
Spatio-Temporal Forecasts for Bike
Availability in Dockless Bike Sharing Systems

Dissertation submitted in partial fulfillment of the requirements
for the Degree of Master of Science in Geospatial Technologies

February 25, 2019

Lucas van der Meer
R luukvandermeer@live.nl

� https://github.com/luukvdmeer

Supervised by:
Edzer Pebesma

Institute for Geoinformatics
University of Münster

Co-supervised by:
Jorge Mateu

Department of Mathematics
Universidade Jaume I

Co-supervised by:
Joel Silva

Information Management School
Universidade Nova de Lisboa

Declaration of Academic Integrity

I hereby confirm that this thesis on Spatio-Temporal Forecasts for Bike Availability in Dock-
less Bike Sharing Systems is solely my own work and that I have used no sources or aids
other than the ones stated.

All passages in my thesis for which other sources, including electronic media, have been used,
be it direct quotes or content references, have been acknowledged as such and the sources
cited.

February 25, 2019

I agree to have my thesis checked in order to rule out potential similarities with other works
and to have my thesis stored in a database for this purpose.

February 25, 2019

Acknowledgements

This thesis, and in the broader sense, my whole period as a student, would not have been
possible without the help and support of others. It still feels somewhat strange, that by
writing these words, a seven-year journey comes to an end. I want to thank my family, and
in particular my parents, for their unconditional support, also in times when I made wrong
decisions. Lore, thank you for cheering me up whenever I needed it, and my friends and
classmates, thank you for being like a family!

I want to thank all my teachers for sharing their knowledge, despite making me suffer with
homework and assignments! In particular, I want to thank my supervisor, Edzer Pebesma, for
providing guidance whenever necessary, but also constantly encouraging an independent way
of working and thinking, in which own thoughts and ideas are important. Additionally, I want
to thank my co-supervisors, Jorge Mateu and Joel Silva, for their valuable feedback. Thanks
also to the whole r-spatial community, for providing open source tools, and encouraging
involvement and contributions, within an environment that makes everyone feel equally
valued.

Finally, I owe gratitude to JUMP Bikes, and Alexander Tedeschi in particular, for providing
me with very useful data.

Table of Contents

Chapter 1: Introduction . 1
1.1 Context . 1
1.2 Objective . 3
1.3 Related work . 4

1.3.1 Forecasting in station-based systems 4
1.3.2 Forecasting in dockless systems . 7

1.4 Approach . 9
1.5 Outline . 10

Chapter 2: Theoretical background . 11
2.1 Time series definition . 11
2.2 Time series characteristics . 12

2.2.1 Autocorrelation . 12
2.2.2 Stationarity . 13
2.2.3 Spectral entropy . 14

2.3 Time series components . 14
2.3.1 Definitions . 14
2.3.2 Classical decomposition . 15
2.3.3 STL decomposition . 16

2.4 Time series forecasting . 19
2.4.1 Forecasting models . 19
2.4.2 ARIMA . 20

2.4.2.1 Structure . 20
2.4.2.2 Model selection . 21
2.4.2.3 Parameter estimation . 23
2.4.2.4 Model checking . 23
2.4.2.5 Forecasting . 24
2.4.2.6 Accuracy evaluation . 25
2.4.2.7 Transformations . 26

2.4.3 Naïve forecasts . 26
2.4.4 Seasonal forecasts . 27

2.5 Time series clustering . 27
2.5.1 Dissimilarity measures . 27
2.5.2 Hierarchical clustering . 28

2.5.3 Spatial time series clustering . 30

Chapter 3: System architecture . 32
3.1 Overall design . 32
3.2 Software . 34
3.3 System area . 34
3.4 Database . 34

3.4.1 Distance data . 35
3.4.2 Usage data . 36

3.5 Forecast request . 36
3.6 Cluster loop . 37
3.7 Model loop . 39
3.8 Forecast loop . 42

Chapter 4: Data and experimental design . 45
4.1 Data source . 45
4.2 Data retrieval . 47

4.2.1 Distance data . 47
4.2.2 Usage data . 47

4.3 Experimental design . 48
4.3.1 Training and test periods . 48
4.3.2 Additional software . 50

Chapter 5: Results and discussion . 51
5.1 Clustering . 51
5.2 Model building . 56
5.3 Forecasting . 59
5.4 Limitations and recommendations . 62

5.4.1 Limits of forecastability . 62
5.4.2 Exogenous variables . 63
5.4.3 Residual distributions and prediction intervals 65
5.4.4 GPS accuracy . 66

Chapter 6: Conclusion . 67

Appendix A: Code . 68

Appendix B: Models . 71
B.1 Bayview model point . 71
B.2 Downtown model point . 72
B.3 Residential model point . 73
B.4 Presidio model point . 74

References . 75

List of Tables

1.1 Publications regarding forecasts in station-based bike sharing systems, known
to the author . 6

1.2 Publications regarding forecasts in dockless vehicle sharing systems, known
to the author . 9

5.1 Descriptive statistics of the grid cell centroids distance data 54
5.2 Model structures . 57
5.3 Forecast RMSE’s, in meters . 60
5.4 Interpretation of the calculated prediction intervals 65

List of Figures

2.1 Summary of the STL methodology . 19
2.2 Summary of the Hyndman-Khandakar algorithm 23

3.1 Overall design of DBAFS . 33
3.2 Methodology of the cluster loop . 39
3.3 Methodology of the model loop . 42
3.4 Methodology of the forecast loop . 44

4.1 System area of JUMP Bikes in San Francisco 46
4.2 Training and test period . 49

5.1 a) grid overlaying the system area; b) number of pick-ups per grid cell 52
5.2 a) pick-ups per day of the week; b) pick-ups per hour of the day 52
5.3 a) cluster outlines; b) model point locations 53
5.4 Patterns of the distance data for the grid centroids, per cluster 55
5.5 Time plots of the distance data for the model points 56
5.6 Time plots of the model residuals . 57
5.7 ACF plot of the model residuals . 58
5.8 Histograms of the model residuals . 59
5.9 a) test points locations; b) test point timestamps, counted per hour 60
5.10 a) RMSE averaged per hour of the day; b) RMSE averaged per forecast lag . 61
5.11 Detailed forecasts for the model point locations 62
5.12 Dockless versus station-based, adapted from SFMTA 64

List of Acronyms

ACF Autocorrelation Function
AIC Aikake’s Information Criterion
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
DBAFS Dockless Bike Availability Forecasting System
GPS Global Positioning System
ID Identification
KPSS Kwiatkowski-Phillips-Schmidt-Shin
MA Moving Average
MAE Mean Absolute Error
MLE Maximum Likelihood Estimation
NFS Naïve Forecasting System
PACF Partial Autocorrelation Function
PDT Pacific Daylight Saving Time
PST Pacific Standard Time
PBSS Public Bike Sharing Systems
RMSE Root Mean Squared Error
RMSLE Root Mean Squared Logarithmic Error
SFMTA San Francisco Municipal Transportation Agency
SQL Structured Query Language
STL Seasonal Trend decomposition procedure based on Loess
WGS84 World Geodetic System 1984

Abstract

Forecasting bike availability is of great importance when turning the shared bike into a
reliable, pleasant and uncomplicated mode of transport. Several approaches have been de-
veloped to forecast bike availability in station-based bike sharing systems. However, dockless
bike sharing systems remain fairly unexplored in that sense, despite their rapid expansion
over the world in recent years. To fill this gap, this thesis aims to develop a generally ap-
plicable methodology for bike availability forecasting in dockless bike sharing systems, that
produces automated, fast and accurate forecasts.

To balance speed and accuracy, an approach is taken in which the system area of a dockless
bike sharing system is divided into spatially contiguous clusters that represent locations
with the same temporal patterns in the historical data. Each cluster gets assigned a model
point, for which an ARIMA(p,d,q) forecasting model is fitted to the deseasonalized data.
Each individual forecast will inherit the structure and parameters of one of those pre-build
models, rather than building a new model on its own.

The proposed system was tested through a case study in San Francisco, California. The
results showed that the proposed system outperforms simple baseline methods. However,
they also highlighted the limited forecastability of dockless bike sharing data.

Keywords: dockless bike sharing systems, bike availability, forecasting, time series analysis,
sustainable transport

Chapter 1

Introduction

1.1 Context
Over the past decades, the world has been urbanizing at a rapid pace. Where in 1950, 30%
of the world’s population lived in urban areas, this grew to 55% by 2018. It is a development
of which the end is not yet in sight. By 2050, the urban population is projected to have
increased to 68% (United Nations, 2018). Managing the urban growth in a sustainable man-
ner, balancing economical, social and environmental factors, forms a tremendous challenge.
One of the cores of this challenge relates to transportation. Nowadays, urban transport poli-
cies still have a strong focus on the private car as leading transportation mode. However,
neither from the economical, social nor environmental perspective, this is sustainable. Air
pollution, resource depletion, fuel costs, congestion, noise, accidents and space requirements
are among the elements that set limits to a car-oriented urban environment (Hickman &
Banister, 2014). Therefore, on our way towards more sustainable cities, with a high quality
of life, a drastic shift of focus is required, which includes the integration of transport modes
that provide feasible alternatives to car usage. Although changing travel behaviours is a
complex and slow process, more and more cities across the world are acknowledging this
need, and start acting upon it.

As argued by Pucher & Buehler (2017), the most sustainable and functional mode of trans-
port in urban areas, is probably the bicycle. It can be used for short and medium distance
trips, that form a large part of everyday city travel. Since it causes no air pollution, is healthy,
has low usage and infrastructure costs, and requires little space, cycling is sustainable in the
economical, social and environmental sense. Not for nothing, it receives increasing attention
in cities all over the world. The share of trips done by bicycle, has risen sharply in recent
years, also in cities without a cycling tradition, and investments are made to improve the
bicycle infrastructure. Furthermore, urban cycling is becoming a hot topic in academia as
well, with a strong growth in the number of publications related to this topic over the last
few years (Fishman, 2016; Pucher & Buehler, 2017).

Public bike sharing systems (PBSS) form an important part of the shift towards more cycling-
oriented cities. They are build on the concept of a shared utilization of bicycle fleets, in

1.1. Context 2

which individuals can use bicycles whenever they need them, eliminating the costs and
responsibilities that come with private bike ownership (Shaheen, Guzman, & Zhang, 2010).
Especially in cities without a cycling tradition, PBSS can normalize the image of cycling as a
legitimate mode of everyday transport (Goodman, Green, & Woodcock, 2014). Furthermore,
the flexibility of PBSS make them a suitable way to improve the first and last mile connection
to other transit modes (X.-H. Yang et al., 2018).

The number of PBSS worldwide grew from 5 in 2005 to 1571 in 2018 (C. Schmidt, 2018).
Although this extraordinary growth is a relatively recent development, PBSS have been
around for much longer. Already in 1965, the first one started in Amsterdam. This system,
known asWitte Fietsen (White Bikes), consisted of fifty permanently unlocked, white painted
bikes that were scattered throughout the city, could be freely used, and left in any location.
However, due to theft and vandalism, the experiment became a failure, and the system was
shut down within days. It took 25 years before a new generation of PBSS entered the stage,
in Denmark, 1991. In these systems, bikes had to be picked up and dropped off at designated
docking stations, and payments were done with coin deposits. Because of the anonymity of
the users, theft remained an issue. This lead to the third generation PBSS, which really
took hold when Lyon’s Velo’v system was introduced in 2005. Third generation PBSS used
more advanced technologies, including electronic docking stations, information tracking, and
electronic, dynamic payments with smartcards (DeMaio, 2009; Shaheen et al., 2010). Over
time, this evolved into the station-based bike sharing systems as we know them now, with
the smartcard being replaced by mobile applications.

The modern, station-based systems are organized and well manageable. However, the ac-
cessibility of docking stations forms a large barrier for its usage: either there are no docking
stations close enough to the desired trip origin, either there are no docking stations close
enough to the desired trip destination (Fishman, Washington, Haworth, & Mazzei, 2014).
The possibilities of increasing the number of docking stations are generally limited, due to
high costs and space requirements. As an answer to these inconveniences, so-called dockless
bike sharing systems, in some literature also referred to as free floating bike sharing sytems or
flexible bike sharing systems, have rapidly gained popularity in the last few years. In 2018,
an estimated 16 to 18 million dockless shared bikes were in use, compared to 3.7 million
station-based shared bikes (C. Schmidt, 2018).

The dockless systems build on the philosophy behind the first generation PBSS, with bikes
that can be picked up and dropped off at any location in the city. They are, however, sup-
ported by new technologies that limit the risk of theft and vandalism. The bicycles generally
have integrated GPS tracking and an electronic lock. Usage is simple and convenient. Users
download a mobile application and create a profile, which they link to their credit card, or
charge with money from their bank account. On the app, they find an available bike, which
they can unlock with their smartphone, usually by scanning a QR code. The ride can be
ended anywhere, and a mobile payment is made, with the price depending on the travel time
(Shen, Zhang, & Zhao, 2018).

The revival of dockless bike sharing systems started in 2015, when two Chinese start-up
companies, Mobike and Ofo, introduced them to several cities in China (Sun, 2018). Since
that moment, the expansion evolved extremely fast. Within one year, Mobike was present

1.2. Objective 3

in eighteen Chinese cities with more than a million bikes in total, and other bike sharing
start-ups emerged to follow their example (Van Mead, 2017). From 2017 on, the systems
spread across the world. In most cases, they were not welcomed with open arms by the
local authorities and inhabitants, since regulations did not exist, and the companies simply
dumped bikes throughout the cities, fighting for the highest market share, and not putting
any effort into frequently maintaining and rebalancing the bikes. BBC talked about the
dockless bikes that are ‘flooding the world’ (Belton, 2018), The New York Times named it
‘the bike sharing explosion’ (Larmer, 2017), and The Guardian even used the term ‘bike war’
(Collinson, 2018).

Currently, the peak of the storm seems to have passed, and more and more cities have
defined rules to control the dockless bike sharing expansion. These include requirements
for operators to obtain a permit before entering the market, designated ‘system areas’ in
which the bikes can be used, limits to the fleet size and restrictions to allowed parking spots
(Deighton-Smith, 2018). Thus, cities embrace dockless bike sharing in a well balanced way,
take advantage of its convenience, and make it an important part of the strive to a more
sustainable urban environment.

1.2 Objective
In order to become a serious alternative for motorized transport, PBSS need to be organized
and reliable. For station-based systems, this means that situations in which a user either
can not start a trip at the desired time and location because of an empty docking station, or
can not end a trip at the desired time and location because of a full docking station, should
be avoided. In dockless bike sharing systems, the latter is not an issue, since bikes can be
left anywhere and anytime. The first, however, remains a challenge. A user does not have
the certainty of finding an available bike near the desired trip origin, at the desired time of
departure.

Accurate, short-term forecasts of the distribution of available bikes both over space and time,
enable system operators to anticipate on imbalances between supply and demand, such that
the occurrence of situations as described above is limited to a minimum. Furthermore, users
can take advantage of these forecasts also in a direct way, to plan their trips effectively, and
reduce the time spend on searching for a bike. Hence, forecasting bike availability is of great
importance when turning the shared bike into a reliable, pleasant and uncomplicated mode
of transport.

Several approaches have been developed to forecast the bike availability in station-based
bike sharing systems. However, dockless bike sharing systems remain fairly unexplored in
that sense, since their rapid expansion only started very recently, and in contradiction to the
station-based system, large historical data sets are not widely and openly available.

Furthermore, the spatio-temporal nature of dockless bike sharing data brings additional
challenges to the forecasting task. In station-based systems, forecasts are only required
at fixed spatial locations, and although some works include spatio-temporal relationships
between stations, they can mostly be treated as distinct entities, with different forecasting

1.3. Related work 4

models for each station. In dockless bike sharing systems, however, available bikes can
be at any spatial location inside the system area. Besides, the bike availability not only
has a spatial dependence, with more bikes being available in certain areas, and a temporal
dependence, with more bikes being available at certain times, but those dependencies are also
linked to each other. That is, temporal patterns may differ over space, and vice versa.

The objective of this thesis is to deal with those challenges, and develop a generally applicable
methodology for bike availability forecasting in dockless bike sharing systems.

1.3 Related work
Pal, Zhang, & Kwon (2018) define two main categories in which publications related to
PBSS can be classified. The first category involves the studies whose primary objective is to
forecast the system’s future bike availability, bike demand, or similar. The second category
involves the studies whose primary objective is to understand and describe the system, so
that either its service level can be improved or the system can be expanded. Since this thesis
aims to forecast bike availability, publications of the first category are the ones of interest. In
essence, they all deal with time series analysis, and a wide range of forecasting methods has
already been applied, primarily focused on station-based PBSS. These are covered in Section
1.3.1, while the first attempts targeting dockless PBSS are reviewed in Section 1.3.2.

1.3.1 Forecasting in station-based systems
One of the first works on bike availability forecasting was published ten years ago, by
Froehlich, Neumann, & Oliver (2009). The study had an exploratory approach, focused
on gaining a better understanding of the spatio-temporal patterns in station-based bike
sharing systems and the factors that influence forecasts of those patterns. Some forecasting
models were selected, ranging from very simple (e.g. a Last Value Predictor) to slightly more
complex (e.g. a Bayesian Network). The most accurate forecasts were made at stations with
a low usage, where the variability in the data was small. The Bayesian Network started
outperforming the simpler methods at stations with a higher usage, and a corresponding
large variability in the data. Usage intensity did not only vary over space, but also over
time. The same conclusions were drawn in this sense, with the most accurate forecasts dur-
ing the night, and the highest difference between simple and advanced methods during peak
hours. Furthermore, the length of the forecasting window influenced forecasts, with higher
forecast errors at larger forecasting windows. Using more historical data generally increased
forecast accuracies, but recent observations were found to have a considerably higher in-
fluence than distant ones. External variables such as weather and special events were not
considered.

Although the conclusions of Froehlich et al. (2009) seem obvious now, they formed an im-
portant basis for further research, with more advanced forecasting methods. Kaltenbrunner,
Meza, Grivolla, Codina, & Banchs (2010) fitted Auto Regressive Integrated Moving Av-
erage (ARIMA) models to the historical bike availability data of each docking station in
Barcelona’s Bicing system, incorporated information from neighbouring stations into these

1.3. Related work 5

models, and forecasted the amount of available bicycles up to one hour ahead. Won Yoon,
Pinelli, & Calabrese (2012) used a similar approach, but included recurring seasonal pat-
terns in the ARIMA models. Borgnat et al. (2011), instead, split the forecasting task in
two: linear regression, with weather, usage intensity and specific conditions like holidays as
explanatory variables, was used to forecast a non-stationary amplitude for a given day, while
an autoregressive (AR) model forecasted the hourly fluctuations in the data.

Rixey (2013) created linear regression models to forecast the number of monthly rentals per
docking station. Explanatory variables such as demographic and built environment factors
were extracted from a circular buffer with a radius of 400 meters around each station. D.
Singhvi et al. (2015) did a comparable study, but on a macroscopic level, arguing that
aggregating stations in neighbourhoods can substantially improve predictions.

In 2014, Kaggle, a well-known online community for data scientists, hosted a machine learn-
ing competition, in which participants were asked to combine historical usage patterns with
weather data, and forecast bike demand in the station-based PBSS of Washington D.C.
(Kaggle, 2014). The competition increased the academic interest in bike availability fore-
casting with machine learning methods, and new publications on this topic followed rapidly.
Giot & Cherrier (2014) compared Ridge Regression, Adaboost Regression, Random Forest
Regression, Gradient Tree Boosting Regression and Support Vector Regression by predicting
Washington’s city-wide bike sharing usage up to one day ahead, inputting recent observa-
tions, time features (e.g. season, day of the week, hour of the day) and weather features
(e.g. temperature, wind speed). Ridge Regression and Adaboost Regression turned out to
be the best performing methods. Y. Li, Zheng, Zhang, & Chen (2015) used Gradient Tree
Boosting Regression with time and weather features. However, they first grouped the dock-
ing stations into distinct, spatially contiguous clusters, and forecasted the bike usage per
cluster. Dias, Bellalta, & Oechsner (2015) attempted to simplify the task, by using a Ran-
dom Forest Regressor to forecast only if a docking station will be either completely full,
completely empty, or anything in between.

Later, spatial relations between individual docking stations were incorporated into the ma-
chine learning approaches, which resulted in more sophisticated forecasting methods. Z.
Yang et al. (2016) proposed a probabilistic spatio-temporal mobility model that considered
previous check-out records at other stations and expected trip durations to estimate the
future check-ins at each station. Subsequently, check-outs at each station were estimated
with a Random Forest Regressor, that also took weather forecasts into account. L. Lin,
He, & Peeta (2018) modelled station-based PBSS as a graph, with each station being a
node. Then, they applied a Convolutional Neural Network in a form generalized for graph-
structured data, to forecast hourly bike demand. Lozano, Paz, Villarrubia, De La Iglesia,
& Bajo (2018) created an automated multi-agent bike demand forecasting system for the
Salamanca’s SalenBici system, with digital ‘agents’ that collect different types of data, such
as calendar events, weather forecasts and historical usage. These data were combined, and
used to forecast check-ins and check-outs separately for each station, with a Random Forest
Regressor.

The Random Forest and Convolutional Neural Network approaches were compared by
Ruffieux, Spycher, Mugellini, & Khaled (2017). Furthermore, they differentiated themselves

1.3. Related work 6

by forecasting bike availability in six different cities, instead of only one. The outcomes
showed that the Random Forest Regressor works better for short-term forecasts, while
Convolutional Neural Networks are more suitable for long-term forecasts. B. Wang &
Kim (2018) compared the Random Forest approach to two of the latest machine learning
innovations, Long Short Term Memory Neural Networks and Gated Recurrent Units, but
found no substantial improvements in the results.

All discussed academic publications related to bike availability forecasting in station-based
PBSS are listed in Table 1.1, in chronological order. It can be seen that machine learning
methods have received a lot of attention in recent years, compared to traditional statistical
forecasting methods such as ARIMA. The two serve the same goal, but have a different phi-
losophy and model development process. Traditional statistical methods assume a functional
form in advance, concern inference and estimation, and aim at providing models that offer
insights on the data. Machine learning methods approximate the functional form via learn-
ing inside a ‘black box’, do not require specifications of the model and the error distribution,
and aim solely at providing an efficient forecast (Ermagun & Levinson, 2018).

Studies in the field of bike availability forecasting that make valuable comparisons between
traditional time series forecasting and machine learning methods, are scarce. Y. Li et al.
(2015) and Z. Yang et al. (2016) included ARIMA in their baseline methods, but only in
a form that does not take any seasonal component into account, while Dias et al. (2015)
compared a seasonal ARIMA model with their proposed Random Forest Regressor, but
without using the same amount of data for both methods. In spatio-temporal transportation
forecasting in general, there is no clear consensus on which method is ‘better’. Despite the
strong increase in publications that use machine learning, Ermagun & Levinson (2018) state
that “there is not a certain superiority when machine learning methods are compared with
advanced statistical methods such as autoregressive integrated moving average.”

Table 1.1: Publications regarding forecasts in station-based bike sharing systems, known to the author

Authors Year Main forecasting
method

Spatial unit of
analysis

Case study

Froehlich,
Neumann, and
Oliver

2009 Bayesian Network Docking station Barcelona

Kaltenbrunner
et al.

2010 Spatial ARIMA Docking station Barcelona

Borgnat et al. 2011 Linear regression and
AR

Docking station Lyon

Won Yoon,
Pinelli, and
Calabrese

2012 Spatial, seasonal
ARIMA

Docking station Dublin

Rixey 2013 Linear regression Docking station Washington DC,
Minneapolis and
Denver

1.3. Related work 7

Table 1.1: Publications regarding forecasts in station-based bike sharing systems, known to the author
(continued)

Authors Year Main forecasting
method

Spatial unit of
analysis

Case study

Giot and
Cherrier

2014 Ridge regression,
Adaboost regression,
Random Forest
regression, Gradient
Tree Boosting
regression and
Support Vector
regression

City Washington DC

D. Singhvi et al. 2015 Linear regression Neighbourhood New York
Y. Li et al. 2015 Gradient Tree

Boosting regression
Cluster Washington DC

Dias, Bellalta,
and Oechsner

2015 Random Forest
regression

Docking station Barcelona

Z. Yang et al. 2016 Probabilisitc mobility
model and Random
Forest regression

Docking station Hangzhou

Ruffieux et al. 2017 Random Forest
regression and
Convolutional Neural
Network

Docking station Namur, Essen,
Glasgow,
Budapest,
Vienna and Nice

Lin, He, and
Peeta

2018 Graph Convolutional
Neural Network

Docking station New York

Lozano et al. 2018 Random Forest
regression

Docking station Salamanca

B. Wang and
Kim

2018 Long Short Term
Memory Neural
Networks and Gated
Recurrent Units

Docking station Suzhou

1.3.2 Forecasting in dockless systems
Publications regarding bike availability forecasting in dockless PBSS can be counted on the
fingers of one hand. In addition to them, a small number of similar studies have been done
in the field of dockless car sharing, which is based on the same principles as dockless bike
sharing.

Those few attempts can be divided in two groups of approaches, which are labeled here as
the grid based approach ad the distance based approach. In the grid based approach, the
system’s operational area, i.e. the ‘system area’, is divided into distinct grid cells, which

1.3. Related work 8

may be regularly shaped, but do not have to be. For example, the cell boundaries may
also correspond with administrative boundaries. Subsequently, each cell is treated as being
a docking station. That is, from the historical data on locations of available vehicles, the
number of vehicles in each cell is counted at several timestamps in the past, creating a time
series of counts. Hence, for a given geographical point, the forecasted value will be the
expected number of vehicles inside the cell that contains the point.

The distance based approach uses the historical data to calculate the distance from a given
geographical location to the nearest available vehicle, for several timestamps in the past, cre-
ating a time series of real-valued distances. Hence, the forecasted value will be the expected
distance from the given point to the nearest available vehicle, at a given timestamp in the
future.

The grid based approach was taken by Caggiani, Ottomanelli, Camporeale, & Binetti (2017),
who were among of the first to forecast bike availability in dockless PBSS. They did not use a
regular grid, but defined the outline of the cells with a spatio-temporal clustering procedure,
that worked as follows. Historical time series containing daily counts of available bikes were
obtained for each zone, and clustered based on temporal patterns. Geographically connected
zones that belonged to the same temporal cluster, were aggregated. The resulting clusters
formed the spatial units of analysis, and for each of them, the number of available bikes
was forecasted one day ahead with a Nonlinear Autoregressive Neural Network. However,
at that time, they lacked data to test their methodology on. Instead, they used data from
the station-based bike sharing system in London, pretending each docking station to be a
cluster centroid.

Yi et al. (2018) did have access to a dataset of a dockless PBSS, in the Chinese city of Chengu,
and laid a regular grid with square cells over its systems area. Besides historical count data
of available bikes in each grid cell, they included a categorical variable representing the
time of day in their system. Forecasting was done with a recent machine learning method,
named Convolutional Long Short Term Memory Network. J. Müller & Bogenberger (2015),
in contradiction, used traditional statistical methods, and focused on forecasting the number
of car bookings in a dockless car sharing system, for each ZIP-code area in Berlin. They
compared a seasonal ARIMA model with a Holt Winters exponential smoothing model, and
found acceptable and similar forecasting errors for both of them.

The only example of the application of the distance based approach, known to the author,
is the work of Formentin, Bianchessi, & Savaresi (2015). Their methodology, focused on
dockless car sharing systems, can be summarized as follows. For a set of given locations,
evenly distributed over the city, historical location data is pre-processed into a time series
of historical distance data. A strictly linear trend is subtracted from these time series, and
if present, the seasonal component as well, using the classical time series decomposition
method. AR models are fitted to the data that are left. Then, a model structure that is
acceptable for all time series, is identified, and serves as the general forecasting model for the
complete city. That is, for individual forecast requests, this general model structure will be
used, no matter what the location of the request is. Only when a forecast request is located
inside the city center, the corresponding historical distance data will be decomposed before
forecasting, assuming a daily seasonal pattern. In that case, the seasonal component will

1.4. Approach 9

afterwards be added to the forecast produced by the general model. The general model is
updated every month.

All discussed academic publications related to bike availability forecasting in dockless PBSS
are listed in Table 1.2.

Table 1.2: Publications regarding forecasts in dockless vehicle sharing systems, known to the author

Authors Year Main forecasting
method

Approach Case study Type

Formentin,
Bianchessi, and
Savares

2015 AR Distance based Milan Car

Müller and
Bogenberger

2015 ARIMA and Holt
Winters ETS

Grid based Berlin Car

Caggiani et al. 2017 Nonlinear
Autoregressive Neural
Network

Grid based London Bike

Yi et al. 2018 Convolutional Long
Short Term Memory
Network

Grid based Chengu Bike

1.4 Approach
The bike availability forecasting system as proposed in this thesis extends the methodology
proposed by Formentin et al. (2015), and uses the distance based approach, since it has the
following advantages over the grid based approach.

• Forecasts will not be dependent on the chosen spatial resolution of the grid.
• Forecasts will not be made with count data, which would have limited the choice of

suitable forecasting models.
• Forecasts can be interpreted in the same way at every location in space. This in

contradiction to the grid based approach, where for a location at the edge of a grid
cell, there might as well be closer bikes within the neighbouring cell.

• Forecasts give more freedom to the user, who can decide for themselves if they consider
the forecasted distance acceptable or not. In the grid based approach, the cell size is
fixed, and does not take into account that some people are willing to walk further than
others.

By choosing the distance based approach, the proposed forecasting system will involve the
analysis, modelling and forecasting of time series that each contain the distances from specific
geographical locations to the nearest available bike, at several timetamps in the past. Hence,
the data of interest are spatio-temporal in nature, and require a methodology that adequately
deals with both their spatial and temporal dimension. In the proposed system, the spatio-
temporal nature of the data is used as an advantage, and an approach is developed in

1.5. Outline 10

which the structures of time series forecasting models build at specific locations and specific
timestamps, are inherited by forecast requests for nearby locations, and future timestamps.
In that way, the need for separate models for each individual forecast, is taken out.

Throughout the thesis, the proposed forecasting system will be referred to as the Dockless
BikeAvailability Forecasting System (DBAFS). The focus will lay on the design of a general
methodology for it, rather than on the creation of a fully configured, practical application. A
forecast can be requested for any location within the system area of a dockless bike sharing
system, and, theoretically, any timestamp in the future. However, short-term forecasts, up
to one day ahead, form the target, and longer forecasting horizons will not be handled.

1.5 Outline
The rest of the document is structured as follows. Chapter 2 provides a theoretical back-
ground of the concepts used in this thesis, which are all linked to the field of time series
analysis. In Chapter 3, the methodology of the proposed forecasting system is described
into detail. Chapter 4 presents the data on which the system is tested, and describes the
experimental setup. In Chapter 5, the results of the experiments are shown, interpreted, and
discussed. Finally, Chapter 6 lists the conclusions of this thesis.

Chapter 2

Theoretical background

This chapter presents a brief introduction to the theory of time series analysis. It is meant
to serve as a theoretical foundation of the concepts used in this thesis. Therefore, the focus
is clearly on those specific concepts, and the chapter should to no means be considered a
thorough overview of the complete field of study.

The chapter is divided into five sections. In the first section, a formal definition of time series
is given. The second section discusses the main characteristics of time series. Section three
describes the different components of time series data and presents methods to split a time
series into these components. The fourth section introduces statistical models to forecast
time series, in particular the autoregressive integrated moving average (ARIMA) class of
models. Finally, the fifth section focuses on a specific niche within time series analysis that
is used in this thesis, namely time series clustering.

2.1 Time series definition
According to Woodward, Gray, & Elliott (2017), a time series can be defined as follows:

Definition 1 A time series is a special type of a stochastic process. A stochastic process
{Y (t); t ∈ T} is a collection of random variables, where T is an index set for which all of
the random variables are defined on the same sample space. When T represents time, the
stochastic process is referred to as a time series. �

Typically, observations are made at equally spaced time intervals, such as every hour, every
day or every year. In such cases, T takes on a discrete set of values, and are known as discrete-
time time series. On the other hand, continuous-time time series arise when T takes on a
continuous range of values (Brockwell & Davis, 2002). In this thesis, only discrete-time time
series are analyzed.

An observed realization of the stochastic process described in Definition 1, is referred to by
Woodward et al. (2017) as a realization of a time series. Other works, such as Brockwell &
Davis (2002), Shumway & Stoffer (2011) and Hyndman & Athanasopoulos (2018), use the
term time series for both the data and the stochastic process of which it is a realization. In

2.2. Time series characteristics 12

this thesis, for the sake of simplicity, the latter approach is used, and no notational distinction
is made.

Definition 2 A time series is a set of observed values {yt} of a stochastic process {Y (t); t ∈
T}, where T represents time. �

From the context it will be clear whether the term time series refers to the process (Definition
1) or its realization (Definition 2). When clarification is needed, it is given locally.

2.2 Time series characteristics

2.2.1 Autocorrelation
Analyzing time series raises unique problems in statistical modelling and inference. In con-
ventional statistics, methods rely on the assumptions of independent and identically dis-
tributed random variables. However, in time series analysis, observations made at nearby
moments in time are likely to be related. That is, it is likely that there exist internal relation-
ships within a time series. If these relationships are linear, they are called autocorrelation,
as defined in Definition 3 (Shumway & Stoffer, 2011).

Defintion 3 Autocorrelation measures the linear correlation between two points on the same
time series observed at different times. �

Given a sample {y1, y2, ..., yn} of a time series, the degree of dependence in the data can
be assessed by computing the autocorrelation function (ACF), for each lag h, as defined in
Equation (2.1) (Brockwell & Davis, 2002).

ρ̂(h) = γ̂(h)
γ̂(0) , −n < h < n (2.1)

Where γ̂(h) is the autocovariance function of the sample at lag h, defined in Equation
(2.2).

γ̂(h) = n−1
n−|h|∑
t=1

(yt+|h| − ȳ)(yt − ȳ), −n < h < n (2.2)

Where n is the length of the sample, yt is the data value at time t, yt−|h| is the data value
at time t minus |h| time periods, and ȳ is the mean of the sample. Whenever a time series
{Yt} is stationary, a concept that is introduced in the next section, the ACF of the sample
{yt} can be used as an estimate for the ACF of {Yt}. A time series without autocorrelation,
with zero mean and finite variance, is called white noise.

Conventional statistical methods can not be appropriately applied to data that exhibit au-
tocorrelation, since the independency assumption is violated. The primary objective of time
series analysis, therefore, is to develop mathematical models that are appropriate to use for
data with a temporal autocorrelation structure (Shumway & Stoffer, 2011). Furthermore,
autocorrelation is in some cases an advantage, since an internal dependence structure implies
that past observations can be used adequately to forecast future values.

2.2. Time series characteristics 13

2.2.2 Stationarity
In time series analysis, a key role is played by time series whose statistical properties do
not vary with time (Brockwell & Davis, 2002). Such time series are called stationary time
series. The most restrictive form of stationarity is defined in Definition 4 (Woodward et al.,
2017).

Definition 4 A time series {Y (t); t ∈ T} is strictly stationary if for any t1, t2, ..., tk ∈ T
and any h ∈ T , the joint distribution of {Yt1 , Yt2 , ..., Ytk} is identical to that of
{Yt1+h

, Yt2+h
, ..., Ytk+h

}. �

However, it is often too hard to mathematically establish the requirement of strict station-
arity, since the involved distributions are not known. For most applications, a milder form
of stationarity, which only imposes conditions on the first and second moment of a time
series, is sufficient. This is officially known as weak stationarity, but, in time series analysis,
usually just called stationarity, for the sake of simplicity. It is mathematically defined as in
Definition 5 (Woodward et al., 2017).

Definition 5 A time series {Y (t); t ∈ T} is stationary if

1) E[Yt] = µ (constant for all t).

2) V ar[Yt] = σ2 (constant for all t).

3) γ(t1, t2) depends only on t2 − t1. �

In words, this means that a time series is said to be stationary when the mean and variance
are constant over time, and the autocovariance function only depends on the difference
between two time points, and not on the time point itself. Note here that each time series
that is strictly stationary (Definition 4), is, by definition, also stationary (Definition 5).

Stationarity is important, since in real-world problems, it is common that only one realization
of a time series is available. That means that each random variable in the time series is
represented by a single value. This makes it impossible to get an understanding of the
underlying probability distributions of those random variables, unless it is assumed that
their statistical properties are the same (i.e. the time series is stationary). In that case, the
statistical properties of the whole sample can be used to estimate the statistical properties
of each individual probability distribution. An understanding of the underlying probability
distributions, in turn, is especially important when the goal is to forecast how the time series
will behave at future time points. When the statistical properties of the time series have
been constant over time in the past, one can simply predict that they will remain constant
in the future.

In most practical applications, non-stationary time series are the rule rather than the ex-
ception. Luckily, by applying mathematical transformations, it often possible to render a
non-stationary time series as, approximately, stationary. This process is referred to as sta-
tionarizing a time series (Nau, 2018). Stationarizing is used often in statistical forecasting
methods, which are discussed in Section 2.4.

2.3. Time series components 14

2.2.3 Spectral entropy
Often, two separate approaches to time series analysis are defined. The first, referred to
as the time domain, deals primarily with the internal dependence structure in time series
data, where current values can be explained in terms of a dependence on past values, as
discussed in Section 2.2.1. The second, referred to as the frequency domain, works with a
spectral representation of the time series, in which the original data is expressed as a weighted
sum of sine and cosine waveforms, each with their own frequency. Named after the French
mathematician Jean-Baptiste Joseph Fourier, such a representation is commonly known as
a Fourier representation or Fourier series, and its corresponding sine and cosine terms as
Fourier terms. Forecasting is inherently tied to the time domain of time series analysis,
which will therefore be the focus of this thesis. However, there is no schism dividing the
two approaches. That is, some frequency domain techniques can be useful even in the time
domain, and vice versa (Shumway & Stoffer, 2011).

One of such techniques is the calculation of the spectral entropy of a time series, which
describes the order and regularity of a time series, based on its Fourier representation. The
spectral entropy of a time series can be calculated with Equation (2.3).

H =
∫ π

−π
f̂(λ) log f̂(λ)dλ (2.3)

Where f̂y(λ) is the estimated spectral density function, which describes the importance of the
different frequencies in the Fourier representation of the time series. Usually, H is normalized
to the range of values between 0 and 1. For a detailed description of the calculations, see
Goerg (2013).

Spectral entropy is useful in forecasting, since it can serve as a quantitative measure of the
forecastability of a time series. Very smooth data, that are easy to forecast, will have a small
value of H, while very noisy data, that are hard to forecast, will have a large value of H (T.
S. Talagala, Hyndman, & Athanasopoulos, 2018).

2.3 Time series components

2.3.1 Definitions
A time series can consist of various underlying patterns. Each of those patterns is considered
a distinct component of the time series, with its own properties and behaviour. Splitting a
time series into its components, is known as time series decomposition. It enables a separate
analysis of all the components, which helps to better understand the dynamics of a time
series, but can also be useful in forecasting, as will be discussed later in this chapter.

Hyndman & Athanasopoulos (2018) define three main components of a time series: a trend-
cycle component, a seasonal component, and a remainder component. For simplicity, the
trend-cycle component is usually called just the trend component, which is done in this thesis
as well.

2.3. Time series components 15

Definition 4 The trend component is the combination of the trend and cyclical pattern of
a time series. A trend exists when there is a long-term, not necessarily linear, increase or
decrease in the data. A cyclical pattern occurs when the data exhibit rises and falls that are
not of a fixed frequency. �

Definition 5 The seasonal component contains the seasonal pattern of a time series. A
seasonal pattern occurs when a time series is affected by seasonal factors such as the time of
the year or the the day of the week, and is always of a fixed and known frequency. �

Definition 6 The remainder component is the remaining variation in a time series after the
trend and seasonal components are removed. �

There exist several methods for the decomposition of a time series. Most of them are based
on the classical decomposition method, which is discussed in the next section. A more
sophisticated approach is known as STL, and is covered in Section 2.3.3.

2.3.2 Classical decomposition
The oldest and simplest method for the decomposition of a time series is referred to as classi-
cal decomposition by Hyndman & Athanasopoulos (2018). They present a stepwise approach
for the use of the method, which is summarized in this section. Classical decomposition can
be applied in two different forms. In the additive form, a time series is assumed to be the
sum of its components, as shown in Equation (2.4).

yt = Tt + St +Rt (2.4)

In the multiplicative form, a time series is assumed to be the product of its components, as
shown in Equation (2.5).

yt = Tt × St ×Rt (2.5)
Where, for both Equation (2.4) and Equation (2.5), yt is the data, Tt is the trend component,
St is the seasonal component and Rt is the remainder component.

Additive decomposition is used in cases when the amplitude of the variation around the trend
is relatively constant. On the other hand, when the amplitude of the variation around the
trend changes with the level of the trend, multiplicative decomposition should be used.

In both the additive and multiplicative form of classical decomposition, the first step is to
estimate the trend component. This is done by smoothing the data with a symmetric moving
average filter of order m, where m is a non-negative integer. That is, the estimate of the
trend component at time t is the average of all the data values within a window of m time
periods centered at t, as shown in Equation (2.6). Usually, m is set to be equal to the
seasonal period of the time series, which, in turn, is the number of observations per seasonal
cycle. For example, when working with daily data that show a weekly seasonal pattern, the
seasonal period is 7.

T̂t = 1
m

k∑
j=−k

yt+j (2.6)

Where k = (m− 1)/2.

2.3. Time series components 16

The detrended time series data are then calculated by removing the estimated trend com-
ponent from the original data. In the case of additive decomposition by subtraction, yt− T̂t,
and in the case of multiplicative decomposition by division, yt/T̂t.

The seasonal component is estimated by averaging the detrended data values per season,
as shown in Equation (2.7). Using again the example of daily data with a weekly seasonal
pattern, that would mean that the estimated seasonal component for a specific Monday is the
average value of all Monday observations in the data set, the estimated seasonal component
for a specific Tuesday is the average value of all Tuesday observations in the data set, and
so on.

Ŝt = 1
nt

nt∑
i=1

(ωt)i (2.7)

Where ωt is a vector containing all the detrended values belonging to the same season as yt,
and nt is the length of ωt. Usually, the estimated seasonal component values for each season
are adjusted such that they add up to 0 in the case of additive decomposition and 1 in the
case of multiplicative decomposition.

Finally, the remainder component is estimated by removing both the estimated trend com-
ponent and the estimated seasonal component from the original time series. For additive
decomposition, this is done by applying Equation (2.8).

R̂t = yt − T̂t − Ŝt (2.8)

For multiplicative decomposition, Equation (2.9) is used.

R̂t = yt

T̂tŜt
(2.9)

Classical decomposition is generally praised for its simplicity, but has several disadvantages
compared to some of the more modern decomposition methods (Hyndman & Athanasopou-
los, 2018). As a consequence of the use of a symmetric moving average filter, there are no
trend component estimates available for the first few and last few observations of the time
series. Therefore, also the remainder component estimate lacks these values. An unknown
current value of a time series, is mainly problematic when forecasting, as is shown in Section
2.4. Furthermore, the seasonal component stays constant over all the seasonal cycles, and
cannot capture slight changes over time. Especially when working with longer time series,
this may be an inappropriate representation of the truth. Finally, classical decomposition is
not robust to extreme values in the data.

2.3.3 STL decomposition
A widely used method that is based on classical decomposition, but deals with many of the
limitations mentioned above, is known as STL. It stands for A Seasonal-Trend decomposition
procedure based on Loess, and was developed by R. B. Cleveland, Cleveland, McRae, &
Terpenning (1990). In this section, their methodology is summarized. STL estimates all three
components for every observation in a time series, and can also handle missing values in the

2.3. Time series components 17

data. Both the trend and seasonal component are robust and not distorted by extreme values.
Furthermore, the seasonal component is not fixed, but can vary slightly over time.

As its name already implies, STL is based on loess, also known as locally-weighted regression.
Loess was developed by Cleveland & Devlin (1988), and is a non-parametric regression
technique, often used for smoothing, that fits weighted least squares regression curves to
local subsets of a data set. Joining them together forms the loess regression curve ĝ(x).
More specifically, for each value of x, ĝ(x) is computed in the following way. First, a positive
integer q is chosen, which defines the neighbourhood width. That is, the q observations that
are closest to x are selected as neighbours of x. Each of these observations is given a weight
based on its distance to x, in a way that the closest observations get the highest weight. Let
W be the tricube weight function as defined in Equation (2.10).

W (u) =

(1− u3)3 0 ≤ u < 1
0 u ≥ 1

(2.10)

Subsequently, the neighbourhood weight for each observation xi is calculated with Equation
(2.11).

υi = W

 |xi − x|
λq(x)

 (2.11)

Where λq(x) is the distance of the qth farthest observation from x. Then, ĝ(x) is calcu-
lated by fitting a polynomial regression of degree d to x, using weighted least squares with
the neighbourhood weights υi. Usually, d is either 1 or 2, corresponding respectively to a
locally-linear regression and a locally-quadratic regression. Since the loess regression curve
is smooth, there is no need to compute ĝ(x) at all possible values of x. In general, the
computation of ĝ(x) as described above is only performed at a finite set of locations, and
interpolated elsewhere.

STL uses loess for several smoothing operations, that, when performed on a time series, lead
to estimations of the trend, seasonal and remainder components of the data. The method
is build up of two loops: an inner loop nested inside an outer loop. In the inner loop, the
estimates of the seasonal and trend component are updated once, in a stepwise manner,
which is described below.

Step 1. The inner loop starts with computing the detrended time series data yt−T̂t from the
original time series data yt. In the initial pass through the inner loop, there is no estimation
of Tt yet, and T̂t is set equivalent to 0. That is, it is assumed there is no trend at all. This
may be a rather poor estimate, but inside the loop, it will soon be updated to something
more reasonable. In all successive passes through the loop, the estimated trend component
that resulted from the previous loop is used.

Step 2. In the second step, the detrended time series is split up into subsets, with each
subset containing all the data belonging to one specific season. That is, there will be np
different subsets, where np is the number of observations per seasonal cycle. Each of those
subsets is smoothed by loess, with q = ns and d = 1. ns is referred to as the seasonal
smoothing parameter and its value must be chosen by the analyst. It basically determines

2.3. Time series components 18

how much the seasonal component is allowed to change over time. High values of ns allow
little variation, while low values can lead to overfitting. The smoothed values of all the
subsets are then binded back together into a temporary seasonal component Ct. Each end
of Ct is extended np positions, such that Ct has 2× np observations more than the original
time series.

Step 3. In the third step, any trend that may have contaminated Ct is identified. This
is done by applying a sequence of smoothers, called a low-pass filter, to Ct. It starts with
a moving average of length np, followed by another moving average of length np, followed
by a moving average of length 3, followed by a loess smoothing with q = nl and d = 1.
Just as earlier with ns, the low-pass filter smoothing parameter nl should be chosen by the
analyst. The output of the third step is called Lt. Since moving averages are used, the first
np observations and the last np observations of Ct will not have a smoothed value in Lt.
However, this was already accounted for by extending Ct in step 2. That is, Lt is again of
the same length as the original time series.

Step 4. In the fourth step, the seasonal component is estimated by detrending the temporary
seasonal component. That is, Ŝt = Ct − Lt.

Step 5. In the fifth step, the deseasonalized time series data yt− Ŝt are computed from the
original time series data yt.

Step 6. In the sixth and last step of the inner loop, the estimation of the trend component,
T̂t, is calculated by loess smoothing the deseasonalized time series with q = nt and d = 1.
The trend smoothing parameter nt should be chosen by the analyst.

The outer loop of STL starts with ni iterations of the inner loop. The estimations of the
trend and seasonal components that follow from the passes through the inner loop, are used
to estimate the remainder component with Equation (2.12).

R̂t = yt − T̂t − Ŝt (2.12)

For each observation in the time series, a robustness weight is calculated. This weight reflects
how extreme the value of the remainder component of that observation is, in a way that an
extreme value is given a very low, or even zero, weight. Let B be the bisquare weight function
as defined in Equation (2.13).

B(u) =

(1− u2)2 0 ≤ u < 1
0 u ≥ 1

(2.13)

Then, the robustness weight at time point t is calculated with Equation (2.14).

ρt = B

 |Rt|
6median(|Rt|)

 (2.14)

After the first pass through the outer loop, the next iteration starts again with ni passes
through the inner loop. However, in the loess smoothing in step 2 and step 6, each neigh-
bourhood weight υt is now multiplied by its corresponding robustness weight ρt, such that

2.4. Time series forecasting 19

extreme values have less influence on the estimates of the trend and seasonal components.
Also, the estimated trend component that resulted from the last inner loop in the previous
outer loop, is now used as first value of T̂t, rather than 0. In total, the outer loop is carried
out no times.

STL is designed for additive decomposition. However, a multiplicative version can be ob-
tained by first log transforming the data, and finally back-transforming the components.
This is based on the logarithm product rule, which states that log(a) + log(b) is equivalent
to log(a× b) (Hyndman & Athanasopoulos, 2018).

The complete methodology of STL as described above is summarized in Figure 2.1.

Figure 2.1: Summary of the STL methodology

2.4 Time series forecasting

2.4.1 Forecasting models
Often, the main aim of time series analysis is to forecast future values of a time series. In
some cases, this can be done by using external exploratory variables. One could for example
try to forecast the profit of ice cream sales by using air temperature as an exploratory variable
in a linear regression model. However, there are several reasons not to forecast time series
in this way, as summed up by Hyndman & Athanasopoulos (2018). Firstly, the underlying
system of the forecasted time series may not be sufficiently understood, and even if it is,
the relations with exploratory variables may be too complex. Secondly, when forecasting
future values of a time series, also the future values of the exploratory variables should be
known, which means that each exploratory variable should be forecasted separately before
the response variable can be forecasted. This may be too difficult to do accurately, and even
when it is possible, it remains a very time consuming task. Especially when the only aim is
to know what will happen, and not why it will happen, it is not worth the effort. Finally,
modelling a time series with conventional statistical method like linear regression will likely

2.4. Time series forecasting 20

result in model errors that exhibit autocorrelation, which implies that such models are not
able to capture all the dynamics of the data. Thus, produced forecast are not as efficient,
and, probably, not as accurate as can be.

Instead, in time series analysis, the internal dependence structure of a time series is used
to forecast future values as a function of the current and past values (Shumway & Stoffer,
2011). Obviously, this primarily requires a good understanding of that structure, which is
obtained by describing the process that generated the data with a time series model, as
defined in Definition 7, adapted from Brockwell & Davis (2002).

Definition 7 A time series model for an observed realization {yt} of a time series {Yt} is a
specification of the joint distributions, or possibly only the means, variances and covariances,
of the random variables that {Yt} comprises. �

One of the most famous and widely used groups of time series models is known as the
autoregressive integrated moving average (ARIMA) class of models, developed by Box &
Jenkins (1970). In this thesis, ARIMA is used as well. The next section gives a summary
of its theory, based on Brockwell & Davis (2002), Chapter 5, Shumway & Stoffer (2011),
Chapter 3, and Hyndman & Athanasopoulos (2018), Chapter 3 and 8.

2.4.2 ARIMA
2.4.2.1 Structure

An ARIMA model is a combination of an autoregressive (AR) and moving average (MA)
model, preceded by a differencing operation on the original data. An autoregressive model
of order p, commonly referred to as an AR(p) model, is based on the assumption that the
current value of a time series is a linear combination of p previous values, as showed in
Equation (2.15).

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt (2.15)

Where yt is the current value of the time series at time period t, εt is the random error
(i.e. white noise) at time t, and φ1, ..., φp are model parameters.

A moving average model of order q, commonly referred to as an MA(q) model, is based on
the assumption that the current value of a time series is a linear combination of q previous
errors, as showed in Equation (2.16).

yt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (2.16)

Where yt is the current value of the time series at time period t, εt is the error at time period
t, which is assumed to be white noise, and θ1, ..., θq are model parameters.

AR(p) and MA(q) models can be combined into an autoregressive moving average model of
order (p, q), commonly referred to as ARMA(p, q). That is, in such a model, the current
value of a time series is a linear combination of both p previous values and q previous errors,
as showed in Equation (2.17).

yt = φ1yt−1 + ...+ φpyt−p + θ1εt−1 + ...+ θqεt−q + εt (2.17)

2.4. Time series forecasting 21

ARMA(p, q) models require the forecasted time series to be stationary. When working with
non-stationary time series, it is often possible to stationarize the series by differencing it one
or more times. The first order difference of a time series is the series of changes from one
time period to the next, as shown in Equation (2.18).

∇yt = yt − yt−1 (2.18)

Where ∇yt is the first order difference of yt. When the first order difference is still non-
stationary, the second order difference ∇2yt can be computed by taking again the first order
difference of ∇yt, and so on.

The original non-stationary time series that needed to be differenced in order to get sta-
tionary, is called an integrated version of the stationary series. That is why a model that
first stationarizes the data by applying a d-th order difference, before fitting an ARMA(p,
q) model, is called an autoregressive integrated moving average model of order (p, d, q),
commonly referred to as ARIMA(p, d, q). That is, in such a model, the current value of the
d−th order difference of a time series is a linear combination of both p previous values and
q previous errors, as showed in Equation (2.19).

∇dyt = φ1∇dyt−1 + ...+ φp∇dyt−p + θ1εt−1 + ...+ θqεt−q + εt (2.19)

Where ∇dyt is the d-th order difference of yt. Note here that ARIMA(p, d, q) is a general
form of all the other models discussed earlier in this section. For example, an AR(1) model
can also be written as ARIMA(1,0,0), an ARMA(2,1) as ARIMA(1,0,2), and so on.

The process of finding an appropriate ARIMA(p, d, q) model that represents a time series is
known as the Box-Jenkins modelling procedure and consists of three stages, named model
selection, parameter estimation and model checking. All these stages are described separately
in the next three subsections.

2.4.2.2 Model selection

In the model selection stage, p, d and q are chosen. In this process, d is selected first, such
that the choice of p and q will be based on a stationary time series. An appropriate value
for d can be found by inspecting the plotted data yt, with time on the x-axis, and define
visually if the data are stationary. If not, then difference the data once, and inspect the plot
of ∇yt. If ∇yt does not seem stationary either, take the second-order difference ∇2yt, and
so on. In general, however, it is not recommended to difference more than two times.

As an addition to the time plots, plotting the sample autocorrelation function of the data
can help to identify stationarity. Non-stationary data show a slow decay in autocorrelation
as the time lag increases, while for stationary data, the autocorrelation will drop to zero
relatively fast.

Once d has been set, either p or q can be selected by inspecting the autocorrelation function
plot and the partial autocorrelation function plot of the differenced data, which respectively
plot the sample autocorrelation function (ACF), defined in Equation (2.1), and the sample
partial autocorrelation function (PACF), for several lags h. The PACF is the relationship

2.4. Time series forecasting 22

between an observation at time t and and observation at time t− k, removing the effects of
all time lags in between, i.e. 1, 2, ..., k − 1. Then, appropriate values for either p or q are
found with the following rules of thumb:

• The PACF plot of an ARIMA(p,d,0) process cuts of after lag p; the ACF plot tails off.
• The ACF plot of an ARIMA(0,d,q) process cuts of after lag q; the PACF plot tails off.

When dealing with ARIMA(p, d, q) processes where both p > 0 and q > 0, the ACF plot and
PACF plot will both tail off, and finding appropriate values for p and q turns into a trial-and-
error approach, where models with different combinations of p and q are compared.

The methodology as described above is used often, but involves a lot of manual interventions.
This makes it a rather subjective way of working, that is labour intensive, especially when a
large number of time series needs to be modelled, and requires expert knowledge. Therefore,
several automated approaches to select p, d and q have been proposed. One of them is the
Hyndman-Khandakar algorithm, which methodology is summarized below, in a simplified
way. For the full details, see Hyndman & Khandakar (2008).

Step 1. To define d, the Hyndman-Khandakar algorithm uses the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test, which is a statistical test used to determine stationarity of a
time series. Only if there is enough statistical evidence, the null hypothesis that the time
series is stationary will be rejected, and the time series is instead considered to be non-
stationary. The detailed mathematics underlying the test can be found in Kwiatkowski,
Phillips, Schmidt, & Shin (1992).

Using the KPSS test, first, the original data yt are tested for stationarity. When yt are
considered stationary, d = 0, and when considered non-stationary, the first-order differenced
data ∇yt are tested for stationarity. Again, when ∇yt are considered stationary, d = 1,
and when considered non-stationary, the second-order differenced data ∇2yt are tested for
stationarity. This process is repeated until a stationary series is obtained.

Step 2. In the second step, four models are fitted to the d-times differenced data.

• An ARIMA(0, d, 0) model.
• An ARIMA(1, d, 0) model.
• An ARIMA(0, d, 1) model.
• An ARIMA(2, d, 2) model.

The model with the lowest AIC is selected. AIC, which stands for Aikake’s Information
Criterion, is a measure for the goodness-of-fit of a model, and can be calculated with Equation
(2.20).

AIC = −2 log(L) + 2k (2.20)

Where L is the Gaussian likelihood of the data, and k is the number of free parameters in
the model. In this case, k = p+ q+ l+ 1, where l = 1 when a non-zero constant is included,
and l = 0 otherwise. The ‘+1’ term is included, since the variance of the residuals is also a
parameter. To find the best fitting model, AIC should be minimized. The idea behind AIC
is the following. The likelihood monotonically increases when more parameters are added to
the model, and therefore, only maximizing the likelihood would favor a model that overfits

2.4. Time series forecasting 23

the data. AIC prevents such overfitting, by penalizing the likelihood with a term that is
proportional to the number of parameters used in the model.

Step 3. In the third step, several variations of the model that was selected in step 2, are
fitted to the d-times differenced data. These variations include:

• Models where either p or q vary ±1 from the selected model, given that p, q ≯ 5.
• Models where both p and q vary ±1 from the selected model, given that p, q ≯ 5.

From the selected model and all its variations, the model with the lowest AIC is chosen to
be the new selected model, and step 3 is repeated. The algorithm stops when there are no
variations of the selected model that have a lower AIC. In that case, the selected model is the
optimal model, and forms the output of the Hyndman-Khandakar algorithm. The complete
methodology of the algorithm as described above is summarized in Figure 2.2.

Figure 2.2: Summary of the Hyndman-Khandakar algorithm

2.4.2.3 Parameter estimation

When p, d and q are defined, the model parameters φ1, ..., φp and θ1, ..., θq need to be esti-
mated. Usually, this is done with maximum likelihood estimation (MLE). The likelihood is
the probability of obtaining the observed data, given the model and specific parameter val-
ues. The parameter values that maximize the likelihood are called the maximum likelihood
estimators of the true parameters, and will be used as the parameter estimates in the fitted
ARIMA(p, d, q) model, which then is referred to as the maximum likelihood ARIMA(p, d,
q) model. The detailed mathematical description of MLE for ARIMA models can be found
in Brockwell & Davis (2002), section 5.2.

Note here that the Hyndman-Khandakar algorithm already produces a fitted model as out-
put, and the parameter estimation as described in this section is done inside the algorithm,
each time a model is fitted to the d-times differenced data.

2.4.2.4 Model checking

Model checking involves identifying if the fitted model is adequate. This is done by inspecting
its residuals, which are defined as the difference between the actual observations and the
corresponding fitted values, as shown in Equation (2.21).

εt = yt − ŷt (2.21)

2.4. Time series forecasting 24

If the maximum likelihood ARIMA(p, d, q) model is the true process that generated the
data, the residuals should be completely white noise. Recall, however, that the model is an
estimation of the true process. Therefore, a good model that fits the data well, should have
residuals with properties that approximately reflect those of white noise, i.e. a zero mean
and no autocorrelation. If autocorrelation is present in the residuals, this means that there
is still information left in the data, which could be used to create more accurate forecasts.
A non-zero mean will lead to biased forecasts.

Autocorrelation in the residuals can be detected by a visual interpretation of the residual
ACF plot, which will always show some autocorrelation, due to random variation. Therefore,
given that n is the length of the modelled time series, and assuming a normal distribution,
the residuals are considered to be uncorrelated when for at least 95% of the time lags, the
residual ACF lies within the interval [−1.96/

√
n, 1.96/

√
n].

Usually, several computations within the model fitting and forecasting process build on
the assumption that the data come from a normally distributed population. For example,
in MLE and the calculation of AIC, Gaussian likelihood is commonly used. Furthermore,
prediction intervals of forecasts are in general derived by assuming a normal distribution.
Normally distributed residuals indicate that these assumptions were valid, and are therefore
a valuable property of a model. However, as stated by Brockwell & Davis (2002), using
Gaussian likelihood is sensible even when the data are not normally distributed.

2.4.2.5 Forecasting

A fitted ARIMA(p, d, q) model can then be used to forecast the future values of a time
series. To do so, Equation (2.19) is rewritten, such that the current value of the time series,
yt, is replaced by a future value of the time series, yt+h, as showed in Equation (2.22).

∇dyt+h = φ̂1∇dyt+h−1 + ...+ φ̂p∇dyt+h−p + θ̂1εt+h−1 + ...+ θ̂qεt+h−q + εt+1 (2.22)

Where h is the forecast horizon, i.e. the number of time lags ahead at which the forecast
is made, p, d and q are known and constant, and φ̂1, ..., φ̂p and θ̂1, ..., θ̂q are the estimated
parameter values, which are also constant.

When h > 1, more than one forecast has to be made. For example, the forecast of ∇dyt+2,
the value of the time series two time lags ahead, is based on ∇dyt+2−1, the value of the time
series one time lag ahead. Therefore, ∇dyt+2−1 needs to be forecasted first, before ∇dyt+2
can be forecasted. In general, this means that the uncertainty of the forecasts increases as
h increases. This uncertainty is expressed by means of a prediction interval. Most often,
the 95% prediction interval is used. Assuming normally distributed residuals, the lower and
upper bound of the 95% prediction interval for the h-step forecast can be calculated with
Equation (2.23) and Equation (2.24), respectively.

` = ŷt+h − 1.96σ̂h (2.23)

υ = ŷt+h + 1.96σ̂h (2.24)
Where ` is the lower bound of the 95% prediction interval, υ is the upper bound of the 95%
prediction interval, ŷt+h is the forecasted value h time lags ahead. and σ̂h is the estimated

2.4. Time series forecasting 25

standard deviation of the forecast distribution h time lags ahead, which is explained below.
The 95% prediction interval can be interpreted as follows: there is a 95% probability that
` ≤ yt+h ≤ υ.

Recall that in Definition 1, a time series was defined as a collection of random variables. In
fact, to state it statistically correct, it is the distribution of the random variable h time lags
ahead that is forecasted, rather than an individual value. This distribution is referred to as
the forecast distribution, and the single forecasted value, also known as the point forecast,
is then taken to be the mean of the forecast distribution. In Equation (2.23) and Equation
(2.24), σ̂h is the estimated standard deviation of the forecasted distribution, assuming it is
a normal distribution with mean yt+h and variance σ2

h. When h = 1, the residual standard
deviation σε is a good estimate for σh. However, for h > 1, computations get more complex.
For a detailed description, see Shumway & Stoffer (2011), Section 3.5.

2.4.2.6 Accuracy evaluation

A good model fit, does not necessarily lead to accurate forecasts. Therefore, when evaluating
its performance, the forecasting model should be used to forecast multiple values of new data
that were not included in the model building process. The error of each individual forecast
can be calculated with Equation (2.25).

et+h = yt+h − ŷt+h (2.25)

Where yt+h is the observed data value h time lags into the future, and ŷt+h is the forecasted
data value h time lags into the future. Obviously, future in this sense is relative to the model
building period.

When making k different forecasts, the corresponding forecast errors e1, e2, ..., ek, can be
summarized with an error metric. Several of those metrics exist. Some of them are only
applicable to errors that all have the same units, while others may also be used when errors
with different units are compared. Since all forecasts in this thesis are distances, the unit-
dependent errors are adequate. Most commonly used are the Mean Absolute Error (MAE),
which can be calculated with Equation (2.26), and the Root Mean Squared Error (RMSE),
which can be calculated with Equation (2.27).

MAE =
∑k
i=1 |ei|
k

(2.26)

RMSE =
√∑k

i=1 e
2
i

k
(2.27)

Both the MAE and RMSE return values that are in the same scale as the original data. The
MAE gives the same weight to all errors. The RMSE, however, gives large errors more weight
than small errors, and therefore penalizes a large error variance. According to Chai & Draxler
(2014), the RMSE usually is better at revealing differences in model performance.

In some of the works discussed in Section 1.3, such as Y. Li et al. (2015), Z. Yang et al.
(2016) and Lozano et al. (2018), the Root Mean Squared Logarithmic Error (RMSLE) is

2.4. Time series forecasting 26

reported instead of the RMSE. Here, the natural logarithms of the observed and forecasted
data values are used in the forecast error computation. The main reason for doing so, is
that larger errors, usually occurring during peak hours or in areas/stations with a high usage
intensity, do not dominate smaller errors.

2.4.2.7 Transformations

Often, forecasts can be improved by using mathematical transformations, such that the
original data are adjusted for some known patterns causing non-stationary and/or non-linear
behaviour. That is, the data are transformed in advance, and the modelling and forecasting
procedures are applied to the transformed data. After forecasting the transformed data,
forecasted values on the original scale are obtained based upon the inverse transformation, a
process that is commonly called back transforming. A particularly useful transformation is
the log transformation, which suppresses larger fluctuations that occur when the level of the
time series increases. Furthermore, they guarantee strictly positive forecasted values. The
log transformed data ωt, is derived by taking the natural logarithm of the original data yt,
as showed in Equation (2.28).

ωt = log yt (2.28)

However, care has to be taken when back transforming a log transformed forecast to the
original scale. Intuitively, one would obtain the back transformed forecast ŷt+h by setting it
equal to eω̂t+h , where e is Euler’s number. However, assuming that the forecast distribution
of ωt+h, Ωt+h, is normal, with mean µΩt+h

and variance σ2
Ωt+h

, then the forecast distribution
of yt+h, Yt+h, follows a log-normal distribution, with mean µYt+h

as defined in Equation
(2.29).

µYt+h
= e

(µΩt+h
+0.5σ2

Ωt+h
) (2.29)

For the proof of this theorem, see Dambolena, Eriksen, & Kopcso (2009). Hyndman &
Athanasopoulos (2018) refer to µYt+h

as the bias-adjusted point forecast.

2.4.3 Naïve forecasts
It is common practice to compare the errors of forecasts obtained with a fitted time series
model to those of forecasts obtained with a very simple forecasting method. Such a simple
method, is in that case referred to as a baseline method. If the more sophisticated model
does not lead to considerably better forecast accuracies than the baseline, it can be dismissed
(Hyndman & Athanasopoulos, 2018).

One of the simplest forecast methods around, often used as a baseline, is known as the naïve
method. When forecasting with the naïve method, all forecasted values will be equal to the
last observation, no matter how far the forecasting window h reaches, as shown in Equation
(2.30).

ŷt+h = yt (2.30)

Where ŷt+h is the forecasted data value h time lags into the future, and yt is the last observed
data value.

2.5. Time series clustering 27

2.4.4 Seasonal forecasts
ARIMA models as described in section 2.4.2 are designed for data without a seasonal com-
ponent. With some modifications, they can be applied to seasonal data as well. That works
as follows. Instead of an ARIMA(p, d, q) model, an ARIMA(p, d, q)(P , D, Q) model is
fitted to the data. The (P , D, Q) part of the model works in a similar fashion as the (p,
d, q) part, but relates to the seasonal component of the data. Hence, P is the number of
seasonal autoregressive terms in the model, D is the order of seasonal differencing, and Q is
the number of seasonal moving average terms. Where p = 1 means that the past observation
yt−1 is used to model the current value yt, setting P = 1 means that the past observation
yt−m is used to model the current value yt, with m being the number of observations per
seasonal cycle. The same holds for Q: setting Q = 1, means that the past error εt−m is used
to model the current value yt. Regarding the seasonal differencing parameter D, the first
order seasonal difference of a time series is the series of changes from one seasonal period to
the next (Shumway & Stoffer, 2011).

However, ARIMA(p, d, q)(P , D, Q), as well as several other commonly used seasonal models
such as Holt Winters exponential smoothing, have two main limitations which make them
unsuitable for some kind of data. Firstly, they were primarily designed to work with shorter
seasonal periods, such as monthly data with patterns that repeat every year (i.e. m =
12). In the case of longer seasonal periods, which may occur for example in daily and
sub-daily data, modelling becomes inefficient. In the R statistical software, for example,
the forecast package (Hyndman & Khandakar, 2008) only allows seasonal periods up to
m = 350 (Hyndman, 2010).

Secondly, these models can not handle more than one seasonal pattern at a time. Again, this
can be problematic especially for daily data, in which both a weekly and yearly pattern may
exist, and sub-daily data, in which even a daily, weekly and yearly pattern may exist. One
of the alternative approaches proposed by Hyndman & Athanasopoulos (2018) works as fol-
lows. First, the data is decomposed into a trend, seasonal and remainder component. Then,
the trend and remainder component are together modelled by a non-seasonal model, such as
ARIMA(p, d, q), and forecasted accordingly. The seasonal component, in turn, can be fore-
casted with a seasonal naïve method, meaning that the forecasted value will be equal to the
last observed value from the same season of the year. That is, the seasonal forecast for times-
tamp yt+h will be equal to the last observed value in the sequence {yt+h−m×1, yt+h−m×2, ...}.
Then, the non-seasonal and seasonal forecasts are added back together, to obtain a single
forecasted value.

2.5 Time series clustering

2.5.1 Dissimilarity measures
Time series clustering is a specific domain within the field of time series analysis. Given a
set of individual time series, its objective is to group similar time series into the same cluster
(Keogh & Lin, 2005). Logically, this involves the calculation of a measure that represents
the similarity, or dissimilarity, between two time series. A wide range of such measures exist,

2.5. Time series clustering 28

some of them based directly on the observations, others on specific features of the time series,
and others on parameters or residual characteristics of models fitted to the time series.

Whenever the time series are of the same length, and observed at the same timestamps,
a simple dissimilarity measure can be calculated by summing the ordered point-to-point
distances between them. A well-known distance function is the Euclidean distance, as defined
in Equation (2.31) (Cassisi, Montalto, Aliotta, Cannata, & Pulvirenti, 2012).

d(Y,X) =
√√√√ n∑
t=1

(yt − xt)2 (2.31)

Where d(X, Y) is the dissimilarity value between time series Y and X, yt and xt are the
observations in respectively Y and X at time t, and n is the length of Y and X. A higher
value of d(X, Y) implies less similar time series. By definition, d(X, Y) ≥ 0.

Using Euclidean distance as a dissimilarity measure is simple, but has drawbacks for certain
applications. For example, it can not handle time series of different length, it is sensitive to
outliers, and it can not capture out-of-phase similarities, which occur when two time series
show similar patterns, but shifted over time. To deal with one or more of these drawbacks,
several other dissimilarity measures for time series were developed, of which the dynamic
time warping distance is best known. Dynamic time warping is based on classical algorithms
for comparing discrete sequences with continuous sequences, and basically replaces the one-
to-one comparison of Euclidean distances with a many-to-one comparison. However, despite
its simplicity, the Euclidean distance approach still turns out to be very competitive with
the more complex methods (Cassisi et al., 2012).

Once the dissimilarity values for all possible combinations between the analyzed time series
are calculated, they are stored in an n× n matrix, where n is the number of analyzed time
series, and the diagonal entries equal zero. Such a matrix is commonly referred to as a
dissimilarity matrix, and can be used inside conventional clustering algorithms. In time
series analysis, k-means clustering and hierarchical clustering are the most popular options
for this task (X. C. Wang, Smith, & Hyndman, 2006). The latter is used in this thesis, and
its theory is summarized briefly in the next section, based on G. Gan, Ma, & Wu (2007),
Chapter 7 and Chapter 17.

2.5.2 Hierarchical clustering
Hierarchical clustering algorithms divide a set of data points into a sequence of nested par-
titions, where each partition consists of a different number of clusters. Two main types are
distinguished: agglomerative hierarchical clustering, and divisive hierarchical clustering. In
the first, the starting point is a partition in which all data points form a cluster on their own.
Then, the two closest clusters, based on a pre-defined dissimilarity measure, are merged. This
process is repeated until all data points are in one single cluster. The divisive method works
the other way around: all data points start in the same cluster, which is split repeatedly,
until the number of clusters equals the number of data points. Agglomerative hierarchical
clustering is the most popular of the two types, and forms the focus of this section.

2.5. Time series clustering 29

Again, defining a suitable dissimilarity measure is a core task in the process. A simple
example is the single link method, where the dissimilarity between two clusters is defined as
the shortest distance between a data point in the first cluster and a data point in the second
cluster. In contradiction, the complete link method calculates the dissimilarity as being the
longest possible distance between them. Other methods include the group average method,
which calculates the average of the shortest distances between all pairs of data points, and
the centroid method, which calculates the shortest distance between the cluster centroids. In
all cases, the Euclidean distance is commonly used as the distance function.

A more general approach is known as the Ward method, developed by Ward Jr. (1963). In
this method, the dissimilarity between two clusters is defined as the loss of information when
the clusters are merged. The information loss of a merge between two clusters is quantified
with Equation (2.32).

∆I = I(Cm)− I(C1)− I(C2) (2.32)
Where ∆I is the information loss, Cm is the merge between clusters C1 and C2, and I(Cm),
I(C1) and I(C2) are the information criteria of respectively Cm, C1 and C2. Ward Jr. (1963)
did not put a hard restriction on how such an information criterion should be quantified,
but usually, it is set to be the error sum of squares, calculated with Equation (2.33).

I(C) =
n∑
i=1

(ci − µ(C))2 (2.33)

Where ci are the data points in C, µ(C) is the center of mass of C, and n is the number of
data points in C. In other words, I(C) is the sum of the Euclidean distances from all data
points in the cluster, to the center of mass of the cluster.

If one is interested in obtaining only one single partition, it is necessary to find a suitable value
for the desired number of clusters k. It is common practice to do so by visually interpreting
the dendrogram of the hierarchical clustering, which is a diagram representing the output
in a tree structure, but automated approaches have been developed as well. Most of them
are based on the idea that in an ideal situation, clusters are compact and clearly separated
from each other. However, minimizing the variance within the clusters will always favor the
situation where each data point forms a cluster on its own, while maximizing the variance
between the clusters will always favor the situation where all data points are together in one
cluster. Therefore, most approaches combine those two operations, in order to find the best
possible partition.

An example of such an approach is the Dunn Index, developed by Dunn (1974). For a specific
partition into k clusters, it calculates the ratio of the smallest distance between two data
points that are not in the same cluster to the largest distance between two data points that
are in the same cluster. This is shown in Equation (2.34).

V (Λk) = min

min
 D(Ci, Cj)

max diam(Cl)

 (2.34)

Where V (Λk) is the Dunn Index of a partition Λk with k clusters, 1 ≤ i, j, l ≤ k, D(Ci, Cj)
is the Euclidean distance between a data point in cluster Ci ∈ Λk and a data point in cluster

2.5. Time series clustering 30

Cj ∈ Λk, given that Ci 6= Cj, and diam(Cl) is the largest Euclidean distance between two
data points in cluster Cl ∈ Λk. To find the optimal partition Λ∗k, the Dunn Index should be
maximized.

2.5.3 Spatial time series clustering
Spatial time series are time series with a spatial reference, i.e. time series that are linked to
geographical locations (Kamarianakis & Prastacos, 2005). With such series, similarity can
not only be expressed in terms of similar data values, but also in terms of spatial proximity.
These two, however, are likely to be related, given the concept of spatial dependence, which
is similar to the temporal autocorrelation described in Section 2.2.1, in the sense that the
structure of the correlation between random variables is derived from a specific ordering,
determined by their relative position in geographic space (Anselin, 2010). Hence, time series
linked to geographical locations that are close to each other, are likely to show similar
temporal patterns.

When clustering a set of spatial time series, it may be desired that the clusters are not only
similar in data values, but also form spatially connected sets. In that case, constraints need
to be imposed on the possible outcomes of the clustering process. This can can be done in a
strict way, where the resulting partition is forced to consist of spatially contiguous clusters.
When the spatial dependence between the series is really strong, this may be a sensible
approach. In less coherent cases, however, this may group time series with different patterns
into the same cluster, just because they are close to each other in space. Hence, an adequate
balance between the data similarity and the spatial similarity, needs to be found, without
artificially forcing a strong spatial dependence on the time series.

For this, Chavent, Kuentz-Simonet, Labenne, & Saracco (2018) developed a variation on the
hierarchical clustering algorithm, called spatially constrained hierarchical clustering, which
is summarized in this section. The algorithm takes two dissimilarity matrices as input. The
first one gives the dissimilarity values in the feature space, i.e. the dissimilarities of the data
values of the observations, while the latter gives the dissimilarity values in the constraint
space, i.e. the dissimilarities of the geographical locations of the observations.

Spatially constrained hierarchical clustering uses a Ward-like method to define which clusters
will be merged at each step, but with a different definition of the information criterion of a
cluster, as shown in Equation (2.35).

I(C) = (1− α)
n∑
i=1

(ci − µ(C))2 + α
n∑
i=1

(c∗i − µ∗(C))2 (2.35)

Where ci are the data points in C, with normalized values taken from the feature space
dissimilarity matrix, and µ(C) is the center of mass of C, computed with those values.
c∗i are the same data points, but with normalized values taken from the constraint space
dissimilarity matrix, and µ∗(C) is the center of mass of C, computed with those values.
Furthermore, n is the number of data points in C and α is the mixing parameter, where
0 ≤ α ≤ 1. Chavent et al. (2018) also present more general approaches, in which the

2.5. Time series clustering 31

calculated distances in Equation (2.35) are not necessarily Euclidean, and where observations
can be weighted, but these are not covered in this thesis.

With the information criterion of a single cluster calculated as in Equation (2.35), the in-
formation loss of a merge between two clusters is calculated in the same way as in regular
Ward hierarchical clustering (Equation (2.33)). Then, at each merging step, two clusters are
merged such that the loss of information is minimized.

The mixing parameter α plays a key role in spatially constrained hierarchical clustering.
It sets the importance that is given to the spatial constraint. The higher α, the more the
result of the clustering procedure is influenced by the spatial locations of the data points.
When α = 0, the data are clustered without any spatial constraint, while α = 1 leads to a
clustering only based on the spatial location of the data points. Therefore, it is important
to determine a suitable value for α. Chavent et al. (2018) propose the following approach.
First, α is set to zero, and a hierarchical clustering without spatial constraint is performed.
The resulting sequence of partitions is rendered as a dendrogram, and the optimal number
of clusters k∗ is defined visually. Then, several spatially constrained hierarchical clustering
procedures are performed, each with a different value of α, and k = k∗. Since k is fixed, the
outputs are always single partitions. For each cluster in such a partition the information
criterion regarding the feature data (i.e. the first part of Equation (2.35)) and the information
criterion regarding the constraint data (i.e. the second part of Equation (2.35)), are calculated
separately, and also summed separately over all clusters in the partition. These two summed
values are then plotted, with α on the x-axis. In the end, this lead to a plot that shows the
loss of information in the feature space and the gain of information in the constraint space,
as α gets larger. With such a plot, α can be chosen such that the trade-off between the loss
and gain of information in the two spaces is considered acceptable.

Chapter 3

System architecture

This chapter describes the methodology of DBAFS. It builds on the theory discussed in
Chapter 2, and is structured as follows. In the first section, a general overview of the complete
forecasting system is given. Section two presents the software that underlies DBAFS. The
third, fourth and fifth section discusses the inputs to the system, including the computations
that are done on the database server of the dockless bike sharing system. Subsequently,
section six, seven and eight cover the detailed methodologies of all the distinct components
of the system architecture separately.

3.1 Overall design
The goal of DBAFS is to forecast the distance to the nearest available bike for a given
location and a given timestamp in the future. It is meant to be used by both the operators
and users of a dockless bike sharing system, which from now on are referred to as users of
DBAFS. A forecast is made every time a user requests one. In intensively used bike sharing
systems, this can mean that several hundreds of forecasts are required every day, all based
on different historical datasets. All these datasets usually consist of a time series with a high
temporal resolution. Although the data may be complex, it would be inconvenient for the
users if forecasts take a lot of time or need manual interventions. Taking into consideration
the above-mentioned challenges, DBAFS should be a fast and automated process that still
produces as accurate forecasts as possible. Optimizing all of them, is a utopia. Faster
forecasts, will probably have a negative affect on the accuracy, and aiming for an automated
procedure, means that models can not be manually updated and fine-tuned. The goal,
therefore, is to find an acceptable compromise between the three requirements.

The most time consuming part of the system is the selection of an appropriate model and
the estimation of its parameters. If this had to be done at every forecast request separately,
forecasts would take too much time. Therefore, in DBAFS, forecasting models are build
only once in a while at a limited number of locations. Each individual forecast will inherit
the structure and parameters of one of those pre-build models, rather than building a new
model on its own.

3.1. Overall design 33

The approach of building models only at a limited number of locations, involves the selection
of those locations. In DBAFS, this is done by dividing the system area of the dockless bike
sharing system into spatially contiguous clusters, where each cluster contains the areas that
show similar weekly patterns in the historical data. Then, each cluster is represented by a
single model point, which is a geographical location where a model is build. An individual
forecast takes the model structure and parameters of the model point that is in the same
cluster as the location of the forecast.

The architecture of DBAFS builds on two main assumptions, one regarding the spatial
dependence in the data, and the other regarding the temporal dependence in the data.
Firstly, it is assumed that the processes generating the historical data are spatially dependent,
such that spatially contiguous clusters containing areas with similar temporal patterns can
be constructed, and moreover, that they are similar enough at each location in a cluster to
be described by the same model. Secondly, it is assumed that these processes do not change
radically over a short time period, such that a model fitted to a set of historical data, can
still adequately describe new data coming from a location in the same cluster. Of course,
these assumptions will not always be completely valid, but are made to obtain a reasonable
compromise between fast and accurate forecasts.

The clustering, model building and forecasting processes can be seen as three distinct pro-
cessing loops, that together make up DBAFS. The forecast loop runs every time a user
makes a forecast request. The model loop only runs every nm weeks, and the cluster loop
every nc weeks. nm should be chosen such that new models are build when the patterns in
the historical data have changed considerably. nc should be chosen such that new clusters
are defined when the spatial distribution of the weekly patterns in the historical data has
changed considerably, and will, in most cases, be much larger than nm. The cluster, model
and forecast loops are all completely automated and do not require any manual interventions.
The overall design of DBAFS as described above is summarized in Figure 3.1. The inputs of
the system, i.e. the system area, database and forecast request, are covered in Section 3.3,
3.4 and 3.5, respectively, while Section 3.6, 3.7 and 3.8 describe the detailed designs of the
three processing loops.

Figure 3.1: Overall design of DBAFS

3.2. Software 34

3.2 Software
The underlying code of DBAFS (see Appendix A) is written in the R programming language
(R Core Team, 2013). However, Structured Query Language (SQL) statements are nested
within the R code to retrieve data from a PostgreSQL database (PostgreSQL, 2014), and
to run some of the heavier data pre-processing computations on the database server. These
computations are discussed in Section 3.4.

On top of functions that are included in R by default, DBAFS makes use of several extensions,
listed below.

• The ClustGeo package, for spatially constrained clustering (Chavent et al., 2018).
• The clValid package, for calculating the Dunn Index (Brock, Pihur, Datta, & Datta,

2008).
• The forecast package, for building forecasting models, decomposing time series, and

forecasting time series (Hyndman & Khandakar, 2008).
• The lubridate package, for processing dates and timestamps (Grolemund &Wickham,

2011).
• The RPostgreSQL package, for connecting to a PostgreSQL database and running SQL

code on the database server (Conway, Eddelbuettel, Nishiyama, Prayaga, & Tiffin,
2017).

• The sf package, for processing spatial data (Pebesma, 2018).
• The tsibble package, for pre-processing time series datasets (E. Wang, Cook, & Hyn-

dman, 2018).

3.3 System area
Each dockless bike sharing system has a system area, in which the bikes can be used. Usually,
leaving a bike outside of the system area, will result in a fine. DBAFS produces forecasts
only inside the system area, and therefore, the geographical outline of this area needs to
be provided. DBAFS accepts all filetypes that can be read with a driver supported by the
st_read function in the sf package, given that the included feature is either a polygon
or multipolygon. The accepted filetypes include, among others, ESRI shapefiles, GeoPack-
age files and GeoJSON files. It is also possible to retrieve the feature from a PostgreSQL
database.

3.4 Database
In a dockless bike sharing system, each bike is equipped with a Global Positioning System
(GPS). Every id minutes, the geographical locations of all bikes are saved into a database,
together with the corresponding timestamp. The locations of the bikes that are not in use
at the current time, and thus available, are visible to the users of the system in a mobile
application, and stored separately from the data regarding bikes that are in use.

The geographical location of a bike is spatial data, and should be stored as such. An advanced

3.4. Database 35

and open source database management system for spatial data is PostgreSQL in combination
with the PostGIS extension. DBAFS requires the data to be stored in such a database, and
to have a sub-daily temporal resolution. Each feature represents the location of an available
bike at a certain timestamp and should at least have the following fields.

• A timestamp of data type timestamp with time zone.
• A geographical location of data type geometry(Point).
• A unique ID of the bike to which the feature belongs.

Data are pre-processed on the database server, and only the data that are needed, are loaded
into memory. In DBAFS, this pre-processing step involves two different procedures. The
first one leads to data that contain information about the distance to the nearest bike for
several timestamps in the past, and is discussed in the next section, while the latter produces
a dataset with all the bicycle pick-ups in the database, and is discussed in Section 3.4.2.

3.4.1 Distance data
For a given location, the distance from that location to the nearest available bike is calculated
for each timestamp t ∈ T , where T is a regularly spaced time interval containing timestamps
within the timespan of the historical data. The temporal resolution of T equals is minutes,
where is ≥ id. The nearest available bike is found by a nearest neighbour searching process
that uses spatial indices on the geometries. In practice, this means that it is not needed
to first compute the distances to all available bikes, which would slow down the process
vastly. If no bike can be found, for example due to a server error at that timestamp, or the
unlikely event that there are no bikes available anywhere in the system, the corresponding
feature will be inserted in the data, with a non-available distance value, NA. That is, after
pre-processing, the resulting time series will always be regular, with all timestamps t ∈ T
present. This also means that when data are queried for several locations at the same times,
the resulting time series will always have the same length.

The calculated distances are great-circle distances assuming a spherical earth with a radius
equal to the mean radius of the WGS84 ellipsoid, as showed in Equation (3.1).

LAB = (2a+ b)
3 × π

180 × arccos(sinφAsinφB + cosφAcosφBcos∆λ) (3.1)

Where LAB is the great-circle distance between point A and point B in meters, φA and φB
are the latitudes of respectively point A and B in degrees on the WGS84 ellipsoid, and ∆λ
is the difference in longitude between the two points, i.e. λB−λA, in degrees on the WGS84
ellipsoid. Furthermore, a is the equatorial radius of the WGS84 ellipsoid in meters, which is
defined to be 6378137, and b is the polar radius of the WGS84 ellipsoid in meters, which is
defined to be 6378137× (1− 298.257223563−1) = 6356752.3142 (Iliffe & Lott, 2008).

The sphere is chosen since calculating distances on the ellipsoid itself slows down compu-
tations, and, on the geographical scale of a dockless bike sharing system, has an accuracy
gain that can be neglected. Working with the shortest distance over the street network
might in most cases be more appropriate, but at the same time involves much more complex

3.5. Forecast request 36

computations, especially when either the given location or the locations of the bikes are not
exactly on the network lines.

The output of this pre-processing operation is a time series with T features and a temporal
resolution of is, belonging to one single location in the system area of the dockless bike
sharing system. Each feature contains a timestamp and the great-circle distance from the
given location to the nearest available bike in meters. Such data are referred to in this thesis
as distance data.

3.4.2 Usage data
A pick-up is the moment that a user of the dockless bike sharing system unlocks a bike
to make a trip. For the historical database containing the locations of the available bikes,
this means that the bike that is picked-up will be present in the data at the last timestamp
before the pick-up, but missing at the first timestamp after the pick-up. In DBAFS, this is
used to retrieve all the pick-ups from the database. Historical data with the highest possible
temporal resolution, i.e. id minutes, are queried for one single bike ID. Then, all timestamps
that are missing, are added to the data, but without an available location. If feature j has
an available location, but feature j + 1 has not, j is considered a pick-up. This procedure is
repeated for all individual bikes. If more than 20% of the features within the same minute
are considered pick-ups, it is assumed that this was caused by a server error, and they are
removed from the data.

The output of this pre-processing operation is a data frame with all the features in the
database that are considered pick-ups. Each feature has at least a timestamp, a geographical
location and a bike ID. The number of pick-ups in an area represents the usage intensity of
the bike sharing system. Such data are therefore referred to in this thesis as usage data.

Obviously, the procedure described in this section has some deficiencies. The removal of a
bike by the system operator, for redistribution or maintenance purposes, is falsely considered
to be a pick-up. Specific information about redistribution patterns can be added, but will
in many cases be unavailable, and even if available, those patterns may be too irregular to
implement adequately in the workflow. However, in DBAFS, the usage data are only used
to define the location of the model point in a cluster, and not to analyze usage patterns into
detail. Therefore, fully accurate data are not indispensable for this purpose, and the current
procedure forms a sufficient basis.

3.5 Forecast request
A forecast request is made by a user. DBAFS assumes such a request to be composed
of the geographical coordinates of the location at which the forecast should be made. The
coordinates can be expressed in any coordinate reference system that is included in the PROJ
library (PROJ-contributors, 2018). The timestamp can be expressed in any time zone that
is included in the Time Zone database (Eggert & Olson, 2018).

3.6. Cluster loop 37

3.6 Cluster loop
The main purpose of the cluster loop is to find suitable locations for the model points. The
loop starts by laying a grid with square cells of p × p meters over the system area of the
dockless bike sharing system, such that each location in the system area is part of one of
those grid cells. Then, the geographical coordinates of the centroids of the grid cells are
calculated, and mc weeks of distance data are queried for each of those centroids.

The result of this query operation is a set of n time series, where n is the number of cells
in the overlaying grid. To reduce the dimensionality of the clustering task, each of those
time series is simplified by averaging its values per hour of the week. This is followed by a
min-max normalization, such that time series that show the same patterns over time, but
with different means, will be considered similar. The normalized values are calculated with
Equation (3.2).

ŷt = yt − ymin
ymax − ymin

(3.2)

Where ŷt is the normalized value of yt, ymin is the minimum value in the time series, and
ymax is the maximum value in the time series. By definition, 0 ≤ ŷt ≤ 1.

For all possible combinations of the n averaged, normalized time series, a dissimilarity value
is calculated based on the Euclidean distance between the two series, as defined in Equation
(2.31). Since all time series have the same length, and observations at the same timestamps,
the Euclidean approach is appropriate, and for the sake of simplicity, chosen over dynamic
time warping. Furthermore, since out-of-phase similarities are ignored, areas where similar
peaks and valleys in the data occur at different times of the week, will be grouped into
different clusters, which gives a better representation of the spatio-temporal dynamics of the
bike sharing system.

All Euclidean dissimilarity values are stored together in a n × n matrix and form the time
series dissimilarity matrix A. At the same time, a spatial dissimilarity matrix B is created.
This matrix is equal to 1− C, where C is the adjacency matrix of the n grid cells. That is,
B is a n × n matrix in which bi,j = 0 when grid cells i and j are neighbours, and bi,j = 1
otherwise.

A and B are used as the dissimilarity matrices of respectively the feature space and the
constraint space in a spatially constrained hierarchical clustering procedure, which was in-
troduced in Section 2.5.3. Before the final clustering procedure can start, the number of
clusters k and the value of the mixing parameter α need to be set. DBAFS does this based
on the approach proposed by Chavent et al. (2018), which was discussed in Section 2.5.3,
but replaces the manual interpretation of plots by a fully automated method, as described
below.

At first, only the dissimilarity values in the feature space are clustered, i.e. a spatially
constrained hierarchical clustering with α = 0 is performed, which results in a sequence of
partitions {Λk}. For each k ∈ K, where K is a finite set of strictly positive integers, the
Dunn Index V (Λk) of a specific partition Λk is calculated with Equation (2.34). Then, the
value of k that maximizes V (Λk) is chosen as optimal value of k, and referred to as k∗.

3.6. Cluster loop 38

Secondly, for each ω ∈ Ω, where Ω = {0, 0.1, 0.2, ..., 1}, a spatially constrained hierarchical
clustering with k = k∗ and α = ω is performed, which results in a set of partitions {Λω},
of the same length as Ω. For each partition Λω, the sum ∑

If (Cω
i) and the sum ∑

Ic(Cω
i)

are calculated, where Cω
i are the clusters in Λω, If is the information criterion regarding

the feature data (i.e. the first part of Equation (2.35)) and Ic is the information criterion
regarding the constraint data (i.e. the second part of Equation (2.35)). Then, the value
of ω that maximizes ∑ Ic(Cω

i), given that
(
(∑ If (Cω

i)/∑ If (C0
i)
)
≥ 0.9, is chosen as the

optimal value of α, and referred to as α∗. That is, clusters are made as spatially contiguous
as possible, with the restriction that this can never lead to an information loss in the feature
space of more than 10%.

With A, B, k∗ and α∗ set, the final spatially constrained hierarchical clustering is performed.
The output of this procedure is a single partition, in which all time series are grouped into a
cluster. Some extra restrictions are imposed subsequently. Since the spatial constraint was
not strict, it is not guaranteed that all the clusters in this partition are fully spatially con-
tiguous. Clusters consisting of more than one set of spatially connected grid cells, can occur
in situations where striving for full spatial contiguity would lead to a too large information
loss in the feature space, and thus, clusters that would not truly represent areas with similar
patterns in the distance data. In such cases, all distinct spatially contiguous areas in these
clusters, will be treated as separate clusters, with their own model point. However, this may
lead to a high number of model points that each represent a very small area. When this
area has a high usage intensity, the described situation is acceptable. When this area has a
very low usage intensity, on the other hand, it is unwanted to have a separate model point
representing it. Therefore, whenever a cluster has a usage intensity of less than two bicycle
pick-ups per day, it will be merged with the closest neighbouring cluster. which is found by
minimizing the inter-centroid distance.

Now, each cluster is guaranteed to be spatially contiguous, and gets assigned one model
point. Before the locations for the model points are chosen, usage data is queried from the
database, and the total number of pick-ups is calculated for each grid cell. This number is
assigned as a variable to the corresponding grid cell centroids. Then, for each cluster, the
arithmetic means of the coordinates of all grid cell centroids in that cluster, are calculated,
weighted by the number of pick-ups. Equation (3.3) shows the calculation of the weighted
average latitude of a cluster, while Equation (3.4) shows the calculation of the weighted
average longitude of a cluster.

φ∗ =
∑m
i=1 φi × pi∑m

i=1 pi
(3.3)

λ∗ =
∑m
i=1 λi × pi∑m

i=1 pi
(3.4)

Where φ∗ and λ∗ are respectively the weighted average latitude and the weighted average
longitude of the cluster, φi and λi are respectively the latitude and longitude of the ith grid
cell centroid in the cluster, pi is the number of pick-ups in the ith grid cell in the cluster, and
m is the total number of grid cells in the cluster.

The combination {φ∗, λ∗} forms the coordinate pair of the weighted centroid of the cluster.
This weighted centroid is then chosen to be the model point of that cluster. In this way, a

3.7. Model loop 39

model point is a cluster centroid which is dragged towards the areas where the usage intensity
of the bike sharing system is higher, and where accurate forecasts are thus more important.
The model points of all clusters are send to the model loop. Finally, for each cluster, grid cells
are first dissolved, and then clipped by the system area, to form one geographic outline of that
cluster. The geographic outlines of all clusters, stored as polygons, are send to the forecast
loop. The complete methodology of the cluster loop as described above is summarized in
Figure 3.2.

Figure 3.2: Methodology of the cluster loop

3.7 Model loop
The main purpose of the model loop is to fit time series models to the historical data of a
limited set of geographical locations. These locations are called the model points, and result
from a previous pass through the cluster loop. For each model point, mm weeks of distance
data are queried. All data are log-transformed, to stabilize the variance, and to make sure

3.7. Model loop 40

that, when using the models for forecasting, the forecasted distances will always be larger
than zero.

If the data are seasonal, they will pass through the decomposition process sequence. There,
they will be decomposed into a trend, seasonal and remainder component with STL, as
introduced in Section 2.3.3. Single seasonal data, with either a daily or a weekly seasonal
pattern, will be decomposed once. Multiple seasonal data, that show both a daily and a
weekly seasonal pattern, will first be decomposed assuming that only daily seasonality is
present, after which the trend and remainder component are added together, and decom-
posed again, now assuming weekly seasonality. Hence, such data are eventually decomposed
in a trend, remainder and two seasonal components. Since STL is performed on the log trans-
formation of the original data, this indirectly implies that the original data are decomposed
in a multiplicative way.

STL requires a set of parameters to be defined in advance. For most of them, there exist clear
guidelines for the choice of their values, indited by R. B. Cleveland et al. (1990). Below, all
STL parameters are listed, including their quantification as used in DBAFS.

• np, the number of observations per seasonal cycle. When decomposing assuming daily
seasonality, np = 60×24/is, and when assuming weekly seasonality, np = 60×24×7/is.

• ni, the number of passes through the inner loop within one pass through the outer
loop. It should be chosen large enough such that the updating of the seasonal and
trend components converges. R. B. Cleveland et al. (1990) show that this convergence
happens very fast, and that, inside a pass through the outer loop, only one pass through
the inner loop is already sufficient. Hence, in DBAFS, ni = 1.

• no, the number of passes through the outer loop. To have near certainty of convergence,
R. B. Cleveland et al. (1990) recommend ten passes through the outer loop. In R, to
be extra safe, the default is set to fifteen passes. This will not be changed in DBAFS,
hence no = 15.

• ns, the seasonal smoothing parameter. It should be chosen large enough to avoid
overfitting, but small enough to allow slight variations over time. The choice of ns is
the only one where R. B. Cleveland et al. (1990) propose a manual approach, that
involves a visual interpretation of the time series plot. For an automated process
that decomposes several time series, this is problematic. Hyndman & Athanasopoulos
(2018), however, argue that a value of thirteen usually gives a good balance between
overfitting and allowing slight variations. In DBAFS, their recommendation is used.
Hence, ns = 13.

• nl, the low-pass filter smoothing parameter. R. B. Cleveland et al. (1990) show that
nl always can be set equal to the least odd integer greater than or equal to np, which
is done in DBAFS as well.

• nt, the trend smoothing parameter. It should be chosen large enough such that seasonal
variation does not end up in the trend component, but small enough such that low-
frequency effects do not end up in the remainder component. To achieve this goals,
R. B. Cleveland et al. (1990) show that nt should be chosen to be the smallest odd
integer that satisfies the inequality nt ≥ 1.5np/(1 − 1.5n−1

s). In DBAFS, this is done
as well.

3.7. Model loop 41

Once the data are decomposed in a trend component, a remainder component and one or two
seasonal components, the trend and remainder are added together, and send to the ARIMA
process sequence. This part of the data can be seen as the log-transformed, deseasonalized
original data, and should not contain seasonal patterns anymore. Data that were originally
already non-seasonal, skip the decomposition process sequence completely, and are send to
the ARIMA process sequence directly after the log transformation. Both types are from now
on referred to as the non-seasonal data.

In the ARIMA process sequence, an ARIMA(p, d, q) model is fitted to the non-seasonal
data, by applying the Hyndman-Khandakar algorithm, as described in Section 2.4.2.2. In
R, the Hyndman-Khandakar algorithm is implemented in the auto.arima function from the
forecast package, with the extra restriction that the order of differencing d is not allowed
to be larger than two. It also allows missing values, by handling them exactly. This is an
important characteristic, since it means that models will be fitted even if some observations
are missing due to server errors.

To determine if the data of a model point should pass through the decomposition process
sequence, and if yes, how many seasonal components should be subtracted, it is necessary
to first identify the seasonal patterns in the data. This is done with a variation on what
Hyndman & Athanasopoulos (2018) refer to as time series cross-validation, and works as
follows. Four different seasonality options are considered:

• no seasonality
• only daily seasonality
• only weekly seasonality
• both daily and weekly seasonality.

Then, the first two of the nw weeks of data are selected and log-transformed. Four different
models are fitted to these data, each assuming a different seasonality option. That is, when
the option of no seasonality is considered, the data are directly inputted into the ARIMA
process sequence. When one of the other options is considered, the data first pass through
the decomposition process sequence, and then, the deseasonalized data are inputted into the
ARIMA process sequence. Subsequently, each day in the first week following the ‘model
building weeks’, is forecasted separately. For the first day, this simply means that the non-
seasonal data on which the ARIMA(p, d, q) model is build, are forecasted 60 × 24/is time
lags ahead. If present, the seasonal component is forecasted in a naïve way, and added
to each result. For the second day, however, one extra day of data is added, and the same
ARIMA(p,d,q) model is used to forecast the non-seasonal part of this extended data 60×24/is
time lags ahead, and if present, the naïve seasonal forecasts are added to the results. This
process repeats for all seven days, each time using one extra day of data.

Once all days in this ‘forecasting week’ are forecasted, the two weeks of data on which the
models were build, are now extended by one week of new data. On this three-week dataset,
new models are build for each of the four seasonality options, and again, each day in the next
week is forecasted separately. This shifting of the model building period keeps repeating,
until there are no more weeks left to forecast. Then, for each of the seasonality options, the
total RMSE of all forecasts is calculated. The option with the lowest RMSE, is the identified

3.8. Forecast loop 42

seasonal pattern of the data.

After the log-transformation, seasonality detection, possible decomposition, and model build-
ing, the following output is obtained. All model points have an ARIMA(p, d, q) model that
describes the non-seasonal part of their data. Additionally, the length of the seasonal period
in their data is known. This can either be a single non-zero integer, in the case of only a
daily or weekly seasonality, a vector of two non-zero integers, in the case of both a daily and
a weekly seasonality, or zero, in the case of no seasonality. The chosen values p, d and q
of the ARIMA model, the estimated parameter values φ̂1, ..., φ̂p and θ̂1, ..., θ̂q of the ARIMA
model, and the identified length of the seasonal period, Ls, are send to the forecast loop.
The complete methodology of the model loop as described above is summarized in Figure
3.3.

Figure 3.3: Methodology of the model loop

3.8 Forecast loop
The main purpose of the forecast loop is to produce a forecast whenever it is requested
by a user. The forecasting task is split in two: seasonal forecasts capture the seasonal
patterns in the data, while an ARIMA(p, d, q) model takes care of the short-term dynamics.

3.8. Forecast loop 43

The geographical location that comes with such a forecast request, is intersected with the
clusters that resulted from a previous pass through the cluster loop. This process returns the
cluster in which the requested forecast location lies. Subsequently, the model structure and
parameters from the model that belongs to this specific cluster, are taken from a previous
pass through the model loop.

Since the clusters represent areas with similar patterns in the data, but not necessarily
with similar means, the inherited model structure only provides the length of the seasonal
patterns, and not the values corresponding to each season. Therefore, for the location of
the forecast request, mf weeks of distance data are queried, which will be used for seasonal
decomposition, whenever the inherited model structure has an identified seasonality. The
length of these data should be at least twice the length of the longest seasonal pattern, plus
one observation. For example, when a weekly seasonality is present in hourly data, the data
needed for forecasting should at least contain 24× 7× 2 + 1 = 337 observations.

The queried distance data are log-transformed. Then, they are decomposed by STL, using
the identified seasonal period length(s) Ls, which is stored in the provided model structure.
When Ls = 0, this decomposition step is skipped, and the data are treated in the same way
as the combination of trend and remainder that outputs from STL. Both types are referred
to as the non-seasonal data.

With the ARIMA(p, d, q) model that was taken from the model loop, the non-seasonal data
are forecasted h time lags ahead. h = (Tf − Tc)/is, where is is the temporal resolution of
the pre-processed distance data, Tc is the timestamp in the distance data that is closest to
the time at which the forecast request was send and Tf is the last timestamp in the interval
{Tc, Tc + is, Tc + 2is, Tc + 3is, ..., Tc + kis|Tc + kis ≤ Tr}, where Tr, in turn, is the time for
which the forecast is requested. For example, imagine a situation in which the distance data
contain values for each quarter of an hour, the forecast request was send at 15:48, and the
forecast is requested for 16:40. Then, Tc will be 15:45, the last timestamp in the queried
distance data, and Tf will be 16:30, the last quarterly hour timestamp before the requested
forecast time. Hence, h = 3. That is, a forecast meant for 16:40, will in that case effectively
be a forecast for 16:30. The values of p, d, and q in the ARIMA model are inherited from
the model structure provided by the model loop, just as the estimated parameter values
φ̂1, ..., φ̂p and θ̂1, ..., θ̂q.

For the data that were decomposed, the seasonal component is forecasted separately. This is
done with a seasonal naïve forecasting method, as described in Section 2.4.4. Then, the point
forecast of the seasonal component is added to the point forecast of the non-seasonal data, to
construct a reseasonalized point forecast. This point forecast is backtransformed with bias-
adjustment, to the original scale of the data, as explained in Section 2.4.2.7. The seasonal
point forecast is also added to the upper and lower bounds of the prediction intervals, to con-
struct reseasonalized prediction intervals, which are backtransformed with bias-adjustment
as well. That is, the prediction intervals of the non-seasonal data are shifted in line with the
point forecast, but do not get wider. Hence, the uncertainty of the seasonal forecasts is not
included in the final prediction intervals. This keeps calculations simple, and is a reasonable
approach, according to Hyndman & Athanasopoulos (2018).

3.8. Forecast loop 44

The forecasted distance to the nearest available bike, for the requested time and location,
together with the corresponding 95% prediction interval, forms the output of DBAFS, and
is send back to the user. The complete methodology of the forecast loop as described above
is summarized in Figure 3.4.

Figure 3.4: Methodology of the forecast loop

Chapter 4

Data and experimental design

This chapter describes the case study that was done to test the performance of DBAFS. It
is structured as follows. First, the characteristics of the bike sharing system that served as
a data source for the experiment, are presented. The data retrieval process is described in
section two. The third section explains into detail the methodology of the experiment itself.
Finally, in the fourth section, the additional software packages used in the experiment are
listed.

4.1 Data source
DBAFS’ forecasting power was evaluated with data from the dockless PBSS of San Francisco,
California. The system there is exploited by JUMP Bikes (https://jump.com/), an Ameri-
can company founded in 2010, that went through a rapid development after being acquired
by ride hailing giant Uber in April 2018 (Khosrowshahi, 2018). In February 2019, JUMP
was active in 16 cities in the United States, as well as in Berlin, Germany. All provided
bicycles have electric pedal assistance, up to a maximum speed of 32 km per hour.

In January 2018, the San Francisco Municipal Transportation Agency (SFMTA) offered
JUMP Bikes the city’s first official, exclusive permit to operate a dockless PBSS, for an 18
month trial period, in order to “evaluate, collect data, and assess whether further increases
would serve the public interest” (Jose, 2018a). SFMTA allowed up to 250 bikes in a system
area of approximately 47 km2, which is shown in Figure 4.1. After nine months, a mid-point
evaluation lead to the allowance of expanding the fleet to 500 bikes (Jose, 2018b).

The JUMP Bikes system in San Francisco, works as follows. A user needs to download the
JUMP mobile application and create an account. The app shows the real-time locations of
all available bikes. An available bike can be unlocked with a unique code that is send to the
user account. A single trip costs $2 for a total time of 30 minutes. For every minute that
exceeds the 30 minute timeframe, $0.07 will be charged. Options for subscription pricing,
with a fixed amount per month or year, are not available.

It is possible to reserve a bike up to 30 minutes before unlocking it. In that case, the bike

https://jump.com/

4.1. Data source 46

will not be labeled as available anymore, and can not be taken by another user. However,
the trip clock starts ticking from the moment of reservation. When a user wants to stop
somewhere during a ride, the bike can be put ‘on-hold’ for maximum an hour, meaning that
the bike stays unavailable during the stop. Also in this case, the regular fee will be charged.
When ending the ride, the bike needs to be locked legally to a fixed object. Not doing so,
will result in a fee of $25. Additionally, leaving the bike outside of the system area, results
in a $25 fee as well (Harris, 2018).

Since all JUMP bikes are electric, battery life forms an important issue. A fully charged
bike can travel 48 to 64 kilometers with the pedal assist. Bikes with a battery level of less
than 25% are collected, and charged. Furthermore, other bikes are regularly charged during
nighttime. Charging takes in most cases about four to six hours, and is done in a JUMP
Bikes depot. Some of the charged bikes are placed outside of the depot, where they can
be picked up, while others are redistributed over the system area. In the near future, this
process will change considerably, since the newly produced bikes, which will be introduced in
the first months of this year, have swappable batteries, such that there is no need anymore
to bring low-battery bikes to the depot (Foley, 2018).

In the first year of the trial period, 63000 users took over 625000 trips. On average, trips were
4.2 kilometers long, while around 1% of the trips, exceeded 24 kilometers. Each individual
bike, was on average used seven times per day. In September 2018, this was over eight
times per day. Even when the size of the fleet doubled in October 2018, the utilization
remained consistent until the first half of November, when it started to decrease slightly, due
to cold weather (Rzepecki, 2019). While the demand is high, the supply is still restricted
by SFTMA, putting extra emphasis on the need for efficient rebalancing, and accurate bike
availability forecasts.

Figure 4.1: System area of JUMP Bikes in San Francisco

4.2. Data retrieval 47

4.2 Data retrieval
JUMP Bikes provided access to a database containing the geographical locations of their
available bikes in San Francisco. The database fulfilled all DBAFS requirements described
in Section 3.4. Data collection started at September 9th, 2018, 15:41:08, Pacific Daylight
Saving Time (PDT). The data had a temporal resolution of one minute, meaning that every
minute, the location of each available bike in the system was recorded. Timestamps were
stored with six-digit precision. Because of that, the time of recording was not exactly the
same for each available bike, but could vary up to a few seconds. Therefore, before using
the data in DBAFS, all timestamps were truncated to minute precision.

4.2.1 Distance data
When calculating distances, only the historical data at every quarter of an hour were used in
the experiment. Hence, is was set equal to 15 minutes. There were several reasons for this
choice. Firstly, it is not expected that the data change drastically from minute to minute.
That is, using data with a temporal resolution of one minute will probably not contain a lot
more information than using data with a temporal resolution of 15 minutes. Consequently,
if a forecast for a specific timestamp is in practice a forecast for a few minutes earlier, this
will not be problematic. On the other hand, using only data every 15 minutes will decrease
the size of the data with a factor 15, and speed up computations considerably. Furthermore,
a lower order ARIMA(p, d, q) model can be used to capture the same patterns in the data.
This is important, since lower order models will result in lower errors arising from parameter
estimation (Brockwell & Davis, 2002). After defining is, distance data pre-processing steps
on the JUMP Bikes database server were taken as described in Section 3.4.1.

4.2.2 Usage data
Based on the specific knowledge of the JUMP Bikes system presented in Section 4.1, an extra
restriction was added to the in Section 3.4.2 described process of retrieving pick-ups from the
original data. If a feature that was initially considered to be a pick-up, was not followed by a
drop-off within a two hour timeframe, the feature was removed from the usage data. Taking
into account the average trip length of only 4.6 kilometers, the fact that trips become more
expensive after half an hour, the maximum allowed reservation time of 30 minutes, and the
maximum allowed ‘on-hold’-time of one hour, the threshold of two hours was considered to
be a safe border. In this way, pick-ups that occur because the system operator is collecting
bikes to be charged (i.e. pick-ups that do not reflect the usage intensity of the system), were
taken out.

Of course, there may have been some real trips that were longer than two hours. However,
given that during the first year of the trial period only 1% of the trips exceeded a distance
of 24 kilometers, and the electric pedal assistance allows a speed of more than 30 kilometers
per hours, this was assumed to be a negligible share of the total number of trips.

4.3. Experimental design 48

4.3 Experimental design

4.3.1 Training and test periods
As mentioned in Section 4.1, usage of the JUMP Bikes system in San Francisco remained
rather constant in September, October, and the start of November. An exploratory anal-
ysis on the distance data at several locations in the system area enabled to draw similar
conclusions, with a sudden change in temporal patterns after mid-November. Recall that in
DBAFS, parameter nw, the number of weeks between two passes through the model loop,
should be chosen such that an ‘old’ model is not used anymore when the patterns in the
historical data have changed considerably. Therefore, to test the performance of DBAFS in
an adequate way, both the period used for model building, called the training period, and the
period used for forecasting, called the test period, should preferably fall within a timeframe
where no large changes in the data patterns occur. However, they should not overlap each
other either, since the forecasting performance of a model can only be truly evaluated when
forecasts are made for data that the model has not seen yet.

The training period, used to query data for both the cluster and model loop, spanned the first
four full weeks plus one observation (i.e. 2689 observations) in the data collection period,
from Sunday September 16th, 2018, 23:45:00 PDT, up to and including Sunday October
13th, 2018, 23:45:00 PDT, as shown in Figure 4.2. Hence, a situation was simulated in
which the weeks of data used for clustering, i.e. mc, and the weeks of data used for model
building, i.e. mm, were both set to be four weeks. p, the side length of the square grid cells,
was set to 500 meters. Taking into account the size and shape of the system area, along with
some exploratory research on the demographic characteristics of San Francisco, K, the set
of integers containing all values considered as the number of desired clusters k, was chosen
to be {3, 4, 5, ..., 10}.

The obtained model structures and parameters resulting from the model loop, were used
to make several forecasts during a test period of one week. For each forecast, two weeks
of distance data, plus one observation, were retrieved from the database, such that in the
case of a weekly seasonality, a sufficient amount of data would be present for decomposition.
Hence, mf = 2. To make sure that in no case the data used for forecasting would overlap
with the data used for model building, a two week period separated the training and test
period. That is, the test week ranged from Monday October 29th, 00:00:00 PDT, up to and
including Sunday November 4th, 2018, 23:45:00 PST, as shown in Figure 4.2.

Defining where and when to forecasts, was done by simulating real-world forecast requests,
and sending them to the forecast loop. To do this in a realistic way, the following require-
ments had to be fulfilled.

• More forecast requests should occur at locations where the usage intensity of the system
is higher.

• More forecast requests should occur at times when the usage intensity of the system is
higher.

• It should be accounted for, that the times when the usage intensity is higher, can vary
per location, and vice versa.

4.3. Experimental design 49

Bearing these requirements in mind, the following approach was developed. All pick-ups
during the test week were retrieved from the database. Ten pick-ups per cluster where
randomly sampled, guaranteeing that each cluster was represented in the sample. Subse-
quently, 500− 10× k pick-ups were randomly sampled from the remaining ones, regardless
to which cluster they belonged. This lead to a dataset of 500 pick-ups in total, from which
the location-timestamp combinations were retrieved. Pick-ups reflect the usage of the bike
sharing system. That is, a random sample of them will contain more locations in areas
where the usage intensity is high, and more timestamps at times when the usage intensity
is high. Furthermore, the location and timestamp come as a combination, rather than as
separate entities. In this way, the approach fulfills all three requirements mentioned above.
The location-timestamp combinations in the sample will from now on be referred to as the
test points.

Starting from the timestamp of the test point, all time lags up to one day ahead, i.e. 96
time lags in total, were forecasted. Having 500 test points, in total, 48000 forecasts were
made. To evaluate their performance, historical distance data for all forecasted time lags
were retrieved from the database, and the forecast RMSE (see Section 2.4.2.6) was calculated
for each test point separately.

By using the approach described above, the reported overall forecast errors will be dominated
by those made during peak hours, when obtaining accurate forecasts is generally harder, and
in crowded areas, where obtaining accurate forecasts is generally harder. However, this is
intended, because reporting a large amount of forecast errors made during off-peak hours, and
in non-crowded areas, or, alternatively, using adjusted error metrics such as the RMSLE,
may give results that look nicer, but do not reflect the real usefulness of the forecasting
system.

To examine the forecasting power of DBAFS in a relative manner, all test points were also
forecasted 96 time lags ahead with a simple baseline method. The naïve method, as described
in Section 2.4.3, was chosen for this task. Therefore, the baseline forecasting system will
from now on be referred to as the Naïve Forecasting System (NFS). For each test point, the
RMSE’s of the forecasts of NFS were calculated, and compared to those of DBAFS.

Figure 4.2: Training and test period

4.3. Experimental design 50

4.3.2 Additional software
On top of those mentioned in Section 3.2, some additional R packages were used for reporting
the results of the experiment, as listed below.

• The feasts package (Hyndman, O’Hara-Wild, & Wang, 2019) was used to estimate
the ACF (see Section 2.2.1) of time series.

• The tsfeatures package (Hyndman, Kang, Talagala, Wang, & Yang, 2019) was used
to calculate the spectral entropy (see Section 2.2.3) of time series.

• Data and results were visualized graphically with the ggplot2 package (Wickham,
2016). Additionally, the packages tidyr (Wickham & Henry, 2018), dplyr (Wickham,
François, Henry, & Müller, 2019) and tibble (Müller & Wickham, 2019) were used to
transform some data into formats that are compatible with ggplot2.

• Maps were created with the ggspatial package (Dunnington, 2018). Besides, with
the rosm package (Dunnington, 2017), all basemap tiles were retrieved from CARTO
(CARTO, 2018).

• For maps with a continuous color scheme, the orange_material color scheme from
the ggsci package (Xiao, 2018) was used.

For the R code used in the experiment, see Appendix A.

Chapter 5

Results and discussion

This chapter presents and discusses the results of the experiment described in Chapter 4. It
is structured as follows. The first section shows the clusters that resulted from the cluster
loop, along with their main characteristics, and the chosen locations of the model points.
Section two presents the structures of the models that were build in the model loop, and
the residual diagnostics for each them. Then, the third section focuses on the accuracies of
the forecasts, and their patterns in both space and time. Finally, in the fourth section, the
limitations of DBAFS are discussed, and recommendations for possible improvements are
given.

5.1 Clustering
Figure 5.1a shows the grid overlaying the JUMP Bikes system area in San Francisco, includ-
ing the centroid of each grid cell. In total, the grid contains 249 cells, each 500 meter high
and 500 meter wide.

Figure 5.1b shows the calculated number of pick-ups per grid cell, during the training period.
In total, 54365 pick-ups were calculated within the extent of the grid. That is, on average,
there were approximately 218 pick-ups per grid cell, which corresponds to approximately
eight pick-ups per day. The maximum number of pick-ups in a grid cell was 1985 (i.e. 71
per day on average), while in 25 of the 249 grid cells, there were no pick-ups at all. It can
be seen that high counts of pick-ups occurred in the grid cells along the diagonal axis from
south-west to north-east. Mainly in the south-eastern corner of the system area, the usage
intensity was very low.

Figure 5.2 shows the temporal patterns of the usage data, with the pick-ups per day of the
week, and per hour of the day. Friday was the day with on average the most pick-ups, while
Saturday and Sunday had the least. The busiest hours of the day, where 8:00 and 9:00,
during morning rush hours, and 16:00 and 17:00, during afternoon rush hours. The lowest
numbers of hourly pick-ups, as expected, occurred during the night.

5.1. Clustering 52

Figure 5.1: a) grid overlaying the system area; b) number of pick-ups per grid cell

Figure 5.2: a) pick-ups per day of the week; b) pick-ups per hour of the day

Recall that for each grid cell centroid, a time series of historical distance data was queried,
and that the normalized, average weekly patterns in these data were clustered using spatially
constrained hierarchical clustering. The automatic procedure of defining the number of
clusters k and the mixing parameter α, lead to a definition of k = 4 and α = 0.6. This
resulted in a partition containing four fully spatial contiguous clusters. The geographical
outlines of these clusters are shown in Figure 5.3a. The centroid of each cluster, weighted

5.1. Clustering 53

by the number of pick-ups in the corresponding grid cells, are shown in Figure 5.3b. These
weighted centroids serve as the model points in DBAFS.

Figure 5.3: a) cluster outlines; b) model point locations

Roughly speaking, and based on a large study of neighbourhood indicators in San Francisco
(San Francisco Department of Public Health, 2014), the four clusters can be characterized
as follows. The orange cluster covers the Bayview/Hunters Point neighbourhood, which
is a rather isolated area, with a high percentage of low-income households and relatively
high crime rates. The blue cluster forms the city center of San Francisco, containing the
neighbourhoods with the highest population densities, but also with a relatively high job
density compared to the residential density, and large areas zoned for commercial usage.
The purple cluster mainly contains neighbourhoods where the residential density is high
compared to the job density, and the area zoned for commercial usage is relatively small.
Finally, the green cluster covers the Presidio Park, a recreational area with few inhabitants,
and a relatively high number of bike lanes. For the sake of clarity, the orange, blue, purple
and green clusters are from now on referred to as the Bayview, Downtown, Residential and
Presidio clusters, respectively. Consistently, the four corresponding model points will be
called the Bayview, Downtown, Residential and Presidio model points, respectively.

Table 5.1 presents some descriptive statistics of the time series, averaged per cluster, and
averaged over the whole system area. From the 249 grid cells, more than a hundred are
located within the Residential cluster, while the Presidio cluster is by far the smallest of
the four. During the training period, the nearest available bike was on average located 619
meters from the grid cell centroids. In the Bayview cluster, however, this was more than one
kilometer, a difference of almost a factor two compared to the Downtown cluster, and even
more compared to the Residential and Presidio clusters. The Bayview cluster also showed
the largest variation in the data, with a high average standard deviation compared to the

5.1. Clustering 54

other clusters, and an average range that spanned more than four kilometers. This can
possibly be explained by the low usage intensity of the bike sharing system in this part of
the system area. When the number of bikes in an area is low, the nearest available bike and
the second nearest available bike are more likely to be far away from each other. In that
case, when the closest of them gets picked-up, the distance to the nearest available bike will
suddenly increase substantially. The other way around, when all available bikes are far away,
and one bike gets dropped-off inside the area, the distance to the nearest available bike will
suddenly decrease substantially.

Although not as extreme as the Bayview cluster, also the other clusters had on average
high ranges when compared to the mean and standard deviation. However, the standard
deviation itself turned out to be rather small relative to the mean. This implies either the
presence of outliers, or population distributions with thin, but wide tails.

The first order autocorrelation measures the average dependency between data values at time
t and corresponding data values at time t−1. In the whole system area, this dependency was
strong, especially in the Bayview and Presidio clusters. These high autocorrelation values are
important, since they imply that it is reasonable to use past observations when forecasting
future ones. However, the calculated spectral entropy values show that in general, the data
are also very complex, and the forecastability is low. This mainly concerns the Downtown
and Residential clusters, which contain, as could be seen in Figure 5.1b, the areas where the
pick-up density is high. In such areas, the data are more dynamic, since bikes get picked-up
and dropped off constantly, and the location of the nearest available bike will change often.
In most cases, the more dynamic the data, the harder to forecast.

Table 5.1: Descriptive statistics of the grid cell centroids distance data

N µ range σ ρ(1) H

Total 249 619 2726 422 0.82 0.77
Bayview 46 1080 4021 631 0.95 0.67
Downtown 81 557 2551 352 0.77 0.81
Residential 103 490 2410 371 0.79 0.81
Presido 19 462 2057 310 0.92 0.68
Except N , all metrics are calculated for each time series seperately, and averaged afterwards.
1
N is the total number of grid cell centroids

2
µ is the mean of the data, in meters

3
range is the difference between the maximum and minimum data value, in meters

4
σ is the standard deviation of the data, in meters

5
ρ(1) is the first order autocorrelation, see section 2.2.1

6
H is the normalized spectral entropy, see section 2.2.3

Figure 5.4 shows the normalized, average weekly patterns of the time series, averaged once
again per cluster. The patterns can be explained intuitively. The Bayview cluster has a low
usage intensity, and although there are peaks in the data every day, a clear and consistent
pattern is absent. The Downtown cluster has a high density of jobs and commercial activities.

5.1. Clustering 55

During working hours, the demand for bikes is low, which leads to a high number of available
bikes, and consequently, short distances to the nearest available bike. In the afternoon, just
after working hours, the demand starts increasing, and it gets harder to find an available
bike nearby. This peak in the data continues during the evening, when the activity in the
commercial zones is high. Later in the evening, the demand decreases again. However, the
data lacks a clear peak during morning peak hours, as well as a clear difference between
weekdays and weekends, indicating that there is a substantial share of non-commute related
usage.

The Residential cluster shows the exact opposite pattern. In the morning rush hours, com-
muters use the bike to get to work, and not many available bikes are left in the residential
areas. Hence, in those areas, the distance to the nearest available bike is higher during
working hours. In the afternoon, commuters come back from work, and leave the bikes in
the residential areas, causing a decrease in distance to the nearest available bike. Hence, the
distance data peaks during working hours. In the weekends, the peaks seem to be slightly
lower, but this difference is not as large as might have been expected. They do happen later
on the day, corresponding to the same periods as the Downtown cluster.

Finally, the Presidio cluster is mainly a recreational area. There are a lot of bikes, but
during weekdays, they are used less, leading to small and relatively constant distances to the
nearest available bike. In weekends, and mainly on Sunday afternoon, the usage intensity is
high, and it takes longer to find an available bike.

Figure 5.4: Patterns of the distance data for the grid centroids, per cluster

5.2. Model building 56

5.2 Model building
Figure 5.5 shows the time plots of the distance data that were queried for each of the model
points in Figure 5.3b, with the dark grey shaded areas representing weekends. The plots
endorse the findings in the previous sections. The data corresponding to the Bayview model
point show large variation, interspersed with flat sections, and lack a clear repeating pattern.
The data corresponding to the Downtown and Residential model points are most dynamic.
A daily pattern shows for both of them. However, in both datasets, this pattern is far from
smooth, and the daily peaks vary considerably in height from day to day. This underlines
the high spectral entropies that were found for these clusters. A clear difference between
weekdays and weekends, can not be seen. The Presidio model point shows the most constant
data, with a low mean and long flat sections. Sunday afternoons stand out clearly in most
of the weeks, but not in all of them. The last Sunday, for example, shows only a minor peak
in the data. In less extent, this also applies to the other clusters, with lower peaks than
normal, in the last weekend. Finally, none of the datasets contain missing values, and clear
evidence for non-constant variances is not present.

Figure 5.5: Time plots of the distance data for the model points

The structures of the fitted models are shown in Table 5.2. The automatic seasonality
detection resulted in a daily seasonal pattern for both the Downtown and the Residential
model point. As expected, a weekly seasonal pattern was found for the Presidio model
point, an no seasonality for the Bayview model point. The ARIMA(p, d, q) models for

5.2. Model building 57

the Bayview and Downtown model points, have a relatively high number of autoregressive
terms, while for the Presidio model point, the number of moving average terms is high. For
the Residential model point, the best fit was obtained by only including one autoregressive
and one moving average term. All datasets passed the KPSS test for stationarity after
one differencing operation. The full details of the components and fitted models, including
parameter estimates and decomposition plots, can be found in Appendix B.

Table 5.2: Model structures

seasonality p d q

Bayview none 3 1 1
Downtown daily 3 1 2
Residential daily 1 1 1
Presidio weekly 1 1 4

Figure 5.6 shows the residuals of each model, plotted over time. All models have residuals
with an approximately zero mean, and the variances look approximately constant. Compar-
ing Figure 5.6 with Figure 5.5, it can be seen that for the less dynamic data in Bayview and
Presidio, the models struggle to find a good fit for the peaks and valleys in the data, while
the flat sections are explained accurately.

Figure 5.6: Time plots of the model residuals

5.2. Model building 58

The autocorrelations at several time lags in the residuals are shown in Figure 5.7. Since the
data have a temporal resolution of 15 minutes, 96 time lags correspond to one day, and 672
time lags, the total span of the x-axis in the figure, to one week. The dotted orange lines
form the lower and upper 95% confidence bounds, assuming a normal distribution. This
means that the residuals are considered to be a realization of a white noise process when
at least 95% of the autocorrelation values fall within these bounds. It is important to note
here that when working with real-world data, finding perfectly random model residuals is
an exception, especially when the data have a high entropy. Taking that into account, the
autocorrelation plot of the Bayview, Downtown and Residential models look good, and their
residuals seem to approximate white noise.

However, for the Presidio cluster, the residual autocorrelation has a strong peak at lag 672,
corresponding to one week. Recall that the data of the Presidio model point was relatively flat
during the weekdays, and spiky in the weekends. These spikes, however, varied considerably
in amplitude from week to week. The weekly seasonal component that was subtracted from
the data, accounts for the recurring patterns, but can not completely capture the differences
from week to week. Therefore, errors during the ‘spiky’ weekends, will still be higher than
during the ‘flat’ weekdays, causing autocorrelation in the residuals. With just a stochastic
time series model, it is hard to solve this. Including exogenous variables that explain the
variation, could be an option, and will be discussed in section 5.4.2.

Figure 5.7: ACF plot of the model residuals

5.3. Forecasting 59

Finally, Figure 5.8 shows the histograms of the model residual distributions. As expected,
for the Bayview and Presidio models, most values are clustered closely around the zero mean,
with the tails being extremely thin and long, especially for the Bayview model. The residuals
of the Downtown and Residential models follow a distribution that comes closer to a normal
one, but also here, the tails are wide.

Figure 5.8: Histograms of the model residuals

5.3 Forecasting
Figure 5.9a shows the spatial distribution of the 500 test points. As planned, areas with high
usage intensity have more test points, with 94% located in the Downtown and Residential
clusters, and only the minimum of ten test points in the Bayview cluster. Figure 5.9b shows
the temporal distribution test points. All days in the test week are well covered, with less test
points during working times and in the night, and more during the morning rush hours and
in the evening. On weekend days, there is only one strong peak, around noon. Furthermore,
it can be seen that the morning peak on November 1st is somewhat lower compared to the
other weekdays. This may be, because it is the morning of All Saint’s Day, following the
Halloween night. For the full information on the test points, with all unique location-time
combinations, see Appendix A.

5.3. Forecasting 60

Figure 5.9: a) test points locations; b) test point timestamps, counted per hour

The first row of Table 5.3 lists the RMSE’s, averaged over the whole system area, of the
forecasts produced by DBAFS, and of the forecasts produced by the baseline system, NFS.
DBAFS clearly outperforms NFS, by producing forecasts with errors that are on average 31%
lower. Furthermore, the range of error values is much lower for DBAFS, than for NFS. The
minima are comparable, but NFS produces forecasts with error values up to 1644 meters,
while DBAFS never exceeds 1004 meters.

Table 5.3: Forecast RMSE’s, in meters

DBAFS NFS
n mean min max mean min max

Total 500 282 38 1004 408 37 1644
Bayview 10 389 38 1004 389 38 1004
Downtown 259 248 122 523 414 116 927
Residential 211 317 97 705 411 37 1644
Presidio 20 299 80 577 320 175 699

Regarding the spatial patterns of the forecast errors, the remaining rows of Table 5.3 show
the RMSE’s averaged per spatial cluster. With NFS, the lowest errors are obtained in the
Bayview and Presidio clusters, where the data are less dynamic. In the Bayview cluster,
NFS gives the same results as DBAFS, and in the Presidio cluster, DBAFS performs only
slightly better than NFS. For DBAFS, however, the lowest errors are not found in those
clusters, but in the highly dynamic Downtown cluster. Here, DBAFS gives errors that are
40% lower than those of NFS. In the Residential cluster, there are larger errors than in the

5.3. Forecasting 61

Downtown cluster, but also here, DBAFS outperforms NFS with errors that are 23% lower.
It shows the strength of DBAFS in forecasting dynamic data, when compared to NFS.

Regarding the temporal patterns of the forecast errors, Figure 5.10 shows the RMSE’s aver-
aged per hour of the day, and per forecast lag. The lowest forecast errors occur during the
night, when the usage intensity of the system is low. During the day, higher errors occur,
with peaks at the morning rush hour, around noon (i.e. the peak hour in the weekend) and
after working hours. This patterns are similar for NFS, but with higher RMSE’s at each
hour. The forecast errors of both methods rise steeply directly after the first forecast lag,
but for NFS, this increase is much larger than for DBAFS.

What strikes, is that the RMSE does not increase constantly when the forecast horizon gets
larger. From the forecasting lag of 12 hours, the errors for both DBAFS and NFS decrease
again. Moreover, at a forecasting lag of approximately 18 hours, the RMSE of the DBAFS
forecasts is, on average, back at almost the same level as the one at a forecasting lag of
just 15 minutes. This conspicuousness can be explained as follows. Most of the simulated
forecast requests are made at times with a high usage intensity, that are hard to forecast.
The first forecast lags, will still correspond to high usage times, but after a while, forecasts
will be made during night time. As could be seen in Figure 5.10a, these night time forecasts
have much lower errors. Therefore, it can happen that, despite the length of the forecasting
window, ‘far-ahead’ forecasts have lower errors than ‘close-by’ forecasts.

Figure 5.10: a) RMSE averaged per hour of the day; b) RMSE averaged per forecast lag

5.4. Limitations and recommendations 62

5.4 Limitations and recommendations

5.4.1 Limits of forecastability
Although DBAFS outperforms the baseline, the average forecast RMSE of almost 300 meters
can be considered high when looking at it from an absolute perspective. To get a more
detailed understanding of the performance of DBAFS, it may be beneficial to look at some
individual forecast results, rather than at general, averaged metrics. Therefore, Figure 5.11
shows the forecasts at the four model point locations, for the whole test period. Each day is
forecasted separately, with two weeks of historical data.

As already pointed out earlier in this chapter, the forecasts in the Bayview cluster act in a
similar way as naïve forecasts, with approximately straight lines every day. Peaks in the true
data occur randomly, and can not be captured well by the fitted model. In the Downtown and
Residential clusters, the ones of primary interest, DBAFS performs very well in forecasting
when peaks are going to occur, but fails to accurately capture the variation in the height of
those peaks from day to day. Equivalently, in the Presidio cluster, the varying amplitude
of the Sunday afternoon peak, is problematic for the forecasts. When this peak has been
relatively low in the two weeks before, DBAFS will expect it to stay low, and never forecast
the reoccurrence of a higher peak.

Figure 5.11: Detailed forecasts for the model point locations

5.4. Limitations and recommendations 63

The irregularity of the patterns in the data, and consequently, their high entropy, can be
linked to the flexible and dynamic nature of dockless PBSS. Users can pick up bikes spon-
taneously, whenever they see one around. This in contradiction to station-based PBSS,
which have a more organized structure, where trips are usually planned in advance, at reg-
ular moments in time. Some studies in the United States already explored these differences
between dockless and station-based systems. A report of the National Association of City
Transportation Officials showed that the usage in station-based systems follows typical com-
muting patterns, while in dockless systems, it is more dispersed (NACTO, 2018). This is in
line with the conclusions drawn from Figure 5.4, earlier in this chapter. Moreover, Mckenzie
(2018) found similar results in Washington D.C.

In San Francisco, the differences between station-based and dockless systems may even be
stronger, for the following reason. For single-trips, JUMP Bikes is cheaper than the station-
based Ford GoBike system. However, in contradiction to GoBike, JUMP Bikes has no
subscription pricing. That is, for irregular usage, JUMP Bikes is the better option, but
when using a JUMP Bike every working day for two trips of half an hour ($2 each), this
will cost around $1040 per year, compared to only $149 for a yearly subscription on GoBike
(Harris, 2018).

To strengthen the findings discussed above, Figure 5.12 is adapted from the mid-point evalu-
ation of JUMP Bikes in San Francisco, performed by SFMTA, and shows the number of trips
per bike per day, for both JUMP Bikes and GoBike, during five months in 2018 (SFMTA
Board of Directors, 2018). It clearly confirms the expected differences between the two. The
course of the GoBike line is very regular, with peaks during weekdays, and valleys during
weekends. JUMP Bikes, in contradiction, follows a highly irregular pattern. Such irregular-
ity, obviously, sets limits on the ability of models to forecast the data accurately.

5.4.2 Exogenous variables
That the forecastability of dockless bike sharing data is limited, does not mean that the
forecasts produced by DBAFS can not be improved in any way. There may be exogenous
variables that can explain at least a part of the variation in peak height from day to day. The
most relevant of those, probably relate to weather conditions. Several studies addressed the
relationship between cycling activity in PBSS and weather conditions already (Campbell,
Cherry, Ryerson, & Yang, 2016; Corcoran, Li, Rohde, Charles-Edwards, & Mateo-Babiano,
2014; Faghih-Imani, Eluru, El-Geneidy, Rabbat, & Haq, 2014; Shen et al., 2018). Most
notably, heavy rain or snowfall, high humidity, strong winds, extremely low temperatures,
and extremely high temperatures, all have a negative impact on PBSS usage, both for
recreational and commuting trips. It must be noted, that DBAFS already deals with long-
term weather variations, since models are updated regularly, and moreover, STL allows the
seasonal pattern to change slightly over time. The short-term weather variation, however,
may be an important factor influencing the variability in the data, which DBAFS is not able
to account for. Therefore, including weather condition variables in the forecasting system,
can possibly decrease the forecast errors substantially.

5.4. Limitations and recommendations 64

Figure 5.12: Dockless versus station-based, adapted from SFMTA

Above average peaks in the data may occur when special events, such as sport matches,
concerts or conferences, take place. Furthermore, public holidays may cause abnormal data
patterns (Corcoran et al., 2014). These are also factors that are not considered by DBAFS.
Modelling their relationship with PBSS usage is complicated, especially for the events, since
the influence will not be the same at all locations within each cluster. However, they will
contain information that can explain a part of the variability in the data, as well.

As explained in Section 2.4.1, time series forecasting models relate future patterns to past
patterns in the same data. That is, in essence, they do not allow for exogenous variables.
However, several methods have been developed to overcome this issue. For example, Hynd-
man & Athanasopoulos (2018) recommend dynamic regression models, in which the exoge-
nous variables are included in a linear regression, with an ARIMA(p, d, q) model fitted to the
autocorrelated errors. Optionally, seasonal patterns can be captured by including Fourier
terms in the regression as well. Another option is the fasster package in R (O’Hara-Wild,
2018), which is, at the time of writing, still under development. Fasster stands for ‘Fore-
casting with Additive Switching of Seasonality, Trend and Exogenous Regressors’, and is a
model designed to capture both the influence of exogenous regressors as multiple seasonal
patterns in a state space framework, by using state switching. Finally, machine learning
regression methods are widely used in forecasting, and allow the use of exogenous variables
as well. It is recommended to test these approaches with the exogenous variables described

5.4. Limitations and recommendations 65

above, and examine the accuracy gain compared to the current approach of DBAFS.

5.4.3 Residual distributions and prediction intervals
Another point of concern regards the non-normality of the models’ residual distributions,
which showed clearly in Figure 5.8. Both in the calculation of the AIC, for model selection,
and in the estimation of the model parameters, Gaussian likelihood is used, assuming a
normal distribution. In the literature, approaches have been developed to use different
likelihood functions, such as the Laplace Likelihood and Student’s t likelihood, that may be
more appropriate to use for models with widely tailed residual distributions such as those
identified in Figure 5.8 (Huang & Pawitan, 2000; Lehr & Lii, 1998; W. K. Li & McLeod,
1988). However, such approaches will increase the complexity of the system. Moreover,
the accuracy gain will probably be of minor extent, since, as discussed in section 2.4.2.4,
using Gaussian likelihood is sensible even for models with non-normally distributed residuals,
especially when sample sizes are large. It should also be noted that in the forecast package,
Gaussian likelihood is the only available option.

The non-normality of the residuals does have an important effect on the validity of the
prediction intervals, however. When 95% prediction intervals are calculated, assuming nor-
mality of the forecast distribution, they can not be interpreted as such. To emphasize this,
Table 5.4 shows the percentage of true observations that fall within the calculated 95% pre-
diction interval of the forecasts. As can be seen, for all clusters, and especially those where
seasonality was detected, this percentage is extremely low. That is, the calculated prediction
intervals are far to narrow, making them not useful in any sense.

Table 5.4: Interpretation of the calculated prediction intervals

Percentage of observations within 95% prediction interval
Total 0.9
Bayview 17.5
Downtown 0.5
Residential 0.6
Presidio 0.1

As proposed by Hyndman & Athanasopoulos (2018), in the case of non-normally distributed
model residuals, a technique called bootstrapping is a useful alternative for calculating pre-
diction intervals. It does not make assumptions about the distribution of the residuals, and
only requires them to be uncorrelated. Many possible futures for each forecasted time lag are
obtained by repeatingly sampling from the model residuals, and replacing the error terms of
the forecasts by these sampled values. Then, the 95% prediction interval for each forecast
is equal to the interval that contains 95% of the calculated ‘possible futures’. A detailed
description of this technique is given by McCullough (1994).

Another important reason for the extremely narrow prediction intervals, is that not all
sources of uncertainty are included in its calculation. In DBAFS, there are at least six

5.4. Limitations and recommendations 66

different sources of uncertainty.

• The random error component of the ARIMA(p, d, q) model.
• The parameter estimates of the ARIMA(p, d, q) model.
• The choice of the model.
• The continuation of the data generating process into the future.
• The continuation of the seasonal patterns into future.
• The use of a model fitted on the model point’s data, for other locations within the

same cluster.

In the forecast package, only the first of these sources is taken into account when calcu-
lating prediction intervals (Hyndman & Athanasopoulos, 2018). In most cases, this leads
to acceptable estimates. Even when an ARIMA forecast is combined with a seasonal naïve
forecast, this is often true, since seasonal patterns are expected to be constant. However, as
already noticed earlier in this chapter, in dockless bike sharing data, there may be a large
variation from season to season, and simply ignoring the seasonal uncertainty, is not valid
anymore. Bootstrapping can help to partly overcome this issue as well. However, that is a
time consuming process, and therefore not suitable to perform at every individual forecast.
That is, it still does not account for the last source of uncertainty, which influence is expected
to be large. Hence, to provide sensible prediction intervals, an adequate methodology that
captures all sources of uncertainty to an acceptable extent, should be developed.

5.4.4 GPS accuracy
One special type of uncertainty does not relate directly to the forecasting process, but to the
location provided by the bicycle’s GPS instead. In highly built-up urban areas, this GPS
location may differ considerably from the true location of the bicycle. According to Uber’s
research team, such an inaccuracy can have a margin of error of 50 meters or more (Iland,
Irish, Madhow, & Sandler, 2018). Since DBAFS essentially forecasts the GPS location, this
has an influence on the reliability of the forecasts as well. Including these inaccuracies in
the prediction interval, may be a complex challenge, but focused research could take a first
step in quantifying the influence of GPS errors on the forecast uncertainty.

Chapter 6

Conclusion

This thesis presented a fully automated forecasting system for bike availability in dockless
bike sharing systems. To balance speed and accuracy, the system took advantage of the
spatio-temporal nature of the data, and used an approach in which the structures of fore-
casting models build at specific locations and specific timestamps, were inherited by forecast
requests for nearby locations, and future timestamps.

The proposed system was tested through a case study in San Francisco, California. The
results showed that time series forecasting models, nested inside the proposed structure of
model inheritance, can produce forecasts that outperform simple baseline methods. However,
they also highlighted the limited forecastability of dockless bike sharing data, especially when
compared to conventional station-based systems.

In future studies that address the same problem, the forecast accuracy may be improved by
including exogenous variables, related to weather conditions and special events, which can
explain some of the uncaptured variation. Furthermore, methodologies to provide sensible
prediction intervals, need to be developed.

Results are believed to be of direct, practical interest for operators of dockless bike sharing
systems. In the broader picture, the most important contribution of this thesis is that it
is one of the first works that aimed to get a deeper, scientific understanding of the spatio-
temporal dynamics of dockless bike sharing systems, and the forecastability of their data.
As such, it took a new step on the way to reliable, convenient bike sharing systems, that can
provide a serious alternative to motorized transport, and increase the liveability in urban
environments.

Appendix A

Code

All the R code used in this thesis, as well as the nested SQL
code, is bundled in the dockless package (Van der Meer,
2019). Its source code, including documentation for each
function, can be found on GitHub, through the following
link: https://github.com/luukvdmeer/dockless. An
R version of at least 2.10 is required. The package is opti-
mized for the case study in San Francisco, but can easily
be adapted to other systems.

The JUMP Bikes database is not openly accessible. There-
fore, to query the data, and pre-process them on the
database server, database credentials are needed. Please
contact the author for more information. However, to en-
able reproducibility, all necessary pre-processed datasets
have been included in the package. These are the follow-
ing:

• distancedata_centroids: an object of class dockless_dfc containing the distance
data for all 249 grid cell centroids, during the training period.

• distancedata_modelpoints: an object of class dockless_dfc containing the distance
data for all 4 model points, during the training period.

• distancedata_testpoints: an object of class dockless_dfc containing the distance
data for all 500 test points, during the test period, and the two weeks before.

• usagedata_train: an object of class sf with POINT geometry, containing all calcu-
lated pick-ups during the training period.

• usagedata_test: an object of class sf with POINT geometry, containing all calculated
pick-ups during the test period.

• testpoints: an object of class sf with POINT geometry, containing all location-
timestamp combinations of the 500 test points.

• systemarea: an object of class sf with POLYGON geometry, containing the geograph-
ical outline of the JUMP Bikes system area in San Francisco.

https://github.com/luukvdmeer/dockless

69

The dockless package can be downloaded from github with the following code. Please
make sure that the devtools package is installed in advance.

devtools::install_github('luukvdmeer/dockless')

Then, the complete analysis can be reproduced as follows. Furthermore, reproducible
scripts for all tables and figures in chapter 5 can be found through the following link:
https://github.com/luukvdmeer/dockless/tree/master/scripts

require(dockless)
require(sf)

----------------------- CLUSTER LOOP --------------------------
Create grid
gridcells = dockless::create_grid(

area = systemarea,
cellsize = c(500, 500)

)

Calculate grid cell centroids
gridcentroids = gridcells %>%

dockless::project_sf() %>%
sf::st_centroid() %>%
sf::st_transform(crs = 4326)

Usage intensity per grid cell
gridcells$intensity = dockless::usage_intensity(

usage = usagedata_train,
grid = gridcells

)

Add intensity information to grid cell centroids
gridcentroids$intensity = gridcells$intensity

Cluster
clusters = dockless::spatial_cluster(

data = distancedata_centroids,
grid = gridcells,
area = systemarea,
K = c(3:10),
omega = seq(0, 1, 0.1)

)

https://github.com/luukvdmeer/dockless/tree/master/scripts

70

Add cluster information to grid cells and grid cell centroids
gridcells$cluster = clusters$indices
gridcentroids$cluster = clusters$indices

Create model points
modelpoints = dockless::create_modelpoints(

centroids = gridcentroids
)

------------------------ MODEL LOOP ---------------------------
Build models
models = dockless::build_models(

data = distancedata_modelpoints,
auto_seasonality = TRUE,
seasons = list(NULL, 96, 672, c(96, 672))

)

---------------------- FORECAST LOOP --------------------------
Forecast test points with DBAFS and NFS
forecasts_dbafs = dockless::forecast_multiple(

data = distancedata_testpoints,
method = 'DBAFS',
points = testpoints,
models = models

)

forecasts_nfs = dockless::forecast_multiple(
data = distancedata_testpoints,
method = 'NFS',
points = testpoints

)

Calculate RMSE's
errors_dbafs = dockless::evaluate(

forecasts_dbafs,
type = 'RMSE',
clusters = testpoints$cluster

)

errors_nfs = dockless::evaluate(
forecasts_nfs,
type = 'RMSE',
clusters = testpoints$cluster

)

Appendix B

Models

This appendix provides more detailed information about the models that were fitted to
the non-seasonal historical data of each model point. This information includes parameter
estimates, error variance, Gaussian log-likelihood, and information criteria such as AIC. For
those model points where seasonality was detected, the decomposition plots are provided as
well.

B.1 Bayview model point
Model

Series: x
ARIMA(3,1,1)
Box Cox transformation: lambda= 0

Coefficients:
ar1 ar2 ar3 ma1

-0.7636 -0.1269 -0.0724 0.6610
s.e. 0.2148 0.0320 0.0195 0.2148

sigma^2 estimated as 0.03032: log likelihood=886.22
AIC=-1762.45 AICc=-1762.42 BIC=-1732.96

B.2. Downtown model point 72

B.2 Downtown model point
Decomposition plot

Model

Series: x
ARIMA(3,1,2)

Coefficients:
ar1 ar2 ar3 ma1 ma2

-0.1423 0.5707 0.1873 -0.2605 -0.719
s.e. 0.3526 0.2258 0.0351 0.3600 0.352

sigma^2 estimated as 0.2219: log likelihood=-1788.92
AIC=3589.84 AICc=3589.87 BIC=3625.22

B.3. Residential model point 73

B.3 Residential model point
Decomposition plot

Model

Series: x
ARIMA(1,1,1)

Coefficients:
ar1 ma1

0.6263 -0.9128
s.e. 0.0394 0.0257

sigma^2 estimated as 0.1714: log likelihood=-1442.62
AIC=2891.25 AICc=2891.26 BIC=2908.94

B.4. Presidio model point 74

B.4 Presidio model point
Decomposition plot

Model

Series: x
ARIMA(1,1,4)

Coefficients:
ar1 ma1 ma2 ma3 ma4

-0.6904 0.4389 -0.2201 -0.1439 -0.1430
s.e. 0.0781 0.0790 0.0275 0.0232 0.0192

sigma^2 estimated as 0.02021: log likelihood=1431.7
AIC=-2851.41 AICc=-2851.37 BIC=-2816.03

References

Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional Science, 89 (1),
3–25. http://doi.org/10.1111/j.1435-5957.2010.00279.x

Belton, P. (2018, May). How cheap dockless hire bikes are flooding the world. Retrieved
from https://www.bbc.com/news/business-44066083

Borgnat, P., Robardet, C., Rouquier, J.-B., Abry, P., Flandrin, P., & Fleury, E. (2011).
Shared Bicycles in a City: A Signal Processing and Data Analysis Perspective. Advances
in Complex Systems, 14. http://doi.org/10.1142/S0219525911002950

Box, G. E. P., & Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control.
Book, Holden-Day San Francisco.

Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R Package for Cluster
Validation. Journal of Statistical Software, 25 (4), 1–22. Retrieved from http://www.
jstatsoft.org/v25/i04/

Brockwell, P. J., & Davis, R. A. (2002). An Introduction to Time Series and Forecasting
(Vol. 39). http://doi.org/10.1007/978-1-4757-2526-1

Caggiani, L., Ottomanelli, M., Camporeale, R., & Binetti, M. (2017). Spatio-temporal
clustering and forecasting method for free-floating bike sharing systems. In Advances in
intelligent systems and computing (Vol. 539, pp. 244–254). Springer Verlag. Retrieved
from http://dx.doi.org/10.1007/978-3-319-48944-5{_}23

Campbell, A. A., Cherry, C. R., Ryerson, M. S., & Yang, X. (2016). Factors influencing the
choice of shared bicycles and shared electric bikes in Beijing. Transportation Research
Part C: Emerging Technologies, 67, 399–414. http://doi.org/https://doi.org/10.
1016/j.trc.2016.03.004

CARTO. (2018). Attribution: Powered by CARTO. Retrieved from https://carto.com/
attribution/

Cassisi, C., Montalto, P., Aliotta, M., Cannata, A., & Pulvirenti, A. (2012). Similarity
Measures and Dimensionality Reduction Techniques for Time Series Data Mining. In.
http://doi.org/10.5772/49941

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute

http://doi.org/10.1111/j.1435-5957.2010.00279.x
https://www.bbc.com/news/business-44066083
http://doi.org/10.1142/S0219525911002950
http://www.jstatsoft.org/v25/i04/
http://www.jstatsoft.org/v25/i04/
http://doi.org/10.1007/978-1-4757-2526-1
http://dx.doi.org/10.1007/978-3-319-48944-5%7B/_%7D23
http://doi.org/https://doi.org/10.1016/j.trc.2016.03.004
http://doi.org/https://doi.org/10.1016/j.trc.2016.03.004
https://carto.com/attribution/
https://carto.com/attribution/
http://doi.org/10.5772/49941

References 76

error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model
Development, 7 (3), 1247–1250. http://doi.org/10.5194/gmd-7-1247-2014

Chavent, M., Kuentz-Simonet, V., Labenne, A., & Saracco, J. (2018). ClustGeo: an R
package for hierarchical clustering with spatial constraints. Computational Statistics,
33 (4), 1799–1822. http://doi.org/10.1007/s00180-018-0791-1

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-
Trend Decomposition Procedure Based On Loess. Journal of Official Statistics, 6 (1),
3–73.

Cleveland, W. S., & Devlin, S. J. (1988). Locally Weighted Regression: An Approach to
Regression Analysis by Local Fitting. Journal of the American Statistical Association,
83 (403), 596–610. http://doi.org/10.1080/01621459.1988.10478639

Collinson, P. (2018, March). Bike wars: Chinese bike-share giants wheel out UK expansion
plans. Retrieved from https://www.theguardian.com/uk-news/2018/mar/12/bike-
wars-chinese-bike-share-giants-wheel-out-expansion-plans-in-uk

Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S. K., & Tiffin, N. (2017). RPost-
greSQL: R Interface to the ’PostgreSQL’ Database System. Retrieved from https://
cran.r-project.org/package=RPostgreSQL

Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., & Mateo-Babiano, D. (2014). Spatio-
temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar
events. Journal of Transport Geography, 41, 292–305. http://doi.org/https://doi.
org/10.1016/j.jtrangeo.2014.09.003

Dambolena, I. G., Eriksen, S. E., & Kopcso, D. P. (2009). Logarithmic Transformations
in Regression: Do You Transform Back Correctly? PRIMUS, 19 (3), 280–295. http:
//doi.org/10.1080/10511970802234976

Deighton-Smith, R. (2018). The Economics of Regulating Ride-Hailing and Dockless Bike
Share. International Transport Forum. Retrieved from https://www.itf-oecd.org/
economics-regulating-ride-hailing-and-dockless-bike-share

DeMaio, P. (2009). Bike-sharing: History, Impacts, Models of Provision, and Future. Journal
of Public Transportation, 12 (4). http://doi.org/10.5038/2375-0901.12.4.3

Dias, G. M., Bellalta, B., & Oechsner, S. (2015). Predicting occupancy trends in Barcelona’s
bicycle service stations using open data. In 2015 sai intelligent systems conference (in-
tellisys) (pp. 439–445). http://doi.org/10.1109/IntelliSys.2015.7361177

Dunn, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of
Cybernetics, 4 (1), 95–104. http://doi.org/10.1080/01969727408546059

Dunnington, D. (2017). rosm: Plot Raster Map Tiles from Open Street Map and Other
Sources. Retrieved from https://cran.r-project.org/package=rosm

Dunnington, D. (2018). ggspatial: Spatial Data Framework for ggplot2. Retrieved from

http://doi.org/10.5194/gmd-7-1247-2014
http://doi.org/10.1007/s00180-018-0791-1
http://doi.org/10.1080/01621459.1988.10478639
https://www.theguardian.com/uk-news/2018/mar/12/bike-wars-chinese-bike-share-giants-wheel-out-expansion-plans-in-uk
https://www.theguardian.com/uk-news/2018/mar/12/bike-wars-chinese-bike-share-giants-wheel-out-expansion-plans-in-uk
https://cran.r-project.org/package=RPostgreSQL
https://cran.r-project.org/package=RPostgreSQL
http://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.09.003
http://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.09.003
http://doi.org/10.1080/10511970802234976
http://doi.org/10.1080/10511970802234976
https://www.itf-oecd.org/economics-regulating-ride-hailing-and-dockless-bike-share
https://www.itf-oecd.org/economics-regulating-ride-hailing-and-dockless-bike-share
http://doi.org/10.5038/2375-0901.12.4.3
http://doi.org/10.1109/IntelliSys.2015.7361177
http://doi.org/10.1080/01969727408546059
https://cran.r-project.org/package=rosm

References 77

https://cran.r-project.org/package=ggspatial

Eggert, P., & Olson, A. D. (2018). Sources for Time Zone and Daylight Saving Time Data.
Retrieved from https://data.iana.org/time-zones/tz-link.html

Ermagun, A., & Levinson, D. (2018). Spatiotemporal traffic forecasting: review and
proposed directions. Transport Reviews, 38 (6), 786–814. http://doi.org/10.1080/
01441647.2018.1442887

Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land-use
and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI)
in Montreal. Journal of Transport Geography, 41, 306–314. http://doi.org/https:
//doi.org/10.1016/j.jtrangeo.2014.01.013

Fishman, E. (2016). Cycling as transport. Transport Reviews, 36 (1), 1–8. http://doi.
org/10.1080/01441647.2015.1114271

Fishman, E., Washington, S., Haworth, N., & Mazzei, A. (2014). Barriers to bikesharing:
an analysis from Melbourne and Brisbane. Journal of Transport Geography, 41, 325–337.
http://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.08.005

Foley, N. (2018, December). Getting more people on JUMP bikes with our new design.
Retrieved from https://www.uber.com/newsroom/newbike/

Formentin, S., Bianchessi, A. G., & Savaresi, S. M. (2015). On the prediction of future
vehicle locations in free-floating car sharing systems. In 2015 ieee intelligent vehicles
symposium (iv) (pp. 1006–1011). http://doi.org/10.1109/IVS.2015.7225816

Froehlich, J., Neumann, J., & Oliver, N. (2009). Sensing and predicting the pulse of the city
through shared bicycling. IJCAI International Joint Conference on Artificial Intelligence,
(3), 1420–1426. http://doi.org/10.1.1.150.4370

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications.
Society for Industrial; Applied Mathematics.

Giot, R., & Cherrier, R. (2014). Predicting bikeshare system usage up to one day ahead. In
2014 ieee symposium on computational intelligence in vehicles and transportation systems
(civts) (pp. 22–29). http://doi.org/10.1109/CIVTS.2014.7009473

Goerg, G. M. (2013). Forecastable Component Analysis. Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML 2013, 64–72. Retrieved from arxiv:
1205.4591

Goodman, A., Green, J., & Woodcock, J. (2014). The role of bicycle sharing systems in
normalising the image of cycling: An observational study of London cyclists. Journal
of Transport & Health, 1 (1), 5–8. http://doi.org/https://doi.org/10.1016/j.jth.
2013.07.001

Grolemund, G., &Wickham, H. (2011). Dates and Times Made Easy with lubridate. Journal
of Statistical Software, 40 (3), 1–25. Retrieved from http://www.jstatsoft.org/v40/

https://cran.r-project.org/package=ggspatial
https://data.iana.org/time-zones/tz-link.html
http://doi.org/10.1080/01441647.2018.1442887
http://doi.org/10.1080/01441647.2018.1442887
http://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.01.013
http://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.01.013
http://doi.org/10.1080/01441647.2015.1114271
http://doi.org/10.1080/01441647.2015.1114271
http://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.08.005
https://www.uber.com/newsroom/newbike/
http://doi.org/10.1109/IVS.2015.7225816
http://doi.org/10.1.1.150.4370
http://doi.org/10.1109/CIVTS.2014.7009473
arxiv:1205.4591
arxiv:1205.4591
http://doi.org/https://doi.org/10.1016/j.jth.2013.07.001
http://doi.org/https://doi.org/10.1016/j.jth.2013.07.001
http://www.jstatsoft.org/v40/i03/
http://www.jstatsoft.org/v40/i03/

References 78

i03/

Harris, D. (2018, June). The Complete San Francisco Bikeshare Review Guide. Retrieved
from https://biketoeverything.com/2018/06/12/complete-san-francisco-
bikeshare-review/

Hickman, R., & Banister, D. (2014). Transport, Climate Change and the City. Taylor &
Francis.

Huang, J., & Pawitan, Y. (2000). Quasi-Likelihood Estimation of Non-Invertible Moving
Average Processes. Scandinavian Journal of Statistics, 27 (4), 689–702. Retrieved from
http://www.jstor.org/stable/4616635

Hyndman, R. J. (2010). Forecasting with long seasonal periods. Retrieved from https:
//robjhyndman.com/hyndsight/longseasonality/

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Retrieved from https://otexts.org/fpp2/

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast
package for R. Journal of Statistical Software, 26 (3), 1–22. Retrieved from http://www.
jstatsoft.org/article/view/v027i03

Hyndman, R. J., Kang, Y., Talagala, T., Wang, E., & Yang, Y. (2019). tsfeatures:
Time Series Feature Extraction. Retrieved from https://pkg.robjhyndman.com/
tsfeatures/

Hyndman, R. J., O’Hara-Wild, M., & Wang, E. (2019). feasts: Feature Extraction
And Statistics for Time Series. Retrieved from https://github.com/tidyverts/
feasts

Iland, D., Irish, A., Madhow, U., & Sandler, B. (2018, April). Rethinking GPS: Engineer-
ing Next-Gen Location at Uber. Retrieved from https://eng.uber.com/rethinking-
gps/

Iliffe, J., & Lott, R. (2008). Datums and Map Projections: For Remote Sensing, GIS and
Surveying. Whittles Pub.

Jose, B. (2018a, January). SFMTA Creates Pilot to Study Electric, Stationless Bike Shar-
ing. Retrieved from https://www.sfmta.com/blog/sfmta-creates-pilot-study-
electric-stationless-bike-sharing

Jose, B. (2018b, September). San Francisco’s Stationless Bikeshare Pilot Reaches Mid-
Point Milestone. Retrieved from https://www.sfmta.com/blog/san-franciscos-
stationless-bikeshare-pilot-reaches-mid-point-milestone

Kaggle. (2014). Bike Sharing Demand: Forecast use of a city bikeshare system. Retrieved
from https://www.kaggle.com/c/bike-sharing-demand

Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., & Banchs, R. (2010). Urban cycles
and mobility patterns: Exploring and predicting trends in a bicycle-based public transport

http://www.jstatsoft.org/v40/i03/
http://www.jstatsoft.org/v40/i03/
https://biketoeverything.com/2018/06/12/complete-san-francisco-bikeshare-review/
https://biketoeverything.com/2018/06/12/complete-san-francisco-bikeshare-review/
http://www.jstor.org/stable/4616635
https://robjhyndman.com/hyndsight/longseasonality/
https://robjhyndman.com/hyndsight/longseasonality/
https://otexts.org/fpp2/
http://www.jstatsoft.org/article/view/v027i03
http://www.jstatsoft.org/article/view/v027i03
https://pkg.robjhyndman.com/tsfeatures/
https://pkg.robjhyndman.com/tsfeatures/
https://github.com/tidyverts/feasts
https://github.com/tidyverts/feasts
https://eng.uber.com/rethinking-gps/
https://eng.uber.com/rethinking-gps/
https://www.sfmta.com/blog/sfmta-creates-pilot-study-electric-stationless-bike-sharing
https://www.sfmta.com/blog/sfmta-creates-pilot-study-electric-stationless-bike-sharing
https://www.sfmta.com/blog/san-franciscos-stationless-bikeshare-pilot-reaches-mid-point-milestone
https://www.sfmta.com/blog/san-franciscos-stationless-bikeshare-pilot-reaches-mid-point-milestone
https://www.kaggle.com/c/bike-sharing-demand

References 79

system. Pervasive and Mobile Computing, 6 (4), 455–466. http://doi.org/10.1016/j.
pmcj.2010.07.002

Kamarianakis, Y., & Prastacos, P. (2005). Spatial time-series modeling: A review of the
proposed methodologies. In Proceedings 2005 - the 8th agile international conference on
geographic information science, agile 2005.

Keogh, E., & Lin, J. (2005). Clustering of time-series subsequences is meaningless: Implica-
tions for previous and future research. Knowledge and Information Systems, 8, 154–177.
http://doi.org/10.1007/s10115-004-0172-7

Khosrowshahi, D. (2018, April). Welcome, JUMP! Retrieved from https://www.uber.com/
newsroom/welcomejump/

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hy-
pothesis of stationarity against the alternative of a unit root: How sure are we that
economic time series have a unit root? Journal of Econometrics, 54 (1), 159–178. http:
//doi.org/https://doi.org/10.1016/0304-4076(92)90104-Y

Larmer, B. (2017, November). China’s Revealing Spin on the ‘Sharing Economy’. Retrieved
from https://www.nytimes.com/2017/11/20/magazine/chinas-revealing-spin-on-
the-sharing-economy.html

Lehr, M. E., & Lii, K.-S. (1998). Maximum Likelihood Estimates of Non-Gaussian
ARMA Models. 1998 Symposium on Nonlinear Time Series Models. Retrieved from
https://eml.berkeley.edu/symposia/nsf98/lii{_}lehr.pdf

Li, W. K., & McLeod, A. I. (1988). ARMAmodelling with non-gaussian innovations. Journal
of Time Series Analysis, 9 (2), 155–168. http://doi.org/10.1111/j.1467-9892.1988.
tb00461.x

Li, Y., Zheng, Y., Zhang, H., & Chen, L. (2015). Traffic prediction in a bike-sharing sys-
tem. In 23rd sigspatial international conference (pp. 1–10). http://doi.org/10.1145/
2820783.2820837

Lin, L., He, Z., & Peeta, S. (2018). Predicting station-level hourly demand in a large-scale
bike-sharing network: A graph convolutional neural network approach. Transportation
Research Part C: Emerging Technologies, 97, 258–276. http://doi.org/https://doi.
org/10.1016/j.trc.2018.10.011

Lozano, Á., Paz, J. F. D., Villarrubia, G., De La Iglesia, D. H., & Bajo, J. (2018). Multi-
Agent System for Demand Prediction and Trip Visualization in Bike Sharing Systems.
Applied Sciences, 8 (1), 67. http://doi.org/10.3390/app8010067

McCullough, B. D. (1994). Bootstrapping forecast intervals: An application to AR(p)
models. Journal of Forecasting, 13 (1), 51–66. http://doi.org/10.1002/for.
3980130107

Mckenzie, G. (2018). Docked vs. Dockless Bike-sharing : Contrasting Spatiotemporal Pat-
terns. In 10th international conference on geographic information science (giscience 2018)

http://doi.org/10.1016/j.pmcj.2010.07.002
http://doi.org/10.1016/j.pmcj.2010.07.002
http://doi.org/10.1007/s10115-004-0172-7
https://www.uber.com/newsroom/welcomejump/
https://www.uber.com/newsroom/welcomejump/
http://doi.org/https://doi.org/10.1016/0304-4076(92)90104-Y
http://doi.org/https://doi.org/10.1016/0304-4076(92)90104-Y
https://www.nytimes.com/2017/11/20/magazine/chinas-revealing-spin-on-the-sharing-economy.html
https://www.nytimes.com/2017/11/20/magazine/chinas-revealing-spin-on-the-sharing-economy.html
https://eml.berkeley.edu/symposia/nsf98/lii%7B/_%7Dlehr.pdf
http://doi.org/10.1111/j.1467-9892.1988.tb00461.x
http://doi.org/10.1111/j.1467-9892.1988.tb00461.x
http://doi.org/10.1145/2820783.2820837
http://doi.org/10.1145/2820783.2820837
http://doi.org/https://doi.org/10.1016/j.trc.2018.10.011
http://doi.org/https://doi.org/10.1016/j.trc.2018.10.011
http://doi.org/10.3390/app8010067
http://doi.org/10.1002/for.3980130107
http://doi.org/10.1002/for.3980130107

References 80

(pp. 46:1—–46:7). http://doi.org/10.4230/LIPIcs.GISCIENCE.2018.46

Müller, J., & Bogenberger, K. (2015). Time Series Analysis of Booking Data of a Free-
Floating Carsharing System in Berlin. Transportation Research Procedia, 10, 345–354.
http://doi.org/https://doi.org/10.1016/j.trpro.2015.09.084

Müller, K., & Wickham, H. (2019). tibble: Simple Data Frames. Retrieved from https:
//cran.r-project.org/package=tibble

NACTO. (2018). Bike Share in the U.S.: 2017. National Association of City Transportation
Officials. Retrieved from https://nacto.org/wp-content/uploads/2018/05/NACTO-
Bike-Share-2017.pdf

Nau, R. (2018). Stationarity and differencing of time series data. Retrieved from
https://people.duke.edu/{~}rnau/411diff.htm

O’Hara-Wild, M. (2018). fasster: Fast Additive Switching of Seasonality, Trend and
Exogenous Regressors. Retrieved from https://github.com/mitchelloharawild/
fasster

Pal, A., Zhang, Y., & Kwon, C. (2018). Analysis of Free-floating Bike Sharing and Insights
on System Operations. Civil; Environmental Engineering University of South Florida.
Retrieved from https://hdl.handle.net/1813/56569

Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data.
The R Journal. Retrieved from https://journal.r-project.org/archive/2018/RJ-
2018-009/index.html

PostgreSQL. (2014). PostgreSQL: The world’s most advanced open source database. Re-
trieved from http://www.postgresql.org/

PROJ-contributors. (2018). PROJ coordinate transformation software library. Open Source
Geospatial Foundation. Retrieved from https://proj4.org/

Pucher, J., & Buehler, R. (2017). Cycling towards a more sustainable transport fu-
ture. Transport Reviews, 37 (6), 689–694. http://doi.org/10.1080/01441647.2017.
1340234

R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vi-
enna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-
project.org/

Rixey, A. R. (2013). Station-Level Forecasting of Bikesharing Ridership. Transportation
Research Record: Journal of the Transportation Research Board, 2387, 46–55. http:
//doi.org/10.3141/2387-06

Ruffieux, S., Spycher, N., Mugellini, E., & Khaled, O. A. (2017). Real-time usage forecasting
for bike-sharing systems: A study on random forest and convolutional neural network
applicability. In 2017 intelligent systems conference (intellisys) (pp. 622–631). http:

http://doi.org/10.4230/LIPIcs.GISCIENCE.2018.46
http://doi.org/https://doi.org/10.1016/j.trpro.2015.09.084
https://cran.r-project.org/package=tibble
https://cran.r-project.org/package=tibble
https://nacto.org/wp-content/uploads/2018/05/NACTO-Bike-Share-2017.pdf
https://nacto.org/wp-content/uploads/2018/05/NACTO-Bike-Share-2017.pdf
https://people.duke.edu/%7B~%7Drnau/411diff.htm
https://github.com/mitchelloharawild/fasster
https://github.com/mitchelloharawild/fasster
https://hdl.handle.net/1813/56569
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
http://www.postgresql.org/
https://proj4.org/
http://doi.org/10.1080/01441647.2017.1340234
http://doi.org/10.1080/01441647.2017.1340234
http://www.r-project.org/
http://www.r-project.org/
http://doi.org/10.3141/2387-06
http://doi.org/10.3141/2387-06
http://doi.org/10.1109/IntelliSys.2017.8324359
http://doi.org/10.1109/IntelliSys.2017.8324359

References 81

//doi.org/10.1109/IntelliSys.2017.8324359

Rzepecki, R. (2019, February). Celebrating One Year in San Francisco. Retrieved
from https://medium.com/@jumpbikes/celebrating-one-year-in-san-francisco-
28469d5dccaa

San Francisco Department of Public Health. (2014). The San Francisco Indicator Project.
Retrieved from https://www.sfindicatorproject.org/

Schmidt, C. (2018). Active Travel for All? The Surge in Public Bike-Sharing Programs. En-
vironmental Health Perspectives, 126, 82001. http://doi.org/10.1289/EHP3754

SFMTA Board of Directors. (2018). Stationless Bikeshare Pilot Midpoint Evaluation. San
Francisco Municipal Transportation Agency. Retrieved from https://techcrunch.com/
2018/10/01/ubers-jump-bike-fleet-may-soon-double-in-size-in-sf/

Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and
Asia: Past, Present, and Future. Transportation Research Record Journal of the Trans-
portation Research Board, 2143 (1316350). http://doi.org/10.3141/2143-20

Shen, Y., Zhang, X., & Zhao, J. (2018). Understanding the usage of dockless bike sharing in
Singapore. International Journal of Sustainable Transportation, 12 (9), 686–700. http:
//doi.org/10.1080/15568318.2018.1429696

Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R
Examples (Vol. 9). http://doi.org/10.1007/978-1-4419-7865-3

Singhvi, D., Singhvi, S., Frazier, P. I., Henderson, S. G., O’Mahony, E., Shmoys, D. B., &
Woodard, D. B. (2015). Predicting Bike Usage for New York City’s Bike Sharing System.
In AAAI workshop: Computational sustainability.

Sun, Y. (2018). Sharing and Riding: How the Dockless Bike Sharing Scheme in China Shapes
the City. Urban Science, 2 (3). http://doi.org/10.3390/urbansci2030068

Talagala, T. S., Hyndman, R. J., & Athanasopoulos, G. (2018). Meta-learning how to fore-
cast time series. Monash University Department of Econometrics; Business Statistics. Re-
trieved from http://business.monash.edu/econometrics-and-businessstatistics/
research/publications

United Nations. (2018). World Urbanization Prospects 2018. Retrieved from https://
population.un.org/wup/

Van der Meer, L. (2019). dockless: Spatio-Temporal Forecasts for Bike Availability in
Dockless Bike Sharing Systems. Retrieved from https://github.com/luukvdmeer/
dockless

Van Mead, N. (2017, March). Uber for bikes: how ’dockless’ cycles flooded China – and are
heading overseas. Retrieved from https://www.theguardian.com/cities/2017/mar/
22/bike-wars-dockless-china-millions-bicycles-hangzhou

Wang, B., & Kim, I. (2018). Short-term prediction for bike-sharing service using machine

http://doi.org/10.1109/IntelliSys.2017.8324359
http://doi.org/10.1109/IntelliSys.2017.8324359
https://medium.com/@jumpbikes/celebrating-one-year-in-san-francisco-28469d5dccaa
https://medium.com/@jumpbikes/celebrating-one-year-in-san-francisco-28469d5dccaa
https://www.sfindicatorproject.org/
http://doi.org/10.1289/EHP3754
https://techcrunch.com/2018/10/01/ubers-jump-bike-fleet-may-soon-double-in-size-in-sf/
https://techcrunch.com/2018/10/01/ubers-jump-bike-fleet-may-soon-double-in-size-in-sf/
http://doi.org/10.3141/2143-20
http://doi.org/10.1080/15568318.2018.1429696
http://doi.org/10.1080/15568318.2018.1429696
http://doi.org/10.1007/978-1-4419-7865-3
http://doi.org/10.3390/urbansci2030068
http://business.monash.edu/econometrics-and-businessstatistics/research/publications
http://business.monash.edu/econometrics-and-businessstatistics/research/publications
https://population.un.org/wup/
https://population.un.org/wup/
https://github.com/luukvdmeer/dockless
https://github.com/luukvdmeer/dockless
https://www.theguardian.com/cities/2017/mar/22/bike-wars-dockless-china-millions-bicycles-hangzhou
https://www.theguardian.com/cities/2017/mar/22/bike-wars-dockless-china-millions-bicycles-hangzhou

References 82

learning. Transportation Research Procedia, 34, 171–178. http://doi.org/https://
doi.org/10.1016/j.trpro.2018.11.029

Wang, E., Cook, D., & Hyndman, R. J. (2018). tsibble: Tidy Temporal Data Frames and
Tools. Retrieved from https://pkg.earo.me/tsibble

Wang, X. C., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering
for time series data. Data Mining and Knowledge Discovery, 13 (3), 335–364. http:
//doi.org/10.1007/s10618-005-0039-x

Ward Jr., J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal
of the American Statistical Association, 58 (301), 236–244. http://doi.org/10.1080/
01621459.1963.10500845

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. Retrieved from http://ggplot2.org

Wickham, H., & Henry, L. (2018). tidyr: Easily Tidy Data with ’spread()’ and ’gather()’
Functions. Retrieved from https://cran.r-project.org/package=tidyr

Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: A Grammar of Data
Manipulation. Retrieved from https://cran.r-project.org/package=dplyr

Won Yoon, J., Pinelli, F., & Calabrese, F. (2012). Cityride: A Predictive Bike Sharing
Journey Advisor. In IEEE 13th international conference on mobile data management
(pp. 306–311). http://doi.org/10.1109/MDM.2012.16

Woodward, W. A., Gray, H. L., & Elliott, A. C. (2017). Applied Time Series Analysis with
R. CRC Press.

Xiao, N. (2018). ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ’ggplot2’.
Retrieved from https://cran.r-project.org/package=ggsci

Yang, X.-H., Cheng, Z., Chen, G., Wang, L., Ruan, Z.-Y., & Zheng, Y.-J. (2018). The impact
of a public bicycle-sharing system on urban public transport networks. Transportation
Research Part A: Policy and Practice, 107, 246–256. http://doi.org/https://doi.
org/10.1016/j.tra.2017.10.017

Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., & Moscibroda, T. (2016). Mobility Modeling
and Prediction in Bike-Sharing Systems. Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services - MobiSys ’16, 165–178. http:
//doi.org/10.1145/2906388.2906408

Yi, A., Li, Z., Gan, M., Zhang, Y., Yu, D., Chen, W., & Ju, Y. (2018). A deep learning
approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing
system. Neural Computing and Applications, 1–13. http://doi.org/10.1007/s00521-
018-3470-9

http://doi.org/https://doi.org/10.1016/j.trpro.2018.11.029
http://doi.org/https://doi.org/10.1016/j.trpro.2018.11.029
https://pkg.earo.me/tsibble
http://doi.org/10.1007/s10618-005-0039-x
http://doi.org/10.1007/s10618-005-0039-x
http://doi.org/10.1080/01621459.1963.10500845
http://doi.org/10.1080/01621459.1963.10500845
http://ggplot2.org
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=dplyr
http://doi.org/10.1109/MDM.2012.16
https://cran.r-project.org/package=ggsci
http://doi.org/https://doi.org/10.1016/j.tra.2017.10.017
http://doi.org/https://doi.org/10.1016/j.tra.2017.10.017
http://doi.org/10.1145/2906388.2906408
http://doi.org/10.1145/2906388.2906408
http://doi.org/10.1007/s00521-018-3470-9
http://doi.org/10.1007/s00521-018-3470-9

	Chapter 1: Introduction
	Context
	Objective
	Related work
	Forecasting in station-based systems
	Forecasting in dockless systems

	Approach
	Outline

	Chapter 2: Theoretical background
	Time series definition
	Time series characteristics
	Autocorrelation
	Stationarity
	Spectral entropy

	Time series components
	Definitions
	Classical decomposition
	STL decomposition

	Time series forecasting
	Forecasting models
	ARIMA
	2.4.2.1 Structure
	2.4.2.2 Model selection
	2.4.2.3 Parameter estimation
	2.4.2.4 Model checking
	2.4.2.5 Forecasting
	2.4.2.6 Accuracy evaluation
	2.4.2.7 Transformations

	Naïve forecasts
	Seasonal forecasts

	Time series clustering
	Dissimilarity measures
	Hierarchical clustering
	Spatial time series clustering

	Chapter 3: System architecture
	Overall design
	Software
	System area
	Database
	Distance data
	Usage data

	Forecast request
	Cluster loop
	Model loop
	Forecast loop

	Chapter 4: Data and experimental design
	Data source
	Data retrieval
	Distance data
	Usage data

	Experimental design
	Training and test periods
	Additional software

	Chapter 5: Results and discussion
	Clustering
	Model building
	Forecasting
	Limitations and recommendations
	Limits of forecastability
	Exogenous variables
	Residual distributions and prediction intervals
	GPS accuracy

	Chapter 6: Conclusion
	Appendix A: Code
	Appendix B: Models
	Bayview model point
	Downtown model point
	Residential model point
	Presidio model point

	References

