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Abstract

As the demands for faster and cheaper telecommunication systems continue to grow,

so to do the demands for more efficient and secure systems. There have been several

solutions proposed, with the most commonly accepted ones employing Massive Multiple

Input, Multiple Output (mMIMO), featuring large arrays of antennas. The downside of

these systems lies mainly in the need for computationally heavy channel equalization

algorithms and the high hardware requirements, namely due to the need of many Power

Amplifiers (PAs), Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters

(DACs). This work analyses receivers that can handle these downsides, beginning with the

low complexity equalization receivers Maximal-Ratio Detector (MRD) and Equal-Gain

Detector (EGD), that can lower the equalization’s computation time. Then a Singular

Value Decomposition (SVD) receiver is studied, with a proposed interleaving scheme to

allow for equal performance on all streams, combined with a scheme for estimating and

cancelling the non-linear distortion to reduce the impact of cheaper and more power-

efficient PAs. These receivers are then improved with the introduction of an error correct-

ing convolutional code. Lastly, it is demonstrated that the SVD receiver can be appealing

as a solution for Physical Layer Security (PLS) in mMIMO systems.

Keywords: Massive MIMO, Singular Value Decomposition, Physical Layer Security, Non-

linearities.
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Resumo

À medida que a procura por sistemas de telecomunicações mais rápidos e baratos au-

menta, também aumenta a procura por sistemas mais eficientes e seguros. Dentro das

várias soluções propostas, as mais consensuais consideram esquemas mMIMO, onde o

número de antenas envolvido pode ser muito elevado. A desvantagem destes sistemas

está principalmente na necessidade de algoritmos de igualização de canal de elevada com-

plexidade, e também no requisito de muitos PAs, ADCs e DACs. Esta dissertação analisa

receptores que conseguem lidar com estas desvantagens, começando pelos receptores de

baixa complexidade de igualização MRD e EGD, que atingem um tempo de computação

mais baixo.Foi também analisado um receptor baseado em SVD, com um esquema de

interleaving para permitir que os diferentes fluxos tenham o mesmo desempenho. Este

receptor foi combinado com um esquema onde se estima a distorção não-linear para re-

duzir o impacto de PAs mais baratos e energeticamente eficientes. Estes receptores são

depois melhorados através de um código corretor de erros convolucional. Finalmente,

demonstrou-se que o receptor SVD é uma solução interessante para PLS em sistemas

mMIMO.

Palavras-chave: Massive MIMO, Decomposição em Valores Singulares, Segurança no

Nível Físico, Não-linearidades.
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1
Introduction

1.1 Scope and Motivation

In order to transmit knowledge between two people a form of communication is necessary.

The simplest form of communication is often referred to as non-verbal communication,

and it is not exclusive to humans. This technique is very limited in the amount of infor-

mation it can transmit, but it fulfils the basic purpose of knowledge transmission between

two entities. To increase the amount of information that can be transmitted, humanity

started coding certain pieces of information as words, leading to the so-called verbal

communication. This formed the basis for the different languages spoken throughout

the world. This form of communication required all participants to be within range to

listen to each other, which made it impossible to disseminate knowledge to large groups

of people. The invention of the printing press brought a revolution that enabled the use

of written communication, thereby removing the temporal and spatial constraints (to a

degree) of communication between two people. The methods for knowledge transmission

developed afterwards, such as books, letters and newspapers, would form the basis of

knowledge transmission for millennia.

The discovery of electromagnetism by James Maxwell in the 19th century, and the

confirmation of Maxwell’s theory by Heirich Hertz 22 years later, ushered in the era of

wireless communications. At first only simple signals could be transmitted, utilizing the

same alphabet as the telegraph. It was not until the following century that it became

possible to convert sound into high frequency electromagnetic waves to be sent over large

distances. This type of wave was easier to transmit over large distances, in addition, they

could use the air as a medium, which meant that the only necessary infrastructure was the

transmitter and the receiver. This marked the beginning of mobile networks. Although

it was possible to broadcast someone’s voice over a large area, the rate of information
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CHAPTER 1. INTRODUCTION

was still lower than paper based mediums. Transmitting the contents of a book could be

much slower than handing the book to the intended receiver.

In 1948 Shannon proposed his theory of communication [1], where he demonstrated

that any discrete system could achieve a Bit Error Rate (BER) as low as desired. In his

work, Shannon developed a systematic approach for studying any discrete communica-

tion system, including languages, and determine how many bits must be transmitted by

a discrete signal source. This theory, combined with switching circuits that used transis-

tors invented in the previous year, allowed for the storage and replication of information

without loss and in great part enabled the digital revolution. The analog communication

systems of the time, including the existing first generation mobile networks, also began

a slow shift into the digital domain, with the goal being to maximise the information

encoded in one or more symbols, which can also be regarded as decreasing the number

of bits that must be transmitted. This goal remains true in today’s systems.

It was during the second generation of mobile networks that a new trend of offering

services and content on mobile terminals started. Although the existing network Global

System for Mobile Communications (GSM) already allowed access to the internet, it was

very costly and impractical since the billing was done by connection duration. This

meant that when web browsing the time between finishing and starting to load a new

page was being billed, or before each page load a thirty second connection setup time

was necessary. It was with the General Packet Radio Service (GPRS) that mobile data

became more widespread. This technology came as an upgrade to the existing GSM and

its main change from the old system was the replacement of circuit switching technology

with packet switching. A new network core was created to operate with Internet Protocol

(IP) packets, which greatly simplified the connection with outside networks, and billing

now relied on the amount and size of the packets that the user sent/received, which

enabled the usage of prepaid cards. In this network, users could reliably connect to the

Internet and download content to their mobile device with easy to understand billing

plans. However, users had faster connections at home with their modems, which led to a

demand in higher internet access speeds on mobile networks. The following generations

would focus on offering substantially higher data rates to users.

Telecommunication systems in the current generation (also denoted as 4th Generation

(4G) or Long Term Evolution (LTE)) are no longer defined as voice services, but rather

as high speed data and content delivery services ranging from instant messaging to high

resolution streaming. All these different services impose ever higher requirements of the

systems that deliver them to users, therefore elevating the need for systems that can sur-

pass current technology. One of the main driving forces behind wireless communication

are smartphones, which, thanks to their increasingly higher computing power, provide

access to services and content to users at anytime and anyplace. The next generation,

referred to as the 5th Generation (5G), will require higher data rates than its predecessor,

however, due to the high cost of deploying an entirely new network, there will have to

be a soft transition between generations. As an example, LTE introduced Multiple Input,

2
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Multiple Output (MIMO) configurations, with higher orders being introduced in later

releases. 5G will, therefore, further increase the number of antennas, entering what is

referred to as Massive Multiple Input, Multiple Output (mMIMO).

As mobile devices achieved higher data rates, Quality of Service (QoS) and accessibil-

ity, they have become increasingly more common. To support this increasing number of

mobile devices operators have had to increase the scale of their infrastructure, which in

turn has to lead to more and more energy being consumed by the core network. In 2011,

[2], researchers predicted that the radio access networks’ energy consumption would re-

main constant over the years. In 2017 however, radio access networks consumed 65% of

Vodafones global energy bill [3]. The usage of mm waves will require faster amplifiers,

which will in turn draw more current to operate at such high frequencies. This fact, cou-

pled with the data rate demands of 5G systems, means that the need for energy efficient

receivers is now greater than ever.

1.2 Objectives

5G targets higher data rates and better QoS while maximising the information being

transmitted and energy efficiency. However, there is a new demand in integrating devices

other than smartphones, so called Internet-of-Things (IoT) devices, into the network. The

demands of these devices vary greatly between types of devices. To that end, there are

several new technologies being proposed at different layers, such as more efficient cores,

less centralized signalling and even techniques that work across different layers. In this

dissertation we will focus on the Physical Layer (PHY).

The first goal of this work is to increase the spectral and power efficiency of current

systems. To that end, mMIMO techniques are used on Single Carrier with Frequency

Domain Equalization (SC-FDE) systems, due to their lower envelope fluctuations when

compared to Orthogonal Frequency-Division Multiplexing (OFDM), and introduce low

complexity iterative receivers as a way to keep overall system complexity down. To fur-

ther increase the energy efficiency of our system, we employ highly non-linear amplifiers

combined with Singular Value Decomposition (SVD) receivers that can estimate and can-

cel the non-linear distortion. As security is also a very important requirement of 5G

systems, we analyse the Physical Layer Security (PLS) performance of the proposed SVD

system.

1.3 Main Contributions

The work developed in this dissertation has been published in [45] and [46], and there is

still one additional conference paper, and two journal papers awaiting review.

3



CHAPTER 1. INTRODUCTION

1.4 Thesis Organisation

This dissertation is organised into four main chapters. Chapter 2 describes traditional

single carrier systems in both Single Input, Single Output (SISO) and MIMO scenarios,

and introduces advantages and disadvantages of these schemes. In chapter 3, different

receiver implementations that allow lower complexity and delays at the cost of more

transmission power, and a receiver that offers the opposite, i.e., less transmission power,

but higher complexity are presented. In chapter 4, a security analysis of the receiver

presented in the previous chapter in different scenarios is presented. Chapter 5 concludes

this dissertation.
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2
State-of-Art

2.1 Goals of 5G Systems

As discussed in the previous chapter, the main force behind research in mobile telecom-

munications are the global mobile network systems used by the already immense and

growing number of mobile subscribers. As the number of users grows, so too do the

demands for a faster and better system that far exceeds the capabilities of current tech-

nology. Among these demands lie a tenfold increase in data rates as well as a maximum

latency of 1 millisecond. These demands result in very high demands for the hardware

and the algorithms employed.

In order to achieve these new requirements, several technologies are being proposed.

In [4] a few possible approaches are studied. The first technique described proposes

a new architecture for mobile networks, abandoning the traditional cell-based one. In

the current architecture, a Mobile Terminal (MT) connects to a Base Station (BS) and

proceeds to send information through an uplink channel and receive other information

through a downlink channel. In order to secure these channels, other downlink and

uplink control channels are first employed. This is what is referred to as a centralized

approach. Due to the higher data rates and lower delay demands, the BS will need

significantly higher processing power, making BSs much more expensive. In order to

keep costs down, distributed approaches are being considered, such as introducing new

long range stations to administer the control plane, separating it from the data plane, and

other techniques that shift the processing to the MTs.

The frequency spectrum at the frequencies currently employed in mobile communi-

cations is being used to its limit, therefore, increasing data rates by increasing the band-

width is not viable. However, a new interest for new carrier frequencies has surfaced,

5



CHAPTER 2. STATE-OF-ART

particularly microwave frequencies within 3 to 300 GHz. Within this range of frequen-

cies there are few that are licensed, allowing operators to reserve large bandwidths and,

therefore, increase data rates. The main drawback of this approach lies in the hardware,

as transmitters capable of operating with these frequencies are still very expensive.

Given the recent advancements in MT technology it is now interesting to discuss the

possibility of smarter MTs. These MTs would be capable of performing more complex

operations to reduce the stress on the network, such as being able to communicate directly

with other MTs, caching non-priority traffic based on the network load, and computing

more advanced algorithms to reduce channel interference.

The last approach, and the one that is the object of study in this dissertation, is the

use of mMIMO systems. This type of system employs several antennas in both the BS and

the MTs, which can offer many benefits. The most iconic benefit to mMIMO is the higher

maximum data rate, although there are other benefits such as beamforming and combin-

ing [5]. This chapter will introduce classical single-carrier systems and iterative receivers,

and analyse the costs and benefits of mMIMO systems. In addition, the advantages and

drawbacks of mMIMO systems are analyzed.

2.2 Single Carrier Systems

2.2.1 Characterization

Let us consider a Single Carrier (SC) system that transmits N symbols, over a channel of

bandwidth B, where the symbol duration is Tu . The complex envelope can be defined as

ssc(t) =
m=N−1∑
m=0

smr(t −mTu), (2.1)

where sn is the nth transmitted symbol and r(t) denotes the support impulse, which is

defined as

r(t) =
1
Tu

sinc
(
t
Tu

)
. (2.2)

This impulse is chosen for two reasons. The first is that it guarantees no Inter-Symbol

Interference (ISI) if it is sampled perfectly at every Tu instant. The second is due to its

frequency response being defined as

R(f ) = rect(f Tu), (2.3)

which maximises the occupied bandwidth. Since we use an optimum receiver, we re-

quire a detection filter with an impulse response equal to the support impulse. However,

building a brick-wall filter in the frequency-domain is exceedingly difficult and costly,

so a raised-cosine filter is used in real systems. This filter can occupy up to double the

bandwidth of the ideal filter, but it is much simpler to build. In this work we consider

the ideal filter.
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The symbols depend on the modulation employed, for simplicity’s sake we will first

define the receiver for Quadrature Phase Shift Keying (QPSK), and then generalize for

M-ary Quadrature Amplitude Modulation (M-QAM). The symbols to be transmitted are

then defined as

<(sn) =

 1, b2m = 1

−1, b2m = 0
=(sn) =

 1, b2m+1 = 1

−1, b2m+1 = 0
, (2.4)

where bm is the mth transmitted bit. The complex envelope ssc(t) can be expressed in the

frequency domain as

Ssc(f ) =
m=N

2∑
m=−N2

SnR(f )e−jmTu2πf , (2.5)

with Sn and R(f ) being the frequency domain counterpart of sn and r(t), respectively. The

symbols are then convoluted with the channel considered and arrive at the receiver.

In standard SC transmission, the equalization is done in the time-domain. This pro-

cess can be very complicated, especially when the delay spread of the channel is large.

However, by using Frequency Domain Equalization (FDE), the equalization process can

be greatly simplified.

2.2.2 Frequency Domain Equalization

Systems that employ time domain equalization are not suitable for highly time-dispersive

channels. To mitigate this problem we employ FDE, seen in [6]. Let us consider a perfect

receiver capable of perfectly estimating the channel between sender and receiver, with

this channel being frequency-selective and perfectly estimated by the receiver. A block

of symbols can be defined as

s = [s0, s1, ...sN−1], (2.6)

with the symbols defined in (2.4), and a frequency counterpart obtained by computing

the Fast Fourier Transform (FFT) of the block as

S = [S0,S1, ...SN−1]. (2.7)

The considered frequency-selective channel is defined as

H = [H0,H1, ...,HN−1] (2.8)

where Hk is the frequency response associated to the kth subcarrier, assuming that the

channel is flat in the vicinity of the subcarrier. Regarding the frequency-domain, the

received signal on the kth subcarrier can be written as

Yk =HkSk +Nk , (2.9)

withNk denoting the Additive White Gaussian Noise (AWGN) component associated with

the kth subccarier with zero-mean and one-sided Power Spectral Density (PSD) N0. In

7
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order to remove the channel from the received signal, the receiver obtains the equalized

signal in a given subcarrier as

S̃k =
Yk
Hk
, (2.10)

This constitutes the so-called Zero Forcing (ZF) equalization. As is widely known, the

performance of this equalization process can be very low, since in the presence of strong

deep fades, the noise can be substantially enhanced. In order to avoid noise enhancement,

the equalized signal can be computed as

S̃k =
YkH

H
k

|Hk |2 + 1
SNR

, (2.11)

with SNR being the Signal-to-Noise-Ratio (SNR), assumed constant for the entire block.

This method is called Minimum Mean Square Error (MMSE) due to prioritizing the min-

imum mean square error of the entire block and can achieve better performance than

(2.10). After obtaining the equalized symbols, the receiver then converts the estimates to

the time domain by using the Inverse Fast Fourier Transform (IFFT) as

s̃ = [s̃1, s̃2, .., s̃N ], (2.12)

with s̃ corresponding to the equalized received block. The equalized symbols are not

binary values, as defined in (2.6), so a decision process is needed. The simplest decision

method consists of defining a threshold that is equally distant between all possible values

of s, which in this case can be 0. The decisions are then computed as

b̂m =

 1, <(s̃n) ≥ 0

0, <(s̃n) ≤ 0
b̂m+1 =

 1, =(s̃n) ≥ 0

0, =(s̃n) ≤ 0
, (2.13)

with s̃n being the nth equalized symbol, and b̂m the mth estimated bit.

Since the symbols are estimated in the time domain and the equalization is made in

the frequency-domain, it is possible to convert the decided symbols back to the frequency-

domain in order to improve our equalization through nonlinear equalization processes.

This process can be done iteratively and it is referred to as Iterative Block - Decision

Feedback Equalizer (IB-DFE) in [7].

2.2.3 Iterative Block - Decision Feedback Equalizer

After obtaining the equalized symbols by computing (2.4), the hard-decisions can be

computed as

<(ŝn) =

 1, b̂2n = 1

−1, b̂2n = 0
=(ŝn) =

 1, b̂2n+1 = 1

−1, b̂2n+1 = 0
, (2.14)

and

ŝ = [ŝ0, ŝ1, ..., ŝN−1], (2.15)
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is the block of hard-decision symbols with a frequency-domain counterpart obtained by

Fast Fourier Transform (FFT)

Ŝ = [Ŝ0, Ŝ1, ..., ŜN−1], (2.16)

which is uncorrelated with S̃k . This block can be used to improve the equalization process

by feeding it back to the equalizer. The symbol estimate for the kth sub-carrier, at the ith

iteration, can be obtained with

S̃k = YkF
(i)
k −B

(i)
k Ŝ

(i−1)
k , (2.17)

where F(i)
k is the feedforward equalization matrix, which is defined for an MMSE equal-

ization as

F
(i)
k =

HH
k

|Hk |2 + 1
SNR

, (2.18)

and B(i)
k is a feedback factor that can be easily deduced for optimum performance to be

B
(i)
k = F(i)

k Hk − 1. (2.19)

Since this process only relies on the previous estimate, it can be done iteratively in order

to improve performance. However, in cases of low SNR the symbol estimates may not

be reliable. As such, an additional parameter, ρ(i), can be defined as a reliability factor

that expresses the likelihood that a block is correct. In order to obtain this likelihood, a

different type of decisions called “soft” decisions are necessary.

2.2.4 IB-DFE with Soft Decisions

Soft decisions, as shown in [8], differ in that instead of deciding based on a threshold,

the probability of a given bit being correct is calculated and used as a measure. The

likelihood of a bit being correct can be obtained from the distance between the received

symbol s̃n and all possible symbols in (2.4). However, it is unlikely that a symbol is, in the

case of QPSK, near the centre of the constellation. With that assumption, we can simplify

the calculations and simply compute the distance between the received symbol and the

closest symbol where the bit in question is different.

For this calculation, the statistical test of log likelihood is used, which expresses how

likely one hypothesis is over its null, or in this case, how likely the received symbol is

equal to 1 or 0. The symbol can be split into its imaginary and real parts, with the real

part referring to the even bits and the imaginary part to the odd bits and we define the

Log-likelihood Ratio (LLR) for each part as

LLR
(i)
2m = log( P (Re(s̃(i)

n )=1)

P (Re(s̃(i)
n )=0

) LLR
(i)
2m+1 = log( P (Im(s̃(i)

n )=1)

P (Im(s̃(i)
n )=0

) , (2.20)

where LLRm is the log likelihood ratio for the mth bit, inserted into the matrix

LLR(i) = [LLR(i)
0 ,LLR

(i)
1 , ..,LLR

(i)
2N−1]. (2.21)

9
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Since the probabilities are given by exponentials, the LLR calculation can be simplified

to
LLR

(i)
2m = 2

σ2
i
<(s̃(i)n ) LLR

(i)
2m+1 = 2

σ2
i
=(s̃(i)n ) , (2.22)

where σ2
i is the distance between the estimate and the transmitted symbol defined as

σ2
i =

1
2
E[|s(i)n − s̃

(i)
n |

2
]. (2.23)

Since the receiver does not know the transmitted symbol an approximation can be com-

puted as

σ2
i =

1
2N

N−1∑
m=0

|ŝ(i)n − s̃
(i)
n |

2
, (2.24)

where ŝn denotes the hard-decision symbol. When the resulting symbol estimates are

equal to the hard decided symbols then the receiver cannot improve the estimates any

further. In order to use the feedback defined in (2.17), a soft-modulation is employed to

convert the LLRs that range from 0 to∞ into values between −1 and 1, defined as

s̄
(i)
n = tanh

LLR(i)
2m

2

+ j tanh

LLR(i)
2m+1
2

 , (2.25)

with their frequency counterparts S̄(i)
k . We can express the reliability of the nth symbol as

ρ
(i)
n = tanh

 |LLR(i)
2m|

2

+ j tanh

 |LLR(i)
2m+1|
2

 , (2.26)

and the reliability of the entire block as

ρ(i) =
1

2N

N−1∑
n=0

ρ
(i)
n . (2.27)

The feedforward matrix is rewritten as

F
(i)
k =

HH
k

(1− |ρ(i−1)|2)|Hk |2 + 1
SNR

, (2.28)

with ρ(0) = 0, and (2.17) can be rewritten with the soft symbol estimations as

S̃
(i)
k = YkF

(i)
k −B

(i)
k S̄

(i−1)
k . (2.29)

In order to measure the performance of this receiver we performed Monte Carlo simula-

tions of 1000 blocks of 256 symbols each. Each block was sent through a different channel

realization that follows a Rayleigh distribution, with I = 16 uncorrelated fading rays. We

observe in fig. 2.1 the BER of this receiver. The first iteration has the worst performance

due to only employing a weak equalization, however, the performance increases substan-

tially when the IB-DFE is employed. Only four iterations are necessary for the receiver to

converge to the optimum solution that minimises the Mean Squared Error (MSE).
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Figure 2.1: Simulated BER of the IB-DFE receiver.

2.2.5 Higher Order Modulations

Let us now examine the IB-DFE receiver for M-QAM constellations. We define the nth

M-QAM symbol in a block as

Re(sn) =
n+µ/2∑
m=n

2µ/2−m
m∏

m′=n

b(m′) (2.30)

Im(sn) =
n+µ∑

m=n+µ/2

2µ−m
m∏

m′=n+µ/2

b(m′), (2.31)

where µ = log2(M). For consistency, we will fix the block size at N , indexed by n, and for

higher order modulations we will increase the number of bits per block to µN = L.

With the newly defined symbols we have to, likewise, redefine our LLR (2.20), soft

modulation ((2.25)) and reliability (2.26) computations. We calculate the LLRs, according

to [9], as

LLR
(i)
m =

1

σ2
i

(Re(s̃(i)n − ŝ1n) + Im(s̃(i)n − ŝ1n)

−Re(s̃(i)n − ŝ0n) + Im(s̃(i)n − ŝ0n)),

(2.32)

where ŝ1n and ŝ0n are the closest symbols to the received symbol with the bit in the mth

position set to 1 and 0, respectively, and σi is as defined in 2.24. The soft modulation

process is defined as

Re(s̄(i)n ) =
µ/2∑
m=1

2µ/2−m
m−1∏
m′=0

tanh

LLR
(i)
(n+m′)

2

 , (2.33)
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and

Im(s̄(i)n ) =
µ/2∑
m=1

2µ/2−m
m−1∏
m′=0

tanh

LLR
(i)
(n+m′+µ/2)

2

 . (2.34)

To compute the block reliability factor we must first define the in-phase and quadrature

bit reliabilities as

ρ
(i)
n,I =

µ/2∑
m=1

2µ−2m
m−1∏
m′=0

tanh

 |LLR
(i)
(n+m′)|
2

 , (2.35)

and

ρ
(i)
n,Q =

µ/2∑
m=1

2µ−2m
m−1∏
m′=0

tanh

 |LLR
(i)
(n+m′+µ/2)|

2

 . (2.36)

Under these conditions, the block reliability factor is defined as

ρ(i) =
ρ

(i)
n,I + ρ(i)

n,Q

4Nσ2
s

, (2.37)

where σ2
s is the symbol variance given by

2σ2
s = E[|s2n|]. (2.38)

Employing a higher order modulation allows for higher spectral efficiency, as we are

increasing the amount of information sent over the channel while maintaining the band-

width restriction. However, the error probability for certain symbols in the constellation

is larger when compared to QPSK. In QPSK, the symbol error probability is mainly condi-

tioned by the two neighbouring symbols, while in 16-Quadrature Amplitude Modulation

(16-QAM) symbols can have up to four equidistant neighbouring symbols, as shown in

fig. 2.2, leading to an overall higher symbol error rate. If we consider 64-Quadrature Am-

plitude Modulation (64-QAM), then only four symbols out of 64 have 2 neighbours, with

most symbols having four neighbours. As such, there is a larger performance degradation

associated to using larger constellations.

Fig. 2.3 confirms this increased BER when larger constellations are employed. It

shows the BER of an IB-DFE receiver when N = 256, I = 16 and different values of M are

considered.

2.2.6 APP Decoding

As shown by Claude E. Shannon in 1949, [10], our telecommunication systems can

achieve much lower BERs through the use of more efficient coding techniques. Since

real world systems are bounded on the amount of power they can transmit, as well as

typically being mobile devices with finite battery, error correcting coding techniques are

implemented in order to increase efficiency. As seen in [11], the addition of an error

correcting code can effectively multiply our system performance, although this is at the

cost of higher bandwidth and complexity.
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Figure 2.2: Constellation used for 16 and 64 Quadrature Amplitude Modulation (QAM).
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Figure 2.3: Comparison of the BER of the IB-DFE receiver for M-QAM constellations.

For this receiver, we will implement a conventional 64 states, 1/2 rate convolutional

code, [12], which will greatly boost the performance of our system. This encoder’s dia-

gram is shown in fig. 2.4. For the decoder, we use a soft-in,soft-out A Posteriori Proba-

bility (APP) decoder, based on [13], which takes the LLRs of the received coded bits, and

outputs the LLRs for the decoded bits. It also outputs the coded bit LLRs that are used in

the IB-DFE feedback. There are more sophisticated and powerful codes, such as the Low-

Density Parity-Check (LDPC) [14] and Turbo codes [15], however, these techniques are

iterative, and would require more research on the optimum allocation of coding iterations

with IB-DFE iterations.

In order to decode a received block, we first define the conditional probability of a

certain state, given the received sequence of bits. Additionally, we define the conditional
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Figure 2.4: Diagram of the optimum 64 states 1/2 rate convolutional encoder.

probability of a certain state, and the previous state, for a given received sequence of bits.

A given mth state is defined as

Cm = [c(1)
m , c

(2)
m , ..., c

(CL)
m ], (2.39)

where c(1)
m is the value stored in the first Shift Register (SR) for the mth input bit. With

this definition, we write the conditional probabilities as

Pr{Cm = p|b̃} = Pr{Cm = p; b̃}/ Pr{b̃}, (2.40)

and

Pr{Cm−1 = p′;Cm = p|b̃} = Pr{Cm−1 = p′;Cm = p; b̃}/ Pr{b̃}, (2.41)

where p is one of the possible states of the code, with p′! = p, and b̃ is the sequence of

received bits of length N log2(M). With our objective defined, we begin by defining the

joint probabilities

λm(p) = Pr{Cm = p; b̃}, (2.42)

and

σm(p′ ,p) = Pr{Cm−1 = p′;Cm = p; b̃}. (2.43)

Since b̃ is independent of the state p, then Pr{b̃} is constant. Thus we can divide (2.42)

and (2.43) by Pr{b̃}, which is simply λm(0), and obtain the conditional probabilities in

(2.40) and (2.41).

We now define three auxiliary probability functions as

αm(p) = Pr{Cm = p; b̃m1 }, (2.44)
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βm(p) = Pr{b̃Lm+1|Cm = p}, (2.45)

γm(p′ ,p) = Pr{Cm = p; b̃m|Cm−1 = p′}, (2.46)

where b̃m1 and b̃Lm+1 refer to the firstm and the last L−m bit estimates, respectively. We use

αm(p) to represent the probability of the sequence of states from the start to the current

state, βm(p) to represent the probability of the sequence states from the current to the

last state. Both of these functions are computed recursively. γm(p′ ,p) corresponds to the

probability of going from state p′ to state p.

Using these functions, we expand (2.42) as

λm(p) = Pr{Cm = p; b̃m1 } ·Pr{b̃Lm+1|Cm = p; b̃m1 }

= αm(p) ·Pr{b̃Lm+1|Cm = p}

= αm(p) · βm(p).

(2.47)

The second step, as explained in [13], comes from the Markov property that if Cm is

known, then events after m do not depend on the input b̃m1 . Likewise, we can expand

(2.43) as

σm(p′ ,p) = Pr{Cm−1 = p′; b̃m−1
1 } ·Pr{Cm = p; b̃m|Cm−1 = p′} ·Pr{b̃Lm+1|Cm = p}

= αm−1(p′) ·γm(p′ ,p) · βm(p),
(2.48)

where b̃m−1
1 are the first m− 1 bit estimates.

We now define the set of states Cm where c(1)
m = 0 as A. The likelihood that a given bit

will be decoded as a 0 is defined as

Pr{bm = 0|b̃m} =
1

λm(0)

∑
p∈A

λm(p). (2.49)

Likewise, we define B(j) as the set of transitions Cm−1 = p′ → Cm = p such that the jth

output bit u(j)
m of a given uncoded bit is 0 as

Pr{u(j)
m = 0; b̃m} =

∑
(p′ ,p)∈B(j)

σm(p′ ,p). (2.50)

2.3 MIMO Systems

This type of system utilizes communications that rely on more than one antenna per

MT or BS, with the MTs having T antennas and the BS with R antennas in the uplink

scenario, and vice versa in the downlink. Under these conditions there are three common

scenarios, as shown in Fig.2.5, which we will now describe in order left-to-right. The

simplest case is a downlink transmission between the BS with T antennas, and a single

MT with R antennas, and vice-versa for an uplink scenario. In the second scenario, we

have a downlink transmission between a single BS with T antennas, and several MTs, each

with R antennas, and in the last scenario we have an uplink transmission between several
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MTs, each with T antennas, and a single BS with R antennas. These second and third

scenarios introduce added complexity due to interference during channel estimation. For

this analysis we will assume perfect Channel State Information (CSI), in order to better

present the advantages of MIMO. The number of channels between MT and BS in these

systems is therefore T ×R, which provides several possible benefits, although some with

significant drawbacks [16]. Let us examine each of these.
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Figure 2.5: Diagram of three MIMO scenarios. On the left, a downlink transmission
between a BS and an MT. In the middle, a downlink transmission between a BS and
several MTs. On the right, an uplink transmission between several MTs and a BS. Bold
symbols represent multiple antennas.

2.3.1 Benefits

There are several benefits introduced by a MIMO system, [17], starting with channel

capacity. As described in [18], the maximum capacity of a fading channel can be increased

by increasing the number of antennas. In the case of a Rayleigh Channel we have the

MIMO capacity as

CT ,R = B log
(
det

(
IR +

SNR
T

HHH
))
, (2.51)

where B is the signal bandwidth, IR is an identity matrix of rank R, which is the number of

receiving antennas, T is the number of transmitting antennas, and H is the T ×R channel

matrix. We can use SVD to decompose H as

H = UΛVH , (2.52)

where U and VH are unitary matrices, and Λ is a diagonal matrix of size min(R,T ) that

contains the singular values of H. With this decomposition, we rewrite the capacity as

CT ,R =
RH∑
n=1

B log(1 +
SNR
T

λ2
n), (2.53)

where λn is the nth singular value, and RH is the number of non-zero singular values such

that RH ≤min(R,T ). It is demonstrated in [19] that for T >> R, the capacity scales linearly

with R, and for very high SNR, the capacity scales linearly with min(R,T ). This means
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the maximum data rate also increases linearly, leading to a large increase in performance,

as described in [20].

A MIMO symbol at the nth time slot can be defined as

sn = [s1n, s
2
n, ..., s

RH
n ], (2.54)

with its frequency-domain counterpart denoted by Sk .

Since the transmission involves multiple data symbols, the number of channels also

increased. The impulse response at the kth sub-carrier of the channel matrix is defined as

Hk =


H1,1
k H1,2

k · · · H1,T
k

H2,1
k H2,2

k · · · H2,T
k

...
...

. . .
...

HR,1
k HR,2

k · · · HR,T
k


. (2.55)

The received signal at the kth subcarrier is defined as

Yk = HkSk + Nk . (2.56)

Similarly, we define the equalization as

S̃k = YkF(i)
k −B(i)

k S̄(i−1)
k . (2.57)

Fig. 2.6 shows the BER of a MIMO system with T = R = 32, under the same simulation

conditions as before. When comparing the results with the SISO system, we notice that

the QPSK MIMO receiver performs better than the SISO receiver, although as we will see

next it suffers from greatly increased complexity. On the other hand, the higher modu-

lations perform worse under MIMO conditions. This is due to the channel interference

between adjacent channels being aggravated by the non constant symbol power in these

modulations.

2.3.2 Massive MIMO

When MIMO systems are expanded to employ very large antenna arrays, then we refer to

them as mMIMO systems. The benefits from traditional MIMO systems are also present

in mMIMO, augmented by the amount of antennas involved. However, mMIMO systems

also aggravate the existing drawbacks of MIMO, to the point where it becomes infeasible

to simply increase the antennas on existing systems. It is therefore necessary to look at

the challenges that arise when designing mMIMO systems.

2.3.3 Channel Estimation and Equalization

In a SISO system, the receiver has to obtain the CSI for the equalization process. Between

a given pair of antennas, the frequency response of this channel, as expressed in (2.8), can

be characterized as a sequence of N sub-carriers, each considered flat in their bandwidth.
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Figure 2.6: Comparison of the BER of the IB-DFE receiver for various modulations.

In order to estimate the channel, the transmitter sends a sequence of known symbols,

referred to as pilots, which allows the receiver to obtain the channel impulse response by

dividing the received frequency domain signal by the known pilot sequence.

In the case of a MIMO system however, the number of channels to estimate is given

by R× T , which in the case of a 2-by-2 system would mean 4 channels. If the transmitter

sends the same pilot sequence in both antennas, then each antenna in the receiver would

obtain a signal that is the sum of the two pilot sequences across two different channels.

Therefore, the receiver can no longer divide the received signal by the pilots, as it would

obtain the sum of the two channels. In order to separate the channels in the receiver, the

sender uses two orthogonal pilot sequences, as described in [21], which can be chosen

to have length 2, one for each antenna, that allow the receiver to properly separate each

pilot sequence and thus differentiate the channels. However, we are now sending 4 times

more pilots than the SISO system, and have gained only twice the data rate.

In mMIMO systems the number of channels to estimate grows exponentially with R

and T , making channel estimation increasingly harder due to the requirement of orthog-

onal pilot sequences, since the length of the sequence must be equal to or greater than

the number of receiving antennas, R. This requirement severely degrades the spectral

efficiency as the number of antennas grows. There are several proposed pilot schemes,

such as pilot patterns based on Kalman filtering [22], and schemes based on low numbers

of observations such as [23], that attempt to minimise the necessary number of pilots for

CSI estimation.

Further compounding the issue with channel estimation is the difficulty in performing

channel equalization. Since the channel for a certain sub-carrier k, Hk , is no longer a single

value, but an entire matrix of size R × T . As such, inverting the channel effect on that

same sub-carrier requires inverting the matrix, as defined in (2.11), which is significantly
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slower, and becomes worse with larger arrays of antennas. Since this results in a larger

maximum delay, it is preferred to adopt receivers with lower complexity that can simplify

these calculations.

2.3.4 Non-linearities

The techniques currently being proposed place a heavy burden on the hardware, which

historically in mobile networks has tried to be as low-cost as possible. With this line of

thinking, there is research being done into how to best use cheap electronics, such as

saturated amplifiers [24], and low resolution Digital-to-Analog Converter (DAC)/Analog-

to-Digital Converter (ADC) [25]. These components introduce non-linearities in the

signals that can negatively impact performance.

2.3.4.1 Non-ideal ADC and DAC

When discussing the maximum performance of a system it is assumed that the transmit-

ted signal is perfectly converted from the digital domain to the analog domain in the

sender, and the inverse on the receiver. However, this is only the case if the modules in

question, the DAC and ADC, have infinite bit resolution and an infinite linear dynamic

range. An infinite bit resolution would mean that the converter can express analog values

with infinite precision. In addition, the processor’s memory would also have to be infinite

to accommodate the infinite bits. Since we, obviously, cannot make a device with infinite

memory and precision, we utilize converters with limited resolution. There is then a

trade-off where higher resolution converters are usually more expensive but offer less

distortion than low-resolution converters. In mMIMO systems each RF chain requires

both an ADC and a DAC, which results in a significant price increase due to the larger

number of converters necessary. In order to reduce costs, we can simply use lower reso-

lution converters that are much cheaper. The downside of these converters is that they

introduce more non-linear distortion, [26], as their lower resolution increases the loss of

information that occurs in the conversion process.

2.3.4.2 Non-linear Amplification

In a SISO system, the transmitter possesses a single Power Amplifier (PA) that is respon-

sible for amplifying the outgoing signal. In order to not distort the signal this amplifier

should be as linear as possible within the signal’s dynamic range. The wider the range of

symbol energies, the wider the necessary linear operating zone of the amplifier, which in

these amplifiers means lower amplification power and, as such, lower energy efficiency,

or more expensive amplifiers. We call the process of increasing a PA’s linear region at

the cost of efficiency backoff. For example, a modern 3G BS requires 500W of power to

transmit 40W, [27]. This is the main reason for the large energy consumption of the radio

access network.

19



CHAPTER 2. STATE-OF-ART

In the case of mMIMO, the sender would require one amplifier per antenna, which

for high backoff levels would mean a large waste of energy or more expensive devices.

It should be noted that the single-carrier system described in the previous section can

operate with a low backoff due to employing time-domain symbols with equal energy,

making the output signal quasi-constant. However, for higher order modulations, like

64-QAM, the signal will exhibit much larger fluctuations and a backoff may be required

to ensure a linear amplification.

It is therefore important to consider systems with non-linear amplifiers, that is to

say, systems with insufficient backoff. There is a non-linear distortion introduced when a

signal passes through these components.

The signal at the ouput of an ideal PA is the input multiplied by the PA gain, however

for large input signals the PA cannot produce the ideal output and instead outputs the

maximum power it can deliver. This effect is called "clipping". A model for a commonly

used PA, the Solid State Power Amplifier (SSPA), was developed in [28] and characterizes

the amplifier’s amplitude and phase output for a given amplitude input, also referred

as Amplitude-to-Amplitude Modulation (AM/AM) and Amplitude-to-Phase Modulation

(AM/PM), respectively. In this model, the AM/AM characteristic has a strictly linear

region followed by a transition into a non-linear region, for a linearly increasing input

amplitude.

We define the non-linearly amplified signal for a single RF branch at the nth timeslot

as

A(|sn|)exp(j(arg(sn) +Θ(|sn|))),

where A(s) is the AM/AM characteristic and Θ(s) is the AM/PM characteristic. In the case

of an SSPA the AM/PM characteristic is approximately 0, while the AM/AM characteristic

is defined as

A(|sn|) =
|sn|

2q
√

1 + |sn|
2q

sM

, (2.58)

where |s| is the module of the symbol block, sM is the clipping level, normalised to the

symbol variance, and q is the sharpness of the transition between the linear and the

non-linear operating point. For q =∞, a branch function is defined as

A(|sn|) =

 |sn|, |sn| ≤ sMsM , |sn| > sM
, (2.59)

performing as a clipping operation that limits the maximum amplitude of the symbols.

The amplified symbol A(s) can also be defined for MIMO systems as A(s(t)) is the tth

branch. It can easily be inferred that by maximizing sM , the distortion can be reduced.

However, this severely reduces the power efficiency of SSPAs. In the case of mMIMO

where there are several SSPAs, reduced power consumption is a necessity, and with it

techniques that reduce these non-linearities.
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2.3.5 Security

As with any communication system, there is a need for secure communication. The

security is usually implemented under the form of encrypted messages [29] in the upper

layers of the Open Systems Interconnection (OSI) model. However, in a wireless system

any user can eavesdrop messages being sent in the medium, as depicted in fig. 2.7. If the

messages being exchanged could not be understood, it would grant us an additional layer

of security, referred to as PLS [30, 31]. A useful metric for the security of a communication

is the Secrecy Rate (SCR) [32], which is the difference between the capacity of the system

and the capacity of the eavesdropper.

Transmitter Receiver

Eavesdropper

1

1

R

T R

1

... ...

...

Figure 2.7: Diagram of a MIMO communication between a transmitter and receiver, with
an eavesdropper attempting to listen to the conversation.

To calculate the capacities of the systems involved, we use imperfect channel esti-

mates on all users. In the case of the transmitter and intended receiver, the estimates

will have a high correlation with the true channel. However, the estimate obtained by

the eavesdropper will have a low correlation with the real channel, assuming that the

eavesdropper is not within a distance of either user comparable to the wavelength lambda

in use. We define the channel in this scenario as

Hk = ρĤk + εk , (2.60)

where Ĥk is the channel estimate, εk is a gaussian distributed error term, and ρ expresses

the correlation between the real channel and the channel estimate. In the case of the

proper users, this factor will be close to 1, while in the eavesdropper, this factor will

in practice be closer to 0. This is assuming that the eavesdropper is not within λ/2 of

either user. Since the channel estimate of the eavesdropper will be much worse, then the
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capacity of the eavesdropped system will similarly be lower. This system is, therefore, an

interesting solution for physical layer security.

2.4 Proposed Solutions

There is currently a lot of research being done on receivers that can handle the draw-

backs of mMIMO, namely in low-complexity receivers that are capable of separating the

mMIMO streams, or on cheap receivers that can achieve comparable performances to

current receivers while employing highly non-linear elements. The next generation of

mobile networks is also expected to offer more robust security options, when compared

to the current generation. In that context, we will analyse receivers that address these

issues.

We begin by analysing low complexity receivers based on [33] and [34]. These re-

ceivers rely on having many antennas at the reception, [35], and we show that coding,

[13], can help in reducing the necessary number of antennas. In addition to these schemes,

there are alternatives that apply a precoding process at the transmitter, [37], and receivers

based on SVD, [36], that split the stream separation process between the transmitter and

the receiver. We propose an SVD based receiver that can cope with the differing singular

value powers through stream interleaving. This scheme has a high Peak-to-Average Power

Ratio (PAPR), so we implement a scheme to estimate and cancel the non-linear distortion

based on [38]. Lastly, we examine the peformance of SVD receivers in a security context

with an eavesdropper. To this end, we use imperfect channel knowledge to simulate a

more practical scenario.
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3
Efficient Receivers

3.1 Introduction

In this chapter we will introduce techniques that improve receiver efficiency. First, we

look at low-complexity techniques and how to improve their performance. These tech-

niques generally have lower performance compared to traditional schemes, but are much

more efficient in computation time. We will show that the drawbacks of these techniques

can be partly mitigated with the use of error correcting codes.

Secondly, we will analyse a receiver that is much more complex than the first receivers,

but can be improved with non-linear distortion cancelling techniques. As we will see, this

receiver is much more efficient in terms of energy consumption. In addition, we combine

this receiver with an error correction code, in order to improve the distortion cancelling.

3.2 Low Complexity Receivers

Although mMIMO can offer significantly higher data rates, the complexity added can

increase overall system delay. In order to obtain the capacity described in 2.51, a high

performance equalization process is required, such as MMSE. However, this type of

equalization relies on computing inverse channel matrices of dimension T by R, which

in the case of mMIMO, with very large values of T and R, can introduce a large delay in

the system. As such, there is a need for simpler equalization schemes, such as Maximum-

Ratio Combining (MRC) and Equal-Gain Combining (EGC) based receivers.

These schemes, as described in [35], operate on the principle that for R >> 1 and small

correlation between different transmit and receive antennas, we can simplify our channel

matrix into a quasi diagonal matrix. Computing the inverse of a diagonal matrix is simply

multiplying by another diagonal matrix where each value is the inverse of the original
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matrix, a far simpler process than computing regular inverse matrices.

The disadvantage of these receivers is that to meet the required performance very large

values of R are needed, which may not be feasible in practice. As such, techniques to

boost performance of these receivers are being studied. One such technique is employing

iterative receivers based on IB-DFE in order to reduce ISI, described in [33] and [34].

Since the equalization process is far simpler than MMSE, the extra complexity introduced

by a few iterations is fairly insignificant.

3.2.1 Maximal-Ratio Combiner

This type of technique is usually employed in systems with more receive antennas than

transmit antennas, as described in [39]. A receiver with this configuration receives multi-

ple samples of the same signal which can then be combined into an averaged signal.

This receiver operates on the assumption that the channels between the receiver and

sender are independent, that is, have low correlation, which allows the approximation

HH
k Hk ≈ RI. (3.1)

This approximation greatly simplifies the equalization process defined in 2.17 and (2.19)

by defining

Ak = HH
k . (3.2)

Since the IB-DFE described in (2.2.3) assumes the arriving signal power to have unitary

average, then a normalization factor must be defined. The normalization factor Ψ can be

computed as a diagonal matrix where each element (t, t) is defined as

Ψ(t,t) = (
N−1∑
k=0

R∑
r=1

|H (r,t)
k |2)−1. (3.3)

This factor is combined with 3.2 and rewrites it as

Fk = ΨHH
k . (3.4)

We can improve this receiver’s performance by employing the IB-DFE technique, with

the above Fk factor definition. The MRC can be employed in an iterative fashion as in the

conventional IB-DFE with MMSE, leading to a receiver known as Maximal-Ratio Detector

(MRD).

To measure the performance of this receiver, we considered, Monte Carlo simulations

of a fading Rayleigh channel with I = 16 uncorrelated rays, and 1000 blocks of size of

N = 256. In fig. 3.1, we observe that, without iterations, the MRD requires very large

receiving antenna arrays in order to improve performance. However, the introduction of

the iterative receiver greatly reduces the necessary number of receiving antennas.
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Figure 3.1: BER for different MIMO-MRD configurations, employing QPSK. Results are
shown for the first and fourth iterations of the iterative receiver.

3.2.2 Equal-Gain Combiner

Another receiver technique is the EGC, which is based on the same principle as the MRC

technique of having more receiving antennas than transmitting antennas. In such a

scenario, and assuming that there is low correlation between the different receiving and

transmitting channels, the it is possible to approximate

AH
k Hk , (3.5)

as a diagonal matrix. This matrix Ak is defined as

Ak = exp(j arg(Hk)). (3.6)

This approximation can then be applied to (2.17) and (2.19) by defining Fk as

Fk = ΨAH
k , (3.7)

with Ψ being a normalization factor equal to the one defined in (3.3) for the MRC tech-

nique. Similar to the MRD, we apply the IB-DFE to this receiver, using the Fk definition

in (3.7), in order to decrease the necessary number of receive antennas. This iterative

receiver is referred to as Equal-Gain Detector (EGD).

We measure the performance of this receiver with the same conditions as the MRD,

using 1000 blocks of 256 symbols. From fig. 3.2 we observe that, without iterations, this

receiver requires very large numbers of receiving antennas to obtain acceptable perfor-

mances. However, performing the iterations provides a significant boost to performance,

thereby reducing the necessary number of antennas. In comparison with the MRD, the

EGD can achieve better performance for lower ratios of R/T , however for higher ratios

the MRD should be considered.

25



CHAPTER 3. EFFICIENT RECEIVERS

0 5 10 15
E

b
/N

0
(dB)

10-4

10-3

10-2

10-1

100

B
E

R

EGD 2x2 1st Iter
EGD 2x2 4th Iter
EGD 2x4 1st Iter
EGD 2x4 4th Iter
EGD 2x8 1st Iter
EGD 2x8 4th Iter

Figure 3.2: BER for different MIMO-EGD configurations, with QPSK. Results are shown
for the first and fourth iterations of the iterative receiver.

3.3 APP Decoding

In order to further reduce the necessary number of receive antennas, we study the per-

formance of the EGD and MRD combined with a 64-state convolutional code with APP

decoding. We obtained the BER for these receivers through simulations as before, but

with a larger block count of 10000. We focus our analysis on the performance of the last

iterations, as each iteration of these receivers is of low computational complexity.

In Fig. 3.3, we observe that the EGD can achieve significantly better performance for

lower ratios of R/T , with only a 6 dB difference between the fourth iteration with ratios

of 1 and 4, and less than 1 dB between the ratios 2 and 4. Fig. 3.4 shows the BER of the

coded MRD, where we observe that when R/T = 1, the BER has improved. However, the

significant improvement comes in the fourth iteration with R/T = 2 and R/T = 4. The

difference between these two MIMO configurations is about 1 dB. A stark contrast with

the uncoded MRD that achieved a much larger difference. In order to outperform the

EGD for the same ratio R/T , the MRD required R/T = 4, while with convolutional coding,

the MRD achieves a similar performance to the EGD with R/T = 2, in the fourth iteration.
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Figure 3.3: BER for various MIMO configurations, with QPSK and a 64 state convolutional
code. Results are shown for the first and fourth iterations of the iterative receiver.
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Figure 3.4: BER for various MIMO configurations, with QPSK and a 64 state convolutional
code. Results are shown for the first and fourth iterations of the iterative receiver.
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3.4 Singular Value Decomposition

We have seen equalization methods with little complexity that suffer from high inter-

ference caused by neighbouring channels in mMIMO systems. Now we shall present a

technique that greatly reduces this interference, at the cost of higher complexity at the

transmitter and receiver.

An attractive technique that combines precoding at the transmitter and decoding at

the receiver is an SVD based technique [36]. Using this technique, we can decompose the

channel matrix Hk , defined in (2.55), as

Hk = UkΛkVH
k , (3.8)

where Uk is the R ×R decoding matrix, Vk is the T ×R precoding matrix and Λk is the

R×R singular values matrix. Using this decomposition, we define two operations, one in

the transmitter and one in the receiver.

3.4.1 Transmitter

The transmitter is the same as previously defined in Chapter 2, employing M-QAM. Using

the symbols Sk , defined as the frequency counterpart of (2.54), we define the precoding

operation as

Xk = VkSk . (3.9)

The T × 1 vector Xk represents the precoded signal that will be transmitted.

3.4.2 Receiver

The received signal is defined as

Zk = HkXk + Nk . (3.10)

In order to complete the SVD technique, the receiver computes the decoding process as

Wk = UH
k Zk . (3.11)

We can expand these equations, in order to define the resulting signal from this technique

as

Wk = UH
k HkXk + UH

k Nk

= UH
k HkVkSk + UH

k Nk

= UH
k UkΛkVH

k VkSk + UH
k Nk

= ΛkSk + UH
k Nk .

(3.12)

Since Λk is a diagonal matrix, separating the different streams is now simply dividing by

the corresponding singular values. In addition, as Uk is a unitary matrix, the noise power

remains the same. It should be noted that we are assuming that all singular values exist,
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that is, that the different channels are uncorrelated. By assuming that the antennas are

reasonably spaced between themselves, then it becomes safe to assume that the channels

have low correlation.

Lastly, we perform an equalization based on the MMSE criterion, defined as

S̃k =
WkΛk

Λ2
k + 1

SNR

, (3.13)

where S̃k are the corresponding symbol estimations. We can use this definition due to the

fact that we assume that all singular values exist, which makes Λk a real diagonal matrix,

with an inverse matrix that always exists and is, likewise, also a diagonal matrix.

Although this technique correctly separates each stream, not all singular values will

have the same power. Fig. 3.5 shows the singular values distribution for an 8× 8 system,

obtained from 100 channel realizations. From the figure, it can be observed that there is

a significant power difference between the singular values. The streams affected by the

lower power singular values will have a much worse performance, bringing down the

average throughput of this receiver. In addition, since each stream is affected by singular

values that follow the same distribution, the channel can be viewed as flat for that stream,

making techniques such as IB-DFE ineffective. A common solution is to implement power

compensation on the streams with lower singular values, as seen in [40]. Alternatively,

we propose a simple interleaving scheme between the different streams, that can improve

the average performance of all streams by forcing them to have equal average power, and

make the equivalent channel be frequency-selective, to allow for the use of the IB-DFE

technique.
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Figure 3.5: Probability Density Function (PDF) of the singular values in an 8× 8 system.

3.4.3 Interlevead MIMO-SVD for SC-FDE

The interleaving mixes all streams in equal proportion, in order to have all values affect

each stream equally, and is performed in the frequency-domain, as shown in Fig. 3.6. This
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Figure 3.6: Diagram of the interleaving applied to the frequency-domain symbols.

technique requires that the block size N be larger than the number of singular values,

which will be the case of most systems. The transmitter applies this interleaving to the

symbols, Sk , before the precoding operation. We define the interleaved vector as S′k . We

now redefine (3.9) as

X′k = VkS′k . (3.14)

The received signal can be rewritten as

Z′k = HkX′k + Nk . (3.15)

In the receiver side, the decoding process is, similarly, rewritten as

W′k = UH
k Z′k , (3.16)

and expanded as

W′k = UH
k HkX′k + UH

k Nk

= UH
k HkVkS′k + UH

k Nk

= UH
k UkΛkVH

k VkS
′
k + UH

k Nk

= ΛkS′k + UH
k Nk .

(3.17)

With the SVD technique complete, the receiver must now restore the original symbol

order between the streams. Applying the deinterleaving technique, obtaining

Wk = Λ′kSk + U
′H
k N′k , (3.18)

where Λ′k is the singular values matrix after applying the deinterleaving, which will be

used in the equalization process.

30



3.4. SINGULAR VALUE DECOMPOSITION

Since the equivalent channel for each stream is now composed of all singular values,

it can be viewed as an equivalent frequency-selective channel. As such, we employ the

receiver introduced in the subsection 2.2.3 as

S̃(i)
k = F(i)

k Wk −B(i)
k S̄(i−1)

k , (3.19)

where i corresponds to the ith equalization iteration of this receiver. We must also rede-

fine the feedforward and feedback factors, Fk and Bk , respectively.The feedback matrix

Fk is defined as

F(i)
k =

Λ′k(
1−

∣∣∣ρ(i−1)
∣∣∣2)Λ′2k + 1

SNR

, (3.20)

and Bk as

B(i)
k = F(i)

k Λ′k − I. (3.21)

The soft decision calculation is not affected by the interleaving and is performed as de-

scribed in subsection 2.2.4.

3.4.4 Performance

This subsection presents a set of performance results regarding the proposed interleaved

SVD scheme. In all simulations 1000 blocks of size N = 512 were transmitted over a

channel with a Rayleigh distribution, and I = 16 uncorrelated rays is considered. From

Fig. 3.7, it can be observed that the receiver can reach an adequate performance, thanks

to the gain associated with performing several equalization iterations. As in the case of IB-

DFE, there is a performance degradation when higher order modulations are employed.

Although this receiver does not outperform the IB-DFE, it does offer two advantages.

First is the reduced complexity of each individual iteration, although this may be offset

by the computation power necessary to compute the SVD matrices. Secondly, and more

importantly, this system does not directly transmit data symbols, but instead transmits

the precoded data symbols, which approximately have a Gaussian distribution. This

allows us to employ a non-linear distortion cancelling technique that will be detailed in

the following section.
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Figure 3.7: Comparison of the BER for R = T = 32 MIMO SVD system for different QAM
constellations.

3.5 Bussgang Receiver

Let us now consider the same SVD based system, now with the non-ideal SSPAs described

in subsection 2.3.4.2, as shown in Fig. 3.8. This amplifier has a negligible AM/PM

characteristic, while its AM/AM characteristic is defined, for a single branch at the nth

timeslot, as

A(|xn|) =
|xn|

2q
√

1 + |xn|
2q

sM

, (3.22)

and our transmitted signal is defined as

yn = A(|xn|)exp(j(arg(xn))). (3.23)

As can be observed from Fig. 3.9, the precoded signal presents a large PAPR, which means

that the transmitted signal might suffer from severe nonlinear distortion effects, leading

to performance degradation. Although the typical advantage attributed to SC systems

are the low envelope fluctuations, which permits the use of highly nonlinear amplifiers,

this is only the case for QPSK systems. For M-QAM systems, the envelope of an SC signal

can have large fluctuations, that substantially increase with M. Therefore, the addition

of the precoding technique, that might further increase the PAPR, does not conflict with

the advantages of SC-FDE systems, and can even be beneficial in this scenario.

The precoded signal, Xk , follows a Gaussian distribution, as described in [41] and

shown in Fig. 3.10, which allows us to employ a non-linear distortion cancelling tech-

nique based on the Bussgang Theorem [38]. By taking advantage of this theorem, we

can decompose the distorted signal as the sum of two uncorrelated terms: a term that is

equal to the original signal scaled down by a constant; and a noisy term associated to the
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Figure 3.8: Diagram of our SVD based system with non-ideal amplification.
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Figure 3.9: PAPR of a single block with 256 QPSK symbols.

non-linear distortion. Let us define the amplified signal for the tth branch at the nth time

instant as

y
(t)
n = α(t)x

(t)
n + d(t)

n , (3.24)

with α(t) being the scale factor applied to the original signal and d(t)
n our distortion term.

The scale factor α(t) is calculated by

α(t) =
E

[
x

(t)
n y
∗(t)
n exp(−jΘ(|x(t)

n |)))
]

E

[∣∣∣∣x(t)
n

∣∣∣∣2] , (3.25)

which in the case of the SSPA becomes

E

[
x

(t)
n y
∗(t)
n

]
2σ2

x
(3.26)
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Figure 3.10: Distribution of the real part of the outgoing signal before amplification.

If we assume that the amplifiers for each transmit branch are all the same, then the scale

factor α is the same for all streams. The same decomposition can be performed in the

frequency domain, netting the frequency domain symbols and distortion as

Y
(t)
k = αX(t) + D(t), (3.27)

where D(t) is the frequency-domain version of the distortion term along the tth branch.

To simplify the analysis we will focus on the symbols at the kth subcarrier,

Y
(t)
k = αXk + Dk . (3.28)

Under these conditions we can decompose the received nonlinearly-distorted signal

as

Z′k = Hk(αX′k + Dk)) + Nk . (3.29)

Our decoded signal can, likewise, be rewritten as

W′k = UH
k Hk(αX′k + Dk) + UH

k Nk

= UH
k Hk(αVkS′k + Dk) + UH

k Nk

= UH
k UkΛkVH

k (αVkS
′
k + Dk) + UH

k Nk

= ΛkαS′k + UH
k HkDk + UH

k Nk ,

(3.30)

with the deinterleaved symbols given by

Wk = Λkα
′Sk + U

′H
k H′kD′k + U

′H
k N′k . (3.31)

From (3.31) it can be shown that the received symbols are scaled by αn, and the signal

has increased distortion due to the U
′H
k H′kD′k factor. The main objective of our receiver is

to equalize the signal based on the reduced symbol power and distortion power, as well

as attempt to estimate and cancel the interference term, so as to reduce the degradation

due to the distortion.
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In order to take into account the distorted signal power, let us rewrite (3.20) as

F(i)
k =

Λ′k(
1−

∣∣∣ρ(i−1)
∣∣∣2)Λ′2k + 1

α2SNDR

, (3.32)

where SNDR is our Signal-to-Noise plus Distortion Ratio (SNDR) that is simply

SNDR =
Ps

PN + PD
, (3.33)

where Ps is the signal power, PN is the noise power and PD is the power associated to the

distortion term. By taking into account the power degradation due to the non-linearity,

we can improve performance for higher SNRs. The same reasoning is applied to the

calculation of the soft decisions, as we can redefine (2.23) as

σ2
i = PN + PD . (3.34)

We can compute the distortion term’s power by resorting to the truncated Inter-

Modulation Product (IMP) approach, shown in [42], to compute the higher order IMPs.

However, in order to maintain simplicity, we will compute the distortion power through

simulations.

To mitigate the performance degradation associated to the nonlinear distortion, we

can also attempt to cancel the noisy distortion term U
′H
k H′kD′k . After the first iteration of

our receiver, having obtained the first symbol estimate, ŝn, we can calculate the distortion

term by computing

d̂(i)
n = A(x̂n)−αx̂n, (3.35)

where x̂n is the time-domain version of VkŜk , and D̂(i)
k is the frequency domain of the

distortion term estimate d̂(i)
n . The next step is to reproduce the transmission chain using

the distortion term estimate, in order to obtain the term U
′H
k H′kD̂

′(i)
k . With the distortion

estimate calculated, we can rewrite (3.19) in order to cancel the distortion term as

S̃(i)
k = F(i)

k (Wk −U
′H
k H′kD̂

′(i−1)
k )−B(i)

k S̄(i−1)
k , (3.36)

with D̂
′(0)
k = 0. The block diagram of the proposed receiver is shown in Fig. 3.11.

3.5.1 Performance

Let us now observe the non-linearity distortion cancelling effect on the performance of

the receiver. The following results were obtained through Monte Carlo simulations for

1000 blocks of 512 symbols each, sent through a fading channel with 16 uncorrelated

Rayleigh distributed rays.

Fig. 3.12 presents the impact of the non-linearity in a 16-QAM system withR = T = 32.

When sM /σx = 4, we have a degradation of about 7 dB for a target BER of 10−4, while the

gain from the IB-DFE iterations is the same even with the added distortion. However,
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Figure 3.11: Diagram of the proposed SVD receiver.

for sM /σx = 2, the receiver’s performance is significantly worse, and the BER floor is

substantially higher in this case.

As can be observed in Fig. 3.13, the addition of the Bussgang cancelling provides a

much needed boost in performance for systems with this type of distortion. Although

the first iteration may not improve, or even be worse in this scenario, the iterative gain of

the distorted system is much higher due to the distortion cancelling. By comparing with

the linear receiver, we have a gain of 6 dB when the BER is 10−4 and the clipping level is

sM /σx = 4, and a lowered BER floor for a clipping level of 2.

For an increased modulation order of 64-QAM we have in Fig. 3.14 the BER of the

linear receiver, and in Fig. 3.15 the Bussgang receiver. Due to the larger constellation,

the symbols require more linear amplification. This reflects in a severe performance

degradation even for higher clipping levels than the 16-QAM receiver. As such, the

increase in performance of the Bussgang receiver is much larger. Particularly, for sM /σx =

4, the receiver achieves only a 6 dB degradation over the non-distorted ideal receiver.

3.5.2 Coded Bussgang Receiver

The performance of the Bussgang receiver depends heavily on the quality of the equalized

symbols. We can improve that quality by employing the error correcting code introduced

in Sec. 3.3. However, this decoder does not take into account the non-linear distortion

present in the coded bits. As such, we can improve the performance of the coded system

further by taking into account the distortion noise power.

The APP decoder’s input is bit LLRs, which are computed based on the symbol vari-

ance of the received block. In the linear receiver, the LLR inputs to the decoder are

calculated using (2.23), which does not take into account the effect of the nonlinear dis-

tortion. This fact can limit the performance of the decoder. By using the definition in

(3.34), we can achieve a significantly better performance even on the first iteration.

We now simulate the coded receivers under the same conditions as before, with lower
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Figure 3.12: BER for a R = T = 32 MIMO SVD system employing 16-QAM, with various
clipping levels.
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Figure 3.13: BER for a R = T = 32 MIMO SVD system with Bussgang cancelling, employ-
ing 16-QAM, for various clipping levels.
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Figure 3.14: BER for a R = T = 32 MIMO SVD system employing 64-QAM, with various
clipping levels.
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Figure 3.15: BER for a R = T = 32 MIMO SVD system with Bussgang cancelling, employ-
ing 64-QAM, for various clipping levels.
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clipping levels as the coded receiver can withstand more distortion. We see in fig. 3.16

that the addition of the APP decoder makes this receiver’s performance greatly surpass

the linear receiver. Even with a clipping level of sM /σx = 2, the coded receiver outperforms

the non-distorted linear receiver. As is expected, we observe a sudden drop in the BER, as

opposed to the smoother transition of the linear receiver, and our iterative gain is smaller

as the decoder improves the results of the first iteration. For the higher modulation of

64-QAM, in fig. 3.18, the performance increase is even larger, due to the larger noise

and non-linear sensitivity of this receiver. The same sharp drop and smaller iterative

gain from the lower order system are observed in this figure, though happening at higher

SNRs.

Next, we look at the distortion cancelling receiver in fig. 3.17. With the same clipping

levels as before, we observe that the distortion cancelling receiver can outperform the

linear receiver by about 4 dBs, for a BER of 10−4, resulting in a performance that is much

closer to a non-distorted receiver. The change in the LLR calculation of this receiver

results in a better performing first iteration, that still does not have any cancellation, and,

for these clipping levels, removes the iteration degradation at low SNRs that was present

in the linear receivers. The iterative gain in this receiver is also larger than the linear

receiver, as expected due to the nonlinear distortion cancelling of subsequent iterations.

Simlarly, for the higher order modulation in fig. 3.19, we have a substantial per-

formance increase of about 8 dB, for a BER of 10−4. There is a much more noticeable

performance difference in using modulation due to the higher sensitivity of the system,

which allows for a much higher boost when cancelling the distortion in the following

iterations, visible in the large performance difference between iterations when compared

to the 16-QAM distortion cancelling system. Likewise, for these clipping levels, the itera-

tions never degrade performance at low SNRs due to taking into account the non-linear

noise distortion power.
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Figure 3.16: BER for a R = T = 32 MIMO Coded SVD system employing 16-QAM, with
various clipping levels.
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Figure 3.17: BER for a R = T = 32 MIMO Coded SVD system with Bussgang cancelling,
employing 16-QAM, with various clipping levels.
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Figure 3.18: BER for a R = T = 32 MIMO Coded SVD system employing 64-QAM, with
various clipping levels.
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Figure 3.19: BER for a R = T = 32 MIMO Coded SVD system with Bussgang cancelling,
employing 64-QAM, with various clipping levels.
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4
Security in Massive MIMO

4.1 Introduction

In this chapter, we present our three user scenario based on a point-to-point mMIMO

Time Division Duplexing (TDD) system, where a transmitter, A, communicates with a

receiver, B, and a third user, E, attempts to eavesdrop the communication. Firstly we

characterize the system and channel estimates and then apply the SVD technique from

Sec. 3.4 to increase the secrecy of the communications.

4.2 System

This system is comprised of a single carrier transmitter employing T transmitting an-

tennas to send C QPSK symbol blocks of N symbols to an intended receiver, which in

turn has R receiving antennas and employs an IB-DFE scheme. To separate the different

streams, the transmitter and receiver employ an SVD technique. At the same time, an

eavesdropper is attempting to listen to the communication. The eavesdropper also em-

ploys the SVD and IB-DFE techniques. Fig. 4.1 illustrates the system and identifies the

channels considered for this system.

In Sec. 3.4 we assumed perfect knowledge of the channel, however, in this section we

will use imperfect CSI. The sender and receiver will exchange pilot sequences, which will

be listened by the eavesdropper, leading to different channel estimates.

4.2.1 Transmitter

Before the transmitter can apply the precoding process, it must know the channel between

it and the receiver. Since the channel estimation is not perfect, we will instead define an
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Figure 4.1: Diagram of the system with the considered channels.

equivalent channel matrix, as in [43], as

Hk = ρAĤkA + εk , (4.1)

where ĤkA is the channel estimate of the transmitter, ρA is a correlation factor between

the real channel and the estimate, and εk is the error from the channel estimation. This

error εk is characterized by complex valued Gaussian distribution with variance 2σ2
N /β,

where σ2
N is the noise variance for a specific SNR, and β is a scaling factor. For β →∞

and ρA = 1, we have HkA = ĤkA .

We write the SVD decomposition of this channel estimate as

ĤkA = ÛkAΛ̂kAV̂H
kA
, (4.2)

and a precoding operation as

X′k = V̂kS′k . (4.3)

4.2.2 Receiver

For the receiver, likewise, we define an equivalent channel as

Hk = ρBĤkB + εk , (4.4)
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where ĤkB is the channel estimate of the receiver, and ρB is the correlation coefficient

between the estimated and the real channel. We define an SVD operation on the channel

estimate as

ĤkB = ÛkBΛ̂kBV̂H
kB
. (4.5)

It should be noted that the eavesdropper does not know the channel between the

transmitter and the receiver. It only knows the channels between A and E, and between B

and E. To improve the estimate, the eavesdropper averages the estimates obtained from

the eavesdropped training sequences between A and B. We define three phases in this

system, described graphically in fig. 4.2. First, the intended receiver sends a training

sequence meant for the transmitter, which is also overheard through a different channel

by the eavesdropper. In the second phase the transmitter sends a training sequence

to the receiver, likewise, it is also overheard by the eavesdropper. The last phase is

when the transmitter can send data blocks to the receiver, which are also received by

the eavesdropper. In this phase all three users have the necessary estimations obtained

from the training sequences and can perform their respective precoding and decoding

operations.

A B

E

A B

E

A B

E

k
H

k
H

1Ek
H

1Ek
H

1Ek
H

k
H

2Ek
H

2Ek
H

2Ek
H

k
P

k
P

k
P

k
P

k
X

k
X

1 2 3

Figure 4.2: Diagram of system operation. 1) The receiver sends a training sequence. 2)
The transmitter sends a training sequence. 3) The transmitter begins sending data to the
receiver

We define the equivalent channels as

HkE1
= ρE1ĤkE1

+ξk + εk (4.6)

and

HkE2
= ρE2ĤkE2

+ξk + εk , (4.7)

with the equivalent channel as

Hk =
HkE1

+ HkE2

2
. (4.8)

where ρE1 and ρE2 are correlation factors with the real channel, and ξk is an error term

that follows a Gaussian distribution with a variance of σ2
N /βM , where βM is a scaling factor.

Since the eavesdropper does not know the channel, it’s not unreasonable to assume ρE1 =
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ρE2 < 1. The decoding process is now defined for both the receiver and the eavesdropper

as

W′k = ÛH
k Z′k . (4.9)

With the decoding complete, the deinterleaving and equalization are performed as de-

scribed in the previous chapter.

Fig. 4.3 presents the BER of the intended receiver and the eavesdropper, at various

ρE levels. As expected, the eavesdropper’s BER increases with lower ρE values, thereby

illustrating how CSI is crucial in SVD-based systems, and can be employed to increase

security.
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Figure 4.3: BER comparison between the intended receiver and the eavesdropper, for
various values of ρE . Obtained for 100 blocks of 256 symbols, in a channel with Rayleigh
fading.

4.3 Secrecy Rate

The SCR is defined in [32] as the difference between the capacity of the transmitter-

receiver system, and the transmitter-eavesdropper system. The capacity of a fading MIMO

channel is defined in [44] as

C = I(Xk ,Zk), (4.10)

with I(Xk ,Zk) being the mutual information between the transmitted signal, and the

received signal. It is defined as

I(Xk ,Zk) =H(Zk)−H(Zk |Xk), (4.11)

with H(Zk) being the differential entropy of Zk and H(Zk |Xk) the conditional differential

entropy of Zk given Xk . Since we know that Xk is independent of Nk , we can simplify
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H(Zk |Xk) =H(Nk). The differential entropies are given by

H(Zk) = log2((πe)σ
2
N det(HkRXHH

k + RN )), (4.12)

and

H(Nk) = log2((πe)σ
2
N det(RN )), (4.13)

where RX = σ2
XI and RN = σ2

N I, with σ2
X and σ2

N corresponding to the variances of Xk and

Nk , respectively. With the entropies defined we can expand (4.11) and simplify into:

I(Xk ,Zk) =H(Zk)−H(Nk)

= log2(det(HkRXHH
k + RN )R−1

N )

= log2(det(I + HkHH
k

σ2
X

σ2
N

))

= log2(det(I + |Λk |2SNR))

=
C∑
i=0

log2(1 + |λi |2SNR).

(4.14)

Since we have two different transmitter-receiver pairs, we can, likewise, define two dif-

ferent system capacities. First, we define the capacity of the system with the intended

receiver, that is A to B, as

CAB =
C∑
i=0

log2(1 + |λiρB|2
σ2
X

σ2
N + σ2

B

), (4.15)

where σ2
X is the corresponding variance of the received signal, σ2

N is the noise variance

at the receiver and σ2
B is the interference power due to the imperfect channel estimation,

defined as

2σ2
B = E[Λ̂I

kB
Λ̂IH
kB

], (4.16)

with Λ̂I
kB

denoting a matrix comprised of the interference in the receiver, computed as

Λ̂I
kB

= Λ̂kB −diag(Λ̂kB). (4.17)

Similarly for the eavesdropper, we can define the capacity of the link between A and

E as

CAE =
C∑
i=0

log2(1 + |λiEρE |
2 σ2

X

σ2
N + σ2

E

) (4.18)

where ρE is a simplification defined as ρE = ρE1 = ρE2, and σ2
E is the interference power

due to the imperfect channel estimation, which is larger than σB, and is computed as

2σ2
E = E[Λ̂I

kE
Λ̂IH
kE

]. (4.19)

Likewise, Λ̂I
kE

is the interference matrix computed as

Λ̂I
kE

= Λ̂kE −diag(Λ̂kE ). (4.20)

By taking into account the capacities defined in (27) and (30), we can compute the secrecy

rate as

SR = CAB −CAE . (4.21)
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4.4 Performance

For verifying the SCR of this system, we used Monte-Carlo simulations over 100 blocks of

256 symbols, over a channel characterized by a Rayleigh distribution. Firstly, we examine

the impact of a channel estimation error with the same power in all three users, in fig. 4.4.

For lower errors in the CSI and lower ρE , we obtain a higher SCR. If we take into account

that the eavesdropper will have an additional error, due to not being able to know the

channel between A and B, then we can achieve a higher maximum SCR, as shown in fig.

4.5. Lastly, we measure the impact of the SNR on the SCR in fig. 4.6. For higher SNR

levels, we achieve a higher SCR.

In conclusion, in order to maximise the SCR we can minimise the error in the CSI, by

using more efficient channel estimation methods. Although increasing transmit power

would also increase the SCR, this is usually not practical in mobile systems, but may be

interesting in other types of systems, that have higher power constraints. It is usually not

necessary to maximise the error in the eavesdropper in mm-Wave communications, as

even a distance of 1m is already several times larger than the wavelength.
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4.5 Communication with Line-of-Sight Links

Another possible scenario is the one where there is a direct Line-of-Sight (LoS) between

the transmitter and both the receiver and eavesdropper. Under these conditions the

channel is defined as the sum of an LoS low fading component, and several uncorrelated

multipath rays with high fading. We admit that the eavesdropper can only estimate the

LoS component with a certain error, and cannot estimate the remaining multipath rays.

In this case we define the channel as

Hk,los = Dklos + Rkmp , (4.22)

where Dklos is the low fading high correlation component and Rkmp is the high fading

multipath component of the channel. We then substitute this channel in (4.1) and (4.4),

as

Hk,los = ρAĤkA + εk , (4.23)

Hk,los = ρBĤkB + εk . (4.24)

The intended receiver and transmitter’s remaining operations are calculated as described

previously.

The eavesdropper, however, cannot estimate the multipath component of the channel,

and must instead rely on the estimate of the LoS component. We define this component

as

Dklos =
HkE1,los

+ HkE2,los

2
, (4.25)

where

HkE1,los
= ρE1ĤkE1,los

+ξk + εk (4.26)

and

HkE2,los
= ρE2ĤkE2,los

+ξk + εk . (4.27)

In this scenario, the channel estimates ĤkE1,los
and ĤkE2,los

are of only the LoS component

between A and E, and B and E, respectively. The difference between these estimates and

the real channel will be proportional to the power of the multipath component. If this

component corresponds to 0% of the channel power, then the channel is composed of

only the LOS component , whereas at 100% power the channel is composed of only the

multipath component.

We then performed simulations under the same conditions as the previous scenario

and analyse the results.In Fig. 4.7 it is observed that the higher the ray power ratio,

the higher the achievable secrecy rate. This is expected, since the component that the

eavesdropper can estimate contributes less to the total channel power. In the noisy CSI,

scenario we have similar results, as shown in Fig. 4.8. The unknown multipath compo-

nent introduces a permanent error in the eavesdropper, which accounts for the higher
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SCR at ρE = 1, similar to the mismatch error. If we add the mismatch error as well, we ob-

serve in fig. 4.9 the same as effect as in the previous scenario, where there is a significant

increase in the SCR only for higher values of ρE .
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5
Conclusions and Final Remarks

5.1 Conclusions

The main goal of this work was to study different types of MIMO receivers, each with a

different trade-off, and how could they perform in various situations and configurations.

We began in Chapter 2 by introducing classical SC MIMO systems, and what advantages

and disadvantages they brought over their SISO counterparts. As we demonstrated, these

traditional systems may not be viable for mMIMO configurations due to various reasons,

which motivated the study of the proposed alternative receivers.

In Chapter 3, we studied receivers with a focus on efficiency. The first set of receivers,

the EGD and MRD, were studied due to their low complexity for large antenna arrays.

These receivers are particularly interesting for uplink scenarios, when the BS has more

antennas than the number of MTs, as the reduced complexity results in smaller processing

time per block, which in turn leads to lower delays.

In the next section, we analysed a receiver focused on increasing energy efficiency,

the Bussgang SVD. This receiver can withstand smaller clipping levels than the linear

receiver, which makes it appealing for systems that want to prioritise energy consumption.

However, this receiver cannot be characterized as either uplink or downlink, as it is a

point-to-point communication. It is therefore difficult to integrate this receiver in a mobile

network scenario, unless we’re assuming a scenario with a communication between two

BSs or similar, but does make it interesting for satellite communications.

Since we are analysing efficient receivers, we must also discuss coding. We employed a

simple but powerful code on all receivers and confirmed the expected large performance

gain that makes coding an essential component of any telecommunication system.

Efficiency is not the only requirement of newer systems, with security becoming in-

creasingly more important in modern days. As such, we analysed the security potential
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of SVD systems. Since this system operates as a point-to-point system, where there are

only two users involved, it achieves very favourable results due to its eavesdropping dif-

ficulty. However, these results require very efficient channel estimation schemes, which

may introduce other downsides to the system.

5.2 Main Contributions

The work developed in this dissertation has also been published in [45] and [46], and one

currently submitted paper.

5.3 Future Work

Although the receivers show positive results, there is still room for improvement. Particu-

larly the bussgang receiver can still be improved by using more powerful error correcting

codes, such as LDPC, or by implementing a different solution altogether that can take

advantage of the non-linearity to improve performance, such as Generalised Approxi-

mate Message Passing (GAMP) which is still undergoing initial studying. The security

aspect of this receiver can also be greatly improved by using higher performance channel

estimation methods, such as joint channel detection. These techniques would make it

harder for an eavesdropper to listen, and improve the quality of the channel estimate.
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