’s actual mobile devices as the ones

managing and coordinating the system itself.

One of these approaches, Thyme, employs a novel time-aware Publish/Subscribe

scheme, along with a Geographic Hash Table mechanism, and has been proven to be

highly effective for data dissemination at edge networks, due to the interactions’ loosely

105

CHAPTER 6. CONCLUSIONS

coupled nature and scalability.

Although a plethora of solutions already exist on both ends of the edge spectrum,

very few actually make use of the combination of both of these actors simultaneously —

stationary nodes and mobile devices — to create a truly and fully collaborative storage

system.

In this thesis we proposed an edge storage system, built on top of Thyme, that uti-

lizes, when available, previously deployed infrastructure nodes with the goal of joining

multiple groups of clients within the same venue, from different locations, and their data

into one cohesive and consistent end-to-end storage network. At the same time, the sys-

tem created between the mobile clients would run independently of the infrastructure

and, in the event that the infrastructure node crashes, the P2P would continue to function

normally.

Our end goal with bringing both types of actors into a single framework was to ad-

dress the disadvantages of both parties and offset them by working in harmony. That

is, introducing the infrastructure resource — which are inherently more powerful and

capable than consumer’s devices — allowed us to optimize and offload a portion of the re-

quests and files from the clients into the stationary device, ultimately saving them energy

and lowering their processing overhead. Furthermore, since these stationary hardware

can be connected through wired means to other infrastructure nodes, we essentially over-

came the mobile devices’ wireless protocols range limitations and enabled the possibility

of distant clusters of users to interact with one another. On the other hand, by having

users take an active role on the system, we were able to minimize the occurrences of an

overload or a single point of failure from the infrastructure part.

The infrastructure part, named Thyme-Infra, was built on top of two core pillars:

a P/S system and a complex caching mechanism. For the first one, we augmented and

altered the Publish/Subscribe paradigm proposed by the authors of Thyme to run at

the infrastructure-level. Its main purpose was the keep track of the Thyme-Infra

node’s mobile clients needs and periodically disseminate them to all other nodes in the

infrastructure, with the intent of receiving relevant popular items that may have been

published in other venue locations and offer them to the local clients. Regarding the

second pillar, we developed a novel approach to multi-purpose, multi-application, caches

through an adaptive segmentation technique which is based on each cache’s clients needs.

On top of all this, during this dissertation, the Thyme framework was also entirely

updated to be able to probe and interact with the infrastructure layer.

In our evaluations, our system showed adequate response times for interactive usage,

and low energy consumption, allowing the application to be used in a variety of events

without excessive battery drainage. When compared to the previous iteration of Thyme,

some aspects in Thyme-Infra performed poorly than before due to the supplementary

complexity inherent to the introduction of infrastructure resources, such as the additional

battery usage on the sender node as consequence of simultaneously transmitting the

message to the nearest infrastructure node as well as on the recipient device due to

106

6.2. FUTURE WORK

the management of its cell data. However, in the grand scheme of things, our solution

was able to match or improve Thyme’s operations latency as well as reduce the energy

consumption. Additionally, we were able provide a considerably lower overhead to the

mobile nodes, in terms of the total mobile traffic generated and its size, which is directly

tied to the battery and processing improvements.

We also tested our system’s download operation latencies — since we believe the

operation is expected to dominate the mobile clients’ traffic — against a full-fledged

cloud solution deployed in AWS for multiple file sizes and verified that our proposal

yielded a considerable speedup across the board.

However, there are inherent drawbacks that should be taken into consideration when

utilizing our solution which are absent with cloud solutions. First and foremost the energy

consumption of Thyme-Infra nodes during their execution: while we were not able to

measure this metric on such stationary devices, there is an obvious electric consumption

associated with them that would add up to the cost of maintaining the system. Such

consumption analysis and costs would be completely ignored by the developer using

a cloud provider. On the other hand, congestion of infrastructure nodes caused by a

large client population within a BSS. This particular scenario could indeed be solved by

acquiring and deploying more edge hardware while, using the cloud counterpart, the

developer could simply configure the provider’s load balancing and auto-scaling policies

and pay only for the resources used when they are needed. Consequently, with the

advantages and disadvantages related to our solution, it is up to the engineer to perform

an educated guess on which type of system makes sense and better fits its application

needs.

In conclusion, we implemented all the technological aspects that we proposed during

the initial phase of this thesis and we consider that this work can be seen has a stepping

stone towards a streamlined data dissemination/sharing system for a wide-area setting —

like a campus or a football stadium — which utilizes both mobile devices to contribute to

the processing, storage and routing needs of the system, as well as infrastructure nodes

simultaneously.

6.2 Future Work

Even though we have developed a full-fledged system to what was initially proposed for

the context of this dissertation, we believe that, while outside the scope of this project,

there are still some areas that could be improved as well as completely new features

that could be developed in order to enrich the framework and broaden Thyme and

Thyme-Infra applications. Thus, we propose a multitude of aspects to be considered

for future work, divided into two main groups: system improvements and novel research

opportunities.

107

CHAPTER 6. CONCLUSIONS

6.2.1 System Improvements

Batch-message Communication Layer. In the current form of Thyme-Infra, every

time an infrastructure node decides to willingly communicate with a mobile client, it

builds the respective message and transmits it right away. At first sight, this behavior

should not be considered nor presented as an issue but due to our “stable nodes” approach

(Sections 4.5.1 and 4.9.7) we believe that it could be improved. Namely, since in some

cases we prioritize the dispatch of messages to a stable node, when the Thyme-Infra

instance is unable to communicate with a specific mobile node directly, in order for it to

locally route the packet to the desired destination, which leads to scenarios where a stable

node is contacted multiple times within a short time-window. Thus, building a communi-

cation layer that has a batch-messaging counterpart would be a favorable improvement:

before sending the message right away to a client that layer holds the transmission for a

short predetermined amount of time and puts it into a batch queue; sequent messages

to the same destination would be linked together and, when the dissemination timer

fires, Thyme-Infra would combine every single associated message into one packet

and finally transmit it. When developed, this batch-messaging approach could also be

applied to the infrastructure communication layer.

Although this proposal would increase the overall size of the packets transmitted

by the system, the benefits are expected to out-weight this particular outcome since the

number of times the mobiles nodes would have to activate their antennas to receive

packets would decrease, especially when this antenna’s activation intermittence makes

up to a considerable amount of battery usage in portable gadgets.

Mobile Pagination Retrieval. One of the most flagrant drawback of the mobile nodes

subscription process (Section 4.8.1) and the infrastructure’s dissemination of incoming

subscription needs reply’s data to its clients (Section 4.6, Step 3), lies on the fact that

both operations could trigger a dissemination of an extraordinary amount of data back to

the user, which would be not only inefficient but also overwhelming. Therefore, adding

a pagination layer to each operation’s return data that could be controlled by the user,

depending on its needs, would potentially contribute to a better system and battery usage

performance. To achieve this proposal, each Thyme-Infra instance would have to

maintain an additional structure to manage and keep track of its users current page, and

the data associated to it, for each of the operations.

Adaptively Tuning the System’s Parameters. One feature we believe would result in a

better overall performance for Thyme-Infra, independently of the target applications,

would be to adaptively fine-tune the system parameters from the specified baseline (Sec-

tion 4.9.9), such as the number of batch-inserts between popular decision cycles (Section

4.9.3) or the optimal dissemination contract time window (Section 4.6.1), depending on

108

6.2. FUTURE WORK

the current active users and their behaviors, or even implement a totally autonomous solu-

tion which adapts the system’s variables on-the-fly without the need for a configurations

file.

Fallback to a Geographic Mode on Infrastructure Failure. In the current state of our

solution, while mobile nodes will not crash due to a failure on the nearest infrastructure

during the execution of P/S operations, they will essentially be disconnected to the entire

system, including neighboring nodes. To overcome this situation, we propose the imple-

mentation of a fallback mechanism, in the future, for mobile devices using Thyme to

change their communication means to D2D protocols, i.e. Geographical mode and worlds.

By doing this, they would be able to continue the storage system between them, even if

isolated from the rest of the clients that have their nearest infrastructure nodes running

correctly. On top of that, the same mechanism should be able to handle the reconnecting

scenario when that same stationary device goes back online.

Allow the Deployment of New Stationary Nodes Midway. As described in Section

4.6.1, each stationary node establishes its own non-overlap dissemination contract against

all other infrastructure nodes during startup. However, if the architecture engineer

wishes to add new stations to the infrastructure midway through the event in order

to accommodate to a larger influx of users, for instance, our solution currently does not

provide a “catch-up” mechanism for new actors. Thus, we propose the addition of this

procedure to new versions of Thyme-Infra, enabling new infrastructure nodes to be

deployed midway by forcing them to notify the current nodes of their presence and initi-

ate the respective transmission of system information, such as the available worlds, along

with the recalculation of each non-overlap contract.

Adaptive Multipart Caching. As described in the feature’s evaluation scenario, we ar-

gue that the AMC mechanism could be further improved and refined to function properly

under different workloads and population sizes/needs.

6.2.2 Novel Research Opportunities

Data Updates. In their current state, Thyme and Thyme-Infrastructure consider

published data as read-only, immutable. Thus, a complete new paradigm change, that we

believe would cement the deployment of our proposed systems at the Edge and open up

a whole new world of applications that could utilize our frameworks, would be the intro-

duction of data updates to both Thyme, in P2P and infrastructure mode, and Thyme-

Infra. Updates would have to be applied locally, within the infrastructure’s BSS, as well

as globally, since the updated item could have been created in another venue’s location but

it could also have been obtain by users from other Thyme-Infra nodes, to guarantee

that all replicas are notified of modifications. Eventually consistent replication mech-

anisms and data types, such as CRDTs [76] (State, Operation or even Delta-based [77]

109

CHAPTER 6. CONCLUSIONS

[78]), would theoretically be an efficient and performant foundation for implementing

this proposal considering the inherent characteristics of Edge networks and their devices.

Inter-Infrastructure Nodes Mobility-Awareness. While briefly touched on in Section

4.4.1, churn continues to play a big role in the development of systems at the Edge,

namely Thyme-Infra, even with the introduction of resources from the infrastructure

layer. Nonetheless we acknowledge that, in schemes like our own, churn can divided into

two distinct categories: a complete and an intra-system churn. In the former declaration,

we assume the basic churn’s definition as a collective of users that enter and leave the

entire system’s boundaries, effectively terminating their presence. While in the latter,

we consider intra-system churn to be the act of multiple groups of clients leaving one

part of the system to join another area, while still connected to it but interacting with

distinct (hardware) components. A specific example of this type of churn in the context of

Thyme-Infra would be the collective movement of multiple users from their respective

APs to the coverage of a single Thyme-Infra node, e.g. people moving to the restrooms

and restaurants area during a football match half-time break.

Thus, due to the freedom of movement inherent to the users at the edge, we believe

that an inter-infrastructure node mobility-awareness mechanism should be researched

and ultimately implemented in future versions of our solution to cope with scenarios like

this. This research proposal would have to address questions such as:

• How to keep track of the inter-system churn?

• When should one decide to trigger the transmission of data from one infrastructure

node to another?

• Which data should be selected to move from one infrastructure node to another

with goal of keeping relevant data close to the moving clients?

• How to deal with the eventuality of a system overflow, namely the storage capacity,

of one infrastructure node with the incoming data while still keeping the relevant

local items safe?

Edge-Tailored Popularity Decaying Function. Every time a Thyme-Infra instance

receives a cell data message it will update its objects’ popularity index by incrementing

the number of times it has been downloaded by its clients. As described in Section

4.9.3.1, the infrastructure node uses this value for each object to decide which top items

should be offloaded from the users onto the infrastructure itself. However, in its current

version, the Thyme-Infra node simply relies on incrementing this index over time,

leading to cases where an highly sought-after item during a short amount of time and

scarcely accessed from that point on would still be considered vastly popular due to

the considerable popularity index value that was gathered initially. Thus, we believe

that using a popularity decay function would be a good approach to maintain the items’

110

6.2. FUTURE WORK

popularity values fresh and relevant, updating the infrastructure caches’ contents as

a byproduct of that, or even entirely removing the associated object from the pool of

possible popular candidates if the popularity index reaches back to zero. In doing this,

the goal is to guarantee that we are using the caches’ storage capacity in the most efficient,

meaningful way possible.

Consequently, state-of-the-art popularity decaying functions should be researched,

such as the Wilson Score [79] which is used by massive systems like Reddit [80], to

check whether they still perform efficiently in scenarios at the edge or if a completely

novel approach should be proposed and implemented, given the requirements and the

behaviors of moving clients in edge networks.

111

Bibliography

[1] P. Narasimhan and F. Silva. Hyrax: Crowd-Sourcing mobile devices to develop edge
cloud. 2017. url: http://hyrax.dcc.fc.up.pt.

[2] Smartphones worldwide installed base from 2008 to 2017 (in millions). Statista. url:

https://www.statista.com/statistics/371889/smartphone- worldwide-

installed-base/.

[3] R. Simpson. Mobile and tablet internet usage exceeds desktop for first time worldwide.

StatCounter. 2016. url: http://gs.statcounter.com/press/mobile- and-

tablet-internet-usage-exceeds-desktop-for-first-time-worldwide.

[4] R. Simpson. India amongst world leaders in use of mobile to surf the internet. Stat-

Counter. 2017. url: http://gs.statcounter.com/press/india- amongst-

world-leaders-in-use-of-mobile-to-surf-the-internet.

[5] Cisco Mobile Visual Networking Index (VNI) Forecast Projects 7-Fold Increase in Global
Mobile Data Traffic from 2016-2021. Cisco. 2017. url: https://newsroom.cisco.

com/press-release-content?articleId=1819296.

[6] T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun. “Fog Computing: Focusing on

Mobile Users at the Edge.” In: CoRR abs/1502.01815 (2015). url: http://arxiv.

org/abs/1502.01815.

[7] Cisco. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things
Are. 2015.

[8] I. Stojmenovic and S. Wen. “The Fog Computing Paradigm: Scenarios and Security

Issues.” In: Proceedings of the 2014 Federated Conference on Computer Science and
Information Systems, Warsaw, Poland, September 7-10, 2014. 2014, pp. 1–8. doi:

10.15439/2014F503. url: https://doi.org/10.15439/2014F503.

[9] K. Dolui and S. K. Datta. “Comparison of edge computing implementations: Fog

computing, cloudlet and mobile edge computing.” In: Global Internet of Things
Summit, GIoTS 2017, Geneva, Switzerland, June 6-9, 2017. 2017, pp. 1–6. doi:

10.1109/GIOTS.2017.8016213. url: https://doi.org/10.1109/GIOTS.2017.

8016213.

113

http://hyrax.dcc.fc.up.pt
https://www.statista.com/statistics/371889/smartphone-worldwide-installed-base/
https://www.statista.com/statistics/371889/smartphone-worldwide-installed-base/
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/india-amongst-world-leaders-in-use-of-mobile-to-surf-the-internet
http://gs.statcounter.com/press/india-amongst-world-leaders-in-use-of-mobile-to-surf-the-internet
https://newsroom.cisco.com/press-release-content?articleId=1819296
https://newsroom.cisco.com/press-release-content?articleId=1819296
http://arxiv.org/abs/1502.01815
http://arxiv.org/abs/1502.01815
https://doi.org/10.15439/2014F503
https://doi.org/10.15439/2014F503
https://doi.org/10.1109/GIOTS.2017.8016213
https://doi.org/10.1109/GIOTS.2017.8016213
https://doi.org/10.1109/GIOTS.2017.8016213

BIBLIOGRAPHY

[10] J. A. Silva, R. Monteiro, H. Paulino, and J. M. Lourenço. “Ephemeral Data Storage

for Networks of Hand-Held Devices.” In: 2016 IEEE Trustcom/BigDataSE/ISPA,
Tianjin, China, August 23-26, 2016. 2016, pp. 1106–1113. doi: 10.1109/TrustCom.

2016.0182. url: https://doi.org/10.1109/TrustCom.2016.0182.

[11] S. Kim. “5G Network Communication, Caching, and Computing Algorithms Based

on the Two-Tier Game Model.” In: ETRI Journal 40.1 (), pp. 61–71. doi: 10.4218/

etrij.2017-0023. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

4218/etrij.2017-0023. url: https://onlinelibrary.wiley.com/doi/abs/10.

4218/etrij.2017-0023.

[12] W. Fan, Y. Liu, B. Tang, F. Wu, and H. Zhang. “TerminalBooster: Collaborative

Computation Offloading and Data Caching via Smart Basestations.” In: IEEE Wire-
less Commun. Letters 5.6 (2016), pp. 612–615. doi: 10.1109/LWC.2016.2605694.

url: https://doi.org/10.1109/LWC.2016.2605694.

[13] Dropbox. url: https://www.dropbox.com/.

[14] Google Drive. url: https://www.google.com/drive/.

[15] Instagram. url: http://instagram.com/.

[16] F. Cerqueira, J. a. A. Silva, J. a. M. Lourenço, and H. Paulino. “Towards a Persistent

Publish/Subscribe System for Networks of Mobile Devices.” In: Proceedings of the
2Nd Workshop on Middleware for Edge Clouds & Cloudlets. MECC ’17. Las Vegas,

Nevada: ACM, 2017, 2:1–2:6. isbn: 978-1-4503-5171-3. doi: 10.1145/3152360.

3152362. url: http://doi.acm.org/10.1145/3152360.3152362.

[17] J. A. Silva, H. Paulino, J. M. Lourenço, J. Leitão, and N. Preguiça. “Time-Aware

Publish/Subscribe for Networks of Mobile Devices.” In: ArXiv e-prints (Dec. 2018).

arXiv: 1801.00297 [cs.DC].

[18] F. Cerqueira. “Um Sistema Publicador/Subscritor com Persistência de Dados para

Redes de Dispositivos Móveis.” Master’s thesis. FCT NOVA, Sept. 2017. url:

http://hdl.handle.net/10362/28553.

[19] Android. Google. url: https://www.android.com.

[20] Z. Wang, L. Sun, M. Zhang, H. Pang, E. Tian, and W. Zhu. “Propagation- and

Mobility-Aware D2D Social Content Replication.” In: IEEE Trans. Mob. Comput.
16.4 (2017), pp. 1107–1120. doi: 10.1109/TMC.2016.2582159. url: https:

//doi.org/10.1109/TMC.2016.2582159.

[21] F. Zhang, C. Xu, Y. Zhang, K. K. Ramakrishnan, S. Mukherjee, R. D. Yates, and

T. D. Nguyen. “EdgeBuffer: Caching and prefetching content at the edge in the

MobilityFirst future Internet architecture.” In: 16th IEEE International Symposium
on A World of Wireless, Mobile and Multimedia Networks, WoWMoM 2015, Boston,
MA, USA, June 14-17, 2015. 2015, pp. 1–9. doi: 10.1109/WoWMoM.2015.7158137.

url: https://doi.org/10.1109/WoWMoM.2015.7158137.

114

https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.4218/etrij.2017-0023
https://doi.org/10.4218/etrij.2017-0023
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2017-0023
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2017-0023
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2017-0023
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2017-0023
https://doi.org/10.1109/LWC.2016.2605694
https://doi.org/10.1109/LWC.2016.2605694
https://www.dropbox.com/
https://www.google.com/drive/
http://instagram.com/
https://doi.org/10.1145/3152360.3152362
https://doi.org/10.1145/3152360.3152362
http://doi.acm.org/10.1145/3152360.3152362
https://arxiv.org/abs/1801.00297
http://hdl.handle.net/10362/28553
https://www.android.com
https://doi.org/10.1109/TMC.2016.2582159
https://doi.org/10.1109/TMC.2016.2582159
https://doi.org/10.1109/TMC.2016.2582159
https://doi.org/10.1109/WoWMoM.2015.7158137
https://doi.org/10.1109/WoWMoM.2015.7158137

BIBLIOGRAPHY

[22] R. Wang, J. Zhang, S. Song, and K. B. Letaief. “Mobility-Aware Caching in D2D

Networks.” In: IEEE Trans. Wireless Communications 16.8 (2017), pp. 5001–5015.

doi: 10.1109/TWC.2017.2705038. url: https://doi.org/10.1109/TWC.2017.

2705038.

[23] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li. “Content Centric Peer Data

Sharing in Pervasive Edge Computing Environments.” In: 37th IEEE International
Conference on Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June
5-8, 2017. 2017, pp. 287–297. doi: 10.1109/ICDCS.2017.26. url: https:

//doi.org/10.1109/ICDCS.2017.26.

[24] A. Jonathan, M. Ryden, K. Oh, A. Chandra, and J. B. Weissman. “Nebula: Dis-

tributed Edge Cloud for Data Intensive Computing.” In: IEEE Trans. Parallel Dis-
trib. Syst. 28.11 (2017), pp. 3229–3242. doi: 10.1109/TPDS.2017.2717883. url:

https://doi.org/10.1109/TPDS.2017.2717883.

[25] J. Albadarneh, Y. Jararweh, M. Al-Ayyoub, M. Al-Smadi, and R. Fontes. “Software

Defined Storage for cooperative Mobile Edge Computing systems.” In: 2017 Fourth
International Conference on Software Defined Systems, SDS 2017, Valencia, Spain,
May 8-11, 2017. 2017, pp. 174–179. doi: 10.1109/SDS.2017.7939160. url:

https://doi.org/10.1109/SDS.2017.7939160.

[26] G. Wu, J. Chen, W. Bao, X. Zhu, W. Xiao, J. Wang, and L. Liu. “MECCAS: Collabo-

rative Storage Algorithm Based on Alternating Direction Method of Multipliers on

Mobile Edge Cloud.” In: IEEE International Conference on Edge Computing, EDGE
2017, Honolulu, HI, USA, June 25-30, 2017. 2017, pp. 40–46. doi: 10.1109/IEEE.

EDGE.2017.14. url: https://doi.org/10.1109/IEEE.EDGE.2017.14.

[27] C. Liu and C. Lai. “A heuristic data update mechanism in unstructured mobile

P2P systems.” In: Ad Hoc Networks 58 (2017), pp. 138–149. doi: 10.1016/j.adhoc.

2016.09.011. url: https://doi.org/10.1016/j.adhoc.2016.09.011.

[28] E. Skjervold and M. Skjegstad. “REAP: Delta Compression for Publish/Subscribe

Web Services in MANETs.” In: 32th IEEE Military Communications Conference, MIL-
COM 2013, San Diego, CA, USA, November 18-20, 2013. 2013, pp. 1488–1496. doi:

10.1109/MILCOM.2013.251. url: https://doi.org/10.1109/MILCOM.2013.251.

[29] X. Wang, J. Ren, T. Tong, R. Dai, S. Xu, and S. Wang. “Towards Efficient and

Lightweight Collaborative In-Network Caching for Content Centric Networks.” In:

2016 IEEE Global Communications Conference, GLOBECOM 2016, Washington, DC,
USA, December 4-8, 2016. 2016, pp. 1–7. doi: 10.1109/GLOCOM.2016.7842342.

url: https://doi.org/10.1109/GLOCOM.2016.7842342.

[30] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili. “Collaborative Mobile Edge

Computing in 5G Networks: New Paradigms, Scenarios, and Challenges.” In: IEEE
Communications Magazine 55.4 (2017), pp. 54–61. doi: 10 . 1109 / MCOM . 2017 .

1600863. url: https://doi.org/10.1109/MCOM.2017.1600863.

115

https://doi.org/10.1109/TWC.2017.2705038
https://doi.org/10.1109/TWC.2017.2705038
https://doi.org/10.1109/TWC.2017.2705038
https://doi.org/10.1109/ICDCS.2017.26
https://doi.org/10.1109/ICDCS.2017.26
https://doi.org/10.1109/ICDCS.2017.26
https://doi.org/10.1109/TPDS.2017.2717883
https://doi.org/10.1109/TPDS.2017.2717883
https://doi.org/10.1109/SDS.2017.7939160
https://doi.org/10.1109/SDS.2017.7939160
https://doi.org/10.1109/IEEE.EDGE.2017.14
https://doi.org/10.1109/IEEE.EDGE.2017.14
https://doi.org/10.1109/IEEE.EDGE.2017.14
https://doi.org/10.1016/j.adhoc.2016.09.011
https://doi.org/10.1016/j.adhoc.2016.09.011
https://doi.org/10.1016/j.adhoc.2016.09.011
https://doi.org/10.1109/MILCOM.2013.251
https://doi.org/10.1109/MILCOM.2013.251
https://doi.org/10.1109/GLOCOM.2016.7842342
https://doi.org/10.1109/GLOCOM.2016.7842342
https://doi.org/10.1109/MCOM.2017.1600863
https://doi.org/10.1109/MCOM.2017.1600863
https://doi.org/10.1109/MCOM.2017.1600863

BIBLIOGRAPHY

[31] A. Elgazar, K. A. Harras, M. Aazam, and A. Mtibaa. “Towards Intelligent Edge

Storage Management: Determining and Predicting Mobile File Popularity.” In: 6th
IEEE International Conference on Mobile Cloud Computing, Services, and Engineering,
MobileCloud 2018, Bamberg, Germany, March 26-29, 2018. 2018, pp. 23–28. doi: 10.

1109/MobileCloud.2018.00012. url: https://doi.org/10.1109/MobileCloud.

2018.00012.

[32] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs, and R. Braynard.

“Networking named content.” In: Commun. ACM 55.1 (2012), pp. 117–124. doi:

10.1145/2063176.2063204. url: http://doi.acm.org/10.1145/2063176.

2063204.

[33] J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitaraman, and W. E. Weihl.

“Globally Distributed Content Delivery.” In: IEEE Internet Computing 6.5 (2002),

pp. 50–58. doi: 10.1109/MIC.2002.1036038. url: https://doi.org/10.1109/

MIC.2002.1036038.

[34] J. loup Gailly and M. Adler. zlib: A Massively Spiffy Yet Delicately Unobtrusive
Compression Library. url: https://zlib.net.

[35] J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. M. A. Silva. “Towards a mid-

dleware for mobile edge-cloud applications.” In: Proceedings of the 2nd Workshop
on Middleware for Edge Clouds & Cloudlets, MECC@Middleware 2017, Las Vegas, NV,
USA, December 11 - 15, 2017. 2017, 1:1–1:6. doi: 10.1145/3152360.3152361. url:

http://doi.acm.org/10.1145/3152360.3152361.

[36] P. J. Leach, M. Mealling, and R. Salz. “A universally unique identifier (uuid) urn

namespace.” In: (2005).

[37] Google. Protocol Buffers. 2017. url: https://developers.google.com/protocol-

buffers/.

[38] Oracle. Serializable Objects. url: https://docs.oracle.com/javase/tutorial/

jndi/objects/serial.html.

[39] Oracle. Package java.util.concurrent.atomic. url: https://docs.oracle.com/

javase/8/docs/api/java/util/concurrent/atomic/package-summary.html.

[40] Oracle. Class AtomicBoolean. url: https://docs.oracle.com/javase/8/docs/

api/java/util/concurrent/atomic/AtomicBoolean.html.

[41] Oracle. Class AtomicInteger. url: https://docs.oracle.com/javase/8/docs/

api/java/util/concurrent/atomic/AtomicInteger.html.

[42] Oracle. Class AtomicLong. url: https://docs.oracle.com/javase/8/docs/api/

java/util/concurrent/atomic/AtomicLong.html.

[43] Oracle. Package java.util.concurrent. url: https://docs.oracle.com/javase/8/

docs/api/java/util/concurrent/package-summary.html.

116

https://doi.org/10.1109/MobileCloud.2018.00012
https://doi.org/10.1109/MobileCloud.2018.00012
https://doi.org/10.1109/MobileCloud.2018.00012
https://doi.org/10.1109/MobileCloud.2018.00012
https://doi.org/10.1145/2063176.2063204
http://doi.acm.org/10.1145/2063176.2063204
http://doi.acm.org/10.1145/2063176.2063204
https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/MIC.2002.1036038
https://zlib.net
https://doi.org/10.1145/3152360.3152361
http://doi.acm.org/10.1145/3152360.3152361
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

BIBLIOGRAPHY

[44] Oracle. Class ConcurrentHashMap<K,V>. url: https : / / docs . oracle . com /

javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html.

[45] Oracle. Class ConcurrentLinkedQueue<E>. url: https://docs.oracle.com/

javase/8/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html.

[46] Oracle. Class ConcurrentHashMap<K,V>’s compute. url: https://docs.oracle.

com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#

compute-K-java.util.function.BiFunction-.

[47] Oracle. Class ConcurrentHashMap<K,V>’s computeIfAbsent. url: https://docs.

oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.

html#computeIfAbsent-K-java.util.function.Function-.

[48] Oracle. Class ConcurrentHashMap<K,V>’s putIfAbsent. url: https://docs.oracle.

com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#

putIfAbsent-K-V-.

[49] Oracle. Class ThreadPoolExecutor. url: https://docs.oracle.com/javase/8/

docs/api/java/util/concurrent/ThreadPoolExecutor.html.

[50] B. Manes. Caffeine. url: https://github.com/ben-manes/caffeine.

[51] T. Johnson and D. E. Shasha. “2Q: A Low Overhead High Performance Buffer Man-

agement Replacement Algorithm.” In: VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile.

1994, pp. 439–450. url: http://www.vldb.org/conf/1994/P439.PDF.

[52] G. Einziger, R. Friedman, and B. Manes. “TinyLFU: A Highly Efficient Cache

Admission Policy.” In: TOS 13.4 (2017), 35:1–35:31. doi: 10.1145/3149371. url:

http://doi.acm.org/10.1145/3149371.

[53] S. Cohen and Y. Matias. “Spectral Bloom Filters.” In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, San Diego, California,
USA, June 9-12, 2003. 2003, pp. 241–252. doi: 10.1145/872757.872787. url:

http://doi.acm.org/10.1145/872757.872787.

[54] G. Cormode and S. M. Muthukrishnan. “Approximating Data with the Count-Min

Sketch.” In: IEEE Software 29.1 (2012), pp. 64–69. doi: 10.1109/MS.2011.127.

url: https://doi.org/10.1109/MS.2011.127.

[55] R. Karedla, J. S. Love, and B. G. Wherry. “Caching Strategies to Improve Disk

System Performance.” In: IEEE Computer 27.3 (1994), pp. 38–46. doi: 10.1109/2.

268884. url: https://doi.org/10.1109/2.268884.

[56] Google. Guava. url: https://github.com/google/guava.

[57] S. AG. Ehcache. url: http://www.ehcache.org.

[58] B. Manes. Caffeine: Benchmarks. url: https : / / github . com / ben - manes /

caffeine/wiki/Benchmarks.

117

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#compute-K-java.util.function.BiFunction-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#compute-K-java.util.function.BiFunction-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#compute-K-java.util.function.BiFunction-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://github.com/ben-manes/caffeine
http://www.vldb.org/conf/1994/P439.PDF
https://doi.org/10.1145/3149371
http://doi.acm.org/10.1145/3149371
https://doi.org/10.1145/872757.872787
http://doi.acm.org/10.1145/872757.872787
https://doi.org/10.1109/MS.2011.127
https://doi.org/10.1109/MS.2011.127
https://doi.org/10.1109/2.268884
https://doi.org/10.1109/2.268884
https://doi.org/10.1109/2.268884
https://github.com/google/guava
http://www.ehcache.org
https://github.com/ben-manes/caffeine/wiki/Benchmarks
https://github.com/ben-manes/caffeine/wiki/Benchmarks

BIBLIOGRAPHY

[59] H. Scalability. Design Of A Modern Cache. url: http://highscalability.com/

blog/2016/1/25/design-of-a-modern-cache.html.

[60] B. Manes. Caffeine: Memory Overhead. url: https://github.com/ben-manes/

caffeine/wiki/Memory-overhead.

[61] B. Manes. Caffeine: Effiency. url: https://github.com/ben-manes/caffeine/

wiki/Efficiency.

[62] Java. Oracle. url: https://www.java.com.

[63] Intel Corporation. Intel Atom® C3000-Series Processor Family 5G Base Station. Tech.

rep. 2017. url: https://www.intel.com/content/dam/www/public/us/

en/documents/white- papers/atom- c3000- zte- 5g- base- station- white-

paper.pdf.

[64] ZTE Corporation. url: https://www.zte.com.cn/global/.

[65] EchoLife HN8245Q. Huawei. url: https://support.huawei.com/enterprise/

en/access-network/echolife-hn8245q-pid-21506180?category=product-

documentation.

[66] The JUnit Team. JUnit. url: https://junit.org/junit5/.

[67] J. Sedlacek and T. Hurka. VisualVM: All-in-One Java Troubleshooting Tool. url:

https://visualvm.github.io.

[68] Raspberry Pi. Raspberry Pi Foundation. url: https://www.raspberrypi.org.

[69] Arduino - Home. Arduino. url: https://www.arduino.cc.

[70] B. Manes. Caffeine: Expiration for maximumSize. url: https://github.com/ben-

manes/caffeine/issues/214#issuecomment-353996539.

[71] Battery Manager | Android Developers. Android. url: https://developer.android.

com/reference/android/os/BatteryManager.

[72] WifiManager.MulticastLock. Android. url: https://developer.android.com/

reference/android/net/wifi/WifiManager.MulticastLock.

[73] Amazon Web Services. url: http://aws.amazon.com.

[74] Amazon S3. Amazon Web Services. url: https://aws.amazon.com/s3/.

[75] curl. url: https://curl.haxx.se.

[76] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. “Conflict-Free Repli-

cated Data Types.” In: Stabilization, Safety, and Security of Distributed Systems - 13th
International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Pro-
ceedings. 2011, pp. 386–400. doi: 10.1007/978- 3- 642- 24550- 3_29. url:

https://doi.org/10.1007/978-3-642-24550-3_29.

118

http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html
http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html
https://github.com/ben-manes/caffeine/wiki/Memory-overhead
https://github.com/ben-manes/caffeine/wiki/Memory-overhead
https://github.com/ben-manes/caffeine/wiki/Efficiency
https://github.com/ben-manes/caffeine/wiki/Efficiency
https://www.java.com
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/atom-c3000-zte-5g-base-station-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/atom-c3000-zte-5g-base-station-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/atom-c3000-zte-5g-base-station-white-paper.pdf
https://www.zte.com.cn/global/
https://support.huawei.com/enterprise/en/access-network/echolife-hn8245q-pid-21506180?category=product-documentation
https://support.huawei.com/enterprise/en/access-network/echolife-hn8245q-pid-21506180?category=product-documentation
https://support.huawei.com/enterprise/en/access-network/echolife-hn8245q-pid-21506180?category=product-documentation
https://junit.org/junit5/
https://visualvm.github.io
https://www.raspberrypi.org
https://www.arduino.cc
https://github.com/ben-manes/caffeine/issues/214#issuecomment-353996539
https://github.com/ben-manes/caffeine/issues/214#issuecomment-353996539
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock
https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock
http://aws.amazon.com
https://aws.amazon.com/s3/
https://curl.haxx.se
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

BIBLIOGRAPHY

[77] P. S. Almeida, A. Shoker, and C. Baquero. “Efficient State-Based CRDTs by Delta-

Mutation.” In: Networked Systems - Third International Conference, NETYS 2015,
Agadir, Morocco, May 13-15, 2015, Revised Selected Papers. 2015, pp. 62–76. doi:

10.1007/978-3-319-26850-7_5. url: https://doi.org/10.1007/978-3-319-

26850-7_5.

[78] A. van der Linde, J. Leitão, and N. M. Preguiça. “∆-CRDTs: making δ-CRDTs

delta-based.” In: Proceedings of the 2nd Workshop on the Principles and Practice of
Consistency for Distributed Data, PaPoC@EuroSys 2016, London, United Kingdom,
April 18, 2016. 2016, 12:1–12:4. doi: 10.1145/2911151.2911163. url: http:

//doi.acm.org/10.1145/2911151.2911163.

[79] E. B. Wilson. “Probable Inference, the Law of Succession, and Statistical Inference.”

In: Journal of the American Statistical Association 22.158 (1927), pp. 209–212. doi:

10.1080/01621459.1927.10502953. eprint: https://www.tandfonline.com/

doi/pdf/10.1080/01621459.1927.10502953. url: https://www.tandfonline.

com/doi/abs/10.1080/01621459.1927.10502953.

[80] Reddit. Reddit’s new comment sorting system. url: https://redditblog.com/

2009/10/15/reddits-new-comment-sorting-system/.

119

https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1145/2911151.2911163
http://doi.acm.org/10.1145/2911151.2911163
http://doi.acm.org/10.1145/2911151.2911163
https://doi.org/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/abs/10.1080/01621459.1927.10502953
https://www.tandfonline.com/doi/abs/10.1080/01621459.1927.10502953
https://redditblog.com/2009/10/15/reddits-new-comment-sorting-system/
https://redditblog.com/2009/10/15/reddits-new-comment-sorting-system/

20
18

A
Pe

rs
is

te
n

t
P

u
b

li
sh

/S
u

b
sc

ri
b

e
Sy

st
em

fo
r

M
ob

il
e

E
d

ge
C

om
p

u
ti

n
g

Pe
d

ro
V

ie
ir

a

Pedro Miguel Lima de Jesus Vieira
BsC in Computer Science and Engineering

A Persistent Publish/Subscribe System for
Mobile Edge Computing

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

November, 2018

Pedro Miguel Lima de Jesus Vieira
BsC in Computer Science and Engineering

A Persistent Publish/Subscribe System for Mobile
Edge Computing

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

November, 2018

Copyright © Pedro Miguel Lima de Jesus Vieira, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e pu-

blicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou

que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais

ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

20
18

Pe
dr

o
V

ie
ira

20
18

A
Pe

rs
is

te
nt

P
ub

lis
h/

S
ub

sc
rib

e
S

ys
te

m
fo

rM
ob

ile
E

dg
e

C
om

pu
tin

g

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Context & Motivation
	Problem & Challenges
	Proposed Solution
	Contributions
	Document Outline

	State-of-the-Art
	Collaborative Storage in Edge Networks
	What to Cache
	Where to Place the Data
	How/When to Transmit Data/Updates

	Final Remarks

	Thyme
	Overview
	Publishing Data
	Replication
	Subscription & Data Retrieval
	Mobility-Awareness & Mitigation
	Worlds

	Thyme-Infrastructure
	General Overview
	System Model
	System Architecture
	Thyme
	Thyme-Infrastructure
	Interaction Between Thyme-Infra Components

	A Revision of Thyme's Core Features
	Logical Cells
	Creation and Discovery of Global Worlds
	Augmenting the MetaData Object

	Estimation and Dissemination of Local Subscriptions and File Popularity
	Cell Stable Nodes

	Global Publish/Subscribe Process
	Infrastructure Non-Overlap Dissemination Contract
	Bringing Time-Awareness to the Infrastructure

	Infrastructure Publish/Subscribe Caches
	Adaptive Multipart Caching
	Caches Structural Definition
	Lookup by Tag

	An (Infra)structured Modification of Thyme's P/S Operations
	Subscription
	Download
	Unpublish

	Implementation Details
	Protocol Buffers
	Concurrency
	Retrieving Local Popular Items to Cache in the Infrastructure
	Caffeinated Data
	Mobile Address Translation Store
	Mobile Nodes Notification on Nearest Infrastructure's Storage Changes
	Infrastructure-to-Mobile Nodes Communication Workflows
	Time outs
	Configurations File

	Summary

	Evaluation
	Evaluation Methodologies
	Logical Evaluation
	Absolute Metrics Evaluation
	Mobile Address Translation Store
	Popularity Ranking Algorithm Evaluation
	Adaptive Multipart Caching
	Impact of the Consumption Notification Mechanism
	LPC Batch-Insert Approach Validation
	Global Unpublish
	Self-established Cell Stable Node Failover

	Comparison with the Previous Version of Thyme
	Simulated Evaluation
	Real-world Evaluation

	Comparison with the Cloud Infrastructure

	Conclusions
	Conclusions
	Future Work
	System Improvements
	Novel Research Opportunities

	Bibliography

