
Feasibility of planctomycetes as a nutritional or
supplementary food source for Daphnia spp

S. C. Antunes1,2*, R. A. Almeida1, T. Carvalho1 and O. M. Lage1,2

1 Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto,
Portugal

2 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto,
Portugal

Received 12 April 2016; Accepted 22 July 2016

Abstract – Daphnia magna is widely used as a standard organism in ecotoxicology assays. It plays a key role
in energy transfer in freshwater food webs as a primary consumer, grazing on microalgae, yeast and bacteria.
Daphnids are commonly reared in the laboratory using microalgae cultures but alternative or complementary

sources are important to reduce the dependency on a single food source. The role played in nature by plancto-
mycetes as a food source for other higher trophic levels is still unknown. In this study, we aimed to evaluate
the potential of Rhodopirellula rubra strain LF2 as a nutritional or a supplementary food source for D. magna
and Daphnia longispina. Life-history assays were conducted with daphnids fed with R. rubra in exponential

and stationary growth phases, in three concentrations. Additionally, its adequacy as a supplement to the mi-
croalga Raphidocelis subcapitata was tested. In general, both daphnids showed impairment in all the para-
meters evaluated, especially when fed with R. rubra. However, when daphnids were fed with the two food

sources, no changes were recorded for the rate of population increase. At the tested concentrations, R. rubra
was not a good alternative food source in the daphnid diet.
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Introduction

Daphnia is a genus of freshwater planktonic crusta-
ceans that belong to the class Branchiopoda and the order
Anomopoda (Alonso, 1996). Daphnids play a key role
in energy transfer in freshwater food webs as a primary
consumer (filter feeder) and controller of phytoplankton
biomass in lentic ecosystems. These small crustaceans,
commonly denominated water fleas, are able to control
microalgal blooms but are the preferred food item of
zooplanktivorous fishes (Rinke and Vijverberg, 2005),
which causes large fluctuations in density and limits their
growth season. Daphnia are largely non-selective filter
feeders that do not discriminate between food particles
with regard to their nutritional quality, grazing on
microalgae, yeast, bacteria and protozoans (DeMott,
1989; Antunes et al., 2003). Indeed, Daphnia spp.
efficiently consumes heterotrophic bacteria (Gophen and
Geller, 1984; Brendelberger, 1991; Pace and Cole, 1994),

and are therefore able to shape the bacterial community
structure and to suppress bacterial biomass production
(Jurgens, 1994; Langenheder and Jurgens, 2001; Degans
et al., 2002).

Water fleas have become models in ecology, evolu-
tion and ecotoxicology, given their modest maintenance
requirements, short life cycle, high fecundity and parthe-
nogenetic (clonal) reproduction. Daphnia reproduces
asexually under optimal conditions, and the first repro-
ductive event is usually observed around 8–10 days after
birth, with new broods being produced every 3–4 days
(Ebert, 2005). Daphnia are commonly reared in the
laboratory using unialgal cultures as a single food source
(e.g., Antunes et al., 2004; Bukovinszky et al., 2012;
Meng et al., 2014). Because they are fed with a single
carbon source, culture performance becomes excessively
dependent on the food source (microalga), which some-
times leads to fluctuations in survivability and reproduc-
tive output and occasional culture crashes (Baird et al.,
1989b; Sterner et al., 1993). It is therefore important to
find carbon sources that may supplement and diversify*Corresponding author: scantunes@fc.up.pt
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their diet (for example, yeast – see Loureiro et al., 2011;
Freese and Martin-Creuzburg, 2013; Taipale et al.,
2014). Bacteria have been shown to be a poor-quality
food source for daphnids (Petersen et al., 1978;
Martin-Creuzburg et al., 2011; Taipale et al., 2014),
although occasionally an important one during some
periods (Kankaala, 1988). Nonetheless, bacteria can be
useful food supplements for Daphnia; for example, the
standard organic additive recommended by Baird et al.
(1989b) and the OECD (2012) promotes bacterial growth,
which is thought to aid in culture performance (Loureiro
et al., 2011). Reproduction and demography of
Daphnia are closely linked to food availability (Gulati
and DeMott, 1997; Kilham et al., 1997; Picard and Lair,
2000; Hülsmann, 2001), and also to food quality and
quantity, which could influence ecotoxicological data in
assays with daphnids (Hochstädter, 2000; Antunes et al.,
2004).

Planctomycetes is a phylum of the domain Bacteria
with very particular and unique characteristics, some
shared in common with eukaryotes (Lage and Bondoso,
2014 and references therein). They are present in a wide
range of habitats, which include aquatic and terrestrial
environments, and in association with very diverse organ-
isms (Morris et al., 2006; Ward et al., 2006; Webster and
Bourne, 2007; Lage and Bondoso, 2011). They are
normally present at low frequencies but high percentages
can be found in sediments (Rusch et al., 2003; Musat et al.,
2006; Chipman et al., 2010; Hu et al., 2010), in the
bacterial community composition in acidic Sphagnum peat
bogs (Dedysh et al., 2006) and in the microbial community
of macroalgae biofilms (Bengtsson and Ovreas, 2010;
Lachnit et al., 2011; Lage and Bondoso, 2011). Their
ecological role is not yet well understood but the broad
coverage of ecosystems suggests diverse functional niches
for the planctomycetes. However, their ecological rele-
vance in the food web as a potential food source for higher
trophic levels is unknown.

Bearing in mind this lack of knowledge and the need to
find alternative or complementary food sources to feed
daphnids, we aimed to assess the potential of the
planctomycetes as an additional or nutritive food source
for Daphnia spp. In order to accomplish this objective,
individual feeding assays, with Rhodopirellula rubra strain
LF2 from differential growth phases (exponential and
stationary), were conducted in two Daphnia species
(Daphnia magna – standard species andDaphnia longispina
– autochthonous species), and their life-history was
evaluated. R. rubra is one of the species described from
our planctomycetes collection (Bondoso et al., 2014) and is
being studied in various aspects (Lage et al., 2013; Viana
et al., 2013; Flores et al., 2014). Planctomycetes are easy to
cultivate and allow relatively good biomass production.
As cells in the exponential and stationary growth phases
possess different nutritional qualities, cells from both
phases were tested in this study. This is due to the
production of different metabolites: in the exponential
phase, the molecules produced are needed for cell growth
(basic metabolism), while in the stationary phase, cells

express secondary metabolism and accumulate reserves of
still unknown nature in planctomycetes.

Materials and methods

Daphnia source and cultures

D. magna is a standard species used for environmental
monitoring of pollutants and plays an important role in
establishing regulatory criteria by government agencies
(De Stasio et al., 1995; Antunes et al., 2007a, b; Shaw
et al., 2008). The experimental genotype (clone A, sensu
Baird et al., 1989a) has been cultured under laboratorial
conditions for several years. D. longispina is a ubiquitous
native species in European lentic systems, especially lakes
and reservoirs; it is smaller thanD. magna (which is a pond
species), and usually more sensitive to environmental
stress (Antunes et al., 2007a, b). The genotype used in this
study was collected in Crestuma-Lever reservoir (north of
Portugal, river Douro basin) and maintained in laboratory
conditions for several generations.

Monoclonal cultures of D. magna and D. longispina
were reared in single-cohort group cultures under a
16L:8D h cycle and a temperature of 20¡2 xC. Rearing
procedures followed those described in Antunes et al.
(2003, 2004), Castro et al. (2007), and Loureiro et al.
(2011). In brief, ASTM (1980) synthetic hard water
medium was used as the culture medium, which was
supplemented with a standard organic additive to provide
essential microelements to daphnids. The culture medium
was renewed every 2 days, and daphnids were fed with
the microalgae Raphidocelis subcapitata (formerly known
as Selenastrum subcapitata and Pseudokirchneriella
subcapitata) with a ratio of 3.0r105 cells.mLx1.dayx1

for D. magna, and 1.5r105 cells.mLx1.dayx1 for
D. longispina. The microalga was maintained in non-
axenic batch cultures with Woods Hole MBL medium
(Stein, 1973), at 20¡2 xC and with a 16L:8D h photoperiod
(y6000 lux). Algae were cyclically harvested while still in
the exponential growth phase (5–7 days old) and inocu-
lated in fresh medium (Environment Canada, 1992;
OECD, 2006). All assays were initiated with neonates
(<24 h old), born between the 3rd and 5th broods, which
were obtained from group cultures.

R. rubra cultures

R. rubra strain LF2 was grown in modifiedM13 culture
medium (Lage and Bondoso, 2011). Cultures were kept in
solid culture medium. Liquid cultures were incubated at
26 xC and 200 rpm for 3 or 7 days, respectively, for the
exponential and stationary growth phases. After each
growth period, cells were collected by centrifugation at
4000 r.p.m. and resuspended in distilled water and the
optical density adjusted to 0.2 arbitrary units (AU) at
600 nm. The suspension was stored at x20 xC before
being used in the feeding assays.

S. C. Antunes et al.: Ann. Limnol. - Int. J. Lim. 52 (2016) 317–325318



Chronic assays

To evaluate the potential of R. rubra as a nutritional or
supplementary food source for Daphnia spp., two life-
history assays were conducted for each species, evaluating
the nutritional potential of planctomycetes in different
growth phases (exponential and stationary). Feeding
assays were adapted from chronic standard protocols for
reproduction evaluation (ASTM, 1997; OECD, 2012).
Assays were conducted for 21 days under the same
temperature and photoperiod regimes described for rear-
ing procedures. In each assay, D. magna and D. longispina
were exposed to two different food scenarios (Table 1).
Ten organisms born between the 3rd and 5th brood,
aged <24 h, were individually exposed to the different
treatments in glass vessels filled with 25 mL of ASTM
medium. As control, Daphnia spp. were fed with
R. subcapitata as the only food source added. The
organisms were fed daily and checked for mortality and
reproductive state. In the case of neonate release, they
were counted and discarded (Antunes et al., 2003). The
culture medium was renewed every 2 days. For each assay,
the following parameters were recorded: mortality, age at
first reproduction (AFR), and reproductive output.
Survival and fecundity estimates were used to compute
the per capita intrinsic rate of population increase (r),
which was iterated from the Euler–Lotka equation:

1 ¼
Xn

x¼0

e�rxlxmx

where r is the intrinsic rate of increase (dayx1), x is the age
class in days (0 … n), lx is the probability of surviving to
age x, and mx, is the fecundity at age x. Standard errors
for r were estimated using the jack-knifing technique
described by Meyer et al. (1986). For the rate of
population increase, all individuals were used in the
calculation because we aimed to calculate age-specific
fecundity (newborns/female) and survival. These demo-
graphic parameters can only be estimated from a popula-
tion (n>1), so all the individuals (usually n=10) from
each experimental treatment contributed to the calcula-
tion. In order to test for differences in this parameter, we
needed to resample the population and generate pseudo-
values; in this case, we used the jack-knife method as
proposed by Meyer et al. (1986).

The somatic growth rate was estimated from the initial
and final body size of the daphnids, measured from the top
of the head to the base of the caudal spine in a binocular
stereoscope, according to the following expression:

growth rate ¼ lnðlfÞ � lnðliÞ
Dt

where lf is the body size (mm) of the test organism at
the end of the test, li is the average body size (mm) of a
subsample (n=20) of neonates coming from the same
batch of neonates that initiated the test, and Dt is the time
interval (in days).

Statistical analysis

All the parameters measured in the chronic assays (rate
of population increase, AFR, reproductive output and
somatic growth rate) were analyzed using the one-way
analysis of variance test (ANOVA) to determine statisti-
cally significant differences between the food treatments.
A Dunnett test (if one-way ANOVA was significant), was
applied to each parameter of the two assays (exponential
and stationary growth phases of R. rubra for each
Daphnia species) to assess statistical differences between
the different food treatments and the control.

Results

No mortality was observed in the control treatment
when both species were fed with the green microalga
R. subcapitata (Fig. 1). When fed solely with R. rubra, both
species showed moderate to high mortality. D. longispina
was more sensitive than D. magna, in both planctomycetes
growth phases, as shown by overall higher mortality. Very
high mortalities were observed when D. longispina was fed
with R. rubra in the stationary phase. This lethal effect of
R. rubra was, at least partially, nullified when the food
ration was supplemented with R. subcapitata. This pattern
was, however, not observed forD. magna fed with R. rubra
in the exponential phase.

Figure 2 shows the results for age at first reproduction
assays. In general, a significant delay of the age of
reproduction was observed for D. longispina when fed

Table 1. Experimental design of food treatments for Daphnia sp. assays.

Food treatments

R. rubra (0.2 AU at 600 nm)

R. subcapitata
25 mL of cells suspension

(1/1000, v/v)
250 mL of cells suspension

(10/1000, v/v)
2500 mL of cells suspension

(100/1000, v/v)
Ctl r
[1] r
[2] r
[3] r
[1]A r r
[2]A r r
[3]A r r
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only with R. rubra for both growth phases (Table 2).
At the highest R. rubra and R. subcapitata concentrations,
a significant delay was also observed. No reproduction or
significant delay was observed for D. magna when fed only
with R. rubra (Table 2). These effects were not observed
when feeding was also supplemented with R. subcapitata.

In Figure 3 and Table 2, a life-history response of
both daphnids is provided. The somatic growth rate
was significantly decreased when daphnids were fed with
only R. rubra. A similar pattern was recorded for the
highest concentration of R. rubra+R. subcapitata, for
both daphnid species (Figs. 3(A) and (B)). Regarding
reproductive output (Figs. 3(C) and (D)), when daphnids
were fed exclusively with R. rubra, a significant decrease
was recorded. When fed with R. rubra and R. subcapitata,
an increased tendency was observed for D. magna when
R. rubra concentrations increased, while a significant
decrease was observed for D. longispina for the same
treatments. The analysis of the rate of population increase

showed a significant decrease in daphnids fed with only
R. rubra (Figs. 3(E) and (F)), and with R. rubra and
R. subcapitata at the highest concentrations (exponential
and stationary phases) only for D. longispina.

Discussion

Daphnid diet in culture is essentially based on a single
food source (Bukovinszky et al., 2012), namely the green
microalgae R. subcapitata or Chlorella vulgaris. This diet
limits the carbon source available for Cladocera, with
possible induction of several constrains in their develop-
ment and consequent population changes (Sterner et al.,
1993; Bukovinszky et al., 2012). Several studies have
already described how food limitations (in terms of quality
and quantity) can induce significant alterations in Daphnia
spp. performance, namely a delay in the growth rate, a
decrease in the number of eggs produced and lower
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fecundity (Lampert, 1978; Taylor, 1985; Wylie and Currie,
1991; Repka, 1997a, b; Bukovinszky et al., 2012). Indeed,
this fact has been a concern for researchers in the last few
decades, since the health of Daphnia in culture may affect
the results of ecotoxicological assays. This is highly
relevant since Daphnia is the standard organism most
commonly used in ecotoxicology. Thus, in order to find a
viable alternative or supplementary carbon source for the
diet of D. magna and D. longispina, R. rubra strain LF2
in the exponential and stationary growth phases were
provided at different concentrations, individually and also
combined with the microalgae R. subcapitata (the normal
food source).

This study allowed assessment of the bacterial group
planctomycetes both as a food supply and as a supplement
to the normal food supply. On the basis of our results, in
general, when daphnids were fed with only planctomy-
cetes, the various parameters analyzed were effectively not
as favorable as when they were fed with only algae. This
was also demonstrated by the high mortality that occurred
in all the conditions tested (Fig. 1). Planctomycetes are
known to have the ability to synthesize sterols (Pearson
et al., 2003), which are important molecules required by
daphnids (Martin-Creuzburg et al., 2011) for different
physiological processes, acquired only through their diet.
However, our results showed that R. rubra could not fulfill
this need even though it possesses palmitic (16:0) and oleic
(18:1 v9c) acids as the main fatty acids (Bondoso et al.,
2014), which are more typical of microeukaryotes than of
bacteria (Kerger et al., 1988). Indeed, several studies have
already demonstrated the importance of sterols in the diet
of Daphnia, since when they are exposed to poor sterol
food conditions, several life-history parameters are sig-
nificantly reduced (e.g., somatic and population growth
rates, number of eggs, viable offspring and survival)
(Martin-Creuzburg et al., 2005; Wacker and Martin-
Creuzburg, 2007). On the other hand, the planctomycetes
concentrations used in this work could potentially not

have covered daphnid requirements, when added as a
single food source. Several previous studies have shown
that insufficient food concentration induces a significant
decrease of the clutch size (Gliwicz and Guisande, 1992;
Guisande and Gliwicz, 1992; Gliwicz and Boavida, 1996).
Besides inadequate food concentration, some other factors
could have contributed to this nutritional inability, such as
inadequacy as a carbon source or toxicity induced by
planctomycetes. To our knowledge, planctomycetes are
not known to be noxious organisms even though studies
are still lacking regarding the toxicity of these bacteria.
Several studies have shown the growth impairment of
D. magna due to toxicity induced by bacteria like
Pseudomonas and Hydrogenophaga, even at low dietary
concentrations (Martin-Creuzburg et al., 2011; Freese and
Martin-Creuzburg, 2013).

In this study, the two species of Daphnia showed
different sensitivity to R. rubra as a food source. In
addition to species sensitivity, a study by Repka (1997a)
documented the high sensitivity of different clones of the
same species (Daphnia galeata) to distinct food sources. In
our study, D. magna presented better overall performance
(lower mortality, no changes in life-history parameters)
when fed with R. rubra in the stationary growth phase,
while D. longispina preferred R. rubra in the exponential
growth phase. When R. rubra was used as a supplement
to R. subcapitata, no mortality occurred in the middle
concentration of R. rubra in the exponential phase for
D. longispina and in the two lowest concentrations of
R. rubra in the stationary phase forD. magna.Furthermore,
no significant effects on daphnid life-history were found
when the rate of population increase was evaluated, with
the exception of the highest concentration for D. longispina
(Figs. 3(E) and (F)). Due to the lack of information on
planctomycetes nutritional capacity in the two growth
phases, we are unable to further explain the different
behavior of the two daphnids. However, in the exponential
growth phase, planctomycetes are essential as individual

Table 2. One-way analysis of variance (ANOVA) summary of endpoints evaluated in the life history of D. magna and D. longispina

feeding with different food sources (d.f.: degrees of freedom, MS: mean square or variance, F: F statistic (MSfactor/MSresidual), P:
probability).

Endpoint Species d.f. MS F P
Exponential phase Age at first reproduction D. magna 4, 31 10.628 11.569 <0.001

D. longispina 6, 49 22.998 17.499 <0.001
Somatic growth rate D. magna 6, 47 0.0009 306.9 <0.001

D. longispina 6, 47 0.0003 31.01 <0.001
Total offspring D. magna 6, 61 12 950 167.6 <0.001

D. longispina 6, 49 6757.8 60.14 <0.001
Rate of population increase D. magna 4, 49 0.0088 3.785 0.010

D. longispina 6, 69 0.1450 18.74 <0.001
Stationary phase Age at first reproduction D. magna 5, 55 18.119 7.746 <0.001

D. longispina 5, 40 36.328 18.937 <0.001
Somatic growth rate D. magna 6, 61 0.0006 295.5 <0.001

D. longispina 5, 35 0.0005 121.7 <0.001
Total offspring D. magna 6, 65 13 053 45.73 <0.001

D. longispina 5, 40 5894.3 46.16 <0.001
Rate of population increase D. magna 5, 59 0.0730 43.49 <0.001

D. longispina 5, 59 0.1300 17.77 <0.001
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unicellular forms with smaller size, which would facilitate
their uptake by the smaller daphnids (D. longispina).
A mixture of food sources seems to be nutritionally
richer (high nutrient content) and increases the perfor-
mance of Daphnia (Taylor, 1985; Sterner et al., 1993;
Kilham et al., 1997; Bukovinszky et al., 2012; Freese and
Martin-Creuzburg, 2013). However, and similarly to our
results, Boersma and Vijverberg (1996) observed no
alterations of growth rate, reproduction and rate of
population increase when Ceriodaphnia pulchella was fed
with a mixture of two algal species instead of with a single
food source. When D. longispina was fed with only
R. rubra, all the parameters analysed were negatively
affected. Vanni and Lampert (1992) also described a

significant delay in the age at first reproduction when
Daphnia was fed with food of low quality and quantity.
Another important aspect is that this species is a much
smaller Cladocera (mean adult B1.5 mm) when compared
with D. magna (mean adult B3 mm). Being smaller,
D. longispinamay have difficulty dealing with food of large
size. R. rubra (isolated cells lengths B1.3–2.5 mm;
Bondoso et al., 2014) can form aggregates of huge
numbers of cells reaching sizes of more than 10 mm.
Furthermore, clusters of this bacterium and the micro-
algae may also be formed, which may block the daphnid
filtration system, with impairment of feeding function.

Another result observed was the increase in pink
pigmentations in the daphnid body, especially in Daphnia
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magna. Daphnia’s color depends on the food that is
predominant in their diet: when daphnids feed mostly on
green microalgae, they are transparent with their digestive
tube colored in green or yellow, but they are white or
salmon-pink when they feed on bacteria (Ebert, 2005).
Well-fed animals show more vivid coloration than starved
animals. In our study, we observed that D. magna
metabolized and incorporated R. rubra pigments in its
body since this daphnid turned overall very pinkish with
the highestR. rubra concentrations and paler pink with the
other concentrations, even though in the presence of the
microalgae. This fact can be explained by the pink to
reddish color of R. rubra (Bondoso et al., 2014) and shows
that daphnids have no difficulty in digesting planctomy-
cetes.

This study showed that planctomycetes, at the con-
centrations tested, seem to be neither an adequate food
source for daphnids, nor to improve their diet as a viable
supplement. Further research is needed to increase the
knowledge of these bacteria regarding toxicity and their
performance as a nutritional source for other organisms,
aimed at understanding their ecological role in the food
web.
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responses of Daphnia longispina to mosquitofish (Gambusia
holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones.
Hydrobiologia, 594, 165–174.

Chipman L., Podgorski D., Green S., Kostka J., Cooper W. and
Huettel M., 2010. Decomposition of plankton-derived
dissolved organic matter in permeable coastal sediments.
Limnol. Oceanogr., 55, 857–871.

Dedysh S.N., Pankratov T.A., Belova S.E., Kulichevskaya I.S.
and Liesack W., 2006. Phylogenetic analysis and in situ
identification of bacteria community composition in an
acidic Sphagnum peat bog. Appl. Environ. Microbiol., 72,
2110–2117.
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