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Abstract 

Sleep stage classification is vital for diagnosing many sleep related 

disorders and Polysomnography (PSG) is an important tool in this regard. 

The visual process of sleep stage classification is time consuming, subjective 

and costly. To improve the accuracy and efficiency of the sleep stage 

classification, researchers have been trying to develop automatic 

classification algorithms.  

The automatic sleep stage classification mainly consists of three steps: 

pre-processing, feature extraction and classification. In this research work, 

we focused on feature extraction and selection steps. The main goal of this 

thesis was identifying a robust and reliable feature set that can lead to 

efficient classification of sleep stages. For achieving this goal, three types of 

contributions were introduced in feature selection, feature extraction and 

feature vector quality enhancement. 

Several feature ranking and rank aggregation methods were evaluated and 

compared for finding the best feature set. Evaluation results indicated that 

the decision on the precise feature selection method depends on the system 

design requirements such as low computational complexity, high stability 

or high classification accuracy. In addition to conventional feature ranking 

methods, in this thesis, novel methods such as Stacked Sparse AutoEncoder 

(SSAE) was used for dimensionality reduction. 

In feature extration area, new and effective features such as distance-

based features were utilized for the first time in sleep stage classification. 

The results showed that these features contribute positively to the 

classification performance. For signal quality enhancement, a loss-less EEG 

artefact removal algorithm was proposed. The proposed adaptive algorithm 

led to a significant enhancement in the overall classification accuracy. 
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Keywords: Sleep stage classification, Feature extraction, Feature 

selection, Rank aggregation, Distance-based features, Accuracy, Stability, 

Similarity, Feature vector quality. 
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Resumo 

A classificação das fases do sono é vital para o diagnóstico de muitos 

problemas relacionados com a qualidade do sono sendo a polissonografia 

(PSG) uma ferramenta muito importante nesse sentido. No entanto, o 

processo visual de classificação das fases do sono é demorado, subjetivo e 

caro. Para melhorar a precisão e aumentar a eficiência da classificação das 

fases do sono, diversos trabalhos têm sido desenvolvidos no sentido de 

permitir a sua classificação automática através de algoritmos informáticos. 

A classificação automática das fases do sono é composto por três etapas 

principais: pré-processamento, extração de características e classificação. O 

trabalho apresentado nesta Tese foca-se essencialmente nas etapas de 

extração e seleção de características. O principal objetivo desta Tese foi 

identificar um conjunto de características tão reduzido quanto possível mas 

suficientemente robusto e fiável que possa permitir a classificação eficiente 

das fases do sono com o mínimo de recursos. Para atingir esse objetivo, são 

dadas três tipos de contribuições na seleção das sinais adquiridos, na 

extração de características e no melhoramento da qualidade do vetor de 

características. 

Vários métodos de classificação de características e de agregação 

características foram avaliados e comparados para encontrar o conjunto de 

sinais mais adequado à classificação.  

Os resultados da avaliação efectuada indicaram que a decisão sobre o 

método de seleção de características depende dos requisitos da aplicação 

sendo esta influênciada por diversos parâmetros como a complexidade 

computacional, a estabilidade da classificação e a sua precisão. Além dos 

métodos convencionais de classificação de características, nesta tese, novos 
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métodos como o Stacked Sparse AutoEncoder (SSAE), foram utilizados para 

conseguir reduzir a dimensionalidade do problema. 

Na área da extração de características, foram utilizadas pela primeira vez 

para a classificação das fases do sono características tais baseadas na 

diferença entre sinais (distance-based features) que, de acordo com os 

resultados obtidos, se revelaram de grande eficácia contribuíndo 

significativamente para o bom desempenho da classificação. Para melhorar 

a qualidade do sinal, foi também proposto um algoritmo adaptativo de 

remoção de artefatos sem perdas para os sinais EEG. Como se demonstra, 

o algoritmo proposto permitiu um aprimoramento significativo na precisão 

geral da classificação. 

Palavras-chave: Classificação das fases do sono, Extração de 

características, Seleção das sinais adquiridos, Agregação características, 

Características baseadas em distância, Precisão, Estabilidade, Similaridade, 

Qualidade do vetor de características. 
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Chapter 1 

1. Introduction 

1.1 Problem Statement and Motivation 

Sleep is fundamental for physical and mental health. As a physiological 

condition, it can be defined in many ways. For example, in [1] sleep is 

defined as a “reversible state of inactivity associated with decreased 

responsiveness”. The decline in the responsiveness to environmental stimuli 

is like the coma but, unlike coma, this state is rapidly changeable to 

wakefulness with usually full cognitive capabilities. 

Normal human sleep consists of two distinct stages with independent 

functions known as Non-Rapid Eye Movement (NREM) and Rapid Eye 

Movement (REM) stages. In their ideal situation, NREM and REM states 

alternate regularly, each cycle lasting 90 minutes on average. NREM sleep 

accounts for 75 to 80% of sleep duration and REM sleep accounts for 20-

25% [2]. According to the American Academy of Sleep Medicine (AASM) [2], 

NREM can be subdivided into three stages: stage 1 or light sleep (N1), stage 

2 (N2) and stage 3 (N3) [1], [3]. 

Sleep stage classification is vital for diagnosing many sleep related 

disorders. For this aim, a multiple-parametric test, called polysomnography 

(PSG) [1] is usually used. PSG recordings contain several bio-signals 

including Electroencephalogram (EEG), Electro-oculogram (EOG), chin 
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electromyogram (EMG), leg electromyogram (EMG), airflow signals, 

respiratory effort signals, oxygen saturation, body position, and 

electrocardiogram (ECG) recorded in overnight sleep. During staging, each 

epoch (i.e. a 30-second segment of PSG) is assigned to one of the five stages 

(wake, N1, N2, N3 and REM) according to the activity observed in that time 

interval. 

The sleep stage classification process is, mainly done by an expert in a 

clinic or hospital environment. A collection of rules has been identified in 

AASM to guide the practitioners. However, the visual process of sleep stage 

classification is time consuming, subjective and costly. To improve the 

accuracy and efficiency of this process, researchers have been trying to 

develop automatic classification algorithms. 

The automatic sleep stage classification mainly consists of three steps: 

pre-processing, feature extraction and classification. The pre-processing 

step includes artefact rejection and/or correction. In the feature extraction 

step, researchers try to compactly represent PSG recordings by means of a 

feature vector. In most cases, to enhance the efficiency of the feature vector 

dimensionality reduction and feature selection methods are used. Finally, 

in the classification step, the extracted feature vectors are assigned to one 

of the five categories using a proper classifier. Although significant amount 

of work has been done on this area, still there exist challenges and open 

issues which need to be resolved. Some of these open issues are summarized 

in the following list: 

1. Large and imbalanced data: raw data of one subject for 8 hours with 

sampling frequency of 200 Hz will result in a single file with about 

250 MB. Managing and processing this data needs reliable and 

sufficient computational resources. Moreover, the distribution of 
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stages is not always fair. For example, over 55% of the records are 

N2 and about 5% are N1 and N3 [4]. 

2. Noisy data: the presence of noise and artefacts in the data may lead 

to unusual numerical values in the extracted features and reduce 

the accuracy of the classification results. 

3. Inconsistency in the human PSG scoring: the results of sleep scoring 

from two different practitioners are often not consistent. It has been 

reported that there is a considerable inter-scorer variability (about 

20% disagreement) among scorers. Such differences are typically 

the result of rapid transitions between stages which create ambigu-

ous stages [5]. 

4. Difference between AASM-based scoring and commonly used signal 

processing methods: experts learn the shapes and visual character-

istics of the waves while signal processing methods cannot always 

reproduce the AASM rules and in some cases may completely ignore 

them. This leads to an inconsistency in the results of automatic and 

visual sleep stage classification [4].  

The moment that the existing challenges are solved to a satisfactory level, 

the automatic sleep stage classification algorithms will be reliable enough to 

be routinely used in the clinical environments and at-home monitoring 

systems. In this thesis, we will address the forth open issue, trying to reduce 

the gap between manual and automatic classification results. The main 

motivation for this work is to develop a feature set to characterize each sleep 

stage in a way that extracted features are sufficiently powerful to distinguish 

sleep stages from each other and, on the other hand, are compact enough 

to reduce the dimensionality and improve the classifier’s performance. 

Moreover, since having access to labelled PSG recording is not always easy, 
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this work is aimed to design a system that can work even with small 

amounts of labelled data.  

1.2 Research Question and Hypothesis 

The performance of an automatic sleep stage classification algorithm is 

deeply affected by the features provided to the classifier. Therefore, proper 

feature extraction and selection play an important role in the automatic 

sleep scoring process. Besides the significant amount of work done in this 

area, there are still challenges that need to be addressed. The most 

important challenge is the characterization of sleep stages in such a way 

that ambiguity in classification is minimized. For example, most of the 

classifiers cannot discriminate N1 from REM because the currently used 

feature sets are inadequate to discriminate them properly.  

Non-robust and redundant features are two other challenges that current 

automatic sleep stage classification systems face. A feature is robust if it has 

low inter-subject variation as well as low sensitivity to signal acquisition 

parameters. On the other hand, a feature set is redundant if its features are 

highly correlated. Addressing these challenges will contribute to the 

implementation of more efficient automatic sleep stage classification 

systems. 

Having these challenges in mind, the proposed research question is as 

follows: 

 

How can a robust and non-redundant feature set, be extracted in a way 

that it is efficient and reliable for adequately differentiating sleep stages?  
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To better analyse and interpret the main research question, six research 

sub questions are proposed: 

1. How should a subset of PSG recordings be selected? 

2. How can we effectively enhance the signal quality to extract better 

features? 

3. What should be the strategy for feature extraction, or in other 

words, how should we decide about the type of features to be 

extracted? 

4. What are the measures to assess the discriminative ability of the 

features? 

5. Are there other methods to extract the desirable features rather 

than conventional methods? 

6. How can feature selection methods contribute to find non-

redundant and robust features? 

Keeping in mind the research question, previously mentioned, the 

following hypothesis is proposed: 

 

A desired feature set can be designed if, 

— The quality of data is enhanced through the use of a loss-less ar-

tefact rejection method. 

— A suitable dimensionality reduction or feature selection method is 

adapted/developed to select non-redundant and robust features.  

— In addition to conventional feature extraction methods, new fea-

tures and feature selection methods are utilized for differentiating 

sleep stages. 
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Considering the research sub-questions, first, two main issues should be 

defined, namely the PSG recording subset to be used and the strategy for 

enhancing the selected signals without losing data. The next step is to 

determine the type of features to be extracted. The third important issue is 

to find the most suitable criteria for evaluating the discriminative power and 

stability of extracted features, other than the existing criterion: accuracy. 

Finally, for feature selection, it is important that the pros and cons of 

different feature selection methods for sleep stage classification be 

investigated and the most suitable method be adapted to the problem at 

hand. 

1.3 Research Method 

The proposed work is aimed at performing research in automatic sleep 

stage classification to improve the process of feature extraction and selection 

through the usage of innovative signal processing methods. To achieve such 

result, this thesis work followed the classical research method that consists 

of seven main phases, as illustrated in Figure 1. 

 

Figure 1. Classical research method adopted from the handouts of the Scientific Research Methodol-
ogies and Technologies course of the PhD program in Electrical and Computer Engineering by Pro-
fessor Luis Camarinha-Matos. 
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Following this method, the research work was planned and scheduled ac-

cording to the seven main phases: 

1. Research Question / Problem: identification of the working 

context and motivation to formulate the research question. 

2. Background / Observation: analysis of the state of the art in 

research and practice. In this observation and analysis, some main 

topics are addressed, namely: related background in PSG subset 

selection, feature extraction and selection methods. 

3. Formulate Hypothesis: formulation of the hypothesis according to 

some preliminary analysis of the main problem and the current 

state of the art. 

4. Design Experiment: split into three phases: first increasing feature 

vector quality, second the development and implementation of 

methods for selecting the best manually extracted features, followed 

by implementation of methods to extract new and innovative 

features 

5. Test Hypothesis / Collect Data: application of the widely used 

open access sleep data for the validation scenarios. Results were 

collected for analysis and evaluation. 

6. Interpret / Analyse Results: analysis and evaluation of the model, 

methodology and proposed tools in selected validation scenarios. 

7. Publish findings: in parallel to all previous phases, there was a 

continuous publishing of the work findings, in recognized 

conferences and journals, being the work finalized with this thesis 

document, combining all the findings that were published and the 

final remarks. 
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Although the described phases might give the impression of a sequence, 

there are some iterations among them. As an example, after implementing, 

testing and interpreting some results, there was the need to make some 

reformulation in the hypothesis and corresponding model design to achieve 

results that were more accurate. 

1.4 Thesis Structure 

This thesis document is divided into six chapters: 

Chapter 1. Introduction: Introduces the problem and motivation for the 

proposed research work, related to the improving of the feature vector 

quality in automatic sleep stage classification using innovative signal 

processing methods. This leads to the main research question and 

corresponding hypothesis. This chapter also includes a description of the 

research method and finishes with outlining the thesis structure. 

Chapter 2. Background: Provides a baseline for the proposed research 

work. The history and technical background of manual and automatic sleep 

stage classification are described in this chapter. 

Chapter 3. Literature Review: Introduces a literature review in tech-

niques for developing a suitable feature vector to be fed to the classifier. This 

includes various feature extraction and selection methods. Also, some other 

related areas are considered including PSG subset selection, feature post-

processing and normalization methods. 

Chapter 4. Data and Methods: Describes the research material, espe-

cially the database and the main methods used for the development of the 

proposed algorithms. This chapter also helps to present the main logic be-

hind selecting the techniques and tools used in this research work.  
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Chapter 5. Methodology and Results: Presents in detail the main con-

tributions of this thesis work together with the details of the developed ex-

periments designed to validate and support the proposed feature extraction 

and selection methods. This chapter also includes the corresponding results 

for the validation experiments. 

Chapter 6. Discussion and Conclusion: Provides the discussion for the 

main findings of this thesis work focusing on the pros and cons of the pro-

posed methods compared to the state-of-the-art methods. This chapter also 

concludes the thesis document and includes some possible directions for 

further research. 
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Chapter 2 

2 Background 

Sleep is one of the few physiological conditions that has received much 

attention by the scientists and scholars through the ages. In Aphorism LXII, 

Hippocrates wrote: SOMNUS, VIGILIA, UTRAQUE MODUM EXCEDENTIA, 

MORBUS – Disease exists if either sleep or watchfulness be excessive [6], 

[7]. Sleep is essential for human physical health and cognitive function. It is 

deeply connected to some of important physiological and cognitive 

mechanisms such as hormone release and immune function. Alterations in 

circadian rhythms and chronic sleep deprivation may lead to obesity, 

hypertension, heart disease and immune system dysfunction [8]. On the 

other hand, it is possible that disturbances in one’s amount or quality of 

sleep are the symptom of another medical or mental problem. Therefore, 

sleep qualification and diagnosis of sleep related problems is of crucial 

importance. 

2.1 Polysomnography (PSG) 

The ground-breaking advances in understanding the cause of sleep 

disorders and the anatomy of sleep/wakefulness were only made after the 

middle of the twentieth century [6]. Currently, it is known that normal 

human sleep generally consists of two distinct stages with independent 

functions known as Non-Rapid Eye Movement (NREM) and Rapid Eye 



 34 

Movement (REM) sleep. To differentiate these two stages, researchers rely 

on neurophysiological measures. These measures include 

Electroencephalogram (EEG), Electromyogram (EMG), Electrooculogram 

(EOG), and Electrocardiogram (ECG). While EEG has been a key element in 

analysing the sleep quality as well as diagnosing sleep disorders, EMG and 

EOG turned out to be useful in recognizing REM sleep [6]. Currently in 

clinical practice, PSG is regarded as the gold standard for recording and 

objective assessment of sleep related patterns. During PSG test, several bio-

signals including EEG, EOG, chin EMG, leg EMG, airflow signals, 

respiratory effort signals, oxygen saturation, body position and ECG are 

recorded in a clinical environment.  

 

Figure 2. 30 seconds PSG of a 35-year-old woman in N3 stage [9]. 
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2.2 Manual Sleep Stage Classification 

Since 1975, AASM has developed guidelines and standards for practicing 

sleep medicine using PSG. According to the latest version of AASM 

guidelines [2], NREM stage is subdivided into three stages: N1 or light sleep, 

N2 and N3 or Slow Wave Sleep (SWS). Therefore, considering wakefulness, 

five distinct stages are considered in sleep analysis: Wake, N1, N2, N3, and 

REM. Figure 2 shows an example of PSG recording of a 35-year-old woman 

in N3 stage. 

Usually, sleep stages are scored by a sleep expert through visual 

inspection in a clinic or hospital environment. According to AASM, each 

epoch (30-second segment of PSG) is assigned to one of the five sleep stages 

consistent with the activity observed in that time interval. The resulting 

series of discrete sleep stages are referred to as hypnogram. Figure 3 shows 

an example of a hypnogram for an 8-hour long sleep. In this figure, S1 refers 

to stage 1 (N1), S2 refers to stage 2 (N2) and SWS refers to stage 3 (N3). 

Each epoch of the sleep is characterized by the presence of special 

characteristics of physiological signals. Especially EEG waves have been 

proven to be useful in distinguishing sleep stages [2]. For instance, the wake 

stage with eyes open is characterized by the presence of low amplitude mixed 

EEG frequencies (Alpha and Beta) and probable body movements. Beta 

waves are defined as low amplitude and high frequency waves being 

dominant during wake stage. While the eyes are open, alpha wave amplitude 

 

Figure 3. A sample hypnogram for an eight-hour long sleep [10]. 
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is much lower compared to eyes closed state. During the wakefulness with 

eyes closed more than 50% of the epoch contains alpha activity. Slow eyes 

movement is also detectable in the EOG [11] . 

N1 stage is the transition between the wake and sleep stages. It is 

identified by the reduction of alpha rhythm and the appearance of low 

amplitude theta. During this stage, both the respiration rate and the cardiac 

rate decrease. The N2 stage is characterized by the presence of k-complex 

waves (a negative high voltage sharp wave) followed by sleep spindle bursts 

(with frequency range between 12 and 14 Hz).  

Delta waves usually occur in N3 stage. They are characterized by high 

amplitude (between 20 and 200 µV) and low frequencies (below 5 Hz). The 

REM stage is known as paradoxical sleep since it is characterized by low 

amplitude, irregular and mixed brain waves. The brain activity at REM is 

like the wake state and the incidence ratios of delta and spindle wave 

decrease. Rapid eyes movements appear, EOG waves are similar to stage 

wake and the chin becomes relaxed [12]. In Table 1, the specifications of 

each stage are summarized. In this table TST stands for Total Sleep Time. 

After the acquisition of the PSG, the data is scored by a technician 

according to a collection of rules set forth by AASM. The presence of skilful 

technicians and physicians is necessary for assuring the quality of recording 

and analysis. According to AASM criteria, the scoring should be done on 30-

second, sequential epochs starting from the first sample of the data. For 

each stage, a number of recommended definitions are presented. These 

definitions mainly include EEG frequency and waveform, eye blinks and 

movements and EMG amplitude. 
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Table 1. EEG, EOG and EMG characteristics of sleep stages [13] (TST: Total Sleep Time). 

Sleep 
Stage 

TST 
(%) EEG EOG EMG 

Wake - 

Alpha activity (8-12 Hz) 
or low-amplitude beta 
(13-35 Hz), mixed-fre-
quency waves 

REM (in sync or out of 
sync deflections), eye 
blinks 

Relatively high tonic 
EMG activity 

N1 2-5 

Low-voltage, mixed-fre-
quency waves (2-7 Hz 
range), mainly irregular 
theta activity, triangular 
vertex waves 

Slow eye movements, 
waxing and waning of 
alpha rhythm  

Tonic EMG levels typ-
ically below range of 
relaxed wakefulness 

N2 45-
55 

Relatively low-voltage, 
mixed-frequency waves, 
some low-amplitude 
theta and delta activity 

No eye movement Low chin muscle ac-
tivity 

N3 5-20 
≥20%-50% of epoch con-
sists of delta (0.5-2 Hz) 
activity 

No eye movement Chin muscle activity is 
lower than N1 and N2 

REM 20-
25 

EEG is relatively low 
voltage with mixed fre-
quency resembling N1 
sleep 

Episodic rapid, jerky, 
and usually lateral eye 
movements in clusters 

EMG tracing almost 
always reaches its 
lowest levels owing to 
muscle atonia 

2.3 Automatic Sleep Stage Classification 

Manual scoring of sleep stages has some disadvantages. First, it is time 

consuming. Usually it takes hours to score the PSG of a whole night sleep. 

Second, the results of sleep scoring from two different practitioners are often 

not consistent. It has been reported that there is a considerable inter-scorer 

variability (about 20% disagreement) among scorers. Such differences are 

typically the result of rapid transitions between stages which create 

ambiguous stages [5]. Moreover, with the immergence of at-home sleep 

monitoring systems, there is an urgent need for unsupervised methods that 

can efficiently score the sleep data in a way that the results are medically 
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reliable. Therefore, developing automatic sleep stage classification 

algorithms has been the focus of many researchers. 

Figure 4 shows a general block diagram of automatic sleep stage 

classification. The common approach in automatic sleep stage classification, 

like any other pattern recognition process, includes pre-processing, feature 

extraction and classification steps. The pre-processing step includes artefact 

rejection and artefact correction. Artefacts are unwanted signals not 

produced by the desired physiological events. Power line noise (50 Hz EU/60 

Hz US), electrical equipment noise, sweat and pulse spikes are some 

examples of non-biological and biological artefacts. Some of these artefacts 

can be easily removed by using a simple notch filter but some others need 

more advanced signal processing techniques to be rejected or corrected. 

Features are extracted from a subset of raw PSG recordings containing 

only raw EEG data or EEG data together with other raw PSG signals, 

acquired. For each sleep stage, most of the features used try to describe the 

presence of these special waves, their duration and properties. This feature 

vector should be informative and non-redundant enough to facilitate the 

subsequent classification step. Various types of features have been 

extracted from PSG recordings and used in the literature. Besides, different 

types of dimensionality reduction and feature selection methods have been 

applied to find the most valuable subset of features. These features and 

techniques together with other related processing such as PSG subset 

selection and feature post-processing are described in the next chapter. 
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Figure 4. Block diagram of automatic sleep stage classification 

2.4 Summary 

In this chapter, the basics of manual and automatic sleep stage 

classification were discussed. Specifically, some of the challenges of manual 

sleep staging were mentioned as the grounds for the emergence of automatic 

methods. Finally, the main steps of automatic staging were described. In the 

next chapter, the state of the art methods for feature extraction and selection 

will be described in detail. 
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Chapter 3 

3. Literature Review 

3.1 PSG Subset Selection 

In manual sleep scoring, technicians and doctors use PSG recordings and 

AASM rules for characterizing sleep. There are a number of recommended 

parameters that must be reported for a PSG study. At minimum, three EEG 

channels (frontal, central and occipital derivations) plus two EOG channels 

(from left and right eyes) and two chin EMG channels are necessary to 

perform manual sleep scoring.  For describing the location of scalp 

electrodes, AASM uses the international 10-20 system [14] according to 

Figure 5. Particularly, the recommended EEG channels by AASM include 

F4-M1, C4-M1 and O2-M1. If it is not possible to use these channels, 

alternative EEG channels set include Fz-Cz, Cz-Oz, and C4-M1. 

Inspired by this procedure, researchers try to mimic the visual sleep 

scoring process by using a proper subset of PSG recordings in automatic 

sleep stage classification. This subset usually includes EEG, submental 

EMG and EOG. There are no clear hints or clues in the literature about the 

strategy or reason of selecting a special subset of PSG recordings, except in 

papers that design a system for a specific signal such as single channel EEG. 

In Table 2, a summary of PSG subsets used in the literature is presented. 

Papers summarized in this table include studies that classify sleep 

recordings into 2 stages (REM/Non-REM or Sleep/Wake), 3 stages, 4 stages, 
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5 stages or 6 stages. Studies that detect patterns such as spindles, k-

complex or sleep disorder detection papers are not included in this table. 

 

Figure 5. The 10–20 system of electrode placement [15]. 

Table 2. Summary of PSG subsets used in sleep stage classification. 

Subset Type Signal Channels References 

Single Channel EEG 

C3-A2 [10], [16]–[32] 

C4-A1 [33][27][30][34] 

C3-A1 [35] 

Fpz-Cz/Pz-Oz [21], [23], [28], 
[36]–[54] 

F3-A2 [30] 

F4-A1 [30] 

O1-A2 [30] 

Cz-Pz [55] 

A1-A2 [56] 
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Cz-A1 [57] 

EOG 
Left EOG [58] 

E2-E1 [59] 

ECG  [60]–[62] 

Multi-Channel 

EEG, EOG, 
and EMG 

EEG (C3-A2), Left and Right EOG, 
and chin EMG [63] 

Six EEG (F3-A2, C3-A2, O1-A2, F4-
A1, C4-A1, O2-A1), Left and Right 
EOG, and chin EMG  

[64], [65] 

Four EEG channels (C3-A2, P3-A2, 
C4-A1, and P4-A1), one horizontal 
EOG and one chin EMG 

[66] 

EEG and 
EOG 

EEG (C3 and Cz), Left and Right 
EOG [67] 

Six EEG channels (F3-A2, C3-A2, 
O1-A2, F4-A1, C4-A1, O2-A1) and 
two EOG channels (Left and Right) 

[68][69] 

EEG (Pz-Oz) and Horizontal EOG [70] 

Two EEG (Fz and Oz) and two EOG 
(Left and Right) Channels [71] 

EEG (C4-M1), EOG [72] 

Heart Rate, 
Breathing 
Rate and 
Movement In-
formation 

Heart Rate, Breathing Rate and 
Movement Information [73] 

EEG, ECG 
and Respira-
tion Features 

EEG (C1-A2), ECG and Respiration 
Features [74] 

ECG and respiratory inductance ple-
thysmography (RIP) [75] 

EEG and 
EMG 

EEG (C4-M1) and chin EMG [76] 

EEG (C3-A2) and chin EMG [77] [78] 



 44 

ECG, Respir-
atory and 
actigraphy 
and signals 

ECG, Respiratory and actigraphy 
and signals [79] 

EEG 

Fp1-C3, Fp2-C4, Fp1-T3 and Fp2-T4 [80] 

Pz, Cz, Pz, T3, T4 [81] 

Six EEG channels (Fp1–M2, C3–M2, 
O1–M2, Fp2–M1, C4–M1, and O2–
M1) 

[82] 

Fpz-Cz and Pz-Oz [83], [84] 

C3-A2 and C4-A1 [85] [86] 

Six EEG Channels (F3-A2, C3-A2, 
O1-A2, F4-A1, C4-A1 and O2-A1) [87] 

C4-A1, O2-A1 and C3-O1 [88] 

EOG Left and Right [89][90] 

EEG, EOG, 
EMG and 
ECG 

Six EEG channels (Fp1–M2, C3–M2, 
O1–M2, Fp2–M1, C4–M1, and O2–
M1), two EOG channels (Left and 
Right), one chin EMG channel and 
ECG. 

[82][91]  

According to this table, there are, in general, two different approaches: 

single and multi-channel. In single channel approaches, it is assumed that 

one signal is sufficient and contains enough information to classify epochs 

into sleep stages. Therefore, the algorithms can be implemented on a 

portable device suitable for home environment, clinical care and online 

applications [30], [33], [35]. Single channel EEG systems are the most 

common ones in this category. For multi-channel studies, there are several 

alternatives for channel combinations. The most common combination is a 

set of EEG, EOG and chin EMG signals. Although multi-channel systems 

have more computational complexity than single channel ones, several 

studies have shown that using the information from other channels rather 
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than single EEG channel can improve the distinguishing ability of the 

system between stages especially on REM and N1 [72], [82].   

3.2 Feature Extraction in Sleep Stage Classification 

Feature extraction is the first of the three main steps of automatic sleep 

stage classification. A wide range of features have been extracted and used 

in the literature from different subsets of PSG recordings. To evaluate and 

analyse the effectiveness of feature extraction methods, it is necessary to 

have an overview of the methods used in the literature.  

It should be considered that although feature extraction is a critical step 

in automatic sleep stage classification, the final performance of the scoring 

system, in addition to the extracted features, depends on the quality of the 

signals used (noisy or clean), selected PSG subset, and classification 

algorithm. In the following, we will review the different features used in the 

literature for sleep stage classification.  

The main categories of the features used in sleep stage classification 

include frequency domain, time-frequency domain, time domain, and 

nonlinear features. In this section, the most common features of each 

category together with their advantages and disadvantages will be described. 

Frequency Domain Features 

Frequency domain features are the most widely used features in sleep 

stage classification. The prevalence of their usage is due to their ability in 

estimating EEG frequency bands that characterizes sleep stages. Also, they 

are not dependant on the age and gender of the subject. The Fast Fourier 

Transform (FFT) has been mainly used to describe the frequency content of 

EEG.  

The most common spectral features are as follows: 
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• Spectral power: The absolute spectral power in four significant fre-

quency bands is among the most widely used features in sleep stage 

classification.  In addition to the absolute value, relative spectral 

power and spectral power ratios have been considered important due 

to the proportional changes of brain waves in different sleep stages. 

Relative spectral power is calculated by dividing the absolute power in 

each frequency band by the total spectral power. Power ratio is the 

relative spectral power in different frequency bands such as (al-

pha/beta) [24], [30], [33], [78], [88], [92]. 

• Spectral entropy: This feature is calculated based on Shannon’s en-

tropy and is a measure of the flatness in Power Spectral Density (PSD).  

Spectral entropy is considered suitable for discriminating between N1 

and N3 [30], [33], [91]–[93]. 

• Statistical parameters: Spectral moments describe the shape of the 

PSD of the PSG recordings. Spectral mean, variance,  skewness and 

kurtosis fall into the category of statistical parameters extracted from 

PSG signals [24], [30], [33], [94]. 

• Harmonic parameters: This type of features, although not very com-

mon, are used in some papers [12]. Central frequency, bandwidth and 

power of the central frequency are some of the harmonic features ex-

tracted from PSG recordings. 

• Other spectral features: There are other spectral features used in sleep 

stage classification that cannot be completely categorized in one of the 

above groups. Spectral edge frequency is one of those features, com-

monly interpreted as the frequency which 95% of the total spectral 

power is located below it. In [91] this feature has been found useful 
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for discriminating the wake-N2 and wake-N3 stages. Peak power fre-

quency [33] that was originally used for estimating the depth of an-

aesthesia, is also common in sleep analysis applications. Percentile is 

another feature that provides some useful information about the am-

plitude of the signal. For example, percentile75 EEG provides an in-

dication on the amplitude level of electrical brain activity and can be 

useful to distinguish relatively high amplitude activity during wake-

fulness and N3 stages [66].  

Most of the spectral features mentioned above are usually extracted from 

the EEG signal. However, it is also possible to find papers in the literature 

that extract some of these features from EMG or EOG [58], [78], [95] 

The most important shortcoming of frequency-based features is their 

disability in analysing non-stationary signals. Since PSG recordings are 

non-stationary by nature, joint time-frequency methods like Wavelet 

transform can be considered suitable alternatives. 

Time-Frequency Domain Features 

The range of time-frequency domain features is very diverse in sleep stage 

classification. The coefficients calculated by time-frequency methods are 

sometimes treated like Fourier coefficients to calculate spectral energy fea-

tures [25]. Sometimes, they are regarded as a different representation of PSG 

recordings and used to extract temporal or nonlinear features that are usu-

ally extracted from the signal in the time domain [71]. 

 For analysing non-stationary PSG recordings,  Continuous Wavelet 

Transform (CWT) [35], Discrete Wavelet Transform (DWT)[16], [45], [52], [94] 

Maximum Overlap Discrete Wavelet Transform (MODWT), Choi-Williams 

distribution [35], Empirical Mode Decomposition (EMD) [43], [53], Hilbert-

Hung transform [36] and Wigner Ville distribution [25], [96] are the most 
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commonly used time-frequency methods. In addition, recently the 

performance of two new signal decomposition methods, Dual Tree Complex 

Wavelet Transform (DTCWT) [17] and Tunable Q-factor Wavelet Transform 

(TQWT) [20], [97], were evaluated in sleep stage classification.    

Time Domain Features  

Time domain features can represent the morphological characteristics of 

a signal. They are simply interpretable and suitable for real-time applica-

tions. This category of features is used in sleep stage classification because 

they usually have less computational complexity and simulate the manual 

scoring process. There are several time domain features including:  

• Statistical parameters: If the PSG recording is considered as a random 

process, stochastic modelling can be used for its analysis. Several pa-

pers in the literature [12], [22], [23], [25], [33], [94], [98], [99] have 

used stochastic modelling to extract statistical parameters such as 

first to forth moments, average amplitude, maximum or minimum am-

plitude and percentile from PSG recordings and especially from EEG. 

These parameters are computed for each epoch to measure the dis-

persion, the central tendency and the distribution and describe the 

wave shapes in the time domain. In [91] the EEG variance has been 

found useful in discriminating between N2-REM and N3-REM. In the 

same paper, skewness also showed acceptable performance in distin-

guishing N2 from REM.  

• Autoregressive model parameters: The AutoRegressive (AR) model is a 

parametric model that represents the current value of a PSG recording 

as a linear combination of its previous samples plus a stochastic term 

that is imperfectly predictable. The computed regression coefficients 
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are commonly used as features in EEG analysis. Several methods ex-

ist for estimating AR coefficients such as least squares, Yule-Walker 

and Burg’s method. By looking at the literature, it can be found out 

that the AR model parameters are not anymore among primarily used 

features in sleep stage classification. Although exact reasons for this 

issue should be sought, the stationarity requirement can be a cause 

for this method’s unpopularity. 

In [10] the goal is single-channel sleep stage classification. In this 

paper, the order of autoregressive model for EEG is chosen as eight 

and the computed eight auto-regression coefficients from theta band 

together with multiscale entropy features are fed to a Linear Discrimi-

nant Analysis (LDA) classifier.  

In [100], sleep spindle detection has been done by using AR model-

ling for feature extraction. The authors tried to prove that the time 

domain characteristics of a signal can be used to discriminate EEG 

rhythms. For defining the model order, they didn’t use the optimal 

model order selection methods like Akaike’s information-theoretic cri-

teria or Parzen's criterion of autoregressive transfer function [101], 

[102]. Instead, they tried different model orders to find out which order 

gives the best separable class of patterns.  Their simulation results 

show that, although AR model coefficients provide a good representa-

tion of the EEG data, Short Time Fourier Transform (STFT) works bet-

ter in characterizing spindle and non-spindle regions.  

• Hjorth Parameters: In 1960, Bo Hjorth [103] proposed normalized 

slope detectors (NSD) as indicators of statistical properties of a signal 

in time domain. NSDs include three features: activity, mobility and 

complexity. These features are used in the analysis and characteriza-

tion of EEG and sleep stage classification [25], [42], [104], [105]. 
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• Period Analysis-based Features: Features like Zero Crossing Rate 

(ZCR) and its derivatives and peak to peak (P2P) amplitude are com-

monly used since they describe the time domain characteristics of the 

signal and are similar to manual scoring of sleep stages [25], [89], 

[104]. About ZCR, although it seems that for high accuracy scoring of 

sleep stages it should be used in combination with other features, it 

has some advantages like low computational complexity and ability to 

detect transient waves like sleep spindles and k-complexes. 

Nonlinear Features 

In the brain’s neural network, nonlinearity is apparent even on the cellular 

level since the dynamic behaviour of individual neurons is governed by 

threshold and saturation phenomena. Moreover, the brain’s ability to 

perform sophisticated cognitive tasks rejects the hypothesis of an entirely 

stochastic brain. In addition to the EEG, other signals acquired from the 

body neither have completely stochastic nature nor are stationary. 

Therefore, nonlinear signal processing techniques have been widely used for 

characterizing sleep signals. In the following, the most important nonlinear 

features used in sleep stage classification will be discussed. 

• Energy features: Energy based features are the most common type of 

nonlinear features extracted from different sub-bands of PSG record-

ings in time domain [25], [48], [106]. In addition to the usual energy, 

Teager energy operator also has been proved to be useful in analysing 

sleep recordings [25].  

• Entropy estimators: Entropy is a measure for evaluating the unpre-

dictability of information content. So far, numerous entropy estima-

tors have been proposed and used for discriminating sleep stages in-

cluding: 
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- Shannon Entropy: This measure is usually considered as the 

most classic and foundational entropy measure. It has been 

used for EEG signal analysis in many applications including 

epilepsy detection, abnormality detection and emotional 

states discrimination [107], [108]. In [82], [106], Shannon en-

tropy, in combination with other entropy features, is used for 

sleep stage classification.  

- Renyi Entropy: In 1960, Alfréd Rényi introduced Rényi’s gen-

eral notion of entropy [110]. Since Rényi Entropy generalizes 

several distinct entropy measures, it turned out to be theoret-

ically interesting and found many applications in various re-

search areas such as pattern recognition [111] and biomedi-

cine including sleep stage classification [25], [35], [71], [104]. 

- Permutation Entropy: Permutation Entropy [112] is a simple 

complexity measure, which can be applied to any type of time 

series including regular, chaotic, noisy and time series from 

reality. Low computational complexity of permutation entropy 

facilitates its use in the characterization of PSG recordings 

[25]. 

- Approximate Entropy: In time series analysis, approximate en-

tropy is regarded as a measure to quantify the amount of ran-

domness or equivalently regularity of time series [42], [113], 

[114]. A high value of this measure indicates randomness and 

unpredictability. In [26] changes in approximate entropy of 

EEG has been assessed during eyes-closed wake and other 

sleep stages in healthy subjects. Significant changes in ap-

proximate entropy have been found during different stages of 
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sleep with lowest values during stage 3 and highest values 

during REM. 

- Sample Entropy: Sample entropy is a modified form of approx-

imate entropy in which the bias existing in approximate en-

tropy due to self-match patterns has been removed [115]. This 

measure has been widely used in sleep stage classification 

[71], [83]. 

- Multiscale Entropy: As previously mentioned, entropy 

measures the complexity of physiological signals. A wide 

range of diseases are associated with degraded physiological 

information and loss of complexity. However, certain patholo-

gies exist that are associated with highly unpredictable fluc-

tuations. For such cases, conventional methods would esti-

mate an increase in the entropy compared to the healthy sub-

jects.  Multiscale entropy [116] estimates the long-range tem-

poral correlation of time series to solve this problem. This 

measure has been applied to the analysis of ECG, heart rate 

and sleep EEG [40], [83], [90]. 

• Fractal Dimension: A structure exhibits fractal properties if similar de-

tails are observed on different scales [117]. Also, a time series can 

display fractal properties if statistical similarity emerges at different 

time scales of its dynamics. A signal is fractal if the scaling properties 

fit a scale-free behaviour, meaning that the same features of small-

time scales emerge in large ones. This relationship is quantified by the 

fractal dimension. In other words, fractal dimension is a measure of 

signal complexity. The fractal dimension of a time series including 

PSG recordings can be computed by several different techniques such 

as Petrosian fractal dimension, Higuchi fractal dimension, Katz fractal 
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dimension and correlation dimension [42], [61], [83], [92]. Mean curve 

length was also proposed in the context of reducing the complexity of 

Katz fractal dimension algorithm and it provides results almost equiv-

alent to Katz fractal dimension [118]. 

This measure has been used for analysing sleep signals in several ap-

plications. In [119] the behaviour of the fractal dimension during each 

of the neonatal EEG sleep stages and during the wake stage has been 

studied and the results are compared to the classical spectral param-

eters and zero crossing values. In [120] fractal dimension is used to 

analyse sleep EEG in healthy and insomniac subjects. The results 

show that each sleep stage can be characterized by a certain range of 

EEG fractal dimension, though no statistical significance was ob-

served between healthy and insomniac subjects in any sleep stage. 

Finally, in [91], fractal dimension demonstrated satisfying perfor-

mance in describing stage 1 as well as distinguishing wake stage from 

N3.   

• Hurst Exponent: Hurst exponent is a non-linear chaotic parameter 

that has been used for assessing self-similarity and correlation prop-

erties of time series. Its values vary between 0 and 1 and when it ex-

ceeds 0.5, the signal is called persistent with consecutive trends. In 

sleep stage classification, there is no significant study that specifically 

evaluates Hurst exponent’s ability in discriminating each sleep stage. 

Siiram et al. [121] evaluates its ability in distinguishing wake from 

sleep. Also in [25], [42], [54], [76], [122] Hurst exponent is used in 

combination with other linear and non-linear features in sleep stage 

classification.   
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Due to the non-stationary nature of physiological signals, often 

Detrended Fluctuation Analysis (DFA) is preferred to Hurst exponent. 

DFA permits the detection of intrinsic self-similarity embedded in a 

seemingly nonstationary time series, and avoids the false detection of 

apparent self-similarity, which may be an artefact of external trends. 

This method has been successfully used in a wide range of sleep stud-

ies including [61], [85]. 

• Lyapunov Exponent: Lyapunov Exponent (LE) gives the rate of expo-

nential divergence from perturbed initial conditions. A system with a 

large LE is said less predictable. In [123], changes in the largest pos-

itive LE were investigated by using the sleep data of 15 healthy men. 

LE decreased from stage 1 to N3 and for REM, it was slightly lower 

than for stage 1. In general, the results show that LE decreases as the 

sleep goes deeper. Inspired by this work, the nonlinear analysis of 

sleep has become a major research topic. Generally, it can be con-

cluded from these works that deeper sleep stages are associated with 

lower complexity as demonstrated by the LE values and this adds to 

the value of nonlinear features in sleep stage classification [42], [55], 

[124].  

• Lempel-Ziv complexity: The Lempel-Ziv Complexity (LZC) for sequences 

of finite length was proposed by Lempel and Ziv [125] and represents 

a simple way to measure signal complexity. Although LZC still re-

mains a rather unexplored measure, the studies show that it has a 

high potential to investigate neurophysiological events during sleep 

and wakefulness. One of the open issues about LZC is the number of 

necessary samples to robustly estimate LZC for different sleep stages 

[126]. In [127], the authors use LZC with the aim of going beyond 

results obtained with conventional techniques of signal analysis. Their 
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results reveal that the activated brain states (wake and REM sleep) 

are characterized by higher LZC compared with NREM sleep. In many 

other works LZC has been used in combination with other features for 

sleep stage classification [33].  

LZC is not the only feature that remains rather unexplored. There are 

other features and analysis methods that can still be considered in-

fantile regarding their application in sleep stage classification. Recur-

rence Quantification Analysis (RQA) is an example of such methods. 

RQA was originally a visual tool used for detecting the patterns of re-

currence in the data. To go beyond visual evaluation, several recur-

rence quantification estimators are devised. These measures were 

used in [71]. Figure 3 shows the recurrence plots of two EEG segments 

at drowsy and alert states. As described in the Introduction chapter, 

alpha rhythm is dominant in drowsy state while beta rhythm is sig-

nificant in alert state. This difference is apparent in the recurrence 

plots of these two states according to Figure 3.  

• Itakura Distance (ID): ID is a feature based on the AR assumption of 

the analysed process. It is widely used in speech processing and 

measures the similarity between two AR processes. In [128], ID has 

been used for extracting features from EEG for sleep stage classifica-

tion. In 2005 Estrada et al. [72] tried to capture the temporal similarity 

of EEG and EOG by using ID. Their results were very promising. In 

addition to AR coefficients, the distance between spectral representa-

tions of the signals can also be used to measure similarity [129]. In 

this case, the extracted distance feature is called Itakura spectral dis-

tance. 

As mentioned before EEG signals arise from a highly nonlinear nervous 

system and nonlinear features play an important role in this regard and yet 
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it is important to know if the information provided by nonlinear features can 

be obtained by conventional spectral features or not. Fell et al. [55], in a 

pilot study compared the spectral and nonlinear measures of EEG signals 

during sleep. They concluded that nonlinear features provide additional 

information that is not redundant to the information gained from spectral 

features. In other words, the information obtained from these two groups 

complement each other. For example, nonlinear measures like correlation 

dimension and Lyapunov exponent perform better in discriminating stage 1 

and 2 compared to the spectral measures. On the other hand, spectral 

measures outperformed the nonlinear ones in separating stage 2 from N3. 

An overall review of the literature also confirms that researchers boost their 

proposed system’s performance by taking advantage of different types of 

features.  

In [46], a review of the existing EEG signal-based methods in three phases 

of pre-processing, feature extraction and classification is presented. 

Different features used in the design of sleep stage classification systems 

were analysed from the popularity point of view and results are shown in 

Figure 5. According to this analysis, 35% of the studies use non-parametric-

based frequency-domain features (such as power, spectral flatness, spectral 

centroid, etc.), 24% use the Wavelet-transform-based time-frequency 

domain features, 25% use statistical standards based on the time domain 

and 6% use approximate entropy based on nonlinear, domain feature 

extraction measures. The standard statistics of the time domain, non-

parametric statistics of the spectral domain and Wavelet transform of the 

time-frequency domain are the top three feature extraction methods that 

have received more attention in sleep stage classification schemes. 



 57 

 

Figure 6. Summary of Feature in Automatic Sleep Stage Classification [46] 

3.3 Dimensionality Reduction and Feature Selection in 

Sleep Stage Classification 

As discussed before, in the feature extraction stage, several types of 

features can be extracted from PSG signals in different time and frequency 

domains. Nevertheless, some of these features may be redundant and/or 

irrelevant and increase the complexity of the model. Therefore, 

dimensionality reduction and feature selection have been important 

research topics for the researchers in data mining and machine learning 

areas.  

Basically, the aim of feature selection in a classification task is to select 

the subset of features that best explain the difference between the different 

classes of the input data. Feature selection offers many advantages making 

it an apparent prerequisite on many classification systems. By selecting an 
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adequate subset of features, more compact and simpler models can be 

reached for the problem at hand reducing the computational time necessary 

for the classifier. The elimination of redundant and/or irrelevant features 

may also enhance the generalization ability as well as increase the 

classification power through reduced overfitting. Less storage memory and 

simplified visualization are further benefits of feature selection in 

classification tasks [130], [131]. 

Given the wide range of features utilized for sleep stage classification, the 

choice of the most efficient features to be implemented is difficult. There is 

no complete comparative study that considers the features performance 

(including the temporal, spectral and nonlinear features) and their accuracy 

to identify sleep stages. The major focus of the existing literature is on the 

proper feature extraction and dimensionality reduction. Feature selection 

methods are relatively overlooked. In the following, the sleep stage 

classification algorithms that incorporate one or more dimensionality 

reduction and feature selection methods will be discussed. 

3.3.1 Dimensionality Reduction Methods 

Principal Component Analysis (PCA) is a feature transformation method 

that reduces problem’s dimension by projecting the original high 

dimensional data into a lower dimensional space. In other words, PCA 

transforms the original feature vector to a vector with linearly uncorrelated 

elements called principal components.  These principal components are in 

such a way that the first one has the greatest variance and each succeeding 

principal component in its own turn has the greatest variance and is 

orthogonal to the preceding component [132]. 

In the context of sleep stage classification, Rempe et al. [133] used PCA 

for compacting the 7-dimensional energy-based feature vector extracted 
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from EEG and EMG signals. To answer the question why they applied PCA, 

they explained that by using the original feature vector, each epoch could 

be represented by a point in a seven dimensions space. If all the epochs of 

data were visualized in this space, at the end, a random cloud of data with 

no distinct pattern would be achieved. But if epochs were demonstrated 

using their principal components, they would be arranged in one or more 

directions different from the original coordinate axes. These directions are 

the most important components accounting for the greatest part of the 

variance in feature space. In this work, data dimension was reduced to three 

by keeping only the first three principal components. 

Figure 7 shows the data plotted by first two principal components scored 

by human and naïve Bayes classifier. Distinct clusters are noticeable 

indicating that PCA could effectively separate the sleep states. Also, from the 

classification point of view, it is clear that human and machine scored data 

in a similar way.  

In [134], the authors tried to identify the vigilance state of the rats through 

the analysis of their EEG data. 32 features were extracted from the power 

spectral density of the EEG recordings and PCA was applied to the feature 

vector. Using the variance of the principal components, the three most 

important components were selected and used for classification.  
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Figure 7. First two principle components of a 43-hour recording scored in 10-second epochs, (A) 

scored by human, (B) scored using machine learning algorithm [133]. 

 

Figure 8. (Left) Percentage of variance explained by the 32 components. (Middle) Training patterns 

are projected into 3-dimensional subspace by PCA. (Right) Test patterns are projected into 3-dimen-

sional subspace by PCA [134]. 

Figure 8 shows the variance percentage explained by each component and 

the training and test patterns projected into the 3-dimensional space 

created by PCA. According to this figure, the patterns of wake (red), REM 

(blue) and N3 (yellow) are separated into elliptical clusters and wake and 

REM stages overlap in the data patterns. 

Kernel Dimensionality Reduction (KDR): To the best of our knowledge, 

excluding PCA, KDR is the only dimensionality reduction algorithm used in 

the context of sleep stage classification. Given a classification problem in 

which the goal is to predict Y from the feature vector X, KDR treats the 



 61 

problem by finding a low-dimensional space called “effective space” in which 

the statistical relationship between X and Y are preserved.  In this method, 

no assumptions are made regarding the probability distribution of X or 

conditional probability distribution of Y and X. KDR is based on a particular 

class of operators on Reproducing Kernel Hilbert Spaces (RKHS) [135]. 

In [60], four time domain and five frequency domain features were 

extracted from ECG signal of 16 healthy subjects. The performance of KDR 

is assessed comparing the classification performance with and without 

dimensionality reduction. To determine the effective dimension in this 

study, the original feature vector dimension was reduced from seven to 2, 3 

and 4. Simulation results showed that the performance of KDR depends on 

the classifier used for sleep scoring. The classification accuracy decreased 

when applying the k-Nearest Neighbour (kNN) and the random forest 

classifier on the data reduced by KDR. On the other hand, KDR with effective 

dimension of 2 and Support Vector Machine (SVM) classifier implementation 

led to an improvement in the classification accuracy. 

3.3.2 Feature Selection Methods 

Unlike dimensionality reduction methods based on projection or those 

based on compression, feature selection methods don’t make any changes 

in the original features. Therefore, it is possible to understand the properties 

of data by analysing the features [136]. Several different types of feature 

selection methods exist in the literature. Among them, the most common 

methods are divided into three main categories: filter methods, wrapper 

methods and embedded methods.  

Filter methods perform feature selection by considering some intrinsic 

characteristics of the data, usually providing a rank and/or a score for each 

feature. Low-rank or low scored features are removed experimentally or 
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according to a user defined threshold. Filter methods offer simple and fast 

feature ranking independent of the classifier. Wrapper methods, on the 

other hand, embed a search method in the space of possible feature subsets. 

Various subsets are produced and evaluated by training and testing with 

the specific classification algorithms. Since the number of possible subsets 

grows exponentially with the number of features, heuristic search 

algorithms are used for finding optimal feature subsets. With higher 

computational complexity and risk of overfitting, the main benefits of 

wrapper methods over filter methods are considering feature dependencies 

as well as interaction between the selected subsets and the specific 

classification method. Embedded methods integrate the optimal feature 

subset selection with the classification algorithm with less computational 

complexity compared to wrapper methods. The results of both wrapper 

methods and embedded methods are classifier-specific [136]. 

Filter methods: In sleep stage classification, filter methods are more 

common than wrapper or embedded methods. Among filter methods, Fast 

Correlation Based Filter (FCBF), Fisher Score, ReliefF, Chi-square, 

Information Gain (IG), Conditional Mutual Information Maximization 

(CMIM) minimum Redundancy Maximum Relevance (mRMR) algorithms 

[25], [69] and R-square [87] are the most common. 

mRMR is a feature selection method which selects a subset of features 

with maximum relevance with the target class and, at the same time, 

minimum redundancy between the selected features [137]. In [69], 

automatic sleep/wake detection and multi-class sleep classification 

algorithms were designed using six EEG and two EOG channels. Several 

temporal, nonlinear and spectral features were extracted from these signals 

and a large feature vector was created. To reduce the number of features, 

the mRMR method was applied. Figure 9 shows the structure of this system.  
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The extracted feature types and corresponding number of selected 

features are shown in Table 3. Most of the relevant features are extracted 

from Maximum Overlap Discrete Wavelet Transform (MODWT) coefficients 

(such as energy, mean and standard deviation (47 features)) and harmonic 

parameters (39 features) and the least effective features were Kurtosis, Renyi 

Entropy and Tsallis entropies and Peak-to-Peak amplitude. 

In addition to using mRMR, identifying the proportion of selected features 

per each EEG and EOG channel is an interesting aspect of this paper. 

According to AASM, the recommended EEG channels for sleep scoring are 

F4, C4 (or alternatively C3) and O2. The same channels are found suitable 

in this paper according to Figure 10. 

 
Figure 9. System structure [69] 

 
Figure 10. Proportion of selected features of each channel (EEG and EOG) in a total of 176 selected 

features [69]. 
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Table 3. Extracted feature types and corresponding number of selected features [69]. 

Features Selected/Total Features Selected/Total 

MODWT Features 47/160 Skewness 2/8 

Harmonic Parame-
ters 39/120 Percentile 25, 50, 

75 1/24 

Relative Power 32/40 Kurtosis 0/8 

Spectral Analysis 26/104 Renyi Entropy 0/8 

Hjorth Parameters 14/24 Tsallis Entropy 0/8 

AR coefficients 10/48 Peak to Peak 
 amplitude 0/2 

Shannon Entropy 5/8 - - 

[25] and [104] are two other papers that used mRMR for feature selection. 

In both papers, the performance of different feature selection methods was 

compared. In [104], the features selected by mRMR showed the best 

performance form the accuracy point of view, while in [25], mRMR with 37 

selected features had the second best performance after Fisher score with 

12 selected features.  

A new filter method called ‘Mahal’ is proposed in [79]. According to the 

authors, the main motivation for proposing this method was the challenge 

of feature selection in small datasets with many features. In this paper, 

Mahal method is described as suitable for classifiers that are sensitive to 

the dimension of feature vector like LDA. Maximum class discrimination and 

minimum correlation were the design criteria of Mahal method. Inter-class 

distance and correlation were measured by Mahalanobis distance and 

Spearman’s ranked-order correlation. The performance of Mahal was 

compared with Sequential Forward Search (SFS) that is a wrapper method. 

The simulation results show that the Mahal method selected on average 

10.33 features, nearly half of the 21 features selected by SFS, with a small 
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difference in the classification accuracy. Although authors propose Mahal 

as an adequate method for small datasets with a large number of features, 

still it should be justified why authors did not use a conventional filter 

method. In case Mahal is comparable with other filter methods, a 

comparative study seems necessary.  

Wrapper Methods: Sequential feature selection algorithms including SFS 

and Sequential Backward Selection (SBS) are the most common wrapper 

methods used in automatic sleep stage classification. Chapotot et al. in [76] 

tried to improve the applicability of automatic sleep scoring through the 

design of a formal classification framework to 1) select robust feature set, 2) 

follow artificial neural network classifiers, and 3) use flexible decision rules 

to assign sleep/wake stages. Table 4 shows the feature list used for this aim. 

For selecting the best feature subset, they took advantage of the SFS 

algorithm that started to search the feature space with an empty set, then 

added features one after the other by optimizing a given criterion. Suppose 

d features are available. SFS starts by learning d models with one feature 

and selects the feature that maximizes the performance criterion. 

In the second step, it tests the d-1 models constructed with the candidate 

feature selected in the first step and one of the d-1 remaining features. At 

the end, d subsets are available with their associated performances ({fr1}, {fr1, 

fr2} … {fr1, fr2… frd}). According to the Occam’s razor principle, the feature 

subset having the best trade-off between model dimension and performance 

is selected [138]. 

The results of the feature selection obtained by applying the SFS algorithm 

to the feature set of training data are illustrated in the performance curve 

shown in Figure 11. The optimal feature set contains five features that are: 

Hjorth mobility, Hjorth activity, EMG spectral edge frequency 95%, beta 
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relative power and sigma relative power. About the selected features, 

authors discussed that since Hjorth activity was computed from the raw 

signals acquired from recording devices, its value differed at various 

sampling rates and quantization scales. Therefore, the inclusion of this 

feature might affect adversely the robustness of the method. Considering 

the main objective of this work, for designing an automatic sleep stage 

classification framework that operates independently of the recording 

devices and time resolution, Hjorth activity-like features should be 

concerned about. Re-sampling and re-quantization to constant value can be 

an alternative for calculating amplitude or sampling frequency dependent 

features.  

In another state of the art work [66], the performance of SFS and SBS 

methods was compared for accurate sleep stage classification. Another 

interesting contribution of this work was analysing the role of EOG and EMG 

features in improving classification performance of different stages, 

especially stage 1, which is a transition between sleep and wakefulness. 

Table 4. Candidate features extracted for their potential independence regarding differences in PSG 

acquisition settings and signal conditioning [76]. 

Features Source Features Source 

Shannon Entropy EEG Theta Relative Power EEG 

Sample Entropy EEG Alpha Relative Power EEG 

Hjorth Activity EEG Sigma Relative Power EEG 

Hjorth Mobility EEG Beta Relative Power EEG 

Hjorth complexity EEG Gamma Relative Power EEG 

Hurst Exponent EEG Shannon Entropy EMG 

Spectral Edge Frequency 95% EEG Spectral Edge Frequency 95% EMG 

Delta Relative Power EEG Gamma Relative Power EMG 
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Figure 11. Performance curve resulting from SFS algorithm during candidate feature search. Progres-

sion of the classification global error is given as a function of the feature subset dimension [76]. 

The feature set used included 5 relative power features for describing 

spectral activity. These features were calculated in two ways: one by using 

Fourier transform and the other by using DWT coefficients. Their similarities 

and differences will be discussed later. In addition to spectral features, five 

other features were used to describe the signal in the time domain, namely, 

entropy, 75th percentile of the signal distribution, standard deviation, 

skewness and kurtosis. 

The same features were used for describing the EMG and EOG signals. In 

addition to these features, the EMG signal was processed in the frequency 

domain by the relative power in high frequency band. The optimization 

criterion for sequential feature selection was the percentage of epochs 

correctly classified. Three different classifiers were used to reduce the 

influence of the classifier in the final accuracy. SFS and SBS methods were 

applied to the extracted feature set. In this feature set, DWT based features 
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were removed and the subset of features representing relative power of EEG 

in the frequency bands obtained with the Fourier transform was considered 

as a single feature. The SBS algorithm steps are like the SFS algorithm, 

except that, instead of starting with an empty feature set, the algorithm 

starts with the complete set of features and removes one feature in each 

step.  

The results obtained using the SFS with the neural network classifier are 

shown in Figure 12. The dots show the classification accuracy while the bars 

express the corresponding standard deviation. Stars signal those steps 

where the addition of a feature generated a significant increase in the 

accuracy. The optimal feature set is {EEG relative power, EMG entropy, EOG 

entropy, EOG kurtosis, EEG 75 percentile}. According to Figure 13, the same 

set of optimal features was obtained using SBS. 

To demonstrate the effect of EOG and EMG features on the accuracy, the 

percentage of correct classification for different sleep stages obtained by 

each feature is shown in Figure 14. It can be seen that wake, N2, REM and 

N3 were correctly classified by using EEG spectral information feature (with 

accuracy higher than 80%). The addition of new information processed from 

the EMG and EOG, improved the percentage accuracy of N1, where it is hard 

to discriminate from REM only by EEG spectral features. 

About the ability of DWT compared to Fourier transform in processing 

EEG signals, the authors concluded that their results were quite similar, 

and the best accuracy was achieved when the relative EEG powers were 

calculated using Fourier transform and classified using a neural network. 



 69 

 
Figure 12. Selection of features by SFS performed by the neural network classifier [66]. 

 

Figure 13. Selection of features by SBS performed by the neural network classifier [66]. 
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Figure 14. Classification accuracy of each sleep/wake stage obtained at each step of SFS [66]. 

3.3.3 Statistical Hypothesis Testing Methods 

Statistical hypothesis testing methods play an important role in the di-

mensionality reduction and feature selection steps of classification.  In sleep 

stage classification, these methods are used for three different purposes: 

1. Dimensionality reduction, 

2. Feature selection, 

3. Assessment of the selected feature set’s discriminatory capability. 

In [67], Lajnef et al. performed a three-step feature selection process for 

sleep stage classification. Once all features including temporal, nonlinear 

and spectral features were extracted, first they rejected the outliers (features 

with values two times higher than the standard deviation of all values of the 

same feature in the same class). Second, they applied t-test for reducing the 
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dimension of the feature space. Then they ran t-test to compare the mean of 

each feature across all pairs among the five sleep stages. Finally, after 

removing the least discriminant features, they selected the most relevant 

ones using SFS. t-test is a widely used univariate statistical approach which 

determines if the means of two groups differ statistically. The probability of 

null hypothesis (the means of two groups don’t differ significantly) is 

expressed in terms of p-value. The lower the p-value, the more significant is 

the difference. Usually a predefined level (α-value) is considered for this 

comparison.  

In another work, Sen et al. [25] used the t-test approach for feature 

selection. If one simply runs the t-test on the features and ranks them 

according to the p-values, the most 'powerful' features for a classification 

task can be found.  

In the work by Hassan et al. [53], non-parametric Kruskal–Wallis one-way 

analysis of variance test was used to ascertain whether the discriminatory 

capability of the selected features was statistically significant. Kruksal-

Wallis test is the non-parametric version of one-way analysis of variance 

(ANOVA). ANOVA test is used to compare means of three or more groups. 

Unlike ANOVA, Kruksal-Wallis test doesn’t assume normal distribution of 

data samples.  

In a different work, Gunes et al. [34] reduced the feature dimension from 

129 down to 4 by using statistical operators. First, they segmented each 

epoch to 129 overlapping segments. Then, they extracted 129 features using 

the average Welch spectral analysis method. To reduce the dimension of the 

feature space, the statistical measures including minimum value, maximum 

value, mean value and standard deviation were used.  
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3.4 Feature Post Processing  

The physiological differences from subject to subject and equipment 

related variations have considerable impact on the features extracted from 

PSG recordings. Moreover, since usually there is a wide variety of feature 

types extracted for characterizing sleep stages, the amplitude and unit of 

features may also vary. The features may also get extremely low or extremely 

high values. Data post-processing is an important step in this respect. The 

aim of feature post-processing is to enable classification algorithms to 

uniformly handle the features with different units and ranges as well as 

reducing the influence of extreme values. Feature post-processing can be a 

feature scaling (normalization/standardization) or a feature transformation 

operation. 

Feature standardization refers to rescaling the features, so that they have 

zero mean and unit variance. On the other hand, feature normalization re-

fers to scaling the features to a predefined range such as [0 1] or [-1 1]. 

Feature transformation differs from standardization and normalization in 

the sense that the goal of transforming features is to reduce the impact of 

extreme values that, in some cases, even with standardization, are still a 

problem. In [139], a useful logarithmic transformation was proposed for ob-

taining normally distributed spectral features for EEG. Later, Becq et al. [77] 

proposed a set of transformations including 

 with the aim of transforming the 

features towards normal distribution in sleep stage classification. These 

transformations were reported to be very useful by several researchers [64], 

[66], [68], [80].  

Usually, feature scaling (normalization/standardization) follows the fea-

ture transformation step. However, some researchers don’t always use both 
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feature transformation and scaling. For example, feature scaling is consid-

ered enough in [61], [69].  

There are some important questions regarding feature post-processing 

that need to be answered before using it such as: is feature post-processing 

always essential? What is the effect of this step on the consecutive classifi-

cation step? What are the different feature post-processing algorithms? 

Which algorithm is proper for a specific problem at hand? In the following 

we will try to answer these questions. 

Basically, feature scaling is necessary when the dimensionality reduction, 

the feature selection or the classification algorithms to be used are sensitive 

to the variations in the range of the features. This sensitivity can be related 

with the nature of the dimensionality reduction algorithm, the classifier’s 

objective function or the metric function that is used.  

PCA is a dimensionality reduction algorithm in which feature scaling plays 

an important role. PCA aims to find the directions of maximum data vari-

ance under the orthogonality restriction. Through feature scaling (specifi-

cally standardization) equal importance is assigned to different features so 

that the PCA algorithm is not tricked by the features with higher variance. 

In addition to PCA, some of the most common classification algorithms such 

as kNN, SVM and neural network classifiers need feature scaling. The Gra-

dient Descent algorithm is often used as an optimization algorithm in SVM, 

perceptron and neural networks. Feature standardization will give better er-

ror surface shape (round counters instead of highly skewed elliptic ones), 

preventing from getting stuck in local minima and helping weight decay to 

be conveniently done. The kNN classifier typically uses the Euclidean dis-

tance to measure the distance between two points. If one feature has broader 

range, the distance will be greatly affected by this feature. In contrast, tree-

based methods are scale-invariant and don’t need standardized features. 
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3.5 Summary 

This chapter addressed a literature review on topics related to this thesis 

research work, the topic of sleep stage classification, with special relevance 

on feature extraction and selection. When relating all the different existing 

features and selection techniques in the literature, it is noticeable that 

deeper research work is required in sleep stage classification to apply these 

methods as a reliable tool in clinical environments. In particular, deeper 

research is essential regarding the strategy of constructing the PSG feature 

vector to address the existing challenges. Some of these challenges are 

related to the reliability and stability of feature vectors. A specific feature 

vector should be stable enough to provide consistent quality when extracted 

from different subjects and datasets. This issue seems to be overlooked in 

the literature. Moreover, considering that the quality of raw signal has 

significant impact on the feature vector quality as well as final classification 

performance, effective and loss less methods should be developed to 

enhance the signal quality. 
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Chapter 4 

4. Data and Methods 

In this chapter, we describe data and methods used to achieve the goals 

of this thesis. First, the data sets used for evaluation of the proposed 

methods will be presented. Then, the methods applied for pre-processing, 

feature extraction and selection, classification and feature assessment will 

be described.  

4.1. Database 

For evaluation of the sleep stage classification system’s performance 

annotated data is essential. Since in this research work the goal was using 

mainly supervised classification to evaluate the developed feature extraction 

and selection methods, PSG signals and the corresponding hypnograms 

were required. In this work, two different open access databases were 

considered, namely The Sleep-EDF database [Expanded], Physionet [140] 

and ISRUC-sleep dataset [141]. 

4.1.1. The Sleep-EDF database [Expanded], Physionet 

The collection of 61 PSG recordings with the corresponding hypnograms 

in The Sleep-EDF database [Expanded] were acquired from two different 

sleep studies. PSG recordings of the first study were named SC files 

(SC=Sleep Cassette) recorded in 1987-1991 and PSG recordings of the 
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second study were named ST files (ST=Sleep Telemetry) recorded in 1994. 

All recordings were obtained from whole night sleeps containing EEG (from 

Fpz-Cz and Pz-Oz channels), horizontal EOG, and submental chin EMG. The 

signals were sampled at 100 Hz. The data was segmented into 30-second 

epochs and all epochs were scored according to R&K guidelines [142] for 

human sleep staging into six sleep stages. 

Since EMG data for first study was a zero-amplitude or no data recording, 

in our evaluations we used ST files which were a collection of PSG signals 

from 22 Caucasian male and female subjects recorded in the hospital during 

two nights for about 9 hours. Except for a slight difficulty in falling asleep, 

subjects were healthy without any sleep related medication. 

Through careful analysis of ST recordings, a number of issues were 

detected that made some of the recordings unsuitable for being used in the 

evaluations. These issues were as follows: 

• Lack of stage 4 (according to R&K guidelines), 

• Artefacts such as severe movement or sensor misconnection, 

• Unsynchronized EEG data and hypnogram, 

• Lack of stage 3 epochs, 

• Severely corrupted EEG data. 

Therefore, six recordings were selected out of twenty-two and the 

corresponding hypnograms were converted from R&K to AASM. Table 5 

illustrates the number of stages available per subject.  
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Table 5. Summary of the data provided by six selected subjects in The Sleep-EDF database [Ex-

panded], Physionet. 

 Wake REM N1 N2 N3 

Subject #1 146 122 101 527 136 

Subject #2 41 159 71 351 284 

Subject #3 85 226 120 392 180 

Subject #4 40 143 47 266 152 

Subject #5 149 80 102 428 218 

Subject #6 131 142 135 378 198 

4.1.2. ISRUC sleep database 

ISRUC-Sleep database is an open-access comprehensive database that 

includes data from healthy subjects, subjects with sleep disorders and 

subjects under the effect of sleep medication. PSG recording was performed 

using a bio-signal acquisition equipment namely, SomnoStar Pro sleep 

system, in the sleep medicine centre of Coimbra University Hospital (CHUC) 

between 2009 and 2013. The PSG signals were recorded during a whole-

night of sleep (approximately eight hours) according to the recommendations 

of AASM. Sampling frequency was 200Hz for all EEG, EOG, chin EMG and 

ECG signals. After segmenting the data into 30-seconds epochs, two 

different experts performed manual sleep scoring using AASM. 

To improve the quality of the recordings, in this database a pre-processing 

step was already taken by the database providers. The details of this pre-

processing are as follows: 

• A notch filter was applied to eliminate the 50 Hz electrical noise from 

EEG, EOG, chin EMG and ECG, 
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• EEG and EOG recordings were filtered using a bandpass 

Butterworth filter with a lower cut-off frequency of 0.3 Hz and higher 

cut-off frequency of 35 Hz, and 

• EMG channels were filtered using a bandpass Butterworth filter 

with a lower cut-off frequency of 10 Hz and higher cut-off frequency 

of 70 Hz. 

4.2 Methods 

As mentioned is chapter 2, automatic sleep stage classification algorithms 

consist of four main steps, namely pre-processing, feature extraction, 

feature selection and classification. In the following, the methods used in 

this thesis for each step are described. 

4.2.1 Pre-processing 

In this thesis, PSG recordings were examined carefully both from quality 

and agreement with AASM points of view. Thus, when necessary, three types 

of pre-processing operations were done before feature extraction stage with 

the aim of enhancing the quality of signals and synchronizing with the 

corresponding hypnogram. These operations include: 

Band pass filtering: AASM manual recommends a filtering interval for each 

one of PSG recordings to remove the unnecessary waves and oscillations. 

For example, for EEG and EOG the preferred frequency band is 0.3-35 Hz, 

and for EMG 10-100 Hz is recommended. In this thesis, for filtering, wavelet 

multi-level decomposition and reconstruction was used [143]. This filtering 

technique has high fidelity to the original wide-band signal in contrast to 

Butterworth filtering that produces a highly distorted “valley” shape. 

Windowing: As mentioned before, each 30 seconds of PSG recordings is 

considered as an epoch and during sleep scoring one of five sleep stages is 
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associated with this epoch. Therefore, it is essential to window the signals 

to epochs and associate each of them with the corresponding hypnogram 

slot. 

PSG trimming: PSG recordings get contaminated with several artefacts 

such as power line noise, electrode movements, sweating, body movements. 

Even, zero-energy epochs may appear due to the possible failure of the 

recording device. In this thesis, epochs with zero energy were identified 

through examination of the signal’s time domain energy and removed. 

4.2.2 Feature Extraction 

Throughout this thesis, two main sets of features were used, namely 

conventional feature set and distance-based feature set. In the following the 

description and details of each feature set are presented.  

4.2.2.1 Conventional Feature Set 

Conventional feature set consists of 48 features extracted from EEG, EOG, 

and EMG signals. We tried to use the most common features in sleep stage 

classifcation to explore the information contained in these signals [25], [33]. 

These features can be mainly categorized into temporal, time-frequency 

domain, entropy-based and non-linear features. Each epoch’s feature vector 

contains 35 EEG, 6 EOG, and 7 EMG features.  Table 6 summarizes these 

features that were extracted from 30-second epochs along with their handy 

description. 

All the features in this table were already described in chapter 3. For 

generating F13 to F26, WP analysis was selected since it provides a valuable 

joint time-frequency domain analysis. According to the scheme proposed in 

[52], a WP tree with 7 decomposition levels is sufficient to estimate the 

necessary frequency bands of EEG rhythms, sampled at 100 Hz, with 
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adequate accuracy. These bands include α, δ, β1, β2, θ and k-complexes + 

Delta and spindles bands. Table 7 shows the corresponding frequency range 

to these bands (check frequencies with chapter 2). Features F13 to F26 were 

extracted using the corresponding WP coefficients. 

Table 6. Summary of the conventional features extracted from PSG recordings. 

Ref. Signal Description T* TF* F* E* NL* 
F1 

EEG 

Arithmetic Mean l     

F2 Maximum l     

F3 Minimum l     

F4 Standard Deviation l     

F5 Variation l     

F6 Skewness l     

F7 Kurtosis l     

F8 Median l     

F9 Petrosian Fractal Dimension     l 

F10 Rényi Entropy    l  

F11 Spectral Entropy    l  

F12 Permutation Entropy    l  

F13 Approximation Entropy    l  

F14 Hjorth Parameter (Activity) l     

F15 Hjorth Parameter (Mobility) l     

F16 Hjorth Parameter (Complexity) l     

F17 Mean Curve Length     l 

F18 Zero Crossing Number l     

F19 Mean Energy     l 

F20 Mean Teager Energy     l 

F21 Hurst Exponent     l 

F22 Mean Quadratic Value of WP Coeffi-
cients in Delta Band  l 

 
  

F23 Mean Quadratic Value of WP Coeffi-
cients in Theta Band  l 

 
  

F24 Mean Quadratic Value of WP Coeffi-
cients in Alpha Band  l 
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F25 Mean Quadratic Value of WP Coeffi-
cients in Spindle Band  l 

 
  

F26 Mean Quadratic Value of WP Coeffi-
cients in Beta1 Band  l 

 
  

F27 Mean Quadratic Value of WP Coeffi-
cients in Beta2 Band  l 

 
  

F28 Mean Quadratic Value of WP Coeffi-
cients in All Frequency Bands   l 

 
  

F29 F24/(F22+F23)  l    

F30 F22/(F24+F23)  l    

F31 F23/(F22+F24)  l    

F32 F24/F23  l    

F33 F22/F23  l    

F34 Mean of the Absolute Values of WP 
Coefficients in All Bands  l 

 
  

F35 Standard Deviation of WP Coeffi-
cients in All Bands  l 

 
  

F36 

EMG 

Spectral Power   l   

F37 Maximum of the Spectral Power Dis-
tribution   

l 
  

F38 Mean of the Spectral Power Distribu-
tion   

l 
  

F39 Standard Deviation of the Spectral 
Power Distribution   

l 
  

F40 Temporal Energy     l 

F41 
Ratio of the Temporal Energy of Cur-
rent Epoch to The Energy of Previous 
Epoch 

  
 

 l 

F42 
Ratio of the Temporal Energy of Cur-
rent Epoch to the Energy of Next 
Epoch 

  
 

 l 

F43 

EOG 

Mean l     

F44 Energy     l 

F45 Maximum l     

F46 Standard Deviation l     

F47 Skewness l     

F48 Kurtosis l     
 * (T: Temporal, TF: Time-Frequency, F: Frequency, E: Entropy, NL: Non-Linear) 
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Table 7. EEG frequency bands used in time-frequency features of conventional feature set. 

Frequency Band Name Frequency Range (Hz) 

k-complexes + Delta 0.4-1.55 

Delta (δ) 1.55-3.2 

Theta (θ) 3.2-8.6 

Alpha (α) 8.6-11 

Spindle 11-15.6 

β1 15.6-22 

β2 22-37.5 

4.2.2.2 Distance-based Feature Set 

As mentioned in chapter 2, feature vector quality is an important factor 

for the development of a reliable classification system. Features used in a 

specific machine learning problem can perform reasonably well in other 

problems as well. Therefore, researchers often evaluate and explore the ap-

plicability of various features in different machine learning areas. Kong et 

al. in [144] assumed that EEG signals can be modelled as an AR process 

and used Itakura distance to measure the similarity of the EEG signals. The 

Itakura distance is a very popular distance measure in speech signal 

processing. Nevertheless, it has been found effective in distinguishing 

hypoxia and asphyxia. Later in 2004, Estrada et al. [128] used the Itakura 

distance for measuring similarity of a baseline EEG epoch to the rest of the 

EEG in the context of sleep stage classification. In addition to the similarity 

of EEG signal with itself, in [70], [72] it is demonstrated that the Itakura 

distance between EEG and EOG is also a useful similarity measure for sleep 

stage classification.  

Suppose  is the baseline epoch and  is an epoch from the rest of 

the signal. If we model  and  as AR processes with order p, then the 

( )x t ( )y t

( )x t ( )y t
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vectors  and would contain the AR coefficients, respectively. Itakura 

distance of a baseline epoch with others is calculated as: 

     (1) 

where  and  are the autocorrelation matrixes of and  

with size p + 1, respectively. Itakura distance, defined in this way, is asym-

metric, i.e.  of  and  is not equal to of  and [129]. In 

order to add symmetry to this measure, the mean of these two distances is 

usually calculated, as follows [128]: 

    (2) 

In addition to AR coefficients, the distance between spectral representa-

tions of the signals can be used to measure similarity [129]. Suppose  

and  are the power spectra of  and . The Itakura distance be-

tween these two spectra, in its asymmetric form, is calculated as: 

    (3) 

The same averaging (Equation (2)) can be applied for adding symmetry 

property to this distance. Along with Itakura distance, there are two other 

distance measures that are common in speech processing, namely Itakura-

Saito and COSH distances [145]. Following the definitions of variables made 

for Itakura distance, Itakura-Saito distance is calculated as: 
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    (4) 

COSH distance is the symmetrical version of Itakura-Saito distance and 

is calculated as: 

    (5) 

where  is the hyperbolic cosine function. Like Itakura 

distance, Itakura-Saito and COSH distances can be calculated using AR 

coefficients as well.  

Considering the previous work in this area, in this thesis a set of 32 

distance-based features, was used for sleep stage classification as 

summarized in Table 8. Two types of distance-based features were 

considered: features measuring the similarity of a baseline epoch of a signal 

with other epochs of the same signal and features measuring the similarity 

of a baseline epoch of a signal with the epochs of another signal. Except for 

three features (F49, F51, F65), the remaining features have not been used 

in sleep stage classification before [70], [72], [144]. For calculating F49 to 

F52 and F73 to F74, the wake EEG epoch was considered as the baseline. 

The same applies for features F53 to F64 and F75 to F80 corresponding to 

EMG, EOG, and ECG signals. For calculating F65 to F72, wake EEG epoch 

was considered as the baseline, and the distance was found between EEG-

EOG, EEG-EMG, and EEG-ECG. We used VOICEBOX, a MATLAB speech 

processing toolbox [146], consisting of MATLAB routines that are mostly 

written and maintained by Mike Brookes from department of electrical & 
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electronic engineering, Imperial College, UK. We used the routines for 

calculating Itakura, Itakura-Saito and COSH distances from this toolbox. 

Table 8. Summary of distance-based features extracted from PSG recordings. 

Ref. Signal Description 
F49 

EEG 

Itakura Distance of AR Coefficients 

F50 Itakura Distance of Spectral Coefficients 

F51 Itakura-Saito Distance of AR Coefficients 

F52 Itakura-Saito Distance of Spectral Coefficients 

F53 

EMG 

Itakura Distance of AR Coefficients 

F54 Itakura Distance of Spectral Coefficients 

F55 Itakura-Saito Distance of AR Coefficients 

F56 Itakura-Saito Distance of Spectral Coefficients 

F57 

EOG 

Itakura Distance of AR Coefficients 

F58 Itakura Distance of Spectral Coefficients 

F59 Itakura-Saito Distance of AR Coefficients 

F60 Itakura-Saito Distance of Spectral Coefficients 

F61 

ECG 

Itakura Distance of AR Coefficients 

F62 Itakura Distance of Spectral Coefficients 

F63 Itakura-Saito Distance of AR Coefficients 

F64 Itakura-Saito Distance of Spectral Coefficients 

F65 

EEG & 
EOG 

Itakura Distance of AR Coefficients, 

F66 Itakura Distance of Spectral Coefficients 

F67 Itakura-Saito Distance of AR Coefficients 

F68 Itakura-Saito Distance of Spectral Coefficients 

F69 

EEG & 
EMG 

Itakura Distance of AR Coefficients 

F70 Itakura Distance of Spectral Coefficients 

F71 Itakura-Saito Distance of AR Coefficients 

F72 Itakura-Saito Distance of Spectral Coefficients 

F73 
EEG 

COSH Distance of AR Coefficients 

F74 COSH Distance of Spectral Coefficients 

F75 EMG COSH Distance of AR Coefficients 
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F76 COSH Distance of Spectral Coefficients 

F77 
EOG 

COSH Distance of AR Coefficients 

F78 COSH Distance of Spectral Coefficients 

F79 
ECG 

COSH Distance of AR Coefficients 

F80 COSH Distance of Spectral Coefficients 

4.2.3 Feature Post-processing 

The features extracted from PSG signals are in different ranges and this 

variety can bias the results of the subsequent steps. Feature scaling 

methods are utilized for avoiding this bias. In this thesis, two different types 

of scaling methods were used: standardization (or Z-score normalization) 

and Min-Max scaling. 

4.2.3.1 Standardization 

This rescaling is necessary for many machine learning algorithms. Each 

feature ( ) is independently scaled to have zero mean and unit variance (

) using the following equation: 

   (6) 

where  and  are the mean and the standard deviation of each inde-

pendent feature vector. 

4.2.3.2 Min-Max Normalization 

In Min-Max normalization, features are scaled to the fixed range of [0 1]. 

Suppose  and  are the minimum and maximum of feature vector X. 

The values of this feature vector are normalized according to the following 

equation: 
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     (7)  

4.2.4 Feature Similarity Reduction 

In order to remove features with high levels of similarity, a feature 

selection method was proposed in this thesis. This method works as follows: 

First, the L1-norm between each pair of feature vectors is calculated, then 

considering the range of the extracted L1-norm, a similarity threshold is 

defined. The feature pair whose L1-norm is less than the threshold level is 

considered strongly similar. In this way, the features are clustered into 

groups of similar ones and one feature per cluster is selected as 

representative. The representative feature has the lowest computational 

complexity. Alternatively, it is possible to use Principal Component Analysis 

(PCA) for finding the most dissimilar features. However, there are two main 

reasons that we didn’t use PCA. First, using PCA for finding a non-

redundant feature set would lead to keeping and calculating all the features 

in the classification and practical application steps while by using the 

similarity threshold the most redundant features can be detected and 

omitted from feature set in the application step. Second, PCA would generate 

combinations of the features. Since in this thesis the aim is to evaluate 

individual features without combining them, it is necessary to preserve the 

information on the features and PCA is not suitable in this regard. 

4.2.5 Feature Selection 

In this thesis, to select a subset of features containing most of the original 

feature set information, seven different feature ranking methods were used 

namely, ReliefF, minimum Redundancy-Maximum Relevance (mRMR-MID 

min

max min
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and mRMR-MIQ), Fisher Score, Chi-Square, Information Gain (IG) and 

Conditional Mutual Information Maximization (CMIM). 

4.2.5.1 Feature Ranking Methods 

• ReliefF: In 1992, Kira and Rendell [147] proposed Relief, an instance 

based method, for estimating the quality of features. In this method 

for a randomly selected sample two nearest neighbours were con-

sidered: one from the same class (nearest hit) and another from a  

different class (nearest miss). The quality estimation value for each 

feature is updated according to the randomly selected sample’s 

distance from the nearest hit and miss. The Relief method is 

restricted to two-class problems and is highly sensitive to noisy and 

incomplete data. An extension of Relief, called ReliefF [148], was 

proposed improving the original method by estimating the 

probabilities more reliably and extending the algorithm to multi-

class problems. The ReliefF algorithm uses k-nearest hits and k-

nearest misses for updating the quality estimation for each feature. 

• minimum Redundancy-Maximum Relevance (mRMR): MRMR [149] is 

a feature selection method which selects a subset of features with 

maximum relevance for the target class and at the same time 

minimum redundancy between the selected features. In MRMR 

method the redundancy (R) and relevance (D) are expressed in terms 

of mutual information. To select the final feature set, an objective 

function 𝜑(𝐷, 𝑅) is maximized.  The 𝜑(𝐷, 𝑅) can be defined either as 

the mutual information difference (MID), D-R, or the mutual infor-

mation quotient (MIQ), D/R. 
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Figure 15. (a) Relief feature selection method, (b) ReliefF feature selection with K=3 [150]. 

• Fisher Score: This method is one of the most efficient and most 

widely used feature ranking methods. The key idea is to find a 

subset of features with maximum distance between the data points 

from different classes and minimum distance between data points 

of the same class in the feature space [151]. 

• Chi-square: Chi-square is another very common class sensitive fea-

ture selection method which ranks the features according to their 

Chi statistics without considering the interactions between features. 

Originally proposed for categorical data, this method was later ex-

tended to the continuous data [152]. For calculating Chi-square sta-

tistics of each feature, the range of the numerical feature should be 

discretized into intervals. 

• Information Gain (IG): Ross Quinlan proposed an algorithm for gen-

erating decision trees from a set of training data [153]. In this algo-

rithm, IG is the measure for selecting the effective feature at each 

node. Generally, IG can be described as the change in the marginal 

entropy of a feature set considering the conditional entropy of that 

feature set with the given class set. 
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• Conditional Mutual Information Maximization (CMIM): This method 

[154] is based on mutual information in such a way that all the 

selected features are informative and have two-by-two weak 

dependency. A feature is added to the selected feature set if it carries 

information about the specific class and this information is not 

caught by any other previously selected feature.  

4.2.5.2 Rank Aggregation Methods 

In many machine learning problems, performing a single round of feature 

selection can give unstable results which are sensitive to small changes in 

the input data. New techniques are required to reliably select features in a 

consistent manner. One of the more promising methods for resolving this 

problem is ensemble feature selection. In general, an ensemble feature 

selection technique takes the results of multiple feature and aggregates the 

resulting ranked feature lists into a single ranked list. Therefore, more 

robust and global feature subsets are generated which are as good as (if not 

better than) the feature subsets created by individual feature ranking 

methods [155]. 

There are several ways to aggregate feature ranking methods [156]. In this 

thesis, we have implemented two different rank aggregation methods 

namely, Borda and Robust Rank Aggregation (RRA), to evaluate the ability 

of these methods to produce better feature rankings compared to the 

conventional feature ranking methods. A brief description of the used rank 

aggregation methods is provided below. 
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Figure 16. Block diagram of feature rank aggregation method. k is the number of ranking tech-

niques. 

• Borda: Borda methods ranks each feature based on its mean posi-

tion in the different ranking methods, i.e. 

     (8) 

where 𝜋((𝑓*) is the rank of the feature fi in the ranking method	𝜋(.The 

feature with the highest Borda rank is considered the best [156]. 

• Robust Rank Aggregation (RRA): This method, proposed by Kolde et 

al. [157], compares the results from several feature ranking methods 

with a randomly ranked feature list. The RRA first looks how a 

specific feature is ranked by the various methods and lists the 

corresponding values in a so-called rank order, from best to worst. 

Then, the probability of a random list producing better ranking than 

the values seen in the actual rank order for that specific feature is 

determined. The features with the smaller probability are selected 

as the better ones [155]. 
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4.2.5.3 Stacked Sparse AutoEncoder (SSAE) 

An autoencoder is a special type of neural network whose output values 

are equal to the inputs. Typically, it consists of an encoder and a decoder 

and it is trained in an unsupervised manner using backpropagation. During 

training, a cost function that measures the error between the input and 

output of the autoencoder is optimized. In other words, the autoencoder 

tries to learn the identity function (Figure 19). By applying special 

constraints on the network such as the number of hidden units, an 

autoencoder can learn new representation or coding of the data [158]. 

Suppose the input vector to the autoencoder is a set of un-labelled data 

. This vector is encoded to another vector  in the hidden layer 

as follows: 

   (9) 

where h1 is the transfer function of the encoder, W1 is the weight matrix 

and b1 is the bias vector of the encoder. Then, the autoencoder tries to 

decode this new representation back to the original input vector as follows: 

   (10) 

where h2 is the transfer function of decoder, W2 is weight matrix and b2 is 

the bias vector of the decoder. Sparse autoencoder is a specific type of 

autoencoder in which to encourage the sparsity of the output of the hidden 

layer, a constraint is imposed on the number of active hidden neurons. The 

cost function of the sparse autoencoder is slightly different from the original 

autoencoder as follows: 

   (11) 
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where N is length of the input vector,  is the weight regularization param-

eter  is the sparsity regularization parameter [159]. 

A Stacked Sparse Autoencoder (SSAE) is a neural network with several 

sparse autoencoders. In this architecture, the output of each autoencoder 

is fully connected to the inputs of the next autoencoder. Greedy layer-wise 

training strategy is usually used for training SSAE. After the training of each 

layer is complete, a fine tuning is usually performed for enhancing the 

learned weights using the backpropagation algorithm. Fine tuning can 

greatly improve the performance of the stacked autoencoder [158]. Figure 

20 [160] shows the training steps of a two layers stacked autoencoder. The 

training of this stacked autoencoder has three steps: 

• Step1: initial pretraining of layer 1, 

• Step 2: optimize the weights of the second layer using the weights 

of the first layer, 

• Step 3: model fine-tuning by connecting all the layers together. 

 

Figure 17. Schematic structure of an autoencoder with 3 fully-connected layers. 

l

b
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Figure 18. Training of a two-layer stacked autoencoder [160]. 

4.2.6 Classification 

In this thesis, four types of classifiers were used for the classification of 

extracted feature vectors. In the following a brief description of each 

classifier is presented. 

4.2.6.1 k-Nearest Neighbours (kNN) 

kNN method is one of the most common classification techniques. It 

classifies an unknown sample based on the known classification of its 

neighbours. Suppose that a training set with a known classification is 

available. Intuitively, if the classification of a sample is unknown, then it 

could be predicted by considering the classification of its nearest 

neighbours. In kNN, for an unknown sample and a training set, all the 

distances between the unknown sample and all the samples in the training 

set can be computed. The distance with the smallest value corresponds to 

the sample in the training set closest to the unknown sample. Therefore, the 

unknown sample can be categorized into the class of its nearest neighbour 

[161]. 
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4.2.6.2 Multi-layer Feed-Forward Neural Network 

Multi-layer feed-forward (MLF) neural network trained with 

backpropagation algorithm [162] is one of the most popular neural networks 

and were used in this thesis.  

On a MLF neural network the first layer is called the input layer, the last 

layer is called the output layer and the layers in between are called hidden 

layers. Each neuron in a specific layer is fully connected to the neurons of 

the next layer. The strength of this connection is defined with the weight 

coefficient. The weighted sum of input and bias are fed to the transfer 

function, which usually generates a nonlinear mapping of its input. In 

supervised training process, the weights are varied to minimise the sum of 

squared errors between the computed and the desired outputs. In back 

propagation algorithm, the steepest descent minimisation method is used 

[163].  

4.2.6.3 Softmax Classifier 

The softmax classifier [158] is a generalization of the binary Logistic 

Regression classifier to multiple classes. Logistic regression is a statistical 

method used for predicting a binary outcome such as pass/fail, win/lose, 

1/0. Softmax classifier is a model that converts the unnormalized values at 

the end of a linear regression to normalized probabilities for classification.  

Suppose x is the classifier’s input, W is the matrix of weights and b is the 

bias, the output of liner regression model y is calculated as follows: 

   (12) 

To go from arbitrary values yi to normalized probability estimates for each 

class (pi) in a classification problem with K classes, exponentiation and 

normalization are used in Softmax classifiers as follows: 

y = Wx+b
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   (13) 

4.2.6.4 Dendogram-based Support Vector Machine (DSVM) 

Support Vector Machines (SVM) are discriminative classifiers defined by a 

separating hyperplane [164]. There are two types of approaches for multi-

class classification using SVM classifiers, namely One-Against-All (OAA) and 

One-Against-One (OAO) approaches. OAA framework consists of a binary 

SVM to distinguish each class from all other classes and the decisions 

obtained from applying a winner-takes-all strategy. In contrast, in the OAO 

approach, a dedicated classifier is trained for each of all possible pairs of 

classes.  

Lately, a new variation of SVM classifier was proposed which is based on 

decomposing of the multiclass problem to several binary classification 

problems [165]. First, these methods build a dendrogram of classes, 

according to Figure 19, and then, a binary SVM is learned for each internal 

node of that hierarchy in order to separate the examples of each class. 

 

Figure 19. Dendorgam-based SVM structure. 
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4.2.7 Multi-Criteria Decision Making (MCDM) 

In this thesis, to find the trade-off between the number of features used,  

and the classification accuracy, a Multi-Criteria Decision Making (MCDM) 

technique, called Vikor [166], [167] was used. The Vikor method was 

originally developed for MCDM problems with contrasting and conflicting 

criteria. In our case, the accuracy and number of features are two conflicting 

criteria. This method ranks and selects a set of alternative solutions for the 

problem at hand, helping decision makers to reach a final decision. The 

various J alternative solutions are denoted as . Suppose that there 

are n criteria,  is the value of the ith criterion for jth solution, aj. The 

compromise ranking is performed by comparing the closeness to the ideal 

solutions of the criteria (utopian solution F*). The distance measure of the 

Vikor method is developed from the Lp-metric as: 

   (14) 

where  and  are the best and worst solutions of the ith criterion. After 

determining the best and worst solutions for all criteria, the Vikor algorithm 

has the following steps: 

1. Compute the values Sj and Rj,  as: 

   (15) 

   (16) 

where  is the maximum group utility, here . 
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2. Sort the values of S, R and Q in decreasing order, obtaining three 

ranked lists. 

3. The alternative that minimizes Q is selected as the compromise so-

lution if two conditions of “acceptable advantage” and “acceptable 

stability in decision making” are satisfied. For more information 

about these conditions, refer to [167]. 

4.2.8 Evaluation Criteria 

In this thesis, four criteria (stability, similarity, discrimination ability and 

accuracy) are considered for evaluating and comparing the different features 

and feature selection techniques. In the following, each of these criteria are 

briefly described. 

4.2.7.1 Stability 

Stability of a feature selection method is defined as its sensitivity to 

variations in the training set. In this study, in order to measure the stability 

of feature rankings produced by different methods, a similarity based 

approach proposed by Kalousis et al. [168] is used. In this method, similarity 

between two selected feature sets  and , is calculated using the Tanimoto 

distance which measures the overlap between two sets of arbitrary 

cardinalities: 

    (17) 

 takes values in the range of [0 1], with 0 meaning there is no overlap 

or similarity between two rankings and 1 meaning that the two rankings are 

identical. Then N subsets of the original training set are drawn using a 

random resampling technique such as cross validation or bootstrapping. 

Each specific ranking algorithm produces a feature preference list for each 
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N subsets. The similarity between all pairs is calculated. The stability of that 

specific feature ranking algorithm is simply the average of the similarities 

over all possible pairs, i.e.  pairs. 

4.2.7.2 Similarity 

The stability measure used for assessing the internal stability of a feature 

selection technique can also be used in a different context to measure the 

similarity of different feature selection techniques. The similarity measure 

provides information about the consistency and diversity of different feature 

selection algorithms. The similarity between two feature subsets  and  

can be calculated using Equation (9) with a slight difference in the definition 

of  and . Instead of two lists of features produced by a specific feature 

selection technique from different subsets of the training set, they are now 

two lists produced by two different feature selection techniques derived from 

the complete training set [168]. 

4.2.7.3 Accuracy 

To measure the classification accuracy, the overall accuracy value was 

calculated as follows [169]: 

   (18) 

4.2.7.4 Discrimination Ability Analysis 

The neurophysiological signals recorded for analysing the sleep quality 

show similarities with each other [65] especially in REM and N1 stages. This 

similarity affects the performance of staging algorithm negatively. Therefore, 

in automatic sleep stage classification, one of the most important quality 

measures for a feature is the ability of that feature to distinguish pairs of 
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sleep stages. These pairs include Wake-REM, Wake-N1, Wake-N2, Wake-N3, 

REM-N1, REM-N2, REM-N3, N1-N2, N1-N3, and N2-N3.  

In this thesis, the ability of each feature in total feature set to discriminate 

between each specific pair of sleep stages was evaluated using two-tailed 

student’s t-test [170]. Student’s t-test is a hypothesis testing method for 

comparing the means of two populations.  

4.3 Summary 

This chapter presented the datasets and methods utilized in this thesis 

for developing the proposed techniques for feature extraction and selection. 

Details of PSG data in each database together with the applied pre-

processing steps were described. Two feature sets (conventional and 

distance-based) were used in this thesis work. Conventional feature set is a 

collection of the most common features used in automatic sleep stage 

classification. On the other hand, distance-based feature set consists of 

three main types of features measuring the distance, (using Itakura 

distance, Itakura-Saito distance or COSH distance). For the first time in 

sleep stage classification, a total 31 distance-based features were generated 

to be used and extensively assessed. 

Next, feature ranking and rank aggregation methods were described. 

These methods will be used in evaluation of the individual features 

described in the next chapter. The classification techniques used 

throughout the thesis were also described in this chapter. Finally, the 

evaluation criteria for assessing the potency, similarity, stability and 

discrimination ability of the proposed features and feature extraction 

methods were presented. In the next chapter, the methodology of the 

contributions together with the details of validation experiments and their 

corresponding results will be described. 
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Chapter 5 

5. Methodology and Results 

This chapter focuses on the contributions and main findings of this thesis 

work. It is divided into two main subsections, feature selection and feature 

extraction.  

In the feature selection subsection, first the performance of several feature 

ranking methods applied on the conventional feature set is evaluated. Then 

two rank aggregation techniques are utilized for the first time in sleep stage 

classification and their performance is compared to feature ranking 

methods. The stability and similarity of the generated feature lists is 

evaluated with three different criteria namely, accuracy, stability and 

similarity. This contribution is supported by the following publications: 

• S. Najdi, A. A. Gharbali, and J. M. Fonseca, “A Comparison of 

Feature Ranking and Rank Aggregation Techniques in Automatic 

Sleep Stage Classification Based on Polysomnographic Signals,” in 

4th International Conference, IWBBIO, 2016, pp. 230–241. 

• S. Najdi, A. A. Gharbali, and J. M. Fonseca, “Feature ranking and 

rank aggregation for automatic sleep stage classification: a 

comparative study,” Biomedical Engineering OnLine, vol. 16, no. S1, 

p. 78, Aug. 2017. 
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Next, to compactly represent the feature vector in sleep stage 

classification, a feature transformation and dimension reduction method 

based on SSAE is proposed. The performance of the proposed method is 

evaluated by classification accuracy. This contribution is supported by the 

following publication: 

• S. Najdi, A. A. Gharbali, and J. M. Fonseca, “Feature 

Transformation Based on Stacked Sparse Autoencoders for Sleep 

Stage Classification,” in Technological Innovation for Smart Systems, 

2017, pp. 191–200. 

In the feature extraction subsection, first the contribution of a distance-

based features in sleep stage classification is assessed and compared to the 

performance of the conventional features. The evaluation criteria in this 

work is the classification accuracy and the discrimination ability. This 

contribution is supported by the following publication: 

• A. Gharbali, S. Najdi, and J. M. Fonseca, “Investigating the 

contribution of distance-based features to automatic sleep stage 

classification,” Computer in Biology and Medicine, vol. 96, pp. 8–23, 

May 2018. 

Finally, to enhance the PSG signal quality before feature extraction, a loss-

less artefact removal algorithm based on adaptive filtering is proposed. The 

effect of proposed method is evaluated by the classification accuracy. This 

contribution is supported by the following publication: 

• A. Gharbali, J. M. Fonseca, S. Najdi, and T. Y. Rezaii, “Automatic 

EOG and EMG Artefact Removal Method for Sleep Stage 

Classification,” in 7th IFIP Advanced Doctoral Conference on 

Technological Innovation for Cyber-Physical Systems, 2016, pp. 142–

150. 
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All simulations for the validation of proposed methods were performed 

using a PC with 3.40 GHz Intel® Core™ i7-3770 CPU, 8 GB of RAM, 

Windows 10 (64 bits), and MATLAB R2015b. 

5.1 Feature Selection 

In the following, our contribution in feature selection step of sleep stage 

classification will be described. 

5.1.1 Feature Ranking and Rank Aggregation 

To the best of our knowledge, the performance of various feature selection 

methods from the same category in sleep stage classification has not been 

compared so far. Moreover, the potential of ensemble feature selection 

methods has not been explored in this area. In this section, we utilize six 

feature ranking techniques together with two different heuristic rank 

aggregation methods to blend the ranking results of several methods. Their 

performance is evaluated by three criteria: accuracy, stability and similarity. 

For classification two different classifiers are used, nearest neighbour, and 

MLF neural networks. 

5.1.1.1 Methodology 

Figure 20 shows the block diagram of sleep stage classification 

methodology implemented for investigation and evaluation of several feature 

ranking and rank aggregation techniques. The data used in this study was 

obtained from The Physionet Sleep-EDF database [Expanded], [140]. Pz-Oz 

EEG channel together with submental chin EMG and horizontal EOG, 

sampled at 100 Hz, were used in the evaluations. In this study for reducing 

the artefacts, and guarantee the reliability of the classification results, all 

three pre-processing steps, including band pass filtering, windowing and 

trimming (described in chapter 4) were applied to the selected PSG subset. 
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For the WP-based filtering, a Daubechies order 20 (db20) was used as 

mother wavelet. 

 

Figure 20. Block diagram of the proposed method for comparing the conventional and the ensemble 

feature ranking methods. 

In order to explore the information contained in PSG recordings, a feature 

set including 49 features was extracted from each epoch (48 features from 

Table 6 and F49 from Table 8 in chapter 4). The extracted features can be 

categorized into time, frequency, joint time-frequency domain, entropy-

based and nonlinear types. To avoid that features with greater numeric val-

ues, dominate those with smaller numeric values, affecting the classification 

performance, the extracted features were normalized using standardization 

method to achieve zero mean and unit variance. 

After feature extraction and normalization, the feature set was fed into 

seven feature ranking methods, namely ReliefF, Minimum Redundancy-

Maximum Relevance (MRMR-MID and MRMR-MIQ), Fisher Score, Chi-

Square, Information Gain (IG) and Conditional Mutual Information 

Maximization (CMIM). In order to combine the resulting ranked feature lists, 

Borda and RRA techniques were also implemented, producing two 
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additional ranked list of features. In the classification stage, the Euclidean 

distance was chosen as the distance metrics for the nearest neighbour 

classifier. In addition to the nearest neighbour classifier, an MLF neural 

network with 12 neurons and sigmoid transfer function was also used in 

our simulations. The Levenberg-Marquardt training algorithm was preferred 

for minimizing the cost function because of its fast and stable convergence. 

For performance assessment, three main criteria including stability, 

accuracy and similarity were considered. In the following section the 

evaluation results are presented. 

5.1.1.2 Results 

In this study, in order to assess the stability of feature rankings, a 

similarity based approach proposed by Kalousis et al. [171] (described in 

chapter 4) was used. For each feature selection method  subsets were 

generated by bootstrapping. The stability of each method was evaluated as 

a function of the number of selected features (d) in which . 

The corresponding results are shown in Figure 21. Table 9 provides 

significant information about the variations of stability with regards to the 

number of features,. In this table the mean value of stability is calculated 

for fifth, thirteenth and twenty-ninth features. 

Classification accuracy was calculated as the ratio of truly classified 

epochs to the total number of epochs [172]. To estimate the generalization 

ability of the classifier, repeated random sub-sampling validation with 200 

runs was used. Figure 22 shows the accuracy of the classifiers with respect 

to the number of selected features. As this figure shows, starting from one 

feature, each additional feature typically leads to an increment in the 

classification accuracy. However, at some point, the increment of the 

classification accuracy for each additional feature is not significant, leading 

to an elbow in the graph. Inspired by the “elbow” point in the cost-benefit 

50=N

1,  3,  5  29= …d
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curves, in this work we used the Kneedle algorithm proposed in [173] for 

determining the optimal feature number that provides a satisfactory trade-

off between selected number of features and classification accuracy. 

 

Figure 21. Stability measure of each feature selection method. 

The optimum number of features for each classifier, selected by the 

Kneedle algorithm, together with the corresponding classification accuracies 

are shown in Table 10. This table also illustrates the top 10 features selected 

by each feature ranking technique. 

Table 9. Mean stability for 5th, 13th, and 29th features by different ranking techniques. 
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Mean stability up to  
5th feature 0.50 0.80 0.79 0.73 0.20 0.72 0.82 0.39 0.65 

Mean stability up to 
13th feature 0.66 0.99 0.95 0.92 0.21 0.79 0.82 0.68 0.78 

Mean stability up to 
29th feature 0.69 0.86 0.86 0.94 0.24 0.75 0.77 0.70 0.70 
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The stability measure used for assessing the internal stability of a feature 

ranking technique can also be used in a different context to assess the 

similarity of these techniques. Table 11 shows the similarity results for all 

the ranking techniques used in this study. The similarity index has been 

calculated for the first 29 features selected by each method. 

 

 
Figure 22. Classification accuracy for different feature ranking and rank aggregation methods, (a) 

nearest neighbour classifier, (b) MLF neural network. 
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Table 10. Top 10 features selected by each method and the corresponding optimum number se-

lected by Kneedle algorithm. 

 

R
el

ie
fF

 

Fi
sh

er
 

C
H

I 

IG
 

C
M

IM
 

M
R

M
R

-
M

ID
 

M
R

M
R

-
M

IQ
 

B
or

da
 

R
R

A
 

T
op

 1
0 

Fe
at

ur
es

 

F28 

F36 

F7 

F49 

F41 

F27 

F20 

F23 

F6 

F22 

F36 

F35 

F31 

F9 

F29 

F11 

F25 

F27 

F12 

F22 

F35 

F9 

F11 

F31 

F36 

F27 

F26 

F4 

F25 

F14 

F9 

F35 

F11 

F31 

F36 

F4 

F27 

F26 

F25 

F29 

F15 

F36 

F9 

F8 

F1 

F34 

F35 

F28 

F6 

F48 

F35 

F39 

F36 

F22 

F15 

F31 

F29 

F23 

F9 

F38 

F35 

F42 

F15 

F36 

F22 

F23 

F31 

F38 

F29 

F9 

F36 

F35 

F9 

F31 

F22 

F27 

F29 

F11 

F15 

F20 

F36 

F35 

F9 

F31 

F27 

F22 

F17 

F29 

F11 

F20 

MLF 7 
(0.75) 

5 
(0.76) 

7 
(0.76) 

7 
(0.76) 

3 
(0.74) 

5 
(0.76) 

5 
(0.76) 

5 
(0.76) 

7 
(0.77) 

Nearest 
Neighbours 

7 
(0.69) 

5 
(0.71) 

9 
(0.73) 

9 
(0.73) 

3 
(0.68) 

7 
(0.75) 

11 
(0.75) 

9 
(0.74) 

7 
(0.73) 

Table 11. Similarity of the feature ranking and rank aggregation techniques. 
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ReliefF 1 0.26 0.18 0.18 0.35 0.40 0.40 0.31 0.31 

Fisher  1 0.58 0.52 0.11 0.58 0.65 0.72 0.65 

CHI   1 0.90 0.15 0.35 0.35 0.52 0.52 

IG    1 0.18 0.35 0.35 0.46 0.46 

CMIM     1 0.22 0.22 0.22 0.22 

MRMR-MID      1 0.90 0.72 0.65 

MRMR-MIQ       1 0.72 0.65 

Borda        1 0.72 

RRA         1 
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5.1.2 Feature Transformation Based on Stacked Sparse Autoen-

coders 

One of the main challenges of automatic sleep stage classification is to 

compactly represent the subject’s data in the form of a feature vector. As 

mentioned in chapter 2, some conventional feature transformation methods 

such as PCA [133] and KDR [135] were used for reducing the dimensionality 

and enhancing the descriptive power of feature vector. 

Considering the fact that deep learning methods have found their way into 

many artificial intelligence applications with successful results reported 

from academia and industry, the main motivation for the current work was 

to explore the potential of deep learning for feature transformation and 

classification in the automatic sleep stage classification area. Therefore, we 

proposed a deep learning-based dimension reduction, feature 

transformation and classification method for automatic sleep stage 

classification. 

5.1.2.1 Methodology 

Figure 23 shows an overview of sleep stage classification framework with 

the proposed deep learning-based feature transformation scheme. 
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Figure 23. Block diagram of the sleep stage classification framework with deep learning-based fea-

ture transformation. 

We used a publically available dataset, called ISRUC-Sleep [141]. The data 

was acquired from 10 healthy adults, including 9 male and 1 female subjects 

aged between 30 and 58. For the evaluation of the proposed method, we 

used C3-A2 EEG channel, right EOG and chin EMG channels. The number 

of epochs, available in this dataset, for these 10 subjects is 954, 941, 824, 

794, 944, 853, 814, 1000, 969, and 796. To avoid overfitting we used all of 

8889 epochs from healthy subjects available in this database. 

All signals used in this study, were divided into 30-second epochs. A set 

of features were extracted from each epoch of EEG, EOG and EMG 

recordings of each subject. This feature set included 49 features that can be 

considered as time, frequency, joint time-frequency domain, entropy-based 

and nonlinear types. For a comprehensive description regarding the features 

(F1 to F48 and F49) see Chapter 4, Tables 6 and 8. Next, Min-Max 
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normalization method was applied to standardize the range of the extracted 

features. 

In this work, a Discriminative Feature Selection (DFS) algorithm was 

proposed to remove the “near-zero variance” features. Suppose, a feature 

that has a single value for all of the samples. According to [174], this feature 

is called “zero-variance predictor”. Even if it has little effect on the next 

steps, this feature should be discarded from the feature set, because it has 

no information and increases the computational complexity of the overall 

system. Similarly, some features may have few unique values that occur 

with low frequency. These features are called “near-zero variance 

predictors”. Kuhn et al. [174] defines two criteria for detecting near-zero var-

iance features as follows: 

1. The ratio of unique values to the number of samples is low, for 

example 10%. 

2. The ratio of the frequency of the most dominant value to the 

frequency of the second dominant value is high, for example 20.  

Using these two criteria, we applied DFS to remove the features that didn’t 

have enough discriminative power. As a result, 12 features were recognized 

as near-zero variance features and removed from our sleep data model. The 

features are as follows: maximum value (F2), minimum value (F3), variation 

(F5), median (F8), Petrosian fractal dimension (F9), permutation entropy 

(F12), Hjorth parameter (Activity) (F14), ZCR (F18), EMG spectral power 

(F37), mean of the EMG spectral power distribution (F39), EMG temporal 

energy (F41), maximum value of time domain EOG signal (F46). 

After the feature vector was set, data was divided into two parts, training 

and testing, using 10-fold cross validation. For the fine tuning step of SSAE, 

part of the training data was utilized. Our deep learning consists of three 
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layers: a two-layer SSAE and a Softmax layer. The number of hidden units 

for the first and second layer of SSAE was 20 and 12, respectively. For 

finding the best hyper-parameters for the autoencoders, we tried several 

models by adjusting sparsity regularization parameter, weight regularization 

parameter and the number of iterations. We used autoencoders with logistic 

sigmoid activation function for both layers.  

The performance of the proposed algorithm was compared with two other 

classifiers, Softmax and kNN classifiers. The number of neighbours was set 

to 18 and Euclidean distance was used as a measure of distance for kNN.  

5.1.2.2 Results 

To evaluate the performance of deep learning-based feature selection 

algorithm, we used classification accuracy as the evaluation criterion. Table 

12 shows the individual sleep stage and overall classification accuracy 

extracted from confusion matrix for three different classifiers. The boldface 

numbers indicate the best performance. To confirm the advantage of DFS 

block, the performance of SSAE-based sleep stage classification with and 

without this step was also investigated. Without using DFS block, 49 

original features were fed to SSAE. The classification accuracy achieved in 

this way was 74.1% which is almost 8% less than the accuracy with DFS 

block. 

Table 12. Results of the statistical analysis for comparison of each stage and overall accuracy. 

Classifiers Wake (%) REM (%) N1 (%) N2 (%) N3 (%) Overall  
Accuracy (%) 

Softmax 80 61.66 65 90 78.33 74.9 

kNN 85 66.66 61.66 70 83.33 73.33 

SSAE 91 77 69 87 87 82.2 
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5.2 Feature Extraction 

In the following, our contribution in feature extraction step of sleep stage 

classification will be described. 

5.2.1 Investigating the Contribution of Distance-based Features 

to Automatic Sleep Stage Classification 

One of the main motivations for this thesis was to evaluate new features 

to characterize each sleep stage in such a way that extracted features were 

more powerful than conventional features to distinguish sleep stages from 

each other, and to improve classifiers accuracy. Considering the 

outstanding performance of Itakura and Itakura-Saito distances in sleep 

and speech signal processing [52], [70], [144] and COSH distance in speech 

signal processing [145], [146], we aimed to extensively evaluate the 

performance of distance-based features together with conventional features 

in automatic sleep stage classification. The distance-based features were 

extracted by calculating Itakura, Itakura-Saito and COSH distances of 

autoregressive and spectral coefficients of EEG, EMG, EOG and ECG signals 

according to Table 8 in chapter 4. 

5.2.1.1 Methodology 

In this work, we used the open-access comprehensive ISRUC-Sleep 

dataset [141]. For our evaluations, we used PSG recordings from healthy 

subjects. Nine male and one female subjects aged between 30 and 58 

participated in the recordings. Each recording contains signals from 19 

channels. The data include six EEG channels: F3-A2, C3-A2, O1-A2, F4-A1, 

C4-A1, and O2-A1 from which we selected the C3-A2 EEG channel. The C3-

A2 channel is the commonly used EEG channel in sleep stage classification 

[10], [16], [25], [27] and is among the recommended channels by AASM. In 
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addition to one EEG signal, we used the signals from right EOG and chin 

EMG, and ECG channels of all ten subjects.  

Figure 24 shows the framework used in this study. In the following, each 

part will be described in detail. In this study two groups of features namely,  

 

Figure 24. Sleep Study Framework for analysing the contribution of distance-based features. 

conventional feature set and distance-based feature set were extracted 

from 30-second long the epochs of selected PSG subset. The conventional 

feature vector consists of 48 features extracted from EEG, EOG, and EMG 

signals. These features were described in Table 6 of chapter 4 as F1 to F48. 

In this study, the contribution of a set of 32 distance-based features, 

extracted from EEG, EOG, EMG and ECG, was evaluated for sleep stage 

classification as described in Table 8 chapter 4, F49 to F80. A third feature 

set was also created, named total feature set composed of pruned distance-

based and pruned conventional feature sets. 
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The features extracted from PSG signals were in different ranges, and this 

variety could bias the results of the following steps. Therefore, two different 

types of normalization methods were used namely, standardization and Min-

Max. The effect of each method in the overall system performance was 

evaluated. Next, to remove the features with high levels of similarity, a 

feature selection method was proposed and used. Existence of similar 

features negatively affect the stability [168] of the feature ranking results; 

therefore, excluding similar features from the feature set can improve the 

overall performance of the proposed algorithm [175]. The proposed 

algorithm worked as follows:  

After the L1-norm between each pair of feature vectors was calculated, a 

similarity threshold was defined. The feature pair, whose L1-norm was less 

than the threshold level, was considered strongly similar. In this way, the 

features were clustered into groups of similar features, and one feature per 

cluster was selected as representative. The representative feature had the 

lowest computational complexity.  

Alternatively, it was possible to use PCA for finding the most dissimilar 

features. However, there are two main reasons why we did not use PCA. 

First, using PCA for finding a non-redundant feature set would lead to 

keeping and calculating all the features in the classification and practical 

application steps, whereas by using the similarity threshold, the most 

redundant features can be detected and omitted from the feature set in the 

application step. Second, PCA would generate combinations of the features. 

Since our aim was to evaluate the performance of the distance-based and 

compare it with the performance of the conventional features, it was 

necessary to preserve the information of the features and PCA was not a 

proper option in this regard. 
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To analyse the potential of individual features in sleep stage classification, 

six feature ranking techniques were adopted. In particular, we used ReliefF, 

mRMR-MID, mRMR-MIQ, Fisher score, Chi-square and IG techniques. The 

description of these methods was provided in chapter 4. Each of these 

methods was applied on the conventional, distance-based and total feature, 

and all in all, 3*6=18 ranked lists of features were achieved. 

For classification, three different classifiers were used: kNN, MLF neural 

network and DSVM. The reason for choosing these three different classifiers 

is that we did not want to restrict the significance of the comparison to one 

specific family of classifiers, and on the other hand, we aimed to choose a 

variety of classifiers including the simplest, most used and the one that 

usually shows the best performance. Euclidean distance was used as the 

distance measure for the kNN classifier. In each experiment, the 

classification accuracy for the 1, 2, …20 neighbourhood was calculated, and 

the one leading to maximum accuracy was selected as the optimum 

neighbourhood number. 

For the MLF neural network classifier, a three-layered feed forward neural 

network with 20 hidden neurons for the conventional and total feature sets 

and 12 hidden neurons for the distance-based feature set were used. DSVM 

was used instead of conventional multi-SVMs. The reason for choosing 

DSVM was that it outperforms conventional multi-SVMs (OAO and OAA) 

while utilizing lower number of SVM in the structure [165], [176]–[178]. 

Radial Basis Function (RBF) was selected as the kernel function, and sigma 

was set to 3.0 for the conventional and total feature sets and 1.1 for the 

distance-based feature set. 

For each ranked list of features, created by one of the ranking methods, 

and each specific classifier, the classification accuracy was calculated for 

the top 1, 2, … 25 features. Since it is always desirable to achieve the 
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maximum accuracy with the minimum complexity, to find the optimum 

number of features, Vikor method was used for multi-criteria (i.e. 

classification accuracy and number of features) decision making [166]. 

Finally, the ability of the top 25 features in the total feature set, selected by 

different feature ranking methods, to discriminate between each specific 

pair of sleep stages was evaluated using two-tailed student’s t-test. These 

pairs include Wake-REM, Wake-N1, Wake-N2, Wake-N3, REM-N1, REM-N2, 

REM-N3, N1-N2, N1-N3, and N2-N3. 

5.2.1.2 Results 

In this section, the evaluation results of the framework depicted in Figure 

24 considering different normalization methods, feature ranking techniques 

and classifiers are presented. 

After feature extraction and normalization, the highly similar features in 

both conventional and distance-based feature sets were detected. The 

threshold value of L1-norm between each pair of feature vectors was 

empirically set to 1e-15.  This value was chosen empirically. For conventional 

and distance-based feature sets, the similar groups were detected and are 

listed in Table 13. 

Table 13. Similar feature groups from the conventional and distance-based feature sets. 

Conventional 
Feature Set 

Group 1 Group 2 

F36, F38 and F40 F6 and F14 

Distance-based 
Feature Set 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

F52 and 
F74 

F55 and 
F75 

F56 and 
F76 

F60 and 
F78 

F63 and 
F79 

F64 and 
F80 

According to this table, several similar cases were found using this 

measure. For example, the Hjorth activity parameter is the same as the 
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variation. Also, the COSH distance is the symmetric version of the Itakura-

Saito distance. From each group of similar features, one feature with the 

lowest computational complexity was selected as representative of the 

group. Therefore, F14, F38 and F40 were removed from the conventional 

feature set. F74, F75, F76, F78, F79 and F80 were also removed from the 

distance-based feature set. After removing the redundant features, 45 

features remained in the conventional feature set, and 26 features remained 

in the distance-based feature set. 

To assess the usefulness of pruning feature sets, the sleep stage 

classification accuracy before and after feature selection was evaluated 

using the conventional, distance-based, and total feature sets. The results 

obtained by the kNN classifier with Euclidean distance are shown in Table 

14. The optimum number of neighbours for each case was found (shown in 

brackets in Table 14) by evaluating the performance of the classifier for 

different numbers of neighbours. According to the results, removing similar 

features led to an average improvement of 0.61% for all the cases. The 

maximum improvement (2.07%) was observed in the pruning of the 

conventional feature set using the standardization method. Additionally, it 

is notable that the accuracy of the classification with the Min-Max method 

is, in all cases, higher than the one with the standardization method. This 

emphasizes the importance of selecting a proper feature normalization 

method before classification. 

Table 14. Classification accuracy for the original and pruned feature sets using the kNN classifier. 

The numbers in brackets refer to the nearest neighbours used in each case. 

 Features Distance-
Based 

Pruned 
Distance-

Based 
Conventional Pruned  

Conventional Total 
Normalization  

STD 60.88 (15) 61.03 (5) 70.90 (15) 72.97 (26) 73.26 
(12) 

Min-Max 62.30 (10) 62.37 (5) 73.94 (8) 74.10 (8) 74.42 
(6) 
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For determining the features that should be given a high priority when 

dealing with the description of PSG signals, six feature ranking techniques 

were applied on three feature sets: conventional, distance-based and total 

feature sets. Furthermore, each feature set was considered with two 

different normalization methods. From each group, the top 25 features were 

selected for comparison as shown in Tables 15-17. Table 15 shows the 

feature ranking results for the conventional feature set. The results of this 

table are summarized in Figure 25. According to this figure, temporal and 

time-frequency domain features are preferred by the ranking methods, 

whereas frequency domain features are the least preferred ones. Nonlinear 

and entropy features are always among the top 25 and occupy five to six 

places on the list. Detailed assessment of these features leads to the 

following observations about conventional features: 

• EEG ZCR (F18) has been chosen as the best feature by most of the 

ranking methods with either the standardization or Min-Max 

method. Even the methods that did not select F18 as the first 

feature such as ReliefF, have it ranked in the top five best features. 

• Petrosian fractal dimension (F9), Hjorth parameter (Mobility) (F15), 

and Hurst exponent (F21) are among the top ranked-features by all 

the methods. 

• ReliefF, mRMR-MID and mRMR-MIQ methods include EEG-, EMG-

, and EOG-related features in their top 25 list, whereas Fisher, Chi-

square, and IG only contain EEG-related features. 

• Between EMG and EOG features, those related to EOG are more 

preferred by the ranking methods, such as EOG kurtosis, 

maximum, and standard deviation. 
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• Features from time-frequency domain that were extracted using WP 

are ranked in the top 25 features by all methods. 

Table 15. Feature ranking results for the conventional feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

1th F45 F13 F18 F18 F18 F18 F21 F18 F18 F18 F18 F15 

2nd F16 F9 F34 F11 F34 F11 F18 F15 F21 F15 F21 F18 

3rd F15 F21 F10 F9 F10 F45 F15 F21 F15 F21 F15 F21 

4th F18 F15 F21 F35 F37 F35 F9 F9 F9 F9 F34 F9 

5th F13 F18 F35 F21 F29 F9 F13 F13 F34 F16 F9 F16 

6th F29 F16 F15 F45 F13 F32 F34 F34 F35 F11 F35 F11 

7th F21 F32 F13 F15 F23 F31 F35 F35 F4 F26 F4 F2 

8th F9 F29 F29 F32 F21 F10 F11 F16 F28 F13 F28 F13 

9th F32 F45 F23 F31 F45 F21 F4 F4 F22 F2 F23 F34 

10th F7 F7 F46 F10 F35 F30 F16 F25 F16 F27 F22 F22 

11th F31 F31 F9 F13 F15 F15 F29 F29 F23 F20 F5 F35 

12th F48 F6 F26 F30 F25 F29 F22 F30 F36 F22 F19 F3 

13th F41 F25 F11 F29 F11 F34 F30 F22 F5 F34 F11 F26 

14th F6 F10 F4 F34 F48 F13 F28 F33 F19 F25 F16 F4 

15th F25 F41 F25 F4 F9 F23 F25 F28 F11 F29 F36 F20 

16th F11 F48 F2 F25 F2 F25 F33 F27 F27 F3 F13 F27 

17th F10 F46 F31 F23 F26 F4 F31 F26 F13 F30 F27 F29 

18th F36 F11 F16 F33 F32 F33 F23 F31 F29 F35 F29 F30 

19th F39 F42 F32 F16 F31 F16 F2 F2 F20 F4 F2 F36 

20th F46 F34 F37 F2 F4 F2 F5 F5 F26 F36 F30 F28 

21th F27 F3 F45 F22 F46 F22 F27 F19 F30 F33 F20 F25 

22nd F26 F43 F3 F36 F16 F3 F19 F20 F25 F37 F26 F37 

23th F37 F47 F30 F46 F8 F36 F3 F3 F39 F28 F3 F33 

24th F24 F27 F48 F7 F39 F28 F26 F10 F2 F39 F25 F5 

25th F47 F2 F24 F28 F3 F46 F45 F45 F33 F45 39 F19 
 



 121 

 

 

Figure 25. Graphical representation of the feature ranking results for the conventional feature set, 

(a) normalized with STD and (b) normalized with Min-Max. 

Table 16 shows the feature ranking results for the distance-based feature 

set. Like the conventional feature set, the ranking results are summarized 

as a graphical representation in Figure 26. According to these charts, 

Itakura and Itakura-Saito distances were much more effective than COSH 

distance in discriminating the sleep stages and, at the same time, were 

preferred equally by the ranking methods. These results imply that the 
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Itakura and Itakura-Saito features can be used interchangeably in sleep 

stage classification. Detailed assessment of top 25 distance-based features 

leads to the following observations: 

• Among several types of distance-based features, two are ranked as 

the best by all methods. These features are similarity between a 

baseline EEG epoch and the rest of the EEG measured by Itakura 

distance (F49 and F50) and similarity of EEG and EOG signals 

measured by either Itakura or Itakura-Saito distance (F65-F68).  

• Itakura-Saito distance of AR or spectral coefficients of EEG (F51 and 

F52) are also seen in the top five.  

• All methods rank one of the features related to the similarity of a 

baseline EOG epoch to the rest of the EOG (F57-F60), measured by 

Itakura or Itakura-Saito distance, in the top 25. 

• The features related to the similarity of a baseline ECG epoch to the 

rest of the ECG (F61-F64), measured by Itakura or Itakura-Saito 

distance, are considered important mostly by three methods: 

ReliefF, mRMR-MID and mRMR-MIQ. The same applies to the 

similarity between EEG and EMG (F69- F72). 

• Among the COSH distance-based features (F73- F80), only COSH 

distance of EEG AR coefficients (F73) and COSH distance of EOG 

spectral coefficients (F77) could find their way to the top 25 features 

list. 

• There are no noticeable differences in the number of occurrences of 

AR or spectral-based features. 
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Table 16. Feature ranking results for the distance-based feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

1th F65 F65 F49 F66 F49 F66 F67 F65 F50 F68 F50 F67 

2nd F66 F66 F53 F53 F55 F53 F68 F66 F49 F67 F49 F68 

3rd F49 F50 F68 F67 F68 F67 F66 F68 F51 F49 F51 F49 

4th F50 F49 F61 F57 F58 F57 F65 F67 F73 F50 F73 F50 

5th F70 F70 F58 F61 F65 F49 F54 F53 F52 F51 F52 F51 

6th F69 F69 F65 F49 F61 F55 F53 F54 F57 F73 F58 F73 

7th F61 F58 F69 F69 F53 F65 F56 F55 F58 F52 F57 F52 

8th F62 F57 F55 F68 F50 F68 F55 F56 F67 F57 F67 F57 

9th F72 F72 F50 F65 F67 F69 F49 F49 F68 F58 F68 F58 

10th F71 F71 F67 F55 F57 F54 F50 F50 F65 F65 F65 F65 

11th F52 F62 F71 F51 F66 F61 F57 F57 F66 F66 F66 F66 

12th F73 F61 F57 F63 F54 F51 F58 F58 F60 F60 F59 F60 

13th F51 F60 F59 F54 F69 F50 F70 F70 F59 F59 F77 F59 

14th F63 F77 F66 F59 F51 F70 F69 F69 F77 F77 F60 F77 

15th F64 F59 F54 F52 F56 F56 F51 F73 F53 F53 F53 F53 

16th F57 F63 F70 F71 F63 F52 F73 F51 F54 F54 F54 F54 

17th F58 F52 F51 F64 F59 F58 F52 F52 F55 F55 F55 F55 

18th F60 F51 F63 F56 F73 F63 F60 F60 F56 F56 F56 F56 

19th F77 F73 F72 F50 F70 F73 F77 F77 F61 F70 F61 F70 

20th F59 F64 F56 F70 F52 F59 F59 F59 F62 F69 F62 F69 

21th F55 F53 F60 F73 F60 F64 F72 F72 F63 F72 F63 F72 

22nd F56 F54 F73 F72 F64 F62 F71 F71 F64 F71 F70 F71 

23th F53 F56 F77 F62 F77 F60 F63 F62 F69 F63 F69 F63 

24th F54 F55 F52 F60 F71 F77 F64 F61 F70 F64 F64 F64 

25th F68 F68 F64 F77 F62 F71 F61 F64 F71 F61 F71 F61 
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Figure 26. Graphical representation of feature-ranking results for the distance-based feature set (a) 

normalized with STD and (b) normalized with Min-Max. 

Table 17 shows the feature ranking results for the total feature set. 

Furthermore, Figure 27 shows the percentage that each feature group 

occupies in top 25 feature list. Like the conventional feature set, temporal 

and time-frequency domain features are the most preferred types by the 

ranking methods. Distance-based features are always in the top 25. Itakura 

and Itakura-Saito features were more popular than the COSH features. 
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Among the ranking methods, only IG and Chi-square have COSH features 

in their top 25 feature list. Detailed assessment of ranking results leads to 

the following observations: 

• On average, 28% of the top-ranked features was selected from the 

distance-based feature set. The selected distance-based features in 

Table 16 belong to one of these categories: similarity of EEG and EOG 

(F65-F67), similarity of a baseline EEG epoch with the rest of EEG (F49-

F52 and F73), similarity of a baseline epoch of EMG with the rest of 

EMG (F53-F55), and similarity of a baseline EOG epoch with the rest 

of EOG (F57 and F58).  

• Among the feature ranking methods, the Chi-square and IG methods 

had the maximum percentage of distance-based features (44%) in their 

top 25. These features include the similarity between a baseline EEG 

epoch with the rest of EEG, measured by Itakura, Itakura-Saito and 

COSH distances, (F49-F52 and F73) and the similarity of EEG and 

EOG, measured by the Itakura-Saito distance (F67 and F68).  

• The ReliefF method has the minimum percentage of distance-based 

features (13%) in its top 25-list. The similarity between EEG and EOG, 

measured by Itakura distance (F65 and F66), is the selected distance-

based feature by this method. 

• F73 is the only COSH distance-based feature that appears in top 25 

list of the total feature set, and it is related to the similarity of a baseline 

EEG epoch with the rest of EEG. 

• Zero-crossing number (F18) is selected as the best feature by all 

methods. 

• Besides the zero-crossing number, Hjorth parameter (mobility) (F15), 

approximation entropy (F13), Petrosian fractal dimension (F9), Hurst 
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exponent (F21) and at least one of the WP-based features (F22-F35) are 

in the top-ranked features by all methods. 

Table 17. Feature ranking results for the total feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 
1th F16 F13 F18 F18 F18 F18 F18 F18 F18 F18 F18 F18 

2nd F15 F9 F34 F11 F34 F11 F21 F15 F21 F15 F21 F15 

3rd F13 F21 F53 F9 F53 F45 F15 F21 F15 F21 F15 F21 

4th F29 F29 F21 F66 F48 F53 F9 F9 F9 F9 F34 F9 

5th F32 F32 F35 F35 F68 F9 F13 F13 F49 F16 F9 F16 

6th F45 F16 F68 F21 F32 F35 F34 F65 F50 F68 F35 F49 

7th F18 F15 F15 F45 F46 F32 F67 F66 F34 F67 F4 F50 

8th F7 F7 F46 F15 F21 F66 F68 F34 F35 F49 F49 F68 

9th F9 F18 F13 F31 F35 F31 F66 F35 F4 F50 F50 F67 

10th F21 F31 F29 F32 F13 F21 F65 F68 F51 F11 F22 F11 

11th F65 F11 F23 F53 F10 F10 F35 F67 F73 F51 F23 F51 

12th F66 F6 F2 F13 F11 F30 F11 F16 F52 F73 F28 F73 

13th F10 F45 F57 F10 F25 F15 F54 F4 F22 F52 F52 F52 

14th F6 F10 F11 F4 F23 F23 F53 F54 F16 F13 F51 F2 

15th F48 F34 F9 F29 F15 F29 F4 F53 F28 F26 F73 F13 

16th F41 F25 F26 F30 F58 F13 F16 F25 F23 F2 F5 F34 

17th F36 F47 F4 F65 F55 F34 F29 F30 F11 F27 F19 F22 

18th F31 F66 F55 F34 F2 F67 F30 F29 F68 F20 F11 F3 

19th F39 F65 F65 F23 F29 F25 F25 F33 F67 F22 F68 F35 

20th F37 F24 F49 F25 F9 F4 F33 F22 F36 F34 F67 F26 

21th F61 F48 F25 F54 F26 F65 F31 F28 F58 F65 F16 F4 

22nd F62 F41 F31 F33 F65 F33 F56 F27 F5 F66 F58 F66 

23th F2 F37 F10 F67 F4 F54 F55 F31 F57 F3 F57 F65 

24th F34 F46 F67 F68 F37 F68 F22 F5 F19 F25 F13 F57 

25th F46 F43 F32 F49 F31 F69 F27 F26 F13 F29 F36 F58 
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Figure 27. Graphical representation of feature ranking results for the total feature set (a) normalized 

with STD (b) normalized with Min-Max. 
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• There are some features never ranked in the top 25 by any of the 

methods. Examples of these features are mean curve length (F17) and 

mean Teager energy (F20). 

• Tables 18-26 depict the 5-stage (Wake, REM, N1, N2 and N3) 

classification accuracy results along with the optimum number of 

features selected by the Vikor method for all three feature sets and 

three classifiers. The reliability of the results was validated by using 

10 times repeated 10-fold cross validation method on the whole data 

from 10 healthy subjects. For each ranked list of features, created by 

one of the ranking methods, and each classifier, the overall 

classification accuracy, sensitivity and specificity were calculated for 

the top 25 features. Sensitivity (also called the true positive rate, the 

recall) measures the proportion of actual positives that are correctly 

identified as such. On the other hand, specificity (also called the true 

negative rate) measures the proportion of actual negatives that are 

correctly identified as such. Analysing the results reveals that, 

starting with one feature, each additional feature typically leads to an 

increment in the classification accuracy.  

However, at some point, the increment on the classification accuracy for 

each additional feature is not significant. Inspired by MCDM problems, the 

Vikor method was applied to the classification results for determining the 

optimal feature number that provides a satisfactory trade-off between the 

selected number of features and the classification accuracy. Accuracy and 

number of features were two conflicting criteria with the corresponding 

weights of 0.7 (w1) and 0.3 (w2), respectively, meaning that, in our sleep 

stage classification system, classification accuracy had priority over 

complexity. Figure 28 shows a sample of the Vikor method results for the 

features scaled by standardization method, ranked with ReliefF and 
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classified by kNN classifier. The utopian solution, shown with a black star, 

represents the ideal solution in which the accuracy is maximum, and the 

number of features is minimum. The selected point by the Vikor method in 

each case is the closest point of the Pareto front (the set of solutions) to the 

utopian solution considering the weights of the two criteria. 

 

Figure 28. Optimum number of features selected by the VIKOR method for the (a) conventional, (b) 

distance-based, and (c) total feature sets. 

Next, the assessment of the results related to the kNN classifier (Tables 

18-20) will be discussed. 

• The maximum enhancement in classification accuracy after adding 

the distance-based features to the conventional feature set occurred 

in mRMR-MID with Min-Max. 

• For all three feature sets, the maximum accuracy, regardless of the 

feature normalization method, was achieved by mRMR-MID or 

mRMR-MIQ method. Seven and in one case eight features were 

selected by the Vikor method to achieve this accuracy. The Itakura 

distance of EEG-EOG spectral coefficients, Itakura-Saito distance of 
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EEG-EOG spectral coefficients, and Itakura distance of EMG AR 

coefficients are among these features.  

• For all three feature sets, the minimum accuracy, regardless of the 

feature normalization method, was achieved by the Chi-square 

method. 

• For most of the ranking methods, adding distance-based features to 

the conventional feature set improved the sensitivity and specificity 

of the classification. 

Table 18. kNN classifier results for the conventional feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

#Features 5 6 10 7 9 8 8 8 7 8 8 8 

#Neighbours 18 16 20 11 20 20 12 12 12 20 16 8 

Sensitivity 72.8 72.9 75.6 72.5 73.7 71 71.5 72.7 71.3 74.6 73.1 72.9 

Specificity 93.4 93.2 94 93.4 93.5 92.6 93.1 93.2 92.9 93.8 93.3 93.4 

Accuracy 70 70.9 72.1 71.3 72.9 70.8 69.7 71.6 69 71.9 69.2 72.7 

Table 19. kNN classifier results for the distance-based feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

#Features 8 11 6 6 6 5 11 12 10 8 10 8 

#Neighbours 19 6 16 9 17 9 10 11 18 12 17 12 

Sensitivity 64.3 61.7 62.5 65.6 64 63 64.3 63.3 63.9 60 64.7 61.5 

Specificity 91.2 90.6 90.4 91.1 90.6 91 91.5 90.8 91 89.9 91 90.3 

Accuracy 59.7 59 61.5 60.6 61.9 60 62 60 61 56.3 61.1 56.6 
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Table 20. kNN classifier results for the total feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

#Features 8 8 8 7 7 7 7 6 7 8 8 10 

#Neighbours 14 10 11 6 17 12 10 11 11 10 19 10 

Sensitivity 75.1 73.3 74.1 77.4 75.1 75.3 76.5 73.4 72.3 70.6 74 75.4 

Specificity 93.8 93.7 93.6 94.2 93.9 93.6 94.2 93.5 93 92.4 93.8 94.3 

Accuracy 72 71 73.2 73 72.2 72.3 71.1 71 71 70 71 70.3 

Next, the assessment of the results related to MLF neural network classi-

fier (Tables 21-23) will be discussed. 

• The maximum enhancement in classification accuracy after adding 

the distance-based features to the conventional feature set occurred 

in mRMR-MIQ with standardization. 

• For all three feature sets, the maximum accuracy, regardless of 

feature normalization method, was achieved by the mRMR-MID or 

mRMR-MIQ method. Up to 11 features were selected by the Vikor 

method to achieve this accuracy. The Itakura distance of the EEG-

EOG spectral coefficients, Itakura-Saito distance of the EEG-EOG 

spectral coefficients, and Itakura distance of the EMG AR 

coefficients are among these features.  

• Compared to the results of the kNN classifier, the overall accuracy, 

sensitivity and specificity of MLF classifier is higher for three feature 

sets. 
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Table 21. MLF neural network classifier results for the conventional feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

#Features 9 10 11 11 9 11 8 10 9 9 11 8 

Sensitivity 72.6 77.7 75.9 78.3 74.9 76 73.9 74.6 73.4 76.9 73.6 75.4 

Specificity 93.7 94.4 94 94.6 93.7 94 93.5 93.6 93.3 94.2 93.4 93.9 

Accuracy 79 80 80 80.6 79 79.8 79.8 79.2 78.5 79.7 78.7 79.6 

Table 22. MLF neural network classifier results for the distance-based feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

# Features 9 7 7 7 13 7 11 13 15 15 15 15 

Sensitivity 62.1 59.9 63.3 61.1 64.8 61.3 63.4 63.6 66.1 64 65.1 63 

Specificity 90.5 90 90.9 90.2 91.1 90.3 90.8 90.9 91.5 90.5 91.2 90.7 

Accuracy 74.3 72.1 75.2 74 75.6 74 75 74.2 75 73.1 75 73.1 

Table 23. MLF neural network classifier results for the total feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

# Features 8 9 9 10 8 11 9 9 9 14 8 10 

Sensitivity 75.1 75.4 76.5 76.7 76.7 78.8 74 74.8 73.3 76.3 74 74.2 

Specificity 93.8 93.8 94.1 94.3 94.2 94.7 93.5 93.7 93.3 94.1 93.5 93.5 

Accuracy 79.5 79.2 80.2 79.9 80.2 80.4 79.2 79.1 79.2 79.5 79.2 78.5 

Next, assessment of results related to the DSVM classifier (Tables 24-26) 

will be discussed. 
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• The maximum enhancement in classification accuracy after adding 

the distance-based features to the conventional feature set occurred 

in mRMR-MIQ with Min-Max.  

• For all three feature sets, the maximum accuracy, regardless of the 

feature normalization method, was achieved by the mRMR-MID or 

mRMR-MIQ methods. Up to 13 features were selected by the Vikor 

method to achieve this accuracy. The Itakura distance of the EEG-

EOG spectral coefficients, Itakura-Saito distance of the EEG-EOG 

spectral coefficients, and Itakura distance of the EMG AR 

coefficients are among these features.  

• Considering that the overall performance of the DSVM classifier, 

including accuracy, sensitivity and specificity, is the highest among 

the classifiers used in this paper, it can be concluded that DSVM 

outperforms kNN and ANN classifiers in sleep stage classification. 

Looking at the results for all the classifiers, the accuracy obtained by Min-

Max is higher than standardization in most cases. Furthermore, the 

presence of the distance-based features among the selected features by the 

Vikor method shows their positive contribution to sleep stage classification. 

Table 24. DSVM classifier results for the conventional feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

# Features 10 10 10 11 9 9 8 11 8 9 8 8 

Sensitivity 79.2 74.4 80.1 78.5 79 76.3 77.2 76.6 73.2 78.4 76.3 75.7 

Specificity 95.3 94.2 95.7 94.9 95.6 94.6 95.2 94.6 94.7 95.4 94.9 94.7 

Accuracy 83.7 84.5 84.0 84.7 84.0 83.8 81.5 81.7 81.0 81.9 81.0 81.8 
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Table 25. DSVM classifier results for the distance-based feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

# Features 9 11 7 6 8 6 11 11 9 15 15 15 

Sensitivity 61.1 60.6 70.1 63.6 70.3 60.7 64.1 58.3 62.3 62.9 68.5 64.4 

Specificity 91.1 90.9 93.4 92.1 93.4 91.1 91.8 90.7 91.7 91.5 92.8 92.5 

Accuracy 78.1 77.2 79.7 79.3 79.8 77.8 79.2 78.1 77.8 78.7 79.4 79.2 

Table 26. DSVM classifier results for the total feature set. 

 ReliefF mRMR-
MID 

mRMR-
MIQ Fisher Chi-

square IG 

 STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max STD Min-
Max STD Min-

Max 

# Features 11 9 8 13 8 11 9 14 9 14 9 15 

Sensitivity 79.3 76 81.6 79.8 80.6 80.5 75.1 76.3 75.3 73.8 77.5 76.5 

Specificity 95.5 94.9 96.5 96.3 96.1 96 94.6 95.3 94.6 94.3 94.9 94.8 

Accuracy 84.8 82.0 84.4 85.5 84.7 85.3 81.3 81.9 80.8 81.6 80.8 81.7 

As mentioned before, to perform a comprehensive analysis and compare 

the discrimination ability of conventional and distance-based feature sets, 

independent t-tests were applied on the top 25 features of the total feature 

set (according to Table 17) with standardization and Min-Max methods. The 

significance level (α-value) for the t-test was chosen to be 0.05, which is a 

common value. Tables 27 and 28 present the results. In these tables, two 

categories of features are noticeable, namely “Discriminative” and 

“Redundant”. These categories are defined as: 

• Discriminative: features with the highest discrimination ability 

between corresponding pairs of stages were included in this 
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category. From the perspective of the t-test results, features with 

the lowest p-value were categorized as “Discriminative” features.  

• Redundant: features that cannot discriminate between 

corresponding pairs of stages were included in this category. From 

the perspective of the t-test results, features with a p-value of more 

than 0.05 were categorized as “Redundant” features. 

Table 27. Discrimination ability analysis results for the top 25 features selected from the total fea-

ture set with standardization 

 “Discriminative” Features “Redundant” Features 

Wake-
REM 

F13, F15, F18, F21, F53, F54, F55, 
F56. F6, F31, F41, F61, F62, F67, F68. 

Wake-N1 F13, F15, F18, F21, F25, F34, F45, 
F46. F6, F29, F41, F49, F50. 

Wake-N2 F9, F13, F15, F18, F21. F6, F23, F30, F33. 

Wake-N3 F9, F13, F15, F18, F65, F66. F2, F6. 

REM-N1 F13, F15, F18, F21, F53, F54, F55, 
F56. F5, F6, F19, F22, F41. 

REM-N2 F2, F4, F23, F26, F34, F35, F53, F54, 
F55, F56, F65, F66. F6, F41, F51, F52, F73. 

REM-N3 
F2, F4, F5, F9, F11, F15, F18, F19, 
F21, F22, F23, F28, F29, F31, F36, 
F65, F66. 

F10, F27, F36, F41, F46, F61, 
F62. 

N1-N2 F4, F9, F11, F15, F18, F23, F29, F34, 
F35. F6, F36, F45, F46, F55, F56. 

N1-N3 
F4, F5, F9, F11, F15, F16, F18, F19, 
F21, F22, F23, F28, F29, F30, F31, 
F33, F34, F35, F49, F50, F65, F66. 

F26, F36, F39, F41. 

N2-N3 F4, F5, F9, F11, F15, F18, F21, F29, 
F30, F31, F33, F34, F35, F46. 

F25, F36, F37, F39, F41, F61, 
F62. 
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Table 28. Discrimination ability analysis results for the top 25 features selected from the 

total feature set with min-max 

 “Discriminative” Features “Redundant” Features 

Wake-
REM F9, F13, F15, F18, F21, F53, F54. F6, F31, F43, F47, F48, F67, F68. 

Wake-N1 F13, F15, F18, F21, F25, F34, F45. F6, F29, F41, F43, F47, F49, F50. 

Wake-N2 F9, F15, F18, F21. F7, F10, F30, F33, F43, F47. 

Wake-N3 F9, F15, F18, F21, F29, F65, F66. F2, F3, F6, F24, F43, F47. 

REM-N1 F13, F15, F21, F52, F53. F6, F22, F41, F43, F47, F51, F52, 
F71, F72, F73. 

REM-N2 F2, F3, F10, F34, F35, F53, F54, 
F65, F66. F11, F21, F32, F41, F43, F47. 

REM-N3 F2, F3, F4, F9, F15, F18, F21, F34, 
F35, F65, F66. F6, F10, F42, F43, F47. 

N1-N2 F9, F13, F21. F6, F12, F20, F25, F43, F45, F46, 
F47, F48, F51, F52, F73. 

N1-N3 F4, F9, F15, F18, F21, F29, F30, 
F31, F32, F34, F35. F6, F26, F43, F47. 

N2-N3 F15, F18, F21. F25, F41, F43, F47. 

The features with highest discrimination ability (minimum p-value) are 

shown in bold. Assessment of the results in Tables 27 and 28 leads to the 

following observations: 

• The minimum number of “Redundant” group features is related to 

the Wake-N3 pair with two features in the standardization method. 

• The maximum number of “Redundant” group features is related to 

the N1-N2 pair with 11 features in the Min-Max method. 

• The maximum number of “Discriminative” group features is related 

to the N1-N3 pair with 22 features in the standardization method. 

• The minimum number of “Discriminative” group features is related 

to the N2-N3 pair with three features in the Min-Max method. 
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• There were some features in the Min-Max method that could not 

distinguish between any of the sleep stage pairs and were always 

categorized in the “Redundant” group, such as F43 and F47. 

• There were some features that could always distinguish between 

any pair of sleep stages and were always categorized in the 

“Discriminative” group. For the standardization method, these 

features were: F4, F7, F9, F11, F13, F15, F18, F21, F28, F32, F34, 

F35, F44, F53, F54, F57, F58, F65 and F66 (19 features in total). 

The distance-based features constitute 31% of these features. For 

the Min-Max method, the features always categorized as 

“Discriminative” include: F4, F5, F9, F13, F15, F16, F18, F19, F27, 

F28, F34, F35, F36, F37, F39, F44, F53, F54, F57, F58, F65, F66, 

F69, and F70 (24 features in total). The distance-based features 

constitute 33% of these features 

• Among distance-based features, the Itakura distance of EEG-EOG 

(F65 and F66) has the highest discrimination ability for both 

normalization methods. 

5.2.2 Automatic EOG and EMG Artefact Removal Method for 

Sleep Stage Classification 

Single channel sleep stage classification systems are often developed 

based on the signal acquired from one EEG channel. On the other hand, 

feature vector quality is dependant not only on the type of the features 

extracted, but also on the raw signal quality. It is crucial to be confident 

about the quality of the signal before applying any feature extraction or 

selection algorithm. EEG is usually contaminated with several artefacts 

such as power line noise, EMG, EOG, electrode movements, sweating noise, 
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etc. Therefore, removal or attenuation of the noise and unwanted signals is 

a prerequisite.  

The basics for the artefact removing are diverse and are closely related to 

the specific application in which the algorithm is going to be used. A 

commonly used method for avoiding artefacts is the rejection of the 

contaminated segments of the recorded EEG [179]. This method although 

simple, results in huge data loss. Instead, denoising the contaminated EEG 

segments would not only preserve the amount of data, but also would 

probably contribute to the increase of accuracy in the automatic sleep stage 

classification [180].  

We proposed a new method for EEG artefact removing for sleep stage 

classification. Rather than other works that used artificial noise, we used 

real EEG data contaminated with EOG and EMG for evaluating the proposed 

method. The artefact detection was performed by thresholding the EEG-

EOG and EEG-EMG cross correlation coefficients. Then, the segments 

considered contaminated were denoised by normalized least-mean squares 

(NLMS) adaptive filtering technique. Using a single EEG channel, four sleep 

stages consisting of Awake, N1 + REM, N2 and N3 were classified. 

5.2.2.1 Methodology 

Figure 29 shows the block diagram of the sleep stage classification 

framework with the proposed EEG artefact removal scheme. 
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Figure 29. Block diagram of the sleep stage classification framework with the proposed EEG artefact 

removal scheme. 

In this work, data was acquired from The Physionet Sleep-EDF database 

[Expanded] which includes records of 22 Caucasian males and females with 

the duration of nine hours. Pz-Oz EEG channel, horizontal EOG and 

submental chin EMG recordings of all the subjects were used for evaluation 

of the proposed method. In this study for reducing the artefacts, and guar-

antee the reliability of the classification results, all three steps of pre-pro-

cessing, including band pass filtering, windowing and trimming, described 

in chapter 4 were applied to the selected PSG subset. For the WP-based 

filtering, Daubechies order 20 (db20) was used as mother wavelet. 

Conventionally, it is assumed that the measured EEG is a linear 

combination of cerebral activity with one or more kinds of artefacts. Thus 

for detecting the EOG and EMG contamination, the filtered EEG, EOG and 

EMG recordings were divide into 1000-sample segments and then the cross 
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correlation of each EEG segment was calculated with the corresponding 

EOG and EMG segment. If the absolute value of the EEG-EOG cross 

correlation coefficients or EEG-EMG cross correlation coefficients was more 

than threshold 1 or threshold 2 respectively, the corresponding segment 

would be fed to an artefact removal block which was based on NLMS 

adaptive filtering. Adaptive filtering [181] has been extensively used in EEG 

artefact removal algorithms. It uses a recorded reference of the artefact (in 

our case horizontal EOG and submental chin EMG) to adjust a vector of 

weights that models the contamination according to an optimization 

algorithm. 

On the other hand, if the thresholding conditions for cross correlation 

coefficients were not satisfied, the relevant EEG segment would be copied to 

the output without any change. 

In order to perform sleep stage classification, the output of the pre-

processing block was fed to feature extraction block. A WP tree with 7 

decomposition levels and Daubechies order 2 (db2) mother wavelet was used 

for feature extraction. Different frequency bands of EEG including Delta, 

Theta, Alpha, spindle, Beta1 and Beta 2 were extracted from WP coefficients 

according to the scheme proposed in [52]. The following statistical features 

were calculated for each epoch using the WP coefficients: 

• Energy of the WP coefficients for each frequency band (F22-F27 ac-

cording to Table 7, chapter 4) 

• Total Energy (F28 according to Table 7, chapter 4) 

• Mean of the absolute values of WP coefficients for all frequency 

bands (F34 according to Table 7, chapter 4) 

• Standard deviation of WP coefficients for all frequency bands (F35 

according to Table 7, chapter 4) 
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• Energy ratio of various frequency bands (F29 to F33 according to 

Table 7, chapter 4) 

Next, the extracted features were normalized to have zero mean and unit 

variance. In this study for classification of stages, MLF neural network was 

used. The two-layer feed forward network consisting of 14 input neurons, 

12 hidden neurons and 4 output neurons for discrimination between the 

four sleep stages Wake, REM+N1, N2 and N3 was used. A sigmoid transfer 

function in the hidden layer and a linear transfer function in the output 

layer were selected. Levenberg-Marquardt training algorithm was chosen to 

train the network. 

5.2.2.2 Results 

The performance of the proposed method was assessed using the six 

subjects selected from the dataset. In the artefact detection stage, a 

threshold of 0.5 (Threshold 1) for EEG-EOG cross correlation coefficients 

and 0.25 (Threshold 2) for EEG-EMG cross correlation coefficients were 

selected. These thresholds were selected empirically considering the highest 

classification accuracy. Three different result validation approaches 

including subjective and objective methods were applied. 

The cross-correlation coefficients for EEG-EOG and EEG-EMG which were 

detected by thresholding before and after applying the artefact removal 

algorithm are shown in Figure 30. A significant reduction in the correlation 

coefficients is noticeable after artefact removal. 

Figures 31 and 32 illustrate the cancellation of EOG and EMG artefacts 

from contaminated EEG segments. It can be seen that the artefacts can be 

correctly eliminated without distorting the original EEG.  

After the completion of the artefact removal stage, the data is fed to the 

feature extraction algorithm. For training MLF neural network, unlike the 
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conventional approaches in the literature, which all the existing stages to 

the neural network are imported, we used a quantity of training data 

selected out from each patient’s data. This method is suitable for large 

databases helping on the reduction of the computational complexity of the 

classifier training stage. 

To assess the effectiveness of our artefact removal algorithm, we studied 

the sleep stage classification accuracy for raw (after removing zero energy 

epochs), filtered and artefact removed data. Table 29 shows the results of 

statistical analysis for comparison of each stage and overall accuracy for all 

the above-mentioned data. The results are validated using repeated random 

sub-sampling method which is also known as Monte Carlo cross-validation 

technique. It is observed that there is an improvement in the performance 

of the classifier after filtering the data, but the best performance is achieved 

by applying the proposed artefact removal algorithm. 

 

Figure 30. Absolute value of cross correlation coefficients, (a) EEG-EOG before artefact removal, (b) 

EEG-EOG after artefact removal, (c) EEG-EMG before artefact removal, (d) EEG-EMG after artefact 

removal algorithm. 
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Table 29. Results of the statistical analysis for comparison of each stage and overall accuracy. 

 Wake (%) REM + N1 (%) N2 (%) N3 (%) Overall (%) 

Raw 77.56 87.08 74.67 78.11 63.70 

Filtered 79.44 78.75 83.26 90.74 70.60 

Proposed 
Method 87.08 87.25 87.38 90.93 77.80 

 
Figure 31. EOG artefact cancelation from contaminated EEG. 

 
Figure 32. EMG artefact cancelation from contaminated EEG. 
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5.3 Summary 

In this chapter, the four main contributions of this thesis work in feature 

extraction and selection were described. For each contribution, the 

corresponding experimental setup details and results were presented. In the 

next chapter, the obtained results will be interpreted and compared to the 

state of the art results. 
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Chapter 6 

6. Discussion and Conclusion 

As mentioned in chapter1, in this thesis the main goal was identifying a 

robust and reliable feature set that can lead to efficient classification of sleep 

stages. For achieving this goal, three types of contributions were introduced 

in the following areas: feature selection, feature extraction including feature 

vector quality enhancement. All three contributions are aligned with the 

proposed hypothesis presented in chapter 1.  

In this chapter, the obtained results will be interpreted and compared to 

similar studies. Also, the significance and limitations of each work will be 

described. Finally, we will summarize the contributions of this thesis and 

discuss some suggestions for directions of future work. 

6.1 Discussion 

In this thesis two main contributions were made for the feature selection 

step of automatic sleep stage classification. First, two rank aggregation 

methods, namely Borda and RRA were applied to a set of 49 conventional 

features. Originally common in bioinformatics, rank aggregation methods 

are believed to be robust through the broad variety of classifiers and produce 

comparable classification accuracy to the individual feature selection 

methods. In our work, their performance was extensively compared to seven 
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different feature ranking methods using stability, similarity and accuracy 

criteria.  

The stability analysis results (Figure 21 and Table 9) show that Fisher 

method has the highest stability and the CMIM method is the least stable 

one. Also, the stability of Chi-square and IG methods seemed very 

convergent. Although the stability of rank aggregation methods was 

comparable to the conventional feature ranking techniques, none of them 

could outperform the conventional methods. This result is reasonable, since 

both of the selected rank aggregation methods were calculated in a way that 

almost all of the ranking techniques affected them equally. Therefore, the 

archieved stability is an average of overall stability. 

There existed a huge reduction in stability for MRMR_MID, MRMR_MIQ 

and ReliefF for three-feature subset. On the other hand, both MRMR 

methods were always 100% stable in selecting the first feature which was 

the Hurst Exponent. It means that the Hurst Exponent has the highest 

discrimination ability from the MRMR methods point of view. Also, the 

Fisher method had 100% stability for the three-feature and the five-feature 

subsets (ID, Hurst exponent, Petrosian fractal dimension as three-feature 

group and ID, Hurst exponent, Petrosian fractal dimension, zero-crossing 

rate and approximate entropy as five-feature group). Considering thirteen 

features, Fisher method was almost totally stable (99.92%). Finally, for 

twenty-nine features, IG outperformed other methods from the mean 

stability point of view.  

In similarity analysis (Table 11), Chi-square and IG pair and MRMR-MID 

and MRMR-MIQ pair generated highly similar results. The similarity of 

MRMR methods can be explained by their similar theoretical background. 
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The average similarity of Borda and RRA with other methods was approxi-

mately 0.5 with the other methods. Regarding the aggregation characteris-

tics it was predictable. 

Table 10 illustrates the top 10 features selected by each method. As it can 

be seen, Itakura spectral distance (F36) always appeared in the top 10 for 

all the methods. In spite of the fact that different feature ranking methods 

have their own specific criteria for ranking the features, observing ISD in the 

top 10 list, means that ISD is a preferable feature for all the feature selection 

methods. In addition to ISD, there were some other features that can be 

considered most preferable. EEG ZCR (F18) is a simple, yet effective feature 

that is listed in top 10 by all methods except ReliefF. Following ZCR, 

Petrosian fractal dimension (F9), Hurst exponent (F21), WP feature (F22), 

approximate entropy (F13), spectral entropy (F11), and Hjorth mobility 

parameter (F15) were selected by at least five ranking methods to be 

included in top 10 list. 

The optimum number of features for each method, selected by the Kneedle 

algorithm, is also presented in Table 10. For MLF neural network and kNN 

classifiers, a slight difference existed in the optimum number. Considering 

the maximum accuracy reached by different methods in their optimum 

points, the MRMR-MID method using kNN classifier outperformed all the 

others with seven selected features. For MLF neural network, both MRMR 

methods outperformed all the other methods with five features. None of the 

aggregation methods showed better performance than the rest of the feature 

ranking methods.  

Considering the obtained results, although mRMR method outperformed 

others from the classification accuracy point of view, the most stable feature 

set was generated by Fisher. Moreover, CMIM method needed the minimum 

number of features (3 features) to reach its optimum accuracy. It can be 
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concluded that selection of the feature ranking method is dependent on the 

system requirements that one has, such as highest accuracy/stability or 

minimum computational complexity. Regarding the poor performance of the 

rank aggregation methods, it should be noted that only two of many 

available rank aggregation methods were evaluated in this work. Both of 

these methods evaluated, follow the concept of averaging the results from 

different methods and therefore generate results that are reflecting the 

characteristics of all methods from the best to the poorest. 

Our second contribution in feature selection was the application of SSAE 

for feature transformation and dimensionality reduction in sleep stage 

classification. The main advantage of using a dimensionality reduction 

method like SSAE is that these kinds of methods are unsupervised and no 

information about groups is used in dimension reduction. In addition, 

because of its theoretical and mathematical structure which is related to 

deep learning, SSAE is able to learn and generate meaningful and efficient 

representation of the input feature set.  

According to Table 12, It is noticeable that the combination of SSAE 

method and Softmax classifier outperformed the other two classifiers in 

terms of overall accuracy. Also, for the individual sleep stages, in most of 

the cases SSAE discriminated the stages better. In addition to the higher 

performance, SSAE provided a significant reduction in the dimension of the 

feature vector. Considering that the second layer of SSAE had 12 hidden 

units, it succeeded to decrease the dimension from 37 to 12, which means 

67% reduction. Therefore, it is a powerful tool to generate more descriptive 

features from original feature vector.  

However, it should be noted that dimension reduction methods such as 

PCA, KDR and SSAE impose a limitation to the overall system. This 

limitation arises from the fact that it is essential to keep and calculate all 
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the features in the classification and practical application steps, because 

these methods use all the feature vector to generate useful representations 

while this is not the case in feature ranking methods. 

Regarding feature extraction, the main contribution of this thesis work 

was the application and evaluation of a distance-based set of features which 

were originally used in speech signal processing. The performance of the 

distance-based feature set along with 48 conventional temporals, frequency 

domain, time-frequency domain, non-linear, and entropy-based features 

were evaluated in sleep stage classification.  

Similar features were removed from the feature sets by thresholding L1-

norm between feature vectors. This step was advantageous because 

removing these features reduces the final feature vector dimensionality and 

enhances the stability of feature-ranking results. Moreover, according to the 

results of Table 14, this step led to an improvement in the classification 

accuracy. This improvement was expected since the existence of redundant 

features has no positive effects on the classification results and increases 

the computational complexity of the whole system. Regarding the threshold 

value, although in our work it was chosen empirically, it is better to use a 

systematic threshold search method for an optimium parameter selection. 

After removing similar features, feature ranking was applied. According to 

the obtained results, from the conventional feature set, EEG zero-crossing 

rate was selected as the best feature by most of the ranking methods. In 

addition to the zero-crossing rate, Petrosian fractal dimension, Hjorth 

mobility parameter, and Hurst exponent were always among the top-ranked 

features. This validates the outstanding performance of these features 

already demonstrated in previous studies such as [25] and also our study 

on feature rank aggregation. 
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In [70], [72], it had been shown that the Itakura distance between EEG 

and EOG signals and also between a reference EEG epoch and other EEG 

epochs have meaningful variations in different sleep stages. In these studies, 

It was concluded that these measures can be used as useful features in 

automated sleep staging systems and our simulations confirmed this 

conclusion. According to the results, all the ranking methods listed EEG 

Itakura distance, EEG-EOG Itakura and Itakura-Saito distances in their top 

25 features. Moreover, the features related to the similarity of a baseline 

EOG/EMG epoch to the rest of the EOG/EMG were always among the top 

25 features. 

The ranking results for the total feature set in Table 17 show that the top 

25 features for all the ranking methods include features from both 

conventional and distance-based sets. This fact implies that a combination 

of features from different domains yields better results. According to this 

table, distance-based features occupy 28% of the top-ranked features.  

To further investigate the contribution of distance-based features, three 

different classifiers, kNN, MLF neural network and DSVM, were used. 

Previous studies [30], [82] showed that combining different types of features, 

i.e. temporal, spectral, time-frequency domain and nonlinear, would lead to 

a satisfactory level of classification accuracy with a fewer number of 

features. In this work, we showed that using distance-based features 

together with conventional ones can further improve the performance of the 

sleep scoring system. This improvement is noticeable in the results of all 

three classifiers. According to the results of the Vikor method, 8-13 carefully 

selected measures from the total feature set were sufficient to reach, on 

average, 85% accuracy, and usually three of these features are from the 

distance-based category. The only method that listed conventional features 

higher in rank than distance-based features is the ReliefF method. 
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Specifically, with Min-Max normalization, this method had its first distance-

based feature ranked 18th. 

According to the literature [182], there has been a lack of discriminative 

features for distinguishing N1 stage from other sleep stages because 

neurophysiological signals of N1 and N2 have similarities with each other as 

well as other sleep stages [65]. For example, the PSG recordings show similar 

wave patterns in REM and N1 in EEG, both having low amplitude waves of 

3-7 Hz [183]. Therefore, the accuracy obtained on the classification of the 

N1 stage is usually lower other stages. Especially, discriminating N1 from 

REM is challenging. To tackle this challenge and increase the discrimination 

ability of the overall system, other channels (EOG, EMG and ECG) along 

with EEG are usually used [66], [82], [133]. In this work, the ability of the 

features to discriminate between each pair of sleep stages was assessed 

using two-tailed student’s t-test applied on the total feature set. The t-test 

results show that distance-based features outperform conventional features 

in discriminating between N1 and REM stages. According to Tables 27 and 

28, the Itakura-Saito distance of EEG spectral coefficients (F52) and Itakura 

distance of EMG spectral and AR coefficients (F53 and F54) have 

outstanding performances in distinguishing N1 from REM stage, regardless 

of the feature normalization method. Therefore, these features can be 

appropriate choices to be included in the sleep stage classification feature 

set to increase the system’s discrimination ability of the system. Regarding 

the effect of feature normalization on the overall performance, results show 

that the Min-Max method outperforms standardization. In other words, the 

accuracy achieved with the data normalized by Min-Max turned out to be 

higher than the accuracy achieved with standardization. To obtain a more 

general conclusion, the effect of feature normalization should be evaluated 

with different sleep databases.  
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Our last contribution was related to the enhancement of feature vector 

quality by adaptive removal of the EEG artefact. Specifically, in this thesis, 

we focused on the EMG and EOG artefacts on EEG signal. According to 

Figure 30, absolute cross correlation showed significant reduction after 

applying the proposed artefact removal technique. This enhancement was 

further confirmed by the classification accuracy results. According to Table 

30, although filtering the signals according to AASM manual 

recommendations improved the accuracy, the major improvement was due 

to the artefact removal, especially in Wake, N2 and N3 stages.  

Despite the obtained positive outcomes, it should be noted that the 

proposed method is more suitable for removing linear artefacts. In other 

words, since cross-correlation detects linear relationships between signals, 

it is not capable of detecting nonlinear correlations.  

6.2 Conclusion and Future Work 

Sleep quality is one of the most important measures of healthy life, 

especially considering the huge number of sleep-related disorders. 

Identifying sleep stages using multi-channel recordings like PSG signals is 

an effective way of assessing sleep quality. However, manual sleep stage 

classification is time-consuming, tedious and highly subjective. To overcome 

these hurdles, automatic sleep classification was proposed, in which pre-

processing, feature extraction and classification are the three main steps. 

Proper feature extraction and selection play an important role in the 

automatic sleep scoring process and has undeniable effect on final 

classification results. Besides the significant amount of work done in this 

area, there are still challenges that need to be addressed. In this thesis, we 

tried to address some of these challenges by proposing solutions for feature 

selection, feature extraction and artefact removal of PSG signals. Also, 
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several different evaluation criteria were used to assess the effectiveness of 

the proposed methods. The following conclusions can be drawn from the 

obtained results: 

• Regarding feature selection and considering that in this thesis, 

several feature ranking and rank aggregation methods were 

evaluated and compared, it can be concluded that MRMR methods 

outperformed other feature selection methods considering the 

evaluation criteria. However, the decision on the precise feature 

selection method depends on the system design requirements such 

as low computational complexity, high stability or high 

classification accuracy.  

• In addition to conventional feature transformation and 

dimensionality reduction methods, novel methods such as SSAE 

were proposed in this thesis and showed promising performance. 

• In addition to wide range of features used in automatic sleep stage 

classification, new and effective features such as distance-based 

features contribute positively to the classification performance. 

• New Effective and loss-less enhancement of raw signal quality is 

crucial for achieving high final classification accuracy. The proposed 

adaptive artefact removal method allowed 14% enhancement in 

overall accuracy. 

• Min-Max normalisation outperformed standardisation.  

In this thesis, the evaluation of the sleep stage classification systems was 

done based on the hypnograms provided by the databases creators. The use 

of these hypnograms imposed some limitations to our work. For example, in 

ISRUC database the available hypnograms were created from the consensus 

of two experts on visual sleep scoring. There were some cases of interscorer 
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variability, especially on N1. Moreover, the database was pre-processed, and 

raw data was not available for possible change in pre-processing step. 

Imbalanced data and few N1 stage epochs were other limitations of this 

thesis work. In normal human sleep hypnogram, different sleep stages are 

not presented equally, especially because there is always a shortage for N1 

stage. Therefore, the stage-wise classification accuracy is usually low for N1 

stage and this negatively affects the overall classification accuracy. 

Future work for this thesis can include: 

• Developing a selective aggregation method that incorporates only 

the most effective ranking methods will be desirable; 

• The comparison of the SSAE-based feature transformation with 

conventional methods and parameter adjustment; 

• Confirming the positive contributions of the distance-based features 

using other sleep datasets; 

• Extending the applications of suggested adaptive artefact removal 

algorithm for nonlinear artefact; 

• Developing a prototype for automatic sleep stage classification 

software 
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