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Abstract

For millennia, humanity as been using images to tell stories. In modern society, these

visual narratives take the center stage in many different contexts, from illustrated chil-

dren’s books to news media and comic books. They leverage the power of compounding

various images in sequence to present compelling and informative narratives, in an imme-

diate and impactful manner. In order to create them, many criteria are taken into account,

from the quality of the individual images to how they synergize with one another.

With the rise of the Internet, visual content with which to create these visual storylines

is now in abundance. In areas such as news media, where visual storylines are regularly

used to depict news stories, this has both advantages and disadvantages. Although con-

tent might be available online to create a visual storyline, filtering the massive amounts

of existing images for high quality, relevant ones is a hard and time consuming task. Fur-

thermore, combining these images into visually and semantically cohesive narratives is a

highly skillful process and one that takes time.

As a first step to help solve this problem, this thesis brings state of the art computa-

tional methodologies to the age old tradition of creating visual storylines. Leveraging

these methodologies, we define a three part architecture to help with the creation of vi-

sual storylines in the context of news media, using social media content. To ensure the

quality of the storylines from a human perception point of view, we deploy methods for

filtering and raking images according to news quality standards, we resort to multimedia

retrieval techniques to find relevant content and we propose a machine learning based

approach to organize visual content into cohesive and appealing visual narratives.

Keywords: News media, Social media, Illustration, Storylines
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Resumo

Desde os tempos primórdios que a humanidade tem feito uso da imagem como meio de

transmitir histórias. No entanto, na sociedade actual, estas narrativas visuais ganharam

uma nova importância. Desde ilustrar livros infantis, até informar no contexto de peças

jornalísticas, este medium é frequentemente usado pela sua habilidade de apresentar

informações de maneira interessante e imediata.

Com o crescimento da Internet, o conteúdo visual através do qual é possível criar

estas narrativas tornou-se abundante. Para a imprensa, que faz uso frequente de narrati-

vas visuais para ilustrar noticias, esta mudança trouxe ambas vantagens e desvantagens.

Embora possa existir conteúdo de qualidade, online, para ilustrar uma notícia, o processo

de encontrar esse conteúdo e organiza-lo de uma forma coesa e apelativa, é uma tarefa

demorada e difícil.

Como primeiro passo para resolver este problema, nesta tese propomos trazer o uso de

metodologias que são o estado da arte na area das ciências da computação, para auxiliar

jornalistas e editores neste processo criativo. Fazendo uso destas metodologias, definimos

uma arquitectura composta por três módulos que permite a criação de narrativas visuais

através de conteúdos retirados das redes sociais.

Palavras-chave: Imprensa, Redes sociais, Ilustração, Histórias
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1
Introduction

1.1 Context, motivation and challenges

For thousands of years humanity has been telling stories through images. From carvings

in prehistoric caves retelling hunts, to classical paintings of bible scenes and modern

children’s books illustrations, the image has always been a key tool in the process of

storytelling. It provides an immediate way of sharing narratives that transcends language

barriers while having the capacity to be immensely descriptive.

This unique quality of the medium allows us to still be able to understand the stories

the ancient Egyptians carved in stone 4000 years ago. Figure 1.1 presents such a carving.

By analyzing it, one can get to know their fishing methods, even without prior knowledge

Figure 1.1: Examples of how our ancestors used images to tell stories. On the left, carvings
of acient Egyptians fishing, present in the tomb of Kagemni, a vizier of ancient Egypt.
Source: [51]. On the right the interior of the Scrovegni chapel situated in Padua, Italy,
with murals depicting the life of Christ. Source: [45].
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CHAPTER 1. INTRODUCTION

of the ancient Egyptian civilization and culture. Similarly, in the middle ages, it was

through the visual depiction of religious scenes that Christianity came to be understood

and worshiped by the general populace. In 1305, Giotto di Bondone finished his famous

series of frescos in the Scrovegni chapel, depicting the life of Christ. These murals work

in tandem to tell a narrative that can be understood by anyone just by observing them,

proving that imagery is able to express complex tales and depict the passage of time.

Although, much as changed since the these murals where painted, the inherent qualities

of visual stories are still highly valuable in modern society. In fact, since the 19th century

we saw the rise of many new mediums that focus on telling stories through images, such

as comic books, graphic novels, manga, photography and cinema.

Today, with the large amounts of information available in the most varied contexts,

the importance of being able to present compelling and informative narratives in an

immediate and impactful fashion has revitalized the importance of the image. As a prime

example of this, news media is focusing more and more on the usage of images to tell

news stories, providing news in formats such as BBC’s In Picture1, where news pieces are

presented to the audience through selections of images accompanied by small captions.

However, the high amounts of information and images available, specially online, has

also brought new challenges to the task of creating visual narratives. Rooted in the need

to help solve these challenges and introduce new technologies to the millenia-old human

tradition of telling stories through images, this thesis approaches visual storylines from

a computational perspective, a problem yet to be solved by the research community.

In particular, we focus on the problem of creating visual storylines to illustrate news

pieces using social media content.

1.1.1 Social media in the newsroom

In the context of news media, visual storylines are consistently used as way to present

information to the reader in a concise yet interesting manner. Not only are news pieces

normally illustrated by a carefully selected sequence of high quality images, but the image

becomes the central focus of the news piece in slide shows as the ones that populate most

news websites (BBC In Pictures1, Reuters Pictures2 and Euronews NoComment3 are just

some examples). Hence, in the news room, it is the job of the journalist and the news

editor to select news worthy images and to organize them in a semantically, visually

coherent and appealing fashion.

However, with the advent of large scale social media platforms like Twitter, Facebook

and Flickr, interesting and appealing images that can illustrate a piece of news are no

longer only present in the portfolio of news photographers. User generated content has

become a great source of news images as the photographic quality of mobile devices

1www.bbc.com/news/in_pictures
2www.reuters.com/news/pictures
3www.euronews.com/nocomment
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continues to rise. Additionally, social media users document the events they participate

in themselves, taking photos that cover many more places and perspectives, than a group

of photo journalists could ever be able to create. Consequently news editors are now

using user generated content found on social media when creating visual storylines.

1.1.1.1 Social media challenges

Despite the previously described advantages of using social media images to create news

media storylines, there are various downsides to the approach:

• Not all social media content presents the same aesthetic quality;

• Fake and altered media are prominent on social media;

• Sources reputation varies greatly;

• There are massive amounts of content to be considered and analyzed;

• Resorting to social media content means dealing with its heterogeneous style and

characteristics;

• Finding relevant content to a particular topic can be hard and time consuming.

Consequently, using social media content to create news media visual storylines is highly

impractical if the full extent of the task is to be performed manually.

Hence, there is a need for the development of new tools to help the news journalists

and news editors in their task. These technologies range from intelligent methods of

content filtering based on respective quality and characteristics, to automated suggestions

for news illustration and visual storyline creation. With these tools the news editor will

be able to take full advantage of the benefits of using social media content without having

to deal with the aforementioned problems.

Developed in the context of project COGNITUS, an European project that aims to

combine news media, broadcasting technologies and user generated content, this thesis is

a first step in this direction. It focuses on the study and development of a method to assist

news editors in the process of visual storyline creation. This composes a novel research

task, one that, to our knowledge, is yet to be tackled in literature.

1.2 Problem statement

In the context of this thesis we define a visual storyline as an organized sequence of

images illustrating a sequence of text segments related to a particular topic. Creating a

visual storyline from a topic and a set of segments means picking images to illustrate each

segment. These images must not only make sense in the context of the text segment they

are illustrating individually but must also form a cohesive and appealing whole when

organized sequentially into a visual storyline. The objective of this thesis is to automate
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CHAPTER 1. INTRODUCTION

Figure 1.2: Topics and segments and the process of creating a visual storyline. Source of
the Tour de France news story being illustrated: https://www.bbc.com/sport/cycling/
36879128.

this illustration process resorting to content extracted from social media. Figure 1.2

presents the topic - segments hierarchy as well and the illustration process of creating a

visual storyline for a real BBC news story with social media content.

Formally we define our query, a story as consisting of N text segments, each denoted

by ui , as:

StoryN = (u1,u2, ...,uN ) (1.1)

The main objective of this thesis is to create a framework, that takes as input a story

StoryN and a set of social media posts D, and outputs one or more visual storylines

StorylineN containing N social media images, each denoted by wi where wi ∈D:

StorylineN = (w1,w2, ...,wN ) (1.2)

Furthermore we aim to understand, from a computational point of view, what are the

key characteristics that make particular images more apt to be used in a visual storyline,

in the context of news media, and what characteristics make a storyline more appealing

and coherent to the viewers consuming them.

1.3 Objectives and proposed solution

Figure 1.3 summarizes the architecture of the framework, composed by three modules,

we propose to tackle stated problem. This linear pipeline corresponds directly to part

4
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1.3. OBJECTIVES AND PROPOSED SOLUTION

Figure 1.3: Visual storyline creation framework.

of the structure of this thesis, as the first, second and third modules are described and

studied in detail in Chapters 4, 5 and 6.

Our research hypothesis is that, by taking advantage of this three part architecture we

are able to generate visual storylines that are perceived as having high quality by their

viewers. Additionally, by taking advantage of this system we also aim to understand what

key criteria can be used to optimize the process of storyline creation from a computational

point of view.

The modules that compose the framework are designed as follows.

1.3.1 Ranking by news quality

The first module of the framework is designed to find content inline with news media

standards in a pool of social media posts.

This means dealing directly with SPAM and content that is, overall, not suitable for

use in a news media context (e.g.: digital adverts). Moreover, after filtering out SPAM one

is still left with images of various degrees of quality. This means also taking into account

more nuanced news media criteria when picking content. However, understanding and

enforcing news media criteria in visual content is, as detailed in Chapter 2 (Related Work),

a complex and nuanced task that, as far as we could tell, has not been tackled in literature.

The social media images that pass this filter are then given as input to the second

module of the framework.

1.3.2 Retrieving relevant content

Ensuring the storyline is comprised of quality content is not enough, as illustrating a

story with quality content that is not relevant to the topic the story describes mutes the

purpose of the illustration. Hence, the second module tackles the problem of retrieving

relevant social media content to a particular story in an automated way. Taking as input

the images filtered by the first model and a story to illustrate, this module finds candidate
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images to illustrate each segment of the story and provides them to the third and final

module that composes the framework.

1.3.3 Creating the storyline

As already described, a visual storyline is an ordered sequence of images and, as noted

in Chapter 2, the way these images are ordered affects how they are perceived: from

a human cognition point of view a visual storyline is expected to be semantically and

visually coherent while providing an interesting narrative that unfolds over time. Taking

the candidate images outputted by the second module as input, this final module is tasked

with generating storylines with the candidate images that reflect these characteristics. As

discussed in Chapter 2, although there is already research work on tasks such as semi-

automated video editing, no works could be found on visual storyline generation in the

context of news media. As such this task is also one that is one that is also yet to be

tackled in literature.

1.4 Contributions

This thesis resulted in the following contributions:

• A paper published in the proceedings of the 2018 ACM International Conference

on Multimedia Retrieval titled Ranking News Quality Multimedia, which was nom-

inated for best paper of the conference.

• Two modules that were integrated in the COGNITUS European project. The first

module designed to evaluate images according to news quality standards and the

second designed to evaluate the transitions between images in the context of visual

storylines.

• A dataset composed of images extracted from social media annotated according to

their news quality in the context of news media through crowd sourcing. This is

the first dataset of this kind to be publicly available as far as we know.

• A visual storylines dataset created using social media content and annotated accord-

ing to quality through crowed sourcing. Again, this is also the first dataset of this

kind to be publicly available as far as we understand.

• Finally, the work in this thesis contributed to the organization of the first "Social-

media video storytelling linking"TRECVid competition, a workshop where world-

wide multimedia retrieval and analysis competitions are held. The task focuses

on developing a system similar to the one proposed in this thesis. The storyline

evalation framework described in Chapter 3 was used to evaluate the competing

systems.
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1.5 Document structure

The remaining document is organized as follows:

• Chapter 2 discusses related works that either influenced this thesis or that can be

used to complement it;

• Chapter 3 proposes an evaluation framework for visual storylines that is the basis

for the experiments conducted throughout this thesis;

• Chapter 4 describes the first module of the visual storyline generation framework

developed for image quality assessment and filtering, according to news media

standards;

• Chapter 5 describes the methods that compose the second module of the framework,

used to identify and retrieve candidate images relevant to the stories provided as

input to the framework;

• Chapter 6 details the third and final module of the framework, designed to structure

candidate images into cohesive and pleasant visual storylines;

• Finally, Chapter 7 concludes the thesis.
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2
Related work

2.1 Introduction

In this Chapter we perform an analysis on previous research works in order to understand

what methodologies already established in literature can be helpful when tackling the

problems posed in the context of this thesis.

We start by review works related to various methods of qualifying visual content

in Section 2.2. These serve as a first basis for the first module of the storyline genera-

tion framework. In turn, Sections 2.3 and 2.4 discuss works related to multi-document

summarization, storyline creation and editing. They serve as ground work for the remain-

ing two modules of the framework, tasked with finding media to illustrate stories and

organizing this media into a cohesive storyline, respectively.

Finally, we provide a critical review of the works analyzed, identifying their most

valuable take away messages as well as possible gaps in existing literature.

2.2 Identifying quality content

Image quality is an abstract concept that describes a large set of characteristics and criteria

whose value is variable according to both context and personal subjective preference. A

photography may be highly suitable to be used in the context of an advert while not

presenting the necessary characteristics that would make it a good image to be used to

illustrate a news piece. Additionally, different image characteristics provide different

effects on the individuals viewing them. Even so, on average some images tend to be

considered more aesthetically pleasing, memorable, interestingness or even exotic then

others.

Because we face the task of illustrating news stories, we are interested in being able
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CHAPTER 2. RELATED WORK

Figure 2.1: Usage of the Rule of Thirds in a photography by Henri Cartier-Bresson with
Rule of Thirds division lines in overlay. The degree to which the rule is applied greatly
varies from photography to photography while also being highly open to interpretation.
Source: [50].

to distinguish between newsworthy and non-newsworthy images. In order to understand

what makes an image newsworthy one can turn to works on photographic technique,

both older [1] and more recent [11, 13] as well as works on photojournalism [25]. These

detail the importance of visual criteria like exposure quality, composition and the use

of color, among many others, while also elaborating on the importance of semantics in

photography, all explained through the photographer’s point of view.

However, although of high importance, this perspective is not enough, as translating

and combining some of the photographic concepts presented in these works into a com-

putational context is a hard and subjective task. An example of such a concept is the Rule

of Thirds [11], as its degree of application is highly subjective in some images and the

improvement it provides is fully dependent on the remaining characteristics of the image.

The application of this rule is presented in Figure 2.1.

Although the study of methods for measuring the quality of textual news pieces, such

as the one described in [3], are a popular topic in literature, no research work could be

found on the subject of understanding newsworthy images from a computation point of

view. As such, we turn to research on other types of image quality and characteristics as

a basis for our work.

2.2.1 Aesthetics

In [32], Marchesotti et. al. attempt to predict the aesthetic quality of images by making

use of local generic image descriptors. The approach attempts to implicitly find quality

images that adhere to photographic rules by training a machine learning model using low
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Figure 2.2: High level features used in [10] to predict aesthetic quality of images. Source:
[10].

level features. The evaluation of the method was conducted using two distinct datasets,

one created for research purposes through crowd sourcing [24] and one leveraging the

opinions of the community of Photo.net1, a photography social network. This approach to

experimentation underlines the trending method of using datasets annotated via crowd

sourcing for evaluation purposes in this type of task.

Complementing the focus on low-level visual features, other works make use of high-

level visual and semantic features, like compositional attributes, semantic content of

the images and illumination quality, as a way to tackle the same task. One such work

is [10], where the Dhar et. al. try to predict both aesthetic quality and the percieved

interestingness of images using high level features, extrapolated from low level ones.

Figure 2.2 presents some of these features and Subsection 2.2.3 discusses this work in

greater detail.

Interpreting the choice of features used in [10] and [32] highlights the value of both

high and low level features when tackling this type of task.

2.2.2 Memorability

Now focusing on other kinds of quality in [20, 21] Isola et. al. tackle task of computa-

tionally quantifying the memorability of different images. They propose a memory game

and resort to crowd sourcing as a way of understanding the key factors that make an

image more or less memorable. To do so, they consider a collection of visual attributes

such as the aesthetics of the image, the emotions the images projects, the location the

image depicts, if the image contains people, among others. The authors then correlate

memorability with these features by analyzing the results of the memory game that was

1https://www.photo.net/
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Figure 2.3: Different images and their memorability in the context of a memory game.
The percentages presented are the amount of participants in the memory game that
remembered the images. Source: [20]

conducted. Figure 2.3 presents different images and their memorability to the users who

participated in the memory game.

Following the approaches to quantifying memorability in images proposed in [20, 21],

in [31] Mancas et. al. again tackle the same task, however this time by researching the

possible relationship between memorability and attention. More specifically the authors

research memorability and its connection to a proxy for attention: the eye movements of

users (analyzed by an eye-tracking system) when viewing images in the context of a mem-

ory game. Additionally, the authors expand on the feature set analyzed in the context of

[20, 21] by taking into account two low level image features related to attention: salience

map coverage and contrasted structures. Through this novel approach the authors proved

the importance of considering attention in the context of image memorability, showing

that fixation duration (as measured through an eye-tracking system) is a valuable criteria

in the task of predicting image memorability.

12
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Figure 2.4: Pipepile for image interestingness prediction with low level features extracted
from [24]. Source: [10].

2.2.3 Interestingness

Also leveraging a similar approach as the one proposed by Isolda et. al.[20, 21], but

towards a different goal, Dhar et. al. [10], research the characteristics of images that make

them generally more interesting to viewers. In order to tackle the task the authors propose

a pipeline where low-level features are first extracted from visual content and are then

used to infer a set of high level characteristics related to the images under scrutiny. These

higher level features are then given to a classifier tasked with inferring interestingness.

Figure 2.4 presents a diagram of the full pipeline specifying all low and high level features

used.

Of note is that, both the authors of [10] and [21] make use of a greedy feature selec-

tion method as a way of finding the features that best correlate to their respective goals,

establishing the method as a solid approach to the task, even if works such as [23] show

that other methods could also have been employed.

2.2.4 Exoticism

Tackling a novel problem in research, in [6] Ceroni et. al. approach the problem of

automatically identifying exotic images using deep learning techniques. Although the

authors acknowledge that an image can be seen as less or more exotic in a continuous

scale, in [6] the task is simplified and tackled from a binary classification perspective.

Additionally, the use of deep learning techniques means losing the ability to interpret the

learned models. Consequently, although the authors were able to achieve a high precision

at the task they were unable to provide insight into what makes an image more or less

exotic.
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Figure 2.5: Images unsuitable for summarization. Source: [37].

2.2.5 SPAM detection

Although identifying high quality content is important, we are also interested in identi-

fying very low quality content to ensure such content is never used in visual storylines.

Consequently, besides optimizing for image quality, we also have to consider and filter

out SPAM content, as it accounts for a large portion of the content found on social media.

In a context akin to this, McParlane et al. [37] and Schinas et al. [43] address the prob-

lem of automatically detecting images unsuitable for visual summarization, stating the

importance of dealing with images such as "memes"and captioned images like the ones

presented in Figure 2.5. Particularly in [37], the authors also deal with the problem of

identifying duplicated and near-duplicated images resorting to techniques such as pHash,

as a way to deal with the large amount of duplicate content found on social-media.

2.2.6 Other

Previously discussed research works approach the task of evaluating images by taking

only into account their visual characteristics. However, content posted to social media

tends to be attached to other types of informative characteristics, as social signals and

general metadata. Consequently, we now review works that use such information to infer

the quality of content under evaluation.

In this context, Agichtein et. al. [2] propose an architecture for qualifying content

in Q&A dedicated forums like Yahoo! Answers. The approach of the authors takes into

account the social signals attached to the content under scrutiny, the intrinsic quality of

the content calculated by examining it independently and the metadata associated with

the content. Although the framework proposed in this research work is designed specif-

ically to evaluate answers posted to Q&A forums, the authors make clear that, with the

appropriate modifications, it could be used to qualify any type of user generated content

posted to social media. More specifically, in the particular case of this study, intrinsic

content quality is evaluated by examining text characteristics like punctuation, orthogra-

phy, and grammatical correction. In the context of image evaluation these characteristics

could be replaced by visual ones, like exposure quality or focus quality, as made explicit

by the authors.

Finally, the authors of [37] also take into account social signals to rank images while

tackling the problem of visual summarization of events using social media content. In
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this context, an image attains a higher rank in function of the quantity of retweets it is

associated with and of how many near-duplicates exist of it. Higher ranked images are

then chosen as candidates to be part of the summary. A more thorough analysis of this

work is detailed in the next Section which regards literature on summarization tasks.

2.3 Multi-document summarization

In the context of this thesis, creating a storyline means organizing content in a way that

forms a cohesive, short and pleasing narrative. Consequently, we analyze approaches

to summarization tasks. Although, for some of these tasks, the pleasantness or inter-

estingness of the summary may not be a priority, by definition they focus on ways to

automatically compile an abridged version of a large pool of information.

2.3.1 Social media

Summarization of social media content has been the focus of various research works

throughout the years. This has happened as a result of the increasing need to take advan-

tage of the large amounts of content being posted every day on social media.

In [40], Nichols et. al. propose a methodology to perform automated text summariza-

tion of sporting events using data collected from Twitter. In this case, the authors find

the most important moments of an event by identifying spikes in the volume of tweets

over time, an approach also applied in TwitInfo [34]. A visualization of the result of

this approach can be observed in Figure 2.6. After acquiring these tweets and applying

spam removal techniques to the set, a phrase graph is created from the text present in

the tweets. This graph details the chance of a word appearing next to a previously estab-

lished sequence of words in the context of a phrase. The phrase graph is used to generate

possible sentences that summarize the event. These sentences are also scored through the

phrase graph and the best scoring ones are outputted. As a possible alternative to this

graph based algorithm, the authors propose Sharifi’s modified TF.IDF [46] as a method for

generating a text summary of the event. Although not directly related to visual storyline

generation, these works highlight the importance of considering the amount of content

being posted to social media, at any particular time, as metric for finding if interesting

and important events are taking place.

Three years after Nichols et. al. published [40], the authors of [43], Schinas et. al.,

tackled a similar the problem, by rooting their research in a similar approach. In this work

the task of visual event summarization using social media content, again from Twitter,

is tackled through the use of topic modeling and graph based algorithms. The authors

start by filtering a stream of tweets from a specific event in order to obtain only the most

informative ones. This filtering process takes into account image size, image type, text

size, text morphology through part-of-speech tagging, among other criteria. A multigraph
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Figure 2.6: Spikes in the volume of data published to Twitter relative to three different
football matchs. As shown the spikes tend to align with the important parts of the match.
Source: [34].

is then created. Each node representing a tweet and being connected by an edge to other

nodes as many times as the following criteria are applicable:

• Text similarity between tweets below a specific threshold.

• Image similarity between tweets below a specific threshold.

• Temporal proximity between tweets below a specific threshold.

• One tweet is a reply to another.

Re-posts are then discarded and tweets with duplicated images are clustered with the help

of the graph. The tweets in these clusters are removed from the graph and are replaced

by a single node that encompasses the information of the removed tweets. The authors

then intent on discovering which tweets are part of the targeted event. In order to do

this, they apply the SCAN [55] algorithm to the graph, which returns a set of subgraphs,

each corresponding to a different topic. Finally, for each subgraph, the authors extract

the respective images and rank them according to their popularity, relevance to the topic

and the amount of information they provide.

These approaches emphasize the trend that is the usage of graphs in summarization

tasks. In most cases they are used to represent the connections between pieces of content.

This then allows for the application of already established graph algorithms, in order to

find content highlights and appropriately structuring them in chronological fashion.
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In [37] the authors also tackle the problem of visual summarization, although in this

case the summarization is done with images not only from Twitter but also from other

websites found in the URLs of tweets. After filtering the obtained images in a manner

similar to the one proposed in [43], the authors rank the remaining images using social

signals. Finally, besides taking into account the popularity of an image the authors also

factor into its rank the diversity of said image when compared to the remaining available

ones. They achieve this by grouping the images through semantic clustering and then

giving priority to the ones with the highest TF.IDF.

Of note is that both authors of [43] and [37] tackle the problem of filtering duplicated

content, although through different methodologies. In order to reconcile both approaches

one could use pHash as proposed by [37] and cluster the results through a graph based

approach in a way similar to what is described in [43].

Additionally, works such as [4] and [5] were also studied. In this particular case

the authors discuss the importance of taking into account the media content present in

microblog posts during the process of summarization. Consequently they tackle the task

of filtering irrelevant or noisy content, as using this type of media may severely degrade

the quality of the generated summaries. This problem is approached trough the use of

a spectral filtering model. Having filtered the content, the authors propose and define a

variation of LDA, CMLDA (or Cross-Media-LDA) designed to simultaneously deal with

the textual and visual aspects of social media content.

2.3.2 Personal photo stream

With the advent of the smartphone cameras the act photographing and self documenting

events as become a common practice. As such, paralell to social media summarization,

contemporary research has focused on applying and developing summarization tech-

niques in the context of personal photo streams. This field of research attempts to help

with the process of filtering, cataloging and organizing this kind of content.

As an example of research done on this field we analyze the work of Yang et. al. [56].

In this work the authors tackle the task of creating a temporally organized summary of an

event from a set of photo streams extracted from different sources. The authors give as an

example events like weddings and family vacations where multiple cameras are used to

capture different perspectives and subjects at different moments in time. In this situations

organizing the available images into a chronological summary can be complicated: image

files may not have a correct timestamp associated with them and the set of available

images may contain similar and redundant content. To tackle this problem the authors

align photo streams in a common timeline using a bipartite kernel sparse representation

graph. Finally, a master stream, corresponding to the summary, is obtained by removing

redundant photos and leveraging the informations obtained from the graph.
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2.3.3 Other

In [28], Li et. al. aproach the problem of summarization from a different perspective.

Although the authors are interested in generating summaries from multimedia content,

the generated summaries are composed only of textual information. In this context the

authors propose a framework to summarize text, images, video and audio into text. To do

so, the media content is first characterized in textual form. A speech recognition method

is applied to audio and a graph approach is used to measure the importance of each

piece of content. Videos are separated into key-frames and image semantic extraction is

performed on both video key-frames and still images. Although the task tackled by the

authors is fairly different from the one approached in this thesis, the work draws attention

to the value of considering different types of media in summarization tasks. In the context

of visual storyline generation, this can mean analyzing not only the images extracted from

social media, but also the text of the posts they were extracted from. Additionally, the

approach of decomposing videos into key-frames provides a possible method to easily

extend the work developed in the context of this thesis regarding images to video content

as well.

2.4 Storyline creation and editing

A visual storyline must be succinct and cohesive but also pleasing to the viewer. Overall it

must present a sequence of images as an interesting and informative narrative. Whether

in the news room or in the context of cinema, the processes of ordering and cutting

content to fit these criteria is the job of the editor. Consequently, emulating this process

in an automated way means understanding what makes a sequence of images cohesive,

interesting and appealing, or not, to the viewer.

2.4.1 Professional

To do so, we could turn to literature on the topic, approaching it first from a non-

computational point of view. However, analyzing works on film and video editing such

as [42] or [38] yields less interesting insights then those extracted from the previously de-

scribed literature on photography. This is the case as techniques and rules in editing are

generally highly subjective, context driven and, consequently, hard to mimic algorithmi-

cally. Regardless, these works elaborate on the importance of ensuring the cohesion and

pleasantness in the content as a whole, but also of the transitions between its individual

pieces of media that compose it. More specifically, as per [38], the quality of individ-

ual transition between two pieces of content is a result of both the visual and semantic

characteristics of the pair.

18



2.4. STORYLINE CREATION AND EDITING

2.4.2 Automatic

Since no works could be found that specifically tackle the task of visual storyline genera-

tion, we turn to works on various forms of content editing, in order to understand what

technologies and methods where proposed by previous authors as basis and support for

the work developed in the context of this thesis.

In [15] the authors approach the task of semi-automated (not fully automated) home

video editing as opposed to professional video editing. Additionally, they focus on opti-

mizing only for simple and few editing techniques and shot characteristics, like bright-

ness and length. Although works like this approached the task of editing in a simplified

manner, they were the basis for the more complex approached that proceeded them.

In [30], Lino et. al. also approach the task of automated video editing, this time taking

into account more complex rules and editing concepts. Here, the goal of the authors is

to automate the decision process of which cameras to use, when to cut a shot and which

camera to cut to, in the context of animated computer generated videos. All of this while

taking into account notions of shot composition, continuity and pacing. To do this, the

authors propose an approach in which they try to minimize the total cost of a full video

edit. This is calculated by taking into account the cost per shot and the cost per transition

between each pair of shots in a final video. In turn, these costs are calculated as the the

weighted sum of the violations the shots or transitions incur in. As a whole, this allows

the authors to approach the difficult problem that is the subjective evaluating an edit of a

video, in a algorithmic way. To optimize for individual shot quality both shot composition

and shot duration are taken into account. Here shot composition is used as a metric of

the pleasantness of the shot, while shot duration is used to ensure all shots in the video

have a similar duration. Regarding transition quality the authors consider the following

rules:

• Screen continuity: the eyes of the actors should remain in similar position on screen

after a cut. This is a simplification of an editing technique that has as an objective

preventing the viewers to be forced to search the images for their main subjects after

each cut. This creates a more pleasant and balanced viewing experience. Although,

in editing, this technique applies to the general subjects of the shots, the authors of

this work took only into account the eyes of the actors as a way of simplifying the

complex problem that is identifying the subject or subjects of a shot.

• Gaze continuity: preserving the actor’s gaze direction. This technique is used in

editing to help assert and preserve both the position and direction the actors occupy

in relation to each other and their surroundings, in the viewers perspective. Figure

2.7 gives an example of a transition that follows this rule and one that does not.

• Motion duration: preserving the actor’s movement and motion directions. This is

done for the same reason and the rule presented above.
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Figure 2.7: The pair of scenes on the left does not follow the gaze continuity rule, while
the pair of scenes on the right does. Source: [30].

Although interesting, it is much easier to take advantage of these criteria in the context

of animated computer generated videos, then in the context of live action ones. As an

example, in a computer generated video finding the orientation and direction of the gaze

of an actor requires simply the model of the actor to be tracked, while in a live action

scenario the only automated approach would require taking advantage of face recognition

techniques.

Hence, we move away from editing in the context computer generated videos to edit-

ing in the context of live action ones, analyzing the work of Smith et al., [48]. In this

work the authors tackle the task of creating a trailer for a full length feature film in a

automated way. As opposed to earlier works the edit provided by the system was actually

used in a real life situation, although with manual alterations, serving as a movie trailer

for Morgan, a 2016 horror movie. The system leveraged deep learning, audio, visual aes-

thetics and shot semantics, sentiment analysis and statistics associated with the content

of horror movies, to decide which scenes to include in the trailer. Figure 2.8 shows the

scene selection and organization for both the fully automated version of the trailer as well

as the final, manually edited one.

Finally, not many research works could be found directly regarding news media edit-

ing. In this context, one of the few works that provide insight into the task is [9]. In it, the

authors observe that presenting repeated images/videos in the context of news related

storylines makes viewers perceive said storylines as having less quality, even if relevant

information is being shown. A simple but very relevant insight regarding the task tackled

by this thesis.

2.5 Critical summary

Regarding literature on identifying quality images, as debated throughout this Chapter,

multiple research works have already been conducted regarding various forms of im-

age quality, although none was found that tackled the task of identifying news quality

content.

This novel computer vision task, following computational approaches to aesthetics,

interestingness, memorability and more recently exoticism, is of less abstract character

than previous ones. In itself, this poses new challenges, as we are working with a more

constrained and defined set of quality criteria then, for instance, works on general image
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Figure 2.8: The column on the left shows the scenes selected in an automated way by the
system proposed in [48] for the trailer of the movie Morgan. The column on the right
shows the final trailer’s scenes, after being manually improved by professional editors.
The blue arrows show the chance in order applied to the scenes in the final edit that
where present of the automated one. Source: [48]

aesthetics. Additionally, because this is a novel task, no datasets and ground truth are

available to evaluate possible approaches to the problem. As such, we propose to follow

an approach similar to the one documented in [24], crowd sourcing the creation of a

ground truth for a dataset containing images extracted from social media. Additionally,

inspired by the works on image aesthetics, interestingness and memorability, we aim to

leverage machine learning methodologies, supplementing them with a large set of low

and high level features, in order to tackle the task. Since we aim to, not only correctly

identify news quality content, but also explain why a piece of content was deemed as

having news quality, models like the one presented in [6] are not valid approaches to the

problem. This because, deep learning models suffer from low interpretability, regardless

of overall performance.

Regarding works on summarization methods, as already discussed, this is a research
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field that has received a lot of attention in recent years and as such, many summarization

methodologies have been proposed, discussed and evalutated in literature, be it in the

context of social media or otherwise. However, these methods tend to focus solely on

the task of creating abridged versions of a large amounts of data, without tackling the

problem of optimizing the resulting summaries for aesthetic quality and pleasantness.

This makes sense in the context of problems where the objective is only to provide a

useful synthesis of the information available. This is not, however, true in the context of

this thesis. Although it is our aim to develop a method for automatically creating visual

storylines able to summarize a targeted news story, we want to do so while ensuring

the aesthetic quality and cohesion of said storylines. As such, we aim to build on the

approaches of previous authors while also providing the necessary modifications in order

make them fit the specifications of the problem at hand.

Finally, with respect to storyline creation and editing, no research work could be

found that tackles the exact challenges and problems posed in Chapter 1. However, there

is research on automated video and film editing, even if mostly from a semi-automated

perspective. These approaches base themselves on simplified versions of techniques and

criteria put forward in the context of professional manual editing. These simplifications

are required as editing techniques are highly subjective, context dependent and require

the understanding of the visual and semantic characteristics of the content available,

all of which is extremely hard to achieve from a computational stand point. Of these

works, [48] presents both a particularly interesting problem and approach, leveraging

deep learning methodologies to create the first semi-automatically generated trailer for

a full length feature film. Inspired by this approach, we intend to leverage machine

learning methodologies to identifying and understand what semantic and visual criteria

result in a visual storyline being perceived as cohesive and pleasing to the viewer.

Summarizing, various gaps can be found in literature regarding computational ap-

proaches to visual storyline evaluation, identifying and understanding news quality vi-

sual content, editing in visual storylines and overall automated storyline generation. By

tackling the novel research task purposed in this thesis we aim to research and evaluate

possible solutions to the aforementioned problems, providing a stepping stone for future

works on related subjects.
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3
An evaluation framework for visual

storylines

3.1 Introduction

Achieving quality is only possible after understanding what characteristics quality derives

from. In the context of this thesis, this means understanding by what characteristics

should we evaluate a tool designed for visual storyline creation, as by doing so we gain

insight into the process of optimizing such a tool. In this context we face two main

challenges. The first relative to the high degree of subjectivity associated with the process

of visual storyline creation and evaluation. The second associated with the fact that, to

our knowledge, no evaluation framework has been proposed in literature for the task at

hand.

Hence, in this Chapter we propose a novel framework to evaluate the various ap-

proaches to storyline creation that are proposed in this thesis and that may be proposed

in future research work. Additionally, this evalutation framework has already been cho-

sen to evaluate the systems submitted to the “Social-media video storytelling linking”

competition (https://www-nlpir.nist.gov/projects/tv2018/Tasks/lnk/) that took

place during TRECVid 2018, an annual workshop where worldwide multimedia retrieval

and analysis competitions take place.

To create this framework we based ourselves in the Cranfield Experiments [52], a

literature standard for evaluating the performance of information retrieval systems. In

this context the systems are evaluated by receiving as input a set of queries and being

tasked to retrieve documents from a dataset. The quality of the retrieved documents to a

particular query is evaluated according to ground truth.
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As such, we first establish and detail four distinct datasets composed of images col-

lected from Twitter, leveraging a pool of social media content with heterogeneous char-

acteristics. Complementing these datasets, we also define the queries, these being a

manually curated set of stories extracted from news media, with which it is possible to

create quality visual storylines, by using the images from the datasets. Additionally, we

define the method by which the ground truth was created through crowd sourcing. In

this context there is the need for an interface in order to present visual storylines to the

viewers (the annotators). Furthermore, the quality of the interface may interfere directly

with the viewers perception of a storyline. Consequently, we establish the interface devel-

oped by Marcucci et. al. in the context of [33] as the one used to present visual storylines

to the viewers during evaluation processes, elaborating on the characteristics that make

it a solid choice for the task.

Finally, we derive a metric for visual storyline evaluation composed of two distinct

dimensions that are easier to evaluate then overall quality. This metric provides an

empirical method to qualify visual storylines that is consistently used in the process of

attaining ground truth throughout this thesis.

3.2 Dataset and queries

Image datasets and curated stories (the queries) are necessary to evaluate storyline gen-

eration methods. These datasets must contain images from which it is possible to create

quality visual storylines that illustrate the stories. Since no datasets with these charac-

teristics could be found, our approach was to pick a set of datasets for which no ground

truth or stories existed, create the stories and, as required, proceed to the creation of

ground truth through crowd sourcing.

Due to the nature of the task we pursued datasets containing only posts from social

media related to individual events. We chose Twitter as the source of social media images.

This choice is supported by a proven correlation between what is posted on the social

network and news media. As an example, [27] shows that over 85% of the topics trending

on Twitter are also covered by the news. As criteria for picking the events we focused on

those that span over multiple days and that gather a lot of social media and news media

traction like music festivals and sports competitions. This allows us to have large amounts

of content to analyze and use for experimentation, with varied quality and characteristics.

Finally, the focus on events covered by news media means that we can look directly at

news pieces in order to find stories to illustrate. In total four datasets where chosen. The

targeted events were:

The Edinburgh Festival (EdFest) a celebration of the performing arts, including dance,

opera, music and theatre performers from all over the world. The event takes place

in Scotland and has a duration of 3 weeks.
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Event Stories Docs Docs w/images
EdFest 2016 20 82348 15439
EdFest 2017 13 102227 34282
TDF 2016 20 325074 34865
TDF 2017 15 381529 67022

Table 3.1: Summary of the characteristics of the 4 datasets.

Le Tour de France (TDF) a world famous road cycling race competition. The event takes

place mainly in France and has a total duration of 16 days.

More specifically, we considered EdFest 2016 and 2017 and TDF 2016 and 2017. For

each event we then created stories with 3 to 4 segments each based on news media content

we researched, related the events. A sample of these stories for TDF 2016 and EdFest

2016 can be found in Tables 3.4 and 3.3. Throughout this thesis we will evaluate methods

of storyline generation by their ability to pick content from the EdFest and TDF datasets

to ilustrate these stories.

Table 3.1 summarizes the content of the datasets and the amounts of stories created

for each dataset.

3.3 Ground truth generation

In order to present a visual storyline to a viewer (or crowd source annotator) an interface

is required. For this task, we carefully choose an interface that was purposefully designed

for visual storyline visualization, which provides us with some guaranty that bias in the

annotation process is reduced. We opted for the interface proposed in [33] by Marcucci

et. al., an interface designed specifically to present visual storylines composed of social

media content, carefully build and tested through an iterative development process in

which testers were constantly being interview to provide quality feedback. Hence, all ex-

periments elaborated throughout this thesis where viewers were shown visual storylines

were conducted using this interface. Figure 3.1 presents the interface.

3.4 Visual storyline quality metric

As detailed in Chapter 2 media editors are constantly judging the quality of news mate-

rial to decide if it deserves being published. The process is highly skillful and deriving a

methodology from such a process is not straightforward. The motivation for why some

content may be used to illustrate specific segments can derive from a variety of fac-

tors. While subjective preference obviously plays a part in this process (which cannot be

replicated by an automated process), other factors are also important which come from

common practice and general guidelines, and which can be mimicked by objective quality

assessment metrics.
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Figure 3.1: Visual storyline interface used in the experiments conducted throughout this
thesis. In this particular case presenting a storyline created using content extracted from
Twitter. Source: [33]

Therefore we propose a metric, inspired by [30], aimed at qualifying storylines by

means of judging specific, more objective characteristics – Figure 3.2 illustrates the visual

storyline quality assessment framework. In particular, visual storylines are assessed in

terms of relevance of illustrations (blue links in Figure 3.2) and transition quality (red links

in Figure 3.2). Formally, given

StoryN = (u1,u2, ...uN ) (3.1)

and

V isualStorylineN = (w1,w2, ...wN ) (3.2)

we consider si , the relevance of illustration wi to the segment ui . Similarly with respect to

transition quality of the pairs of images in a visual storyline we consider ti,k , representative

of the visually and semantic coherence of a transition between illustrations wi and wk .

Both si and ti,k are values ranging between 0 and 1. These two dimensions are then used

to obtain overall expression of the "quality" of a given visual storyline for a story of N
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Figure 3.2: Methodology for evaluating visual storyline illustration.

segments. This is formalized by the expression:

Quality = α · s1 + (1−α) · 1
2(N − 1)

N∑
i=2

pairwiseQ(i) (3.3)

pairwiseQ(i) = β · (si + si−1)︸        ︷︷        ︸
segments illustration

+(1− β) · (si−1 · si + ti−1,i)︸                       ︷︷                       ︸
transition

(3.4)

where the function pairwiseQ(i) defines quantitatively the perceived quality of two neigh-

bouring segment illustrations based on their relevance and transition, on a 0 to 2 con-

tinuous scale. In turn, α weights the importance of the first segment, and β weights the

trade-off between relevance of segment illustrations and coherence of transitions towards the

overall quality of the story.

Given the underlying subjectivity of the task, the values of α or β that optimally

represents the human perception of visual storylines, are in fact average values. Never-

theless, we posit the following two reasonable criteria: (i) illustrating with non-relevant

elements (si = 0) completely breaks the story perception and should be penalised. Thus,

we consider values of β > 0.5; and (ii) the first image perceived is assumed to be more

important, as it should grab the attention towards consuming the rest of the story. Thus,

α is a boost to the first story segment s1. Finally, because of the proved negative impact

repeated images have on the quality of visual storylines, as shown in [9], we add that

visual storylines that present the same image more then once are rated by the Quality

metric with a score of 0.
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Annotator rating Avg. Quality Score RMSE

1 1.42 0.546
2 2.22 0.523
3 3.07 0.574
4 3.82 0.596
5 4.84 0.353

Table 3.2: Performance of the metric proposed in 3.4, when compared against the judge-
ment of the annotators.

3.5 Metric evaluation

To test the accuracy of the proposed quality metric at emulating the human’s perception

of visual storyline quality we resorted to crowd sourcing. To do so, were illustrated 40

Edinburgh Festival 2016 stories using images from the EdFest 2016 dataset and the BM25
baseline described in Chapter 5. Afterwards, 5 annotators were asked to (i) rate each

story segment according to relevance as 0 ("not relevante") or 1 ("relevante"), (ii) rate each

transition according to quality as 0 ("bad") and 1 ("good"), and (iii) rate overall quality

on a scale of 1 to 5. Using these judgments we fine tuned the parameters of the metric,

setting α and β to 0.1 and 0.6 respectively, values which were used in the remaining

experiments elaborated throughout this thesis.

Table 3.2 shows the average Quality score predicted by the metric for the stories

annotated with the 5 possible ratings and the RMSE of the quality score against the

actual ratings. These values show that linear increments in the ratings provided by the

annotators were matched by the metric with an average RMSE of 0.552. Thus, these

results show that the metric Quality effectively emulates the human perception of visual

storyline quality.

3.6 Visual storylines guidelines

After the evaluation process of the Quality metric, the annotators where asked to provide

written commentary on what factors impacted their perception of quality of the visual

storylines they where presented. By analyzing the aforementioned commentaries we

gained new insights into what characteristics impact visual storyline quality. Bellow

we present a summarized version of the four main conclusions that resulted from this

analysis.

• Storylines with repeated images tend to be perceived as bad by viewers.

• It is more important for overall storyline quality that the images in the storyline

are relevant to the segments they are illustrating then that the storyline contains

quality transitions between images.
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• Storylines that start with images that are not relevant are perceived as bad by view-

ers.

• Although the annotators presented diverging opinions on what results in good tran-

sitions between images, in general annotators commented they took into account,

amoung other factors, the semantic and color similarity in image pairs, when rating

transitions.

These commentaries are a crucial first step to understand how to optimize visual storyline

generation methods. Additionally, they confirm the validity of some of the decisions made

when creating the quality metric, as well as enforce the importance of some concepts

already proposed in literature. Namely that color and semantic similarity are of high

importance in visual storyline transitions and that repeated images in storylines should

be avoided.

3.7 Conclusion

In this Chapter, we established a framework for the evaluation visual storyline creation

methods. Basing ourselves on the Cranfield Experiments we define datasets and respec-

tive queries (which in our countext, are stories). Furthermore we proposed a method

for attaining ground truth through crowd sourcing, defining a quality metrics for gen-

eral visual storyline evaluation and establishing a graphical a interface to be used in the

annotation process.

Finally, we tested the evaluation framework through crowd sourcing, proving that the

proposed visual storyline quality metric does effectively emulate the human perception

of visual storyline quality while also gaining, in the process, insight into some of the

characteristics that impact the quality of visual storylines.

With an evaluation framework established we are now ready to begin tackling the

problems related to visual storyline generation.
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Table 3.3: Edinburgh Festival 2016 stories and segments.

Story Title Segment (1) Segment (2) Segment (3) Segment (4)

Edinburgh com-
edy awards 2016:
the nominees in
full

Eight comedy
shows are in the
running for the
prestigious prize
at the Edinburgh
festival

James Acaster
receiving a fifth
consecutive nomi-
nation

The most eye-
catching nominee
is the Fife comic
Richard Gadd,
overlooked for
his extraordinary
stunt-comedy
show Waiting for
Gaddot last year

Completing a trio
of Australians on
the shortlist, Zoe
Coombs Marr is
the only female act
nominated – and
even she dressed
as a man to get
there

My first fringe:
the Edinburgh
baby shows get-
ting gurgles of
applause

Full of costumes
and musical magic,
the fringe can cast
a spell over most
adults – but for the
very young, it’s a
creative introduc-
tion to a whole
new world

The range and
quality of shows
for babies at the
fringe is delightful

The Royal Botanic
Gardens and its
dreamy musical
delights can be
enjoyed by all
families

Babies and kids
at Edinburgh
Festival

Comedy at Edin-
burgh Festival

Edinburgh Fes-
tival is Full of
Comedy Shows

A comedian and
a microphone:
Several Stand-up
shows take place
across festival’s
stages

Comedy crowds
sometimes have
the size of a
football team

The best joke
award goes to
Masai Graham’s

Theatre at Edin-
burgh Festival

Actors performing
on Stage - Play

Edinburgh Festi-
val has plenty of
theatre shows

There’s a bevy
of Shakespeare-
related shows
at Edinburgh in
the playwright’s
quadricentenary
year

The Glass
Menagerie –
triumphant take
on Tennessee
Williams

Edinburgh Festi-
val locations

Edinburgh Castle Streets Stages Parks and woods

Edinburgh Festi-
val attractions

Music shows Theater and Com-
edy

Circus Street Perfor-
mances

Gastronomy
at Edinburgh
Festival

Pizzas Hamburgers Deserts Drinks

Scottish Elements Bagpipes Food and Drink Outfits Military Parade

Edinburgh Castle
is one of the main
attractions

Deep time Show Fireworks Beautiful streets of
Edinburgh with its
castle on the back-
ground

People enjoying
Edinburgh Cas-
tle clear blue
sky

Street Perfor-
mances

The Edinburgh
Festival is home
to one of the most
unique celebra-
tions of arts

Street circus is a
popular attraction
at Edinburgh Fes-
tival with several
artists such as uni-
cycle jugglers

Street circus is full
of colorful artists

Bagpipes

Music shows Audiences at Edin-
burgh Festival mu-
sic shows

Guitar on stage Band on stage Singer close-up
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Table 3.4: Tour de France 2016 stories and segments.

Story Title Segment (1) Segment (2) Segment (3) Segment (4)

Chris Froome’s
path on
TDF2016

Chris Froome
pedaling

Chris Froome as
Yellow Jersey

Chris Froome
forced to run
to recover from
crash, at Mont
Ventoux

Chris Froome
became Britain’s
first three-time
winner of Tour
de France

Nice Attack
repercussions
on the Tour

Lorry attack on
France

Minute’s silence
held before time
trial on stage 13
of Tour

Several Cyclists
paid tribute to
the Nice Attack

Security stepped
up after the inci-
dent

Tour de France
Highlights

Thermal cam-
eras will be used
at the Tour de
France to detect
motors in bikes

Sprinting to the
finish line

Mountain stages
are the harder
ones

Riders close-ups

"Out-of-
control"Spectators

Large number
of Spectators on
TDF 2016

“Out-of-control”
spectators who
jam the path of
Tour de France
riders

Fans take their
selfies and run
along riders

Pile-up on the
12th stage caused
by spectators

Happy moments
at TDF2016

Cyclists celebrating Cyclists at the podi-
ums

Camaraderie is a
big part of the sport

Crowd cheering for
the athletes

Adversities at
TDF2016

Sometimes cyclists
crash

Bad weather during
TDF2016

Cyclists getting
back to the race
after a crash

Animals inter-
fering with the
race

TDF: not only
about racing

Multiple inter-
views take place
during TDF2016

Beautiful land-
scapes and views
surrounding the
tracks

People taking self-
ies during the event

Some people dress
up in costumes dur-
ing the event

Popular cyclists Highlights of Chris
Froome

Highlights of Mark
Cavendish

Highlights of Peter
Sagan

Highlights of
Adam Yates

Cycling Visual
Semantic Pat-
terns

Group of cyclists Single Cyclist Getting Assistance Close-up

TDF2016 Pop-
ularity High-
lights

TDF2016 Starts Stage 9 Stage 12 and
Froome crash

TDF2016 Ends

TDF2016 Monu-
ments

Mont Saint-Michel Eiffel Tower Triumphal Arch Louvre
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4
Ranking news-quality multimedia

4.1 Introduction

Picking images to be used in the context of news media is a difficult and nuanced task,

one normally attributed to news editors. The process itself is complex and takes into

account many variables: the visual quality of the image, how it relates to the news it is

supposed to illustrate and how much of the story it conveys by itself, are just some of

them [25].

In the context of creating a framework for news media visual storyline generation we

aim to automate this process, ensuring the quality of the content used to create storylines

matches what is expected by news media professionals. Hence, as depicted in Figure 4.1,

this first module of our storyline generation framework is tasked with filtering and rank-

ing social media content according to news media standards. To do so, we specify a

machine learning based approach for selecting high quality media, that can be used to

Figure 4.1: Highlight of the first module of the visual storyline generation framework.
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Figure 4.2: The framework for ranking news-quality pictures in social-media is lever-
aged by a machine learning algorithm that merges social, visual, semantic and aesthetic
evidence.

illustrate a piece of news.

To model and quantify the photographic quality that news editors are looking for, our

hypothesis is that one needs to consider the problem across three fundamental dimen-

sions: aesthetic, semantic and social. The argument is that ranking by visual aesthetics

alone, is not enough – the sharpness and colorfulness of pictures needs to be comple-

mented by strong and clear semantic content. Also, getting some preliminary human

feedback is crucial, hence, social features are also an important element.

Furthermore SPAM is a big part of the content present in social media. As such, we

explicitly tackle the task of SPAM detection, to ensure that low-quality photos such as

memes and adverts are not even considered for analysis. We do this by reviewing the

textual and visual components of the content under scrutiny. Enforcing this specialized

SPAM detection methodology allows us to simplify the task of the filtering and ranking

methods, as these can be designed to solely work with content that is beyond a basic

threshold of quality. Finally, we remove redundant duplicated content from the list of

photos ranked and filtered ensuring the non-redundancy of the images outputed.

4.2 Finding news-quality pictures

Figure 4.2 illustrates the architecture of the proposed framework designed to filter and

rank news worthy photos. Its main components are:

• Visual SPAM filter. The social media posts are first processed and filtered by a

spam detection module. This way, images such as memes, adverts, and images of

extremely low resolution, are immediately removed from the pipeline and are never

considered in the ranking and filtering processes.

• Visual redundancy. The content that is not discarded by the Visual SPAM filter is

then processed by the duplicate and near-duplicate image detection algorithms.

• News-quality ranking. Finally, we have a component responsible for filtering and

ranking photos by their news-quality, i.e., a machine learning model, Gradient

Boosted Trees [7] (GBT), that combines aesthetic, semantic and social criteria to

infer how news worthy an image is.
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Figure 4.3: Example of a Decision Tree for binary classification using binary features,
after training. Here the problem is that of predicting if a traffic accident will occur given
the state of the driver as input.

In the following sections, these components are presented in detail.

4.3 Ranking by news-quality

Determining if a picture has news-quality is a complex task that cannot be solved by

taking only into account its visual appeal. The picture can, for instance, be visual appeal-

ing but severely lacking in interesting content and information. To solve this, problem

we consider not only the visual aesthetics of pictures, but also the semantic content and

the the social signals associated with them. Moreover, we argue that there are non-linear

interactions among these distinct sets of features. Due to this, and inspired by the work

of [16], we propose to solve the present problem with Gradient Boosted Trees (GBT) – a

tree based machine learning model designed for supervised learning.

In a similar fashion to other boosting methods, GBT leverages combinations of weak

learners (simple machine learning predictors whose performance is only slightly better

then chance at the task they where intended to perform) to create a strong learner. In this

case GBT’s weak learners are Decision Tree models (Figure 4.3). Used individually, these

models have the advantage of being highly interpretable. However they also present seri-

ous performance disadvantages, most notably they do not generalize well, being highly

prone to overfitting. GBT retains some of this interpretability while presenting a much

better performance. The model combines the weak learners through the following it-

erative learning process: 1) a weak learner is trained on the input training data 2) the

error of this learner is calculated 3) a new weak learner is trained to predict this error

4) using this error prediction the original learner’s predictions are modified to improve

it’s performance, hence a new more robust learner is attained 5) steps 2 to 4 are repeated

until convergence or until a pre-specified stop condition is met [7].

Besides being robust to outliers, GBT are known to work well with categorical and
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Feature Description

#Edges the number of vertical, horizontal and diagonal edges
present in an image.

Rule of 1/3 real value representing how much an image complies with
the commonly used photography composition rule.

Focus real value describing how focused an image is.

Entropy real value measuring an image’s entropy.

Faces the number of human faces present in an image.

Luminance real value describing an image’s brightness.

Simplicity real value representing how simple an image is in therms of
the distribution of its colors.

Area the width × height of an image in pixels.

Aspect the height of an image divided by its width.

Orientation if an image is square or in a portrait or landscape orienta-
tion.

Colorfulness real value describing an image colorfulness.

Table 4.1: Visual features and respective descriptions. Figure 4.4 presents a visual repre-
sentation of each of these features.

continuous data, which is a critical advantage to solve our problem, where both types of

feature co-exist. Additionally, GBT also works well with both larger and smaller datasets,

which means the ability to train the model with sets of news related media of different

sizes. Further benefits of GBT also include the fact that it performs implicit feature

selection, the ability to deal with non-linear relationships in the data as well as capture

high-order interactions between features, making it, overall, a very versatile model. These,

and other advantages are discussed in greater detail in [14] and [39].

Finally, GBT exist for regression and classification. We take advantage of both, using

the classification variant of the model to allow for filtering by news quality while, the

regression variant is used for ranking according to the same criteria. The benefits of each

approach for finding news quality content are discussed in Section 4.5.3.1.

While we also tested other models, such as Linear and Ridge regression models,

SVMrank (an instance of SVMstruct [22]), Naive Bayes and Logistic regression. In the

end, the model that yielded the best performance was GBT.

4.3.1 Visual quality

Deciding if a photo is news worthy is a very subjective task. Nevertheless, when ap-

proaching news media one expects a certain set of characteristics to be present in its
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Figure 4.4: A visual representation of the features presented in Table 4.1.

visual content, even if only subconsciously. In order to make use of these latent char-

acteristics we extracted a large set of visual features with which to quantify the visual

quality of photos. This large set of features allow the Gradient Boosted Trees to perform

implicit feature selection and capture complex feature interactions. These features are

presented and described in Table 4.1, being that the first seven were extracted using the

image feature extractor made available1 by [35] and Colorfulness was extracted through

the method proposed in [17]. Figure 4.4 presents a visual representation of these features.

The feature regarding the number of faces present in a photo was chosen as works

such as the one presented in [21] show the positive visual impact of the presence of

faces in photographies. Additionally, aspect ratio was added as a feature because certain

photography equipment is directly associated with a specific image aspect ratio. As an

example, DSLR’s, cameras normally used in a professional or semi professional setting,

normally output images with an aspect ratio of 3:2 [13]. Finally, the remaining features

were chosen as proxies for various photography criteria as debate in [13] such as exposure

correctness, composition quality, image sharpness, among others.

4.3.2 Visual concepts

Our initial intuition, was that images that are used to illustrate news pieces have a par-

ticular distribution of visual concepts associated with them. As Table 4.2 shows, visual

concepts such as selfie are expected to be less frequent in news media images then a

1https://github.com/pcpmartins/extractor
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Low quality concepts Prob. High quality concepts Prob.

performance 1.980 product 0.282
performing arts 0.189 advertising 0.126
entertainment 0.153 font 0.118
performance art 0.126 selfie 0.115
dancer 0.108 facial hair 0.099
crowd 0.108 recreation 0.099
singer 0.105 dog 0.090

Table 4.2: Most common visual concepts associated with news-worthy and non-news-
worthy images present in the news quality photos dataset described in Section 4.5.1, or-
dered by decreasing probability of appearance.

concept like performing arts. Using this knowledge, we propose a way to calculate two ad-

ditional features that take advantage of these trends to improve our filtering and ranking

methodologies.

Given two sets, Y containing images known to have news-quality, and N containing

images known to not have news-quality, we first calculate P yi and P ni the probability

of concept i appearing in the images present in Y and N , respectively. We do this for

all concepts extracted from the images in Y and N , that appear in more then one image.

When a new image containing the set of concepts C is given as input to the framework,

both
∑
x∈C P yx and

∑
x∈C P nx are calculated so that they can be used by the Gradient

Boosted Trees model. These values are the sum of probabilities of each concept belonging

to an image that is news worthy and not news worthy, respectively.

Although multiple visual concept extraction methodologies are currently available,

we choose to use the Google Cloud Vision API for the purpose. We considered a total

of 850 unique concepts and, on average, each image was annotated with 7.7 concepts.

Table 4.2 shows the most common concepts associated with the news worthy and non

news worthy images present in the social-media photos datset described in Section 6.1.

4.3.3 Social signals

Given the subjectivity associated with the task of identifying news worthy images, it is

important to take into account not only the data extracted directly from the images but

also the social signals generated by the users who interacted with the associated social

media posts, the images were extracted from. In practice, we consider the following social

signals:

• #RT: number of retweets associated with the post the image was extracted from;

• #FL: the number of followers associated with the user who posted the tweet con-

taining the image;

• #UN: the number of times an image is featured in the individual available posts;
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Figure 4.5: Examples of unwanted images that can be immediately discarded (i.e., logos,
adverts and memes).

• #DD: the number of times a visually near-duplicated image is featured in the indi-

vidual available posts.

This information is used as a proxy for the users opinions regarding an image’s impor-

tance and its entertainment and informative value.

4.4 Visual SPAM and redundancy

Images of adverts, captioned images, memes and similar visual content are big portion

of the content posted by social media users which must be filtered by the framework.

To solve this problem we propose a method to filter low-quality and redundant visual

information, in order to prevent content like the one presented in Figure 4.5 from being

indexed together with valid photos.

We propose a filtering pipeline, extending what was already developed in the context

of [41], composed of four distinct parts. The first is the application of a set of simple

thresholds well established in literature [36] to features extracted from both the images

and posts they were taken from. The second is the usage of a linear regression model

trained to detect synthetic images, to filter images such as digital adverts. The third is

the application of Optical Character Recognition (OCR) technology to subsequently filter

out captioned images, such as memes. Finally, the forth part deals with the large number

of duplicated images found among social-media content. The pipeline is detailed in the

following subsections.
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Figure 4.6: Example of near-duplicate images. The first is the original image. The second
is a cropped version of the first with different contrast.

4.4.1 Coarse filtering

To filter thumbnails, banners and adverts, we follow the same approach taken in [41],

based on [37] and [36], and exclude images extracted from posts that contain more than

3 hashtags, more than 3 mentions or more than 2 URLs. Additionally, we also discard

small images that, due to their size, are not useful in an illustration context (i.e., images

with less than 200 pixels width or height).

4.4.2 Synthetic images detection

In order to filter synthetic images we made use of the logistic regression model trained,

tuned and tested in the context of [41], that uses some of the features proposed by [29, 53]:

number of corners, number of vertical and horizontal lines, number of dominant colors, most
common color, and 3 additional features derived from the color transitions (the measure

of color distance between two neighbor pixels).

4.4.3 Visual redundancy

Since a lot of images present in social-media are slightly altered versions of their re-

spective originals, we take advantage of the methodologies used in [41] to find not only

duplicated but also near-duplicate images. This is important as it means the ability to

filter redundant content. Additionally, we propose a method for clustering the previously

found near-duplicate images, enabling the grouping of different versions of the same

original image through the use of a clustering algorithm already established in literature,

DBSCAN [12].

4.4.3.1 Duplicate detection

To access whether two images are exact duplicates of each other we make use of the MD5

hash algorithm applied to the pixel values of the image. More specifically, we consider two

images to be exact duplicates if their respective MD5 hash is the same. Before presenting

the results of the ranking and filtering models, all duplicated images are removed.
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4.4.3.2 Near-duplicate detection

To detect near-duplicated images, we employ perceptual hash (pHash)2. Previous work

already proved it presents a high performance in the this task [49], regardless if the image

is rotated, resized, cropped, exposure compensated or even if small elements are added

to it (like a logo or signature).

As a method for assessing if two images are near-duplicates, we calculate the Ham-

ming distance between their pHash codes, which corresponds to the amount of bit po-

sitions where those codes differ [26]. We consider two images to be near-duplicates if

the Hamming distance between their pHash values is below 8 as proposed in [37]. An

example of two near-duplicate images can be found in Figure 4.6.

4.4.3.3 Forming clusters of near-duplicates

In order to find near-duplicates we must take into account that one image might have

multiple near duplicates and these near duplicates might themselves have near-duplicates,

being important then to consider the transitive property of the concept. As an example, a

cluster of near duplicated images can be created by successively cropping small amounts

of an original image.

As a result, centroid based clustering algorithms are a bad choice for this task, as

well as those that do not deal well with noise (images that do not belong to a cluster),

such as KMeans. Due to these peculiarities DBSCAN [12], with parameters ε equal to 8

and MinP ts equal to 2, was chosen, as the algorithm clusters points according to their

spacial proximity to the borders of existing clusters, as opposed to considering the clusters

centroids. Additionally, the algorithm deals well with noise, allowing images for which

there are no near-duplicates, to be left without cluster.

Since multiple near-duplicate versions of the same image might have been given as

input to the framework, the framework hides them before presenting the results of the

ranking and filtering models. The framework then outputs only the best ranked near-

duplicate present in the input image set.

4.5 Evaluation

4.5.1 Datasets

To evaluate the different components of the proposed framework, we used two datasets:

(i) newswire photos, used to train the high-quality photos models and (ii) social media

images from which we need to retrieve high-quality photos.

News-quality photos. To create a robust model that is able to qualify photos accord-

ing to their news-quality, we obtained newswire photos from The New York Times and

2http://www.phash.org/
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Agreem. Images High quality LQ/HQ ratio

57% 124 58 1.14
71% 129 55 1.35
86% 144 39 2.69

100% 103 17 5.06

78% 500 169 1.96

Table 4.3: Results of the annotations performed on the news-quality dataset according to
the question "Could this image have appeared in the New York Times?".

the BBC web sites. We collected a total of 100 newswire photos and added 400 social me-

dia photos, sampled from the EdFest 2016 dataset. This new dataset comprises a total of

500 images that were annotated by 7 annotators with respect to their "news-quality prove-
nance", as described in the following section. Moreover, the annotation effort allowed us

to better understand the specific characteristics of news-quality photos.

Social-media photos. To create a dataset comprised only of social media content, we

again resorted to sampling the EdFest 2016 dataset documented in Chapter 3. In order

to evaluate our ranking method, we created a small sample of 1,500 photos for results

pooling. Ground-truth was obtained through crowdsourcing by resorting to 7 annotators

that judged the top-k best ranked photos photos of each approach tested.

4.5.2 News-quality photos ground truth

The News-quality photos datset was used to train the classification (for filtering) and re-

gression (for ranking) models. All 500 images in this dataset were annotated via crowd-

sourcing by 7 annotators. The annotators were presented with the images and asked the

question "Could this image have appeared in the New York Times?". Table 4.3 presents, in

an abbreviated manner, the results of the annotation process. Through their answers we

can infer the ambiguity of the task, as the 7 annotators only fully agreed on 103 images.

As ground truth for the ranking task, 7 quality levels were attributed to each image ac-

cording to the number of annotators that agreed that the image might have appeared in

the New York Times. For this task all 500 images were considered and the regression

models used in it were trained to predict these quality levels. As a ground truth for the

filtering task only images where 71% or more of the annotators agreed, were considered.

In this case, the image was regarded as having news quality if the majority of the crowd

answered yes to the already mentioned question. The classification models used in the

filtering task were trained to predict this binary judgment.

As Table 4.3 shows, out of all 500 images, only 17 of them were annoated as possibly

having appeared in the New York Times, by all 7 annotators. Of these 17 images, 14

belong to the set of images extracted from news sources, which shows the ability of the

annotators to distinguish news-quality images.
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Figure 4.7: True positives: examples of images the annotators correctly assessed as being
extracted from news media.

4.5.3 Results and discussion

4.5.3.1 Analysis of the crowd sourcing results

By analyzing the news quality photos dataset ground truth we concluded that images that

were easily and correclty identified as having news-media provenance by the annotators

have at least one of three characteristics:

1. They have high visual quality, being sharply focused, correctly exposed and ade-

quately framed. Prime examples of this are the images depicting the athlete and

the otter present in Figure 4.7.

2. They depict a situation where the elements involved are popular news subjects or

events. Images depicting President Trump, Queen Elizabeth II and renown athletes

are examples of this trend.

3. They depict interesting situations and perspectives that are difficult to photograph

without the clearance levels and resources available to professional news photogra-

phers. Both the images featuring President Trump and the fire in an African village,

present in Figure 4.7, are examples of this. To some extent, images of exotic animals

also fit this criteria.

Here, characteristic number one illustrates the need to have a visual quality assess-

ment incorporated into the framework, while numbers two and three illustrate the im-

portance of evaluating social signals and visual concepts. Visual concepts easily allow

the differentiation between a selfie and a photography of an animal and social signals are

useful to distinguish more popular and interesting images from more common ones.
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Figure 4.8: False negatives: examples of images the annotators incorrectly assessed as not
being extracted from news media.

Conversely, it is also interesting to identify the main characteristics of the images that

the majority of the annotators were mislead into labeling as not having news provenance,

when in fact they do. Since in only one case all 7 annotators were mislead to annotate an

image extracted from news medias as not belonging to news media, the sample of images

present in Figure 4.8 also features false negatives annotated by 6 annotators. This set of

images has the following characteristics:

1. They are images of seemingly low quality that are needed to illustrate a piece of

news and can not be re-shot. In particular, simple snapshots of deceased people

are common in this set since news editors resort to images previously taken by the

subject’s family and friends, to illustrate the piece of news regarding the deceased.

An example of this case is the lesftmost picture in Figure 4.8 featuring Rogelio

Martinez, a deceased border patrol officer.

2. They are images of low quality featuring common subjects, and are used to illustrate

news that are of less importance, or that have no direct visual representation. The

rightmost image found in Figure 4.8, depicting a parking ticket, is an example of

this.

These characteristics show the need for a ranking method of image selection as op-

posed to using a binary filtering method only. Specifically, when trying to find images

that depict an event for which there are only available a small set of low quality pictures,

raking is a much more sound approach than binary filtering. This because filtering could

end up discarding images with potentially important and rare information.

4.5.3.2 Evaluating the filtering approach

The classification and regression models were trained using 70% of the news-quality
photos dataset, while the results presented next regarding the classifier’s performance

were measured using the remaining 30%. We tested classification models where visual

(GBTCV ), social (GBTCS ) and semantic (GBTCC) features were used separately and com-

bined (GBTCF) to understand the impact of the different feature sets. Table 4.4 shows

the results of these tests. The advantage of joining multiple groups of features, to tackle

the proposed task, is being able to attain clearly higher precision and accuracy values in
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Features Prec. Acc.

GBTCV 0.672 0.787
GBTCC 0.555 0.742
GBTCS 0.639 0.834
GBTCF 0.701 0.854

Table 4.4: News-quality assessment results on the filtering task. Models were tested on
30% of the news-quality images dataset.

Features Prec@30 nDCG@50 MAP

GBTV 0.833 0.837 0.448
GBTC 0.833 0.859 0.532
GBTS 0.733 0.836 0.454
GBTF 0.967 0.906 0.645

Table 4.5: Results of the performance tests done on the various ranking models.

comparison to the models where only one feature group is used. Consequently, using

only the visual quality, semantics or social signals associated with an image as criteria for

deciding if it has news-quality, equates to having a worst performance in the task overall.

4.5.3.3 Evaluating the ranking approach

We trained 4 distinct regression models using the news quality photos dataset. Again, the

first three taking only advantage of visual (GBTV ), social (GBTS ) and semantic (GBTC)

features individually and the forth using all of the three feature sets simultaneously

(GBTF). Then, we resorted to results pooling to perform the evaluation: each model was

applied to the social media photos dataset and the k better ranked images were extracted.

These images were, in turn, annotated by 7 annotators, again according to the question

"Could this image have appeared in the New York Times?". Finally, images were labeled as

news worthy if the majority of the annotators answered yes to the question.

Starting with a numeric interpretation of the results, Table 4.5 shows the precision@30

and nDCG@50 values of the various models tested, while Figure 4.9 presents their

precision-recall curve. By analyzing both these metrics we discover that, overall, the

models that performed worst were GBTV and GBTS . In turn, the model trained only with

semantic features, GBTC , was marginally more successful, specially when retrieving the

first half of the relevant images. This shows the importance of semantics in the context

of news media. Finally, the complete model (GBTF) was the one that performed better as

it was able to take advantage of the combined strengths of the feature groups used.

Turning to a qualitative interpretation of the results, in Table 4.6 we exemplify this

tendency by examining specific examples of images ranked by each model while iden-

tifying, in a broad way, the features that influenced the model’s choices. The images

GBTV ranked higher (shown on the left side of the table) are of high visual quality, but
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Figure 4.9: Precision recall curves of the various ranking models.

GBTV Luminance↑, Focus↑, Color↑ Luminance↑, Focus↑, Luminance↓, Focus↓ Aspect↓, Faces↑ Focus↓ Entropy↓

GBTC Performing Arts↑, Event↑, Stage↑ Event↑, Festival↑ (No interesting concepts) Girl↓, Selfie↓

GBTS #Duplicates↑, #Retweets↑ #Duplicates↑, #Retweets↓ #Retweets↑ #Duplicates↓ #Duplicates↓, #Retweets↓

GBTF Visual↑, Social↑, Semantic↑ Semantic↑, Visual↑ Social↓, Semantic↑ Visual↓, Social↓, Semantic↓

Table 4.6: Examples of images ranked by four distinct models with increasing ranks from
left to right.
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Figure 4.10: The importance of each feature measured through its gain and cover in the
Gradient Boosted Trees regression model.

the model is unable to ensure the interestingness of the images selected, the image with

the mobile phone being a good example of this problem. GBTC is able to correctly assert

that a photo of a concert is more likely to be used in news media then a selfie. How-

ever, the model ends up ranking an extremely blurry image as one of the best in the set,

when possibly better suited alternatives were available, like the one displayed to its right.

In turn, GBTS ranks images according to social signals, consequently discarding good

images that did not gain social traction. The model ranks correctly images that have a

lot of social traction but, when this ceases to be the case, the existing social signals stop

being enough to distinguish between images. This tendency is not only observable in

Table 4.6 but also in the precision-recall curve, as the model is the worst for recall values

higher then 0.6. Lastly, GBTF leverages the benefits of the other models to correct, to a

degree, their individual faults. The GBTF model is still able to distinguish a selfie from a

photo of a concert while also being able to assure the visual quality of the better ranked

images. Additionally, the model does not focus singularly on social signals meaning that,

although these are considered, an unpopular but visual appealing image, semantically

tied to news media, is still ranked high by the model.

Finally, Figure 4.10 presents, for each visual, social and semantic feature, its associated

gain and cover in the context of the GBTF model. The higher the gain, the more important

a feature is in improving the accuracy of the model. Similarly, cover equates to the amount

of coverage of a feature when used in the trees. Here, the gain table shows that, although

most visual features have a small gain individually, the model comprised only of visual
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features still retains a decent performance due to the high number of different and distinct

visual features used. Additionally, we can find visual, social and semantic features in the

top 5 features with more gain, confirming that all feature groups increase, by themselves,

the performance of the model.

4.6 Conclusions

In this Chapter we detailed the first of the three modules that compose the visual storyline

framework proposed in this thesis. The module proposed in this Chapter receives as

input social media images, filters them according to news quality standards and provides

the remaining images to the module presented in the next Chapter, tasked with finding

candidate images to illustrate a particular story.

To do so, we take advantage of visual, social and semantic feature groups. Through

our experiments we prove the importance of leveraging these feature groups to tackle the

task in a successful manner. Hence, the take away lessons are:

• Social features can be used as proxies to measure the interestingness and quality of

an image but the lack of strong social signals does not directly imply the image is

not news worthy.

• Semantic features can be used to discard images that are generally not employed

in the context of news media, such as selfies, while giving priority to topics covered

more often in the news. However, semantic features not only do not ensure the

visual quality of images but also may not be of great help with images that have

rare concepts associated with them, that the model was not able to interact with in

the training phase.

• Finally, visual features can be used to ensure the visual quality of an image but are

not enough to ensure the interestingness and quality of the information it provides.

Consequently, the machine learning model that performed systematically better dur-

ing evaluation was the one that leverages simultaneously these three feature groups.

The above results were only possible to achieve in real world social media data because

we deployed a thorough visual SPAM and redundancy filtering process. SPAM is a big

part of the social media, thus, we combined synthetic image detectors, captioned image

filters, near-duplicate removal and other heuristics to clean low quality data. This allows

the ranking and filtering methods to work with cleaner data.
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5
Story illustration candidates

5.1 Introduction

It is only possible to tell a story through images if the images are semantically relevant to

the story they try to illustrate.

Hence, in this Chapter we tackle the problem of finding relevant content to illustrate

a particular story. More specifically, we propose a module, as depicted in Figure 5.1, that

given a set of social media posts and a story composed of various text segments, outputs

relevant candidate images to illustrate each segment. Figure 5.2 illustrates this task.

Approaching this problem as an ad hoc information retrieval one, we make use of

text retrieval methodologies augmenting them through multi-model retrieval techniques.

Formally, given StoryN = (u1,u2, ...,uN ) a story composed of N segments, we define the

story segments we intent on illustrating (ui) as queries and the available social media

posts as a set of documents, D. Hence, we wish to find a retrieval method that given

Figure 5.1: Highlight of the second module of the visual storyline generation framework.
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Figure 5.2: Finding relevant candidate images to illustrate each segement of a story.

(u1,u2, ...,uN ) and D produces (C1,C2, ...,CN ) a list of sets of candidate images where Ci
contains relevant candidate images to illustrate ui .

To do so, we leverage social signals related to the available social media posts, visual

concepts of the images present in the publications, as well as analyze publication dates,

in order to provide different approaches for selecting candidate images to illustrate story

segments.

Finally, in order to evaluate the proposed methods, we ran a human relevance judg-

ment task gaining insight into the advantages and disadvantages of each approach, ex-

ploring possible changes that could improve their performance.

5.2 Retrieving relevant content

5.2.1 Text retrieval

Given a set of social media posts containing text and images, and a segment to be illus-

trated, we want to find the publication with the text that better matches the text of an

individual segment. Consequently, we approach the problem from a text retrieval per-

spective. Making use of a text retrieval engine, we index the publications by their text

and then score them through a scoring function according to the story segment.

In this context, we are first tasked with choosing a scoring function. To do so we

tested multiple alternatives already well established in literature such as BM25, TF.IDF,

Frequency (the score of a document is equal to the number of words in a query found in

a document) and Binary (the score of a document is proportional to the number of words

in a query found in a document).

We also preprocessed both the text of the segments and the text of the social media

posts in several different ways including removing stopwords (very common words that
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have no value for finding relevant documents; e.g.: “the”, “a”, “and”), word lemmati-

zation, word stemming (removing morphological affixes from words, generalizing the

retrivel process; e.g.: transforming "generously"into "generous") and transforming words

into ngrams. Afterwards tests were performed to understand what combination of these

methodologies would be preferred. The tests were focused on sampling the 10 best scor-

ing documents for random segments and calculating overall precision. By analyzing the

best performing combination of methodologies we choose BM25 as the ranking function

and stop word filtering and stemming as the text preprocessing methods to be used.

Regarding the methodologies chosen, the version of BM25 used is formally defined as

score(d,q) =
n∑
i=1

IDF(qi) ·
f (qi ,d) · (k1 + 1)

f (qi ,d) + k1 · (1− b+ b · |d|avgdl )
(5.1)

where f (qi ,d) is the frequency of the query term i in document d, |d| is the number of

words in document d, and avgdl is the average document length. Additionally, k1 and b

are free parameters, that in this particular case where set to 1.5 and 0.75 respectively by

following [8]. Finally IDF(qi) is the inverse document frequency of the term qi which is

calculated as

IDF(qi) = log(
N −n(qi) + 0.5
n(qi) + 0.5

) (5.2)

where N is the total number of documents, in this case, total number of social media

posts available, and n(qi) is the number of documents in which the query term i is present.

In practice we apply stemming and a stop word filter to both the text of the social

media posts and the text describing the segment. Afterwards, BM25 is used to score

and rank the publications containing images, according to their textual relevance to the

segment. This first part of the approach is also used as a basis for the remaining baselines.

As candidates to illustrate the input segment, this approach outputs the images of the top

10 ranked publications. We refer to this as the BM25 baseline.

5.2.2 Reranking with social signals

Social signals provide a direct measure for popularity as well as a proxy for the quality,

informativeness and interestingness of social media content. Aiming to leverage this in or-

der to pick illustration candidates that are more inline with these positive characteristics,

we propose two baselines making use of social signals.

First, for both baselines, the social media publications are ranked in the same fashion

as for the BM25 baseline.

Then, in the first baseline, referred to as #Retweets, the 20 best ranked documents by

BM25 are reranked by the amount of times they where shared (e.g. “re-tweeted” in the

case of Twitter). Alternatively, in the second baseline, referred to as #Duplicates, they are

reranked by the number of times the image present in the post appears in all the available
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social media posts. In both cases, after the rerank, the images of the top 10 ranked posts

are chosen as candidates to illustrate the segment

5.2.3 Reranking with visual concepts

Frequently, images present in a social media publications do not directly match their

textual content. This means that, by taking only into account the text present in the

publications, we may be missing interesting and valuable images that could illustrate a

segment well. Hence, we propose two additional baselines with the objective of exploiting

the visual concepts associated with the images in each post. In both cases these visual con-

cepts where extracted from the images using VGG-16 [47], a deep Convolutional Neural

Network (CNN) specifically designed for large-scale image recognition and pre-trained

on the ImageNET Large Scale Visual Recognition Challenge. Also, for both baselines, the

posts with images are first ranked in the same manner as for the BM25 baseline.

In the first baseline, Concept Pool, the visual concepts associated with the images of

the top 10 ranked posts are considered. These concepts are pooled together. Finally, the

10 images, of the top 20 previously ranked posts, containing the most visual concepts

present in the aforementioned pool, are picked as candidates to illustrate the segment.

The second baseline, Concept Query, is based on pseudo-relevance feedback. Visual

concepts are extracted from the images in the top 5 ranked posts. These concepts are

concatenated to form a new query, which is then used to rank all available posts a second

time, this time according to the visual concepts present in the posts images (and not

according to the posts text, as previously). At this stage, Frequency is used as the ranking

function, as we are trying to simple matche two sets of words. Finally, the ranks created

by the BM25 and Frequency ranking functions are fused using Reciprocal Rank Fusion,

parameterized with k = 60. The images from the top 10 posts of the rank that results

from this fusion are chosen as candidates to illustrate the segment. An unsupervised

rank fusion method, Recriprocal Rank Fusion was chosen due to the lack of training data

for this task. It works by attributing and ranking documents by a score calculated by the

following expression that leverages the previous ranks:

RRFscore(d) =
nr∑
i

1
k + ri(d))

(5.3)

Here, d is a document for which we want a fused score, nr is the number of input ranks

(in this case 2) and ri(d) is the rank of document d in rank i.

5.2.4 Reranking with temporal signals

Some events occur only in a specific moments in time. By finding publications posted

in or near those moments we are more likely to retrieve content from those specific

events. Taking this insight into account a final baseline was proposed, referred to as Temp.
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Figure 5.3: Amount of tweets containing the word fireworks in the 2016 Edinburgh Festi-
val dataset published per day of the event.

Modelling, that prioritizes content published closer (in time) to peak publication dates

related to the segment being illustrated.

To exemplify this reasoning, Figure 5.3 shows the amount of tweets containing the

word fireworks in the 2016 Edinburgh Festival dataset per publication date. The peak in

the number of tweets published during the last days of the event correctly marks the time

at which a fireworks show took place. Consequently, when illustrating a story segment

such as fireworks at Edinburgh Festival 2016 one would want to use images from tweets

published during that peak, ensuring the relevance of the content to the topic.

For this baseline, posts are first ranked in the same way as for the BM25 baseline

and at this point only posts containing any of the words also present in the segment

to illustrate are considered. Considering this new set of posts, we then calculate the

number of publications per day, achieving a distribution like the one shown in Figure 5.3.

Following this, a Kernel Density Estimator (KDE) with a Gaussian Kernel is applied to

the distribution. KDE is defined by:

f̂ (x) =
1
nh

n∑
i=1

K

(
x − x(i)
h

)
(5.4)

With h being the bandwidth, n the total number of data points in the original destribution

and K being the kernel, in this case the Gaussian Kernel:

K(m) =
1√
2π
exp(−1

2
m2) (5.5)

In practice the KDE is used to smooth out the original distribution. Hence, after applying

the KDE, we achieve a probability distribution of posts, with a text containing words

also present in the segment to illustrate, being published in different days. The kernel

bandwidth was fixed according to the method defined in [44]. Finally, the top 20 ranked

posts are reranked according to the probabilities associated with the dates they where
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EdFest 2016 TDF 2016
Baseline Relevance Transition Relevance Transition

Text Retrieval 0.55 0.35 0.58 0.54
#Retweets 0.50 0.39 0.47 0.46
#Duplicates 0.53 0.41 0.52 0.60
Concept Pool 0.51 0.31 0.55 0.53
Concept Query 0.53 0.36 0.46 0.26
Temp. Modeling 0.44 0.23 0.58 0.53

Table 5.1: Performance of the baselines described in the task of illustrating the EdFest
2016 and TDF 2016 stories, measured by the average relevance and transition scores
provided by the annotators.

posted in. After this, the images of the top 10 ranked posts are selected as candidates to

illustrate the segment.

5.3 Evaluation

5.3.1 Protocol

The goal of this experiment is to evaluate the baselines proposed in the previous Section.

To do so, we used the baselines to illustrate the EdFest 2016 and TDF 2016 stories by

selecting the best candidate image proposed by each baseline to illustrate each story

segment.

Hence, we illustrated a total of 40 storylines (20 for each event). Ground truths for

both relevance of illustrations and transition quality were obtained as described in the

following section.

5.3.2 Ground truth

In order to evaluate the performance of the proposed baselines, we resorted to crowd

sourcing. Three annotators were presented with each story and respective visual storyline,

and asked to rate each segment illustration as 1 ("relevant") or 0 ("non-relevant"), as well

as rate the transitions between each of the segments as 1 ("good") or 0 ("bad"). Finally,

using the subjective assessment of the annotators, the quality metric proposed in Chapter

3, Section 3 was calculated for each story.

5.3.3 Results

Figure 5.4 present the performance of the proposed baselines in the task of illustrating

EdFest and TDF storylines evaluated through the quality metric proposed in Chapter 3.

In turn, Table 5.1 presents the average relevance and transition scores as provided by the

annotators.
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Figure 5.4: Average performance of the baselines in the task of illustrating the EdFest
2016 (dark blue) and TDF 2016 (light blue) stories, according to the annotators, measured
by the quality metric proposed in Chapter 3.

Figure 5.5: Illustrations of the “Happy moments at Tour de France 2016” story achieved
by resorting to the BM25 and #Duplicates baselines. Although all images of both storylines
were considered relevant by the the annotators to the segments they illustrate, the tran-
sitions of the storyline created by the #Duplicates baeselines were consistently annotated
as having higher quality then those of the storyline created by the BM25 baseline.
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Regarding the relevance metric, the BM25 baseline performed better in relation to

the remaining ones. This shows the importance of regarding the text of the social media

publication when choosing the images to illustrate the segments. Analyzing the baselines

that leverage social signals, #Duplicates was the best performing one, both in terms of

relevance and transition quality. Particularly, when inspecting the storylines that result

from using this baseline, an increase in aesthetic quality of the images selected for illus-

tration can be noticed. Not only that, the #Duplicates baseline was the one that achieved

the stories with the best transitions (Figure 5.5). This happens because the number of

times an image is published on social media is a good indicator of it’s quality. Further-

more, high quality images related to the same event seem to share similarities in terms

of their visual and semantic content. However, after analyzing the stories generated by

this baseline individually we verified that in scenarios where there are not many images

to choose from the approach is hindered by noise. This is specially problematic in cases

where there are not strong social signals associated with the few publications available.

This problem could be softened by setting a threshold for a minimum number of shares

or duplicates needed for the content to be considered for analysis. The threshold can be

selected manually, but this means running the risk of filtering out to much content and

leaving the segment without illustration candidates, in some cases.

Regarding the baselines that make use of image concepts, it is important to note

that the VGG16 model sometimes failed to correctly attribute concepts to the images

of both datasets. As an example, for the images of the Tour de France 2016 dataset

featuring cyclists, racing concepts such as "bicycle-built-for-two", "unicycle", "bathing_cap"
and "ballplayer" appeared very frequently. However, even though the extracted concepts

lack precision, the errors are consistent: VGG16 may identify an unicycle instead of a

normal bicycle in an image, but it is consistently doing so in photos where bicycles are

found. This means both the proposed baselines are not affected by this issue, since they

work by searching images with concepts similar to the ones already deemed relevant by

the BM25 baseline. Overall, both baselines that leverage visual concepts underperformed

in situations where text retrieval alone presented good results, while outperforming the

other baselines in situations where the text retrieval was not enough to pick relevant

content.

Finally, the Temp. Modeling approach brought varying results. In story segments

that take place over a large portion of time, the approach is particularly flawed as the

probabilities attributed to the each of the candidate tweets are marginally the same.

However, in story segments with large variations on the number of tweets posted per day

the approach performs as expected. Although this approach performed relatively well

in the context of the Tour de France 2016 dataset, it performed worst then every other

model in the Edinburgh Festival 2016 dataset.

Figures 5.5 and 5.6 present examples of storylines created by each baseline.
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Figure 5.6: Illustrations of the “Music shows at Edinburgh Festival 2016” story achieved
by resorting to the Concept Pool, Concept Query, Temp. Modeling and #Retweets baselines.
From top to bottom, they attained an average score of 0.83, 0.5, 0.25 and 0.17 regarding
illustration relevance, respectively, according to the annotators.

57



CHAPTER 5. STORY ILLUSTRATION CANDIDATES

5.3.4 Discussion

After analyzing these first storylines it is now possible to provide insight into the difficulty

of creating visual storylines for both EdFest and TDF stories using the respective datasets.

The images found in the Tour de France 2016 dataset are highly homogeneous both vi-

sually and sematically, most of them showing a cyclists pedaling, cyclists on podiums or

general closeups of cyclists. Additionally, most appear to have been taken by professional

photographers: they are correctly focused, sharp even when the subject is moving, cor-

rectly composed and commonly present a depth of field only achievable with high-end

photographic equipment. Confirmation of this intuition can be found by analyzing the

users who posted the tweets related to the images. As a broad approach we extracted

the users that most published tweets related to Tour de France and verified that most

of them were attached to highly recognizable news corporations such as The Guardian,

BBC or Sky News. The ones that did not fall in this criteria were Twitter accounts solely

dedicated to cycling or to the Tour de France itself.

Opposingly, images found in the Edinburgh Festival 2016 dataset vary a lot in visual

quality and thematic. They feature several aspects of the event such as fireworks, street

performances, theatrical performances among others. Additionally, a lot of them appear

to be photographies taken by common festival attendees, using mobile devices or amateur

photographic equipment. Again, we verify this tendency by analyzing the accounts that

most published tweets related to the event. We found these to be a mix of common users

and Edinburgh Festival related accounts.

Hence, overall, inferring visual storylines from the Tour de France 2016 stories is an

easier task then doing so for the 2016 Edinburgh Festivals stories. Adding to the fact that

it is easier to find quality media related to Tour the France it also appears to be easier to

compose visually and semantically cohesive storylines from the available content. The

heterogeneous nature of Edinburgh Festival makes it more difficult to illustrate stories in

a cohesive manner that entails good transitions between pair of images. Finally, the lower

quantity of images present in the Edinburgh Festival 2016 dataset also accentuates this

problem as there is less media to choose from when creating storylines. This difficulty

trend is confirmed when analyzing the results of the storyline generation methods when

applied to both events. As shown in Table 5.1 and Figure 5.4, the scores attained by the

baselines on the Tour de France stories are higher overall.

5.4 Conclusions

In this Chapter we propose several approaches designed to retrieve relevant candidate

images to illustrate stories. These approaches compose the second module of the storyline

generation framework. In the context of the entire framework these candidate images

are then provided to the third and final module of the framework, discussed in the next

Chapter, designed to create cohesive and appealing visual storylines from these sets of
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candidate images.

Having conducted the evaluation of the described retrieval methods through a human

relevance judgment task, we concluded that these present individual advantages suited

to find candidate images for different types of stories.

• The approach leveraging only text retrieval techniques presents a good overall per-

formance, being outperformed by the remaining approaches only in cases where

the publication’s text is not enough to determine the relevance of the visual content

under scrutiny.

• In situations where the story being illustrated garnered a lot of social traction, the

baselines that leverage social signals are good choice for retrieving better quality

content.

• In cases where text retrieval is not enough to find relevant content, the approaches

leveraging image concepts can be used to find relevant visual content the text re-

trieval approach would not prioritize.

• Finally, for stories related to events that took place during specific moments in time,

the approach based on temporal signals can be applied to ensure the media being

used to illustrate the stories was published during or short after the event took

place, increasing the chances of it being relevant.

Additionally, by reviewing storylines like the ones present in Figure 5.5, we again con-

firmed the need for a method of storyline creation that does not take only into account

relevance, but also transition quality.

Finally, analyzing the evaluation results, we concluded that the approaches had a

good enough performance, although the possibility for improvement is available. These

baselines provide only candidate images to each segment, aiming to reduce the compu-

tational space of the problem of inferring visual storylines. They do not pick a fixed set

of individual images to illustrate a story. Consequently, having some images that are not

relevant present in the candidate sets is not a major problem, as the images in each set

will be analyzed again during the process of visual storylines creation. As such we leave

possible improvements to these baselines for future work.
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6
Structuring visual storylines

6.1 Introduction

A storyline is composed of a set of images organized in a sequence that, together, form a

cohesive narrative. As such, tackling the task of creating a storyline means taking into

account not only the quality of the individual pieces of content that compose it and their

relevance to the story, but also the way they transition from one to the other. Ensuring

the quality of these transitions is commonly described as editing and is a process that

impacts various forms of content production, from cinema to news media. Consequently,

a framework designed for storyline generation must strive to emulate this process in order

to provide storylines that are agreeable to their viewers.

Hence, in this Chapter, we present the last module of the storyline generation frame-

work that, as depicted in Figure 6.1, given a set of candidate images to illustrate each

segment of a story, is tasked with generating one or more visual storylines optimized for

Figure 6.1: Highlight of the third and last module of the visual storyline generation
framework.
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Figure 6.2: Generating visual storylines by taking into account transition quality and the
relevance of illustrations to their respective segments. Green arrows represent the need
to find relevant content in a pool of candidate images while red arrows represent the need
to optimize for transition quality.

both transition quality and relevance. Figure 6.2 further illustrates this challenge.

However, before elaborating on what attributes characterize good and bad transitions

and how these can be computed and optimized for, there is the need to define the concept

of transition itself, from a computational standpoint. Consequently, in Section 6.3 , we

first propose a novel formal definition of transition between two images. Leveraging

this definition we are then able to study the impact of a large set of semantic and visual

criteria in the quality of image transitions.

Furthermore, because the human perception of transition quality for a particular

transition results from various interactions between the images that compose it, there is

the need to consider the quality of a transition across multiple dimensions, fusing the

various insights that are taken from observing individual transition characteristics. To

do so, we resort to machine learning, deploying a model able to predict the perceived

transition quality of pairs of images by analyzing their visual and semantic characteristics.

Finally, we tackle the task of generating visual storylines. Formally, we propose a

set of graph based methods that, given a story with N segments, StoryN = (u1,u2, ...,uN )

and a list of sets of candidate images (C1,C2, ...,CN ) to illustrate each segment, produce

visual storylines composed of images (wi), V isualStorylineN = (w1,w2, ...wN ) where ∀i ∈
[1,N ],wi ∈ Ci

To evaluate these methods we ran a crowd sourcing task where a total of 432 stories

were annotated to obtain ground truth.
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6.2 Definitions

To tackle the task of understanding transition quality between pairs of images we first

need a computationally valid approach to describe the concept of transition. From a

non-computational, professional perspective, literature characterizes transitions as the

semantic and visual relationships perceived to exist between a pair of images [38]. We

emulate this approach, proposing a novel computationally valid formalization of the con-

cept of transition based on distances. More specifically, we define the transition distance
between two sequential images a1 and a2 of a visual storyline as:

(distancep(f eaturep(a1), f eaturep(a2)),∀p ∈ P ) (6.1)

where P is a set of image features under consideration, f eaturep(a) is a function that

outputs the value of feature p for an image a, and distancep(f1, f2) is a function that

outputs the difference between the values f1 and f2 of the same feature p for two distinct

images. Hence, a transition between two images is formalized as a transition distance:

a sequence of numeric values representing how distinct two images are in terms of the

numeric differences that exist between their features.

Leveraging this definition, we are now able to propose a computational model that

takes as input a transition distance between two images and qualifies the respective tran-

sition.

6.3 Transition quality

Rating a transition between a pair of images, according to its quality, is a non-linear

process that results from the interpretation of the features of the individual images and

of the manner in which they interact. To tackle the automation of this process, we again

resort to the regression version of Gradient Boosted Trees (GBT), defining the problem as

one of predicting a quality score, given the transition distance of a pair of images. Formally,

we propose a function that models ground truth regarding pairwise transition quality:

trans(a1, a2) ∈ [0,1] (6.2)

where a1 and a2 are images, and the output of the function is a real value scoring the

transition between 0 and 1.

To create rich transitions distances between the pairs of images analyzed, we propose

the use of a large set of visual and semantic features. Through them, we aim to emulate

the editing criteria described in literature and elaborated upon in Chapter 2, regarding

the importance of maintaining fixed visual and semantic elements when transitioning

between different pieces of content. The features and respective distances are presented

in Table 6.1 (visual features) and Table 6.2 (semantic features). The next subsections

describe these features in detail, while Section 6.5.1 specifies how we aquired the data to

train the model and provides detail regarding the training process.
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Feature Name (p) distancep(f1, f2) f eaturep(a)

Luminance abs(f1 − f2) A positive real value representing the
luminance.

Color histogram
∑
abs(f1 − f2) A 3D color histogram with 16 bins

per RGB channel converted to CIELAB
color space.

Color moment euclidean(f1, f2) A vector representing the first color
moment of the image in CIELAB color
space.

Color correlogram
∑
abs(f1 − f2) A 16 bins 3D color correlogram in

CIELAB color space.

Entropy abs(f1 − f2) A positve real value representing the
entropy of the image.

#Edges
∑
abs(f1 − f2) A vector containing the number of hor-

izontal, vertical and diagonal edges.

pHash hamming(f1, f2) A pHash vector.

Table 6.1: Visual features, respective distance functions and descriptions.

Feature Name (p) distancep(f1, f2) f eaturep(a)

Concepts #(f1 ∩ f2) A set of image concepts extracted us-
ing VGG16.

CNN Dense euclidean(f1, f2) The embeddings extracted from the
last layer of the ResNet CNN.

Environment f1 = f2 Either "outdoors"or "indoors".

Scene category #(f1 ∩ f2) The location depicted in an image de-
scribed through labels (e.g.: "bridge",
"forest path", "skyscraper", etc.).

Scene attributes #(f1 ∩ f2) The attributes of the location depicted
in an image described through labels
(e.g.: "man-made", "open area", "natu-
ral light", etc.).

Table 6.2: Semantic features, respective distance functions and descriptions.
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6.3.1 Visual aesthetics

Visual aesthetics refers to the visual characteristics of the images, such as color signatures

and visual entropy. It is expected that images presented in sequence, in a storyline should

share some visual traits.

As detailed in Chapter 2, literature underlines the importance of color in transitions,

an aspect that was also confirmed in our preliminary experiment detailed in Chapter

3 Section 3.6. We leverage this knowledge by taking into account various color related

features each with their unique characteristics. Specifically, we resorted to comparing

not only the images Luminance values but also their Color histograms and their first Color
moment in the CIELAB color space. CIELAB was chosen because euclidean distances

in this color space uniformly match differences in human perception, something that

does not occur in the RGB color space [54]. These three features are extracted using the

extractor made available1 in [35]. However, these methods of representing the colors of

an image only take into account color distributions in terms of quantity. Nonetheless, two

images may have similar quantities of the same colors while presenting these colors in

different positions in relation to their boundaries. As such, we make use of an additional

feature, the Color correlogram as proposed in [19], for its ability to encode both color

quantity and its spacial position in the context of the image.

Furthermore, the Entropy of each image (also extracted through the aforementioned

tool1) is used to measure how distinct subsequent images are in terms of the quantity

of information they present, while also measuring how simple they are from a human

perception point of view. Finally, for its capacity to find similar images, pHash2 is also

used.

6.3.2 Semantics

Considering the aesthetic similarity between images is not enough to ensure good tran-

sitions. Two images can be very similar in terms of visual aesthetics, but completely

different semantically. To tackle this problem we propose the use of several semantic-

based methods. For the first, the VGG-16 [47] was again used. We had already taken

advantage of the this method of extracting visual concepts from images for the Concept
Pool and Concept Query retrieval baselines detailed in Chapter 5, Section 5.2.3. In this

case, each image in the dataset is labled with a set of visual concepts. Then the number

of shared semantic labels between the images is compared. We refer to this baseline as

Visual concepts.

The VGG-16 was, however, trained for multi-class annotation, i.e. to associate a single

visual concept to each image. For images with multiple concepts such strategy may not

be optimal, in that the concept distribution will be skewed towards the most salient

concept, missing other important concepts. To overcome this issue, we propose second

1https://github.com/pcpmartins/extractor
2http://www.phash.org/
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approach we refer to as CNN Dense, where embedded representations produced by the

penultimate layer of the network are extracted instead of individual concepts. Each image

is thus embedded in a 2048-dimensional space. Then the images are compared by this

differences in their embeddings. We opt for a ResNet-50 [18] CNN instead of VGG-16 as,

according to literature, it is more effective and yields a lower dimensional representation

(2048-D vs. 4096-D of the VGG-16).

Finally, we take advantage of methodologies designed to analyze specific semantic

characteristics of images. First, we look at the difference in the number of Faces present in

sequential images in a storyline, using this feature as proxy for the type of scene depicted

in said images. Through it, we avoid abrupt transitions from portraits to street scenes

to landscapes. Finally, we leverage the environment depicted in the images by resort-

ing to the Environment, Scene Attributes and Scene Category features, extracted through

[57], attempting to generate visual storylines where the environments depicted remain

consistent in sequential images of the storyline, when possible.

6.4 Story illustration

We now tackle the final task of designing a method for visual storyline creation. This

method takes as input sets of candidate images to illustrate each of the segments of a story

and is tasked with outputting visually and semantically cohesive storylines composed of

the images in said sets. We propose two different graph based approaches to tackle this

problem, each with two variants.

6.4.1 Sequence of bipartite graphs - Shortest path

This approach, referred to as Sequential, optimizes for storylines with the best possible

sequential transitions. In this context, the transition quality is only measured between

the candidate images of consecutive segments.

We follow a graph based approach to tackle this problem. Specifically, we define

G = (V ,E), a sequence of bipartite weighted directed graphs, where given a story StoryN =

(u1,u2, ...,uN ) of N segments, the graph G is constructed as follow:

1. Vertices: the graph’s vertices V correspond to all the candidate images in the sets

(C1,C2, ...,CN ), of k images each. Each set Ci = a1, ..., ak , corresponds to a story

segment ui . Hence, each candidate image a∗ of candidate set Ci becomes a vertice

in the graph;

2. Edges: the graph’s edges E, associate all the candidate images from neighboring

cadidate sets. In other words, all vertices in set Ci are fully connected and directed

to vertices in set Ci+1. Hence, the bipartite property of graph;

3. Edges-weight: the weight associated with each edge e ∈ E, connecting two vertices

v1 and v2 is given by a function pairCost(v1,v2)
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Figure 6.3: Example of a graph for storyline creation using the Sequential approach, for a 4
story segment. Images are represented by the vertices of the graph, each vertex belonging
to a candidate set Ci . The cost associated with an edge directed from vertices vx to vy is
given by the pairCost(vx,vy) function.

Leveraging this graph structure, exemplified in Figure 6.3 for a 4 segment story, we

propose two different methods.

6.4.1.1 Relevance agnostic

The first Sequential approach, regarded as Sequential without relevance (SeqT ), is optimized

for creating storylines with the best possible sequential transitions, regardless of the

relevance of the candidate images to the segments they attempt to illustrate. It is designed

to present added value in situations where most or all candidate images are already highly

relevant to their respective segments or where content relevance is not the highest priority

in the context of the story being illustrated.

Formally, this first proposed method computes the shortest path of sizeN in the graph

(i.e. the path will contain a number of vertices equal to the number of segments in the

story being illustrated). Hence, we aim to minimize the following expression:

min
v1∈C1,v2∈C2,...,vN∈CN

N−1∑
i=1

pairCost(vi ,vi+1) (6.3)

where pairCost(vx,vy) = transC(vx,vy) and the function transC(vx,vy) is defined as

transC(vx,vy) = 1− trans(vx,vy) (6.4)

the function trans being defined as described in Section 6.3;

The resulting storyline from this approach is the one composed by the images repre-

sented by the vertices that minimize expression 6.3. In practice we resort to a variation

of Dijkstra’s minimum cost path algorithm to solve this problem.
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6.4.1.2 Relevance weighted edges

The previous alternative considers only transition quality when generating visual sto-

rylines. For situations where relevant content is scarce we propose a second approach,

Sequential with relevance (SeqTR). In such situations, some of the available candidate im-

ages might not be relevant to the segment they attempt to illustrate. Hence, we leverage

both transition quality and relevance of the candidate images, encouraging the creation of

storylines with the most relevant candidate images that also present quality transitions.

Thus, for this approach, we again aim to find a path composed of N vertices in the

graph. However, this time, the expression to minimize weighs both the importance of the

first segment in the storyline being relevant, as well as the importance of transitions vs.
relevance, to overall storyline quality. We do so by basing ourselves in the quality metric

proposed in Chapter 3. In practice, we attain this path by minimizing the following

expression:

min
v1∈C1,v2∈C2,...,vN∈CN

0.1 · relC(v1) + 0.9 · 1
2(N − 1)

·
N−1∑
i=1

pairCost(vi ,vi+1) (6.5)

where the function pairCost(vx,vy), that ranges from 0 to 2, is defined as:

pairCost(vx,vy) = 0.6 · (relC(vx) + relC(vy))︸                          ︷︷                          ︸
segments illustration

+0.4 · (relC(vx) · relC(vy) + transC(vx,vy))︸                                               ︷︷                                               ︸
transition

(6.6)

Here, relC(v) = 1 − rel(c). In turn, rel(c) is the normalized relevance of the image

represented by vertice v to the text segment it is candidate to illustrate, as calculated

through the BM25 baseline proposed in Chapter 3.

The resulting storyline is the one composed by the images represented by the vertices

that minimize expression 6.5.

6.4.2 Multipartite graph - Minimal clique

The Sequential approachs aim to produce storylines with high transition quality for se-

quential pairs of images. However, a visual storyline is consumed as a whole by it’s

viewers, not as a disconnected set of pairs. Consequently we posit a second approach,

Fully connected, designed to ensure quality transitions between all elements of the gen-

erated visual storylines, leveraging the possibility that individual transition quality is

affected by the remaining elements of the storyline they are part of.

Again, we follow a graph based approach to tackle this problem. We define G = (V ,E),

a N-partite weighted graph, where given a story StoryN = (u1,u2, ...,uN ) of N segments, the

graph G is constructed as follow:

1. Vertices: the graph’s vertices V correspond to all the candidate images in the sets

(C1,C2, ...,CN ), of k images each. Each set Ci = a1, ..., ak , corresponds to a story
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Figure 6.4: Example of 3-partite graph for storyline creation using the Fully connected
approach, for a 3 story segment. Images are represented by the vertices of the graph,
each vertex belonging to a candidate set Ci . The cost associated with an edge connecting
vertices vx to vy is given by the pairCost(vx,vy) function.

segment ui . Hence, each candidate image a∗ of candidate set Ci becomes a vertice

in the graph;

2. Edges: the graph’s edges E, associate all the candidate images from all other candi-
date sets. In other words, all vertices in set Ci are connected to vertices in all the

candidate sets except Ci . Hence, the multipartite property of the graph;

3. Edges-weight: the weight associated with each edge e ∈ E, connecting two vertices

v1 and v2 is given by a function pairCost(v1,v2)

Leveraging this graph construct, exemplified in Figure 6.4 for a 3 segment story, we

propose two different methods.

6.4.2.1 Relevance agnostic edges

First, again, we optimize only for transition quality. Hence, for this first Fully connected
approach, we compute the minimal weighted clique containing N vertices of graph G.

(i.e. the clique will contain a number of vertices equal to the number of segments in the

story being illustrated). Additionally, we pose the following restriction to the clique: it

can only contain one vertex per candidate set. Figure 6.5 provides an example of such a

clique.

We attain this clique by minimizing the following expression:

min
v1∈C1,v2∈C2,...,vN∈CN

N−1∑
i=1

N∑
k=i+1

pairCost(vi ,vk) (6.7)

pairCost(vx,vy) = transC(vx,vy) (6.8)
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Figure 6.5: Example of a clique containing three vertices, each from a different candidate
set, for graph depicted in Figure 6.4. Highlighted vertices (images) and the green edges
indicate the parts of the graph that belong to the clique.

The resulting storyline from this approach is the one composed by the images repre-

sented by the vertices that minimize expression 6.7. We refer to this approach as Fully
connected without relevance (FulT ).

6.4.2.2 Relevance weighted edges

This final alternative builds on the previous one, ensuring high transition quality between

all pairs of images in the resulting visual storylines, not just sequential pairs, while

optimizing for relevance as with the SeqTR approach.

To do so, we compute a weighted clique containing N vertices of graph G, again with

the restriction that it can only contain one vertex per set of candidate images. To find this

clique we minimize the following expression.

min
v1∈C1,v2∈C2,...,vN∈CN

0.1 · relC(v1) + 0.9 · 1
N (N − 1)

·
N−1∑
i=1

N∑
k=i+1

pairCost(vi ,vk) (6.9)

where the function pairCost(vx,vy), a function that ranges from 0 to 2, is again defined

as:

pairCost(vx,vy) = 0.6 · (relC(vx) + relC(vy))︸                          ︷︷                          ︸
segments illustration

+0.4 · (relC(vx) · relC(vy) + transC(vx,vy))︸                                               ︷︷                                               ︸
transition

(6.10)

The resulting storyline from this approach is the one composed by the images repre-

sented by the vertices that minimize equation 6.9. We refer to this final method as Fully
connected with relevance (FulTR).
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6.5 Evaluation

6.5.1 Crowd sourcing transition quality data

6.5.1.1 Protocol

The goal of this experiment is to crowd source training data to train the machine learning

model proposed in Section 6.3. Additionally, we aim to understand which individual

features have more impact in transition quality.

In practice, we create storylines by considering the following features individually:

Luminance, Color histogram, Color moment, Entropy, #Edges, pHash, Concepts, CNN Dense,

each feature resulting in a different baseline. These features are a subset of those in

Tables 6.1 and 6.2.

The protocol is as follows. We first manually selected a total of 1572 relevant images to

illustrate the segments of the 40 stories related to the Edfest 2016 and TDF 2016 datasets.

This corresponds to an average of 10 relevant image candidates for each story segment.

Afterwards, these stories were illustrated using the baselines: for each story, each baseline

considers all the 10 relevant images per segment, and chooses the segment’s illustration

sequence that minimizes the sum of the pairwise transition distances, composed only of

a single feature, between sequential images. Hence, each baseline focuses on creating

storylines where sequential pairs of images have either similar colors, similar semantics,

shapes, etc. As a result, 40 distinct storylines were generated by each of the 8 baselines.

Thus, in total, 320 storylines were generated.

6.5.1.2 Ground truth

Starting from a story topic and their respective visual storylines (comprising only relevant

content), the goal is to assess the quality of the visual storyline as a whole. In practice, the

320 distinct visual storylines were presented to 5 annotators. For each visual storyline,

annotators were asked to rate the transitions between each sequential pair of images with

a score of 0 ("bad") or 1 ("good").

6.5.1.3 Analysis of crowd sourcing results

Figure 6.6 shows the performance of the proposed transitions baselines at the task of

illustrating the 2016 EdFest and TDF stories, using the story quality metric introduced in

Chapter 3, calculated based on the judgments of the annotators. Table 6.3 presents the

performance of the baselines measured by averaging the sum of the scores given by the

annotators to each pairwise transition. As previously noticed, all baselines use the same

pool of manually selected relevant visual content.

In this experiment the CNN Dense baseline was one of the three best performing base-

lines, highlighting the importance of taking into account semantics when optimizing the
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Figure 6.6: Average performance of the baselines described in Section 6.5.1 in the task
of illustrating the EdFest 2016 (dark blue) and TDF 2016 (light blue) stories, according
to the annotators, measured by the quality metric proposed in Chapter 3.

Baseline EdFest Transitions TDF Transitions Avg.

Color histogram 0.61 0.74 0.68
Color moments 0.53 0.72 0.63
Visual concepts 0.43 0.61 0.52
#Edges 0.41 0.63 0.52
Entropy 0.45 0.68 0.57
CNN Dense 0.58 0.76 0.67
Luminance 0.45 0.67 0.56
pHash 0.42 0.70 0.56

Table 6.3: Performance of the baselines described in Section 6.5.1 in the task of illus-
trating the EdFest 2016 and TDF 2016 stories, measured by the average transition scores
provided by the annotators.

quality of transitions. Semantics may not be enough to evaluate the quality of transi-

tions though. In fact, using single concepts as is the case for the Visual concepts baseline

provides very poor results, stressing the importance of considering other criteria.

Regarding visual aesthetics, the best performing baselines where the ones that focus

on minimizing the color difference between sequential images in a storyline: Color his-
tograms and Color moment. This supports the assumption that illustrating storylines using

content with similar color palettes is a solid way to optimize the quality of visual story-

lines. Now turning to the Luminance and pHash baselines, these presented varying results,

not always being able to ensure high quality transitions. Regarding luminance, this may

be the case because two images can be very distinct while still presenting the same overall

lumincance value. Conversely, illustrating storylines by selecting images with similar

entropy and number of edges, using the Entropy and #Edges baselines, provided worst

results. This happens because the aesthetic similarities between the sequential images

presented in these storylines are, most of the times, not easily perceptible to the naked

eye.
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Figure 6.7: Illustrations of the “Music shows at Edinburgh Festival 2016” story achieved
by resorting to the Color histogram and Entropy baselines. The transitions of the storyline
created with the Color histogram baseline obtained an average score of 1 while the ones in
the storyline created by the Entropy baseline obtained an average score of 0.6.

Furthermore, by comparing these transitions scores to those of the storylines gener-

ated by using the approaches (that optimize only for illustration relevance) proposed in

Chapter 5, Section 5.2, we verify a large improvement in terms of transition quality. This

proves that the baselines reviewed in this Section are in fact a good first step in the task

of generating storylines with high quality transitions.

Finally, and similarly to what was observed in Chapter 5, Figure 6.6 shows that cre-

ating storylines with good transitions is easier for the TDF stories than for the EdFest

stories. Figures 6.7 and 6.8 show examples of stories illustrated by the the Color histogram,

Entropy, CCN Dense and #Edges baselines.

6.5.2 Transition quality model

In order to train the Grandient Boosted Trees model to predict the transition quality of a

pair of images, we made use of the ground truth that resulted from the crowd sourcing

task described in the previous Section. By taking advantage of the annotations made to

the 320 storylines (232 composed of 4 segments and the remaining 88 composed of 3

segments) we attained ground truth for a total of 872 pairs of images regarding transition
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Figure 6.8: Illustrations of the “Wide variety of performers at Edinburgh Festival 2016”
story achieved by resorting to the CNN Dense and Luminance baselines. The transitions
of the storyline created with the CNN Dense baseline obtained an average score of 0.93
while the ones in the storyline created by the Luminance baseline obtained an average
score of 0.87.

quality, by averaging the scores (0 or 1) provided by the 5 annotators to each pair.

The transition distances for the aforementioned pairs were calculated, using the fea-

tures defined in Table 6.1 and in Table 6.2. The resulting values where then standardized.

Finally, the model was trained to, given a transition distance of a pair of images, predict

its quality score, according to the ground truth. Dividing the resulting dataset into train

and test sets, we first trained the Gradient Boosted Trees model with 70% of the data

available, then testing the model using the remaining 30%.

From the tests performed we concluded that the model performs well, presenting a

mean average error of 0.245 in the test set.

6.5.3 Creating storylines

6.5.3.1 Protocol

Finally, we test the graph approaches to storyline generation proposed in Section 6.4.

To do so, we considered the Edfest 2017 and TDF 2017 datasets, for which 13 and 15

stories are available, respectively. These datasets were yet to be used in any experiment,
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EdFest 2017 TDF 2017
Baseline Relevance Transition Quality Relevance Transition Quality

SeqT 0.49 0.72 0.51 0.56 0.81 0.56
SeqTR 0.48 0.71 0.50 0.55 0.78 0.54
FulT 0.47 0.77 0.52 0.62 0.91 0.64
FulTR 0.42 0.61 0.42 0.59 0.72 0.57

Table 6.4: Average performance of the graph based storyline generation methods on the
task of illustrating the 2017 Edinburgh Festival and Tour de France stories, measured
through the relevance and transition quality scores provided by the annotators, as well
as through the quality metric proposed in Chapter 3.

providing a completely new set of images and stories with which to evaluate the storyline

generation methods proposed.

The BM25 baseline described in Chapter 4 was used to select at most 10 candidate

image to illustrate each segment of each story. In total, 953 distinct images were retrieved,

resulting in an average of 10 candidate images to illustrate each segment. Afterwards the

4 approaches proposed in Section 6.4 where applied resulting in the creation of a total of

112 storylines.

6.5.3.2 Ground truth

We proceeded to assess the quality of each visual storyline related to each story topic.

Hence, the 112 distinct visual storylines were presented to 3 annotators. For each visual

storyline, the annotators were again asked to rate the relevance of the images to the

segment they illustrate and the transition quality between each sequential pair of images

with a score of 0 ("bad") or 1 ("good").

6.5.3.3 Results

Table 6.4 shows the performance of the graph based storyline generation methods pro-

posed in Section 6.4 in terms of the average relevance and transition scores given by the

annotators, as well as through the quality metric proposed in Chapter 3.

By analyzing them we can verify that, in terms of average transition quality, all ap-

proaches performed much better then the simpler baselines presented in Section 6.5.1.

Additionally, the Fully connected without relevance (FulT ) approach was the best perform-

ing one in terms of average storyline quality, as measured by the quality metric, but also

in terms of transition quality. Specifically, the storylines created by this approach were

rated as having 91% high quality transitions for the TDF 2017 stories, and 77% high qual-

ity transitions for the Edfest 2017 stories. This shows that, in a storyline, the transition

quality between a pair of images is not just affected by the images of said pair but also by

the remaining images in the storyline. Not only that, but this approach was also the best
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Figure 6.9: The performance of the different graph based approaches at illustrating the
EdFest 2017 stories.

performing one according to the quality metric, attaining a score of 0.52 for the EdFest

stories and a score of 0.64 for the TDF stories.

Furthermore, by inspecting results we verify that the storylines generated by the

approaches that leveraged content relevance, SeqTR and FulTR, were not scored as con-

taining more relevant images when compared with the storylines generated by the two re-

maining approaches. By analyzing the storylines individually we see that, the approaches

that leverage relevance are, in certain cases, able to pick relevant images to illustrate story

segments while the remaining approaches fail to do so. However, in turn, seeking higher

quality transitions seems to also improve relevance in particular situations. This happens

because, higher transition quality means the images in a storyline tend to present the

similar semantics. Because stories are related to a particular topic, semantically similar

images to the ones already relevant to a story have a high chance of also being relevant to

that same story. Consequently, the approaches that leverage content relevance were not

able to outperform the remaining ones in terms of finding relevant content.

Finally, Figures 6.9 and 6.10 present the performance of the graph approaches at il-

lustrating individual stories, according to the quality metric. By analyzing these results

we can see that the performance of the approaches is sensitive to the story being illus-

trated. Although the best average performing approach was FulT , in a significant number

of cases, the storylines created by the remaining approaches were scored higher by the

annotators. This proves the importance of having different methods of storyline creation,

as they provide different illustration alternatives that news editors and news editors can

work with and build upon. Taking this into account, we can state that in 10 out of 15

TDF stories, at least one of the approaches was able to provide a storyline that was rated

with a score near or above 0.7, according to the quality metric. Additionally, in 8 out of

13 EdFest stories, the same can be stated for a score near or above 0.6.
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Figure 6.10: The performance of the different graph based approaches at illustrating the
TDF 2017 stories.

Presenting a visual example of the performance of the approaches, Figure 6.11 dis-

plays the different storylines created by each approach to illustrate the “What is Edin-

burgh Festival 2017” story. Finally, all storylines created by the graph approaches to

illustrate the 2017 EdFest and TDF stories are available for viewing online3.

6.6 Conclusion

In this Chapter we propose and formalize a novel computational definition of transition

between a pair of images. Through it, it is possible to express the visual and semantic

relationships present in said pairs, in a non-subjective manner. Consequently, this is a

important first step in research regarding visual storyline editing from a computational

perspective.

Leveraging this novel definition, we study the impact of semantic and visual charac-

teristics in transition quality and propose and test a method for predicting the quality

of transitions using the Gradient Boosted Trees model. This approach presented a good

performance at the task, proving that, although transition quality is a subjective topic,

it is possible to systematically and accurately predict transition quality in an automated

manner. This could only be achieved using the large set of the carfully picked low and

high level features with which we trained the model.

Finally, we propose four distinct graph based approaches to visual storyline creation

and evaluate them. They comprise the final module of the storyline generation framework

depicted in Figure 6.1. These approaches proved to have a high performance at creating

high quality visual storylines, while also providing a solid baseline for future research

related to this novel task.

3 http://datasets.novasearch.org/trecvid-storylines/
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What is EdFest 2017?

FulT

Theater and comedy Circus Street performancesMusic shows

SeqT

FulTR

SeqTR

Figure 6.11: Illustrations of the “What is Edinburgh Festival 2017” story achieved by
resorting to methods described in Section 6.4. From top to bottom, they attained an
average score of 0.76, 0.81, 0.75 and 0.86 regarding the quality metric, respectively.
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By inspecting their performance at illustrating stories we were able to gain novel

insights into what characteristic impact storyline quality: i) the transition quality between

sequential images is affected by the remaining images in a storyline; ii) optimizing for for

high quality transitions in the context of a visual storylines positively affects illustration

relevance.

Finally, although the four approaches to storyline generation presented different per-

formances during evaluation, in the context of news illustration they can all be taken

advantage of. This because they present four alternative storylines with which to illus-

trate a story that can later be reviewed and polished by a professional journalist or news

editor.
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7
Conclusions and future work

7.1 Conclusion

In this thesis we studied a computational approach to the age-old art of visual storytelling.

Aiming to aid news journalists and news editors in the process of news illustration, we

proposed a three part framework designed to create news quality visual storylines from

a pool of social media content.

Leveraging real world social media data, we tested the framework, proving its ability

to select high quality, relevant images, and subsequently organize them, creating seman-

tically and visually cohesive narratives.

From a research standpoint, we tackled a set of problems yet to be solved in literature,

including those of news quality assessment, multi-media retrieval for social media content

and storyline illustration and editing.

In this context we highlight the following achievements:

1. A novel contribution to the state of the art in news media quality assessment

(Chapter 4);

2. A new graph based model for visual storyline creation (Chapter 6);

3. The compilation of a news quality dataset with ground truth (Chapter 4);

4. The creation of a storyline relevance dataset with ground truth (Chapter 5);

5. The creation of a storyline transitions dataset with ground truth (Chapter 6);

In the context of news quality assessment, we resorted to a machine learning based

approach, following state of the art literature that tackles the problem of qualifying im-

ages according to criteria such as visual aesthetics or memorability. However, we wanted
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to not only be able to emulate the content filtering process of news media professionals,

but also gain insight into it from a computational point of view. Hence, we resorted

to Gradient Boosted Trees, a machine learning model that leverages both precision and

interpretability, diverging from the CNN based approach commonly found in literature.

Thus, leveraging carefully chosen low and high level social, visual and semantic features,

we built an image quality assessment pipeline that proved to have a high performance at

the task.

Regarding the task of multimedia retrieval, we approached it from various perspec-

tives, proposing several baselines to tackle the problem. We based our first approach

on tried and tested text retrieval methodologies, that are currently an industry standard.

Building on it, we incorporated elements of multi-media retrieval, rank fusion method-

ologies and pseudo relevance feedback. In the end, the proposed baselines proved to have

particular advantages and disadvantages, making them useful in different contexts.

Finally, tackling the problem of storyline creation, we started by formalizing, in a

non subjective manner, the concept of transition. This novel definition allowed us to

work the concept of transition through computational approaches. Leveraging it, we

proposed four graph based methods of storyline creation that perform well, as shown

in the results of our experimental evaluation. These where created and implemented

to take full advantage of existing graph algorithms, ensuring their correctness and high

computational performance. They leverage a strong machine learning predictor which

was trained to predict transition quality based on both the semantic and visual features

present in the pair of images under scrutiny.

7.2 Impact in the newsroom

In the newsroom, the storylines created by the proposed framework can then be reviewed

and build upon by news media professionals. This approach aims to expedite the news

illustration process that, originally, had news media professionals manually searching

social media for high quality relevant content. In practice, the modules that compose

the framework can also be used individually, allowing news journalists to easily filter

content according to its quality, find relevant content to illustrate news stories or construct

storylines from hand picked content.

As such, this work is valuable in a real world, practical context, introducing a novel set

of semi-automated methods designed to aid news journalists and news editors perform

their everyday tasks.

7.3 Future work

Despite our positive results, the framework proposed in this thesis still has room for

improvement. The following list comprises possible approaches to future work in the

context of the framework that was developed.
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• In situations where no relevant text is associated with a relevant image to illustrate

a story segment, the baselines proposed in Chapter 4 will never identify that image

as a proper way of illustrating the segment. As an approach to solving this problem,

a new baseline could be created, where a search engine (e.g.: Google) is first queried

for images related to the terms in a segment. The best ranking images are then

retrieved and images similar to these are searched in the available dataset.

• After having attained relevance ground truth for the datasets that compose the

experimental framework defined in Chapter 3, it is now possible to fine tune the

various parameters associated with the retrieval baselines proposed in Chapter 5.

This process might result in improvements in the performance of the baselines.

• Again, making use of the now available relevance ground truth, it is also possible

to resort to LETOR, a machine learning approach to rank fusion. Through it, the

baselines in Chapter 5 could be combined to achieve a single baseline that presents

a better overall performance.

• After having attained ground truth for illustration relevance and transition quality

for a large set of storylines, it is now possible to train a machine learning model to

create quality visual storylines. This model would leverage the predicted relevance

and transition quality values associated with images to predict which images should

illustrate which segments. This approach was not tested in the context of this thesis

and has the potential to present a good performance.

7.4 Research opportunities

This work is a first approach to a set of problems that where yet to be tackled by literature.

Consequently, besides providing a solid baseline for future works on related subjects, it

also poses many new and interesting challenges that may be pursued by future research.

What follows is a comprehensive description of some of these questions and challenges

that we find to be more interesting and of higher importance to pursue in the near future.

• All methods developed in the context of this thesis target still images only. However,

visual storylines could contain video content. Hence, there is interest in exploring

what changes could be made to the propose storyline generation framework in order

to accommodate for both images and videos.

• Leveraging text summarization and event detection methodologies already estab-

lished in literature, the proposed framework could be expanded to one that auto-

matically detects events covered in social media, by inspecting social media posts,

and creates visual storylines narrating those events.

• It is possible that additional dimensions can be added to the storyline quality metric

proposed in Chapter 3 to improve its performance at mimicking human perception,
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as currently the metric considers only transition quality and illustration relevance.

Studying this may help to better understand the human perception of visual story-

line quality.

• In chapter 4 we propose a framework designed to filter and rank social media im-

ages according to news media standards. The concept of news media standards can,

however, be further dissected, as different news media outlets present different

quality standards. Studying how these standards differ may present a particular

interesting window of opportunity to help understand news media content from a

computational point of view.
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