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Raineya orbicola gen. nov., sp. nov. a slightly thermophilic
bacterium of the phylum Bacteroidetes and the description of
Raineyaceae fam. nov.
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Abstract

An isolate, designated SPSPC-11T, with an optimum growth temperature of about 50
�

C and an optimum pH for growth

between 7.5 and 8.0, was recovered from a hot spring in central Portugal. Based on phylogenetic analysis of its 16S rRNA

sequence, the new organism is most closely related to the species of the genus Thermonema but with a pairwise sequence

similarity of <85%. The isolate was orange-pigmented, formed non-motile long filaments and rod-shaped cells that stain

Gram-negative. The organism was strictly aerobic, oxidase-positive and catalase-positive. The major fatty acids were iso-

C15:0, iso-C15 : 0 2-OH and iso-C17 : 0 3-OH. The major polar lipids were one aminophospholipid, two aminolipids and three

unidentified lipids. Menaquinone 7 was the major respiratory quinone. The DNA G+C content of strain SPSPC-11T was

37.6mol% (draft genome sequence). The high quality draft genome sequence corroborated many of the phenotypic

characteristics of strain SPSPC-11T. Based on genotypic, phylogenetic, physiological and biochemical characterization we

describe a new species of a novel genus represented by strain SPSPC-11T (=CECT 9012T=LMG 29233T) for which we propose

the name Raineya orbicola gen. nov., sp. nov. We also describe the family Raineyaceae to accommodate this new genus and

species.

The vast majority of the species of the phylum Bacteroidetes
have optimum growth temperatures that range from about
25

�

C and 45
�

C, while slightly thermophilic or thermophilic
species are very rare. Some organisms, such as Pseudozobel-
lia thermophila [1] and Lutaonella thermophila [2], have
slightly elevated optimum growth temperatures of around
40–45

�

C, while other species, such as Anaerophaga
thermohalophila, are slightly thermophilic [3], with an opti-
mum growth temperature of around 50

�

C. Two other spe-
cies classified in the phylum Bacteroidetes are thermophilic,
namely Thermonema lapsum [4] and Thermonema rossia-
num [5] with optimum growth temperatures of about 60

�

C
and a maximum growth temperature of around 65

�

C. Until
recently, the two species of the genus Rhodothermus, Rhodo-
thermus marinus and Rhodothermus profundi [6–9], with

optimum growth temperatures of over 65
�

C and maximum
growth temperatures below 80

�

C, were included in the phy-
lum Bacteroidetes but are now classified in the novel phy-
lum named ‘Rhodothermaeota’ [10].

We recently isolated one strain of a slightly thermophilic

organism with an optimum growth temperature of around

50
�

C and a maximum growth temperature of 60
�

C. Phylo-

genetic analysis of the 16S rRNA gene sequence showed

that this organism represents a distinct lineage within the

phylum Bacteroidetes. Based on phylogenetic, physiological

and biochemical parameters, we are of the opinion that

strain SPSPC-11T represents a novel genus and species, for

which we propose the name Raineya orbicola gen. nov., sp.

nov. We also propose that this organism represents a new
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family for which we propose the name Raineyaceae fam.
nov.

Strain SPSPC-11T was isolated from a reddish biofilm at the
hot spring at S~ao Pedro do Sul in Central Portugal (40

�

46¢
N, 8

�

4¢ W). The sample was maintained without tempera-
ture control for 1 day, and then 0.001 to 0.1ml in 10ml
water were filtered through membrane filters (Gelman type
GN-6; pore size 0.45 µm; diameter 47mm). The filters were
placed on the surface of solidified Thermus medium [11],
the plates were wrapped in plastic to prevent evaporation
and incubated at 45

�

C for up to 5 days. Cultures were puri-
fied by sub-culturing and the isolates stored at –70

�

C in
Thermusmedium with 15% (w/v) glycerol.

Unless otherwise stated, all biochemical and tolerance tests
were performed, as described previously [12, 13], in liquid
Thermus medium or on Thermus agar plates [11] at 45

�

C
for up to 7 days, rather than at the optimum growth temper-
ature of about 50

�

C, because the cultures remained viable
for longer periods of time. Cell morphology and motility
were examined by phase contrast microscopy during the
exponential growth phase. For transmission electron
microscopy (TEM), bacteria were fixed for 2 h with 2.5%
glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2), washed
in buffer, postfixed for 4 h with buffered 2% OsO4, washed
in buffer, followed by 1 h in 1% uranyl acetate, dehydrated
in ethanol and embedded in Epon. Ultrathin sections were
stained with uranyl acetate and lead citrate. For scanning
electron microscopy (SEM), bacteria were initially processed
as for TEM, but after postfixation a drop of bacteria sus-
pended in buffer was laid on each coverslip coated with
poly-lysine. After resting for 15min with the buffer, the bac-
teria on the coverslips were dehydrated in ethanol and criti-
cal-point dried. Samples were coated with Au before being
observed.

The presence of flexirubin-type pigments was determined
by flooding bacterial cells with 20% KOH [14]. The absorp-
tion spectra of pigments extracted using acetone/methanol
7 : 2 (v/v) were determined at 200–900 nm with a UV–visi-
ble spectrophotometer (ThermoScientific). The growth
temperature range of the strain was examined at 5

�

C incre-
ments between 30 and 65

�

C by measuring the turbidity
(610 nm) of cultures incubated in 300ml metal-capped
Erlenmeyer flasks, containing 100ml medium in a rotary
water-bath shaker at 150 r.p.m. The pH range for growth
was examined at 45

�

C in the same medium by using 50mM
MES, HEPES, TAPS and CAPSO over a pH range of 6.0 to
9.0 with 0.5 unit increments, in a rotary water-bath shaker.
Growth with added salt, 1% (w/v) NaCl, was determined in
liquid medium. Catalase, oxidase and DNAse activities were
examined as described previously [12, 13]. Additional char-
acteristics were obtained using the API ZYM system (bio-
M�erieux) at 45

�

C. Anaerobic growth was assessed in culture
medium containing KNO3 (1.0 g l�1) incubated in anaero-
bic chambers (GENbox anaer, bioM�erieux). Results were
recorded after 30 days of incubation at 45

�

C. Single-carbon
source assimilation tests were performed in a minimal

medium composed of Thermus basal salts containing filter-
sterilized single carbon sources (2.0 g l�1), ammonium sul-
fate (0.5 g l�1) and a vitamin and nucleotide solution at a
final concentration of 40 µg l�1 [15] consisting of thiamine,
riboflavin, pyridoxine, biotin, folic acid, inositol, nicotinic
acid, pantothenic acid, p-aminobenzoic acid, cyanocobala-
min, adenine, thymine, cytosine, guanine, cytidine, uracil
and inosine (10ml l�1). Growth of the strain on single
carbon sources was examined by measuring the turbidity
of cultures in 20ml screw capped tubes containing 10ml
medium for up to 7 days.

The polar lipids were extracted from freeze-dried cells and
the individual polar lipids were separated by two-dimen-
sional thin-layer chromatography. To visualize phospholi-
pids, aminolipids, glycolipids and total lipids, the following
reagents were used, respectively, molybdenum blue, ninhy-
drin, a-naphthol-sulfuric acid and molybdophosphoric acid
[16]. Lipoquinones were extracted from freeze-dried cells
and purified by thin-layer chromatography. The purified
lipoquinones were separated by high-performance liquid
chromatography (HPLC) as described previously [17]. Cul-
tures for fatty acid analysis were grown in Thermus liquid
medium at 45

�

C for 5, 8 and 24 h. Fatty acid methyl esters
were obtained from fresh wet biomass, separated, identified
and quantified with the standard MIS Library Generation
Software, version 6.0, aerobe TSBA method (Microbial ID
Inc., MIDI) as described previously [18].

Total genomic DNA was extracted following the method of
Nielsen et al. [19], and used for the different analyses per-
formed. The G+C content of DNA was determined by
HPLC as described by Mesbah et al. [20] and by genome
sequencing (see below). PCR-amplification of 16S rRNA
genes was carried out as described by Rainey et al. [21]. The
16S rRNA gene sequence was determined by Sanger
sequencing (Macrogen).

The genomic DNA was prepared with the Nextera XT DNA
Library Preparation Kit and sequenced using paired-end
2�300 bp on the MiSeq system (Illumina). Sequenced reads
were quality filtered with Trimmomatic [22] and assembled
with SPAdes (version 3.7.1; [23]) and the resulting contigs
annotated with prokaryotic genome prediction [24]. Genome
estimated completeness and contamination were verified
with CheckM (version 1.0.7) [25]. RNAmmer (version 1.2)
[26] and Usearch61 [27] (against Greengenes database, ver-
sion 13.8) were used for complete or partial 16S rRNA genes
analysis. The two 16S rRNA genes identified were scattered
in three contigs, but the complete ribosomal genes were man-
ually reconstructed based on the mapping of paired-end
reads against the assembled contigs by using Bowtie 2 [28]
The genome of strain SPSPC-11T was compared to the
genomes of several organisms of the order Cytophagales,
namely Bacteroides fragilis YCH46 (NC_006347.1), Hymeno-
bacter roseosalivarius DSM 11622T (GCA_900176135.1),
Cyclobacterium marinum DSM 745T (NC_015914), Cyto-
phaga hutchinsonii ATCC 33406T (NC_008255.1) and Ther-
monema rossianum DSM 10300T (NZ_AUGC00000000)
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with GET_HOMOLOGUES using BLASTP and OrthoMCL
[29]. Orthologous genes were annotated against the Kyoto
Encyclopedia of Genes and Genomes and assigned to meta-
bolic pathways (sequence similarity cutoff e-values of 1e�5)
using KOBAS 2.0 [30].

Isolate SPSPC-11T formed Gram-negative non-motile short
rod-shaped cells and long filaments during the exponential
phase of growth (Fig. 1a, b). Cell-wall septa were rarely seen
to divide into smaller cells (Fig. 1c). The bacterium had a
Gram-negative type of cell wall (Fig. 1d) and a few small
electron-dense inclusions could be seen in the cytoplasm.
Colonies were orange-pigmented on Thermusmedium.

Strain SPSPC-11T had an optimum growth temperature of
about 50

�

C; growth occurred at 35 and 60
�

C. The optimum
pH for growth was about 7.5–8.0 with a range of growth
between pH 6.5 and 8.5. The isolate did not utilize any of
the sugars tested and only a few amino acids, but grew well
on casamino acids, tryptone, peptone and yeast extract
(Table 1). Yeast extract or a vitamin and nucleotide supple-
ments were necessary for growth in minimal medium. The
polar lipid pattern on thin-layer chromatography of the new
organism revealed the presence of aminolipids, aminophos-
pholipids and unidentified lipids (Fig. S1, available in the
online version of this article). The major respiratory lipoqui-
none was menaquinone 7. The major fatty acids of these
organisms were iso-C15 : 0, iso-C15 : 0 2-OH and iso-C17 : 0

3-OH, and were similar during several phases of growth
despite the notable changes in morphology (Table S1).

The analysis of the 16S rRNA gene sequence of strain
SPSPC-11T (KY990922) using the EzBioCloud database ver-
sion 2017.5 [31] demonstrated that strain SPSPC-11T

belonged to the phylum Bacteroidetes and represented a
novel cultured lineage that shared less than 85% similarity
with previously described taxa. The SPSPC-11T lineage clus-
ters with the lineage of the family Thermonemataceae within

the order Cytophagales (Fig. 2). Comparison of the two 16S
rRNA gene sequences (MF125287, M125288) determined
from the draft genome sequence with environmental
sequences showed it to share 90–99% similarity with
sequences recovered from a range of aquatic environments
(Fig. 3 and Table S2).

Recently, published studies on the phylogeny of the phylum
Bacteroidetes, based on whole genome comparisons, have
demonstrated the existence of a number of lineages repre-
senting new taxa at the phylum, class, order and family lev-
els [10, 32], although Munoz et al. [10] designated 16S
rRNA gene sequence similarity ranges outside the taxo-
nomic levels proposed by Hahnke et al. [32]. Phylogenetic
analysis of the 16S rRNA gene sequence of strain SPSPC-
11T showed its position within this classification of the phy-
lum Bacteroidetes and related taxa (Fig. 2). Based on the
16S rRNA gene sequence similarity values to related taxa
(<85%) and the position within the phylogenetic tree it is
demonstrated that strain SPSPC-11T represents a novel line-
age at the family level within the order Cytophagales.

The observation that strain SPSPC-11T was unable to
grow on any of the sugars examined prompted us to pro-
duce a high-quality draft genome sequence to assess the
possibility that some genes involved in sugar catabolism
would not be present. Additionally, the genome was
searched for other metabolic processes and compared
with the genomes sequences of carbohydrate-utilising
Cytophagales species that assimilate carbohydrates, namely
Bacteroides fragilis YCH46 (NC_006347.1), Hymenobacter
roseosalivarius DSM 11622T (GCA_900176135.1), Cyclo-
bacterium marinum DSM 745T (NC_015914) and Cyto-
phaga hutchinsonii ATCC 33406T (NC_008255.1), as well
as the genome sequence of Thermonema rossianum DSM
10300T (NZ_AUGC00000000) that does not utilize any
sugars tested [5].

Fig. 1. Electron microscopy by SEM and TEM of exponential phase cells of strain SPSPC-11T. (a) Filamentous cells from a young cul-

ture (2–5 h) observed by SEM. (b) Filamentous cells from a young culture (2–5 h) observed by TEM. (c) A septum is indicated by an

arrow. (d) High magnification showing the Gram-negative type of cell wall.
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The SPSPC-11T DNA sequence run generated 2 112 714
paired-end reads of which 1 796 859 high quality reads
remained after quality filtering. The de novo read assembly
produced 104 contigs with an N50 size of 67 061 bp (Table 2).
The high-quality draft assembled genome sequence consisted
of 3 070 213 bp with a DNA G+Ccontent of 37.6mol%.
CheckM estimated the genome to be near-completion
(98.2%) and the level of contamination to be extremely low
(0.3%). No contamination was detected for 16S rRNA genes
as tested by RNAmmer and Usearch61. The genome had a
total of 2730 genes, including 2685 protein-coding genes, 39
tRNA genes and 6 rRNA genes (two 5S, two 16S and two 23S)
(Table 2). Analysis of the whole-genome sequence demon-
strated the presence of two 16S RNA gene-coding sequences.
The two 16S rRNA gene sequences differed at eight positions
over 1501 compared nucleotides representing 99.47% identity.
The presence of multiple 16S rRNA gene copies with such

levels of similarity between the gene copies of the same organ-
ism have been reported across many bacterial taxa and in rep-
resentatives of the phylum Bacteroidetes [33, 34].

The draft genome comprised 2115 genes with putative func-
tions (~79% of total protein-coding genes) and 1320 allocated
to COG functional categories (~49% of total protein-coding
genes). The most abundant COG category was ‘Translation,
ribosomal structure, and biogenesis’ followed by ‘Cell wall/
membrane biogenesis’ and ‘Amino acid transport and metab-
olism’ (Table S3).

Several genes coding for enzymes involved in the initial
catabolism of carbohydrates to glucose were not identified
in the new strain, thus preventing the utilization of hexoses
or pentoses through the Embden–Meyerhof–Parnas or
the Entner–Doudoroff pathways. It is noteworthy that
T. rossianum, also lacks the same genes for the initial

Table 1. Distinguishing characteristics between strain SPSPC-11T, Thermonema lapsum DSM 5718T and Thermonema rossianum DSM 10300T

Strains: 1, SPSPC-11T; 2, Thermonema lapsum DSM 5718T, 3, Thermonema rossianum DSM 10300T. All strains were catalase- and oxidase-positive.

Strain SPSPC-11T and Thermonema rossianum DSM 10300T do not reduce nitrate. In the API ZYM test strips strain SPSPC-11T is positive for alkaline

phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, a-chymotrypsin,

acid phosphatase and naphthol-AS-BI-phosphohydrolase, but negative for a-galactosidase, b-galactosidase, b-glucuronidase, a-glucosidase, b-glu-

cosidase, N-acetyl-b-glucosaminidase, a-mannosidase and a-fucosidase. Strain SPSPC-11T does not hydrolyse DNA, aesculin and arbutin. All strains

hydrolyse casein, gelatin and hippurate but none of the strains hydrolyse starch and xylan. All strains assimilate casamino acids and yeast extract

but do not assimilate D-glucose, D-fructose, D-galactose, D-mannose, L-rhamnose, L-fucose, L-sorbose, D-ribose, D-xylose, D-arabinose, L-arabinose,

sucrose, maltose, cellobiose, lactose, trehalose, raffinose, melibiose, methyl a-D-glucopyranoside, glycerol, ribitol, xylitol, sorbitol, D-mannitol, myo-

inositol, erythritol, D-arabitol, a-ketoglutarate, DL-lactate, succinate, malate, citrate, benzoate, fumarate, formate, D-gluconate, D-glucoronate, L-aspar-

agine, glycine, L-histidine, L-lysine, L-arginine, L-valine, L-phenylalanine, L-leucine, L-isoleucine, L-ornithine, L-methionine, L-threonine, L-glucosamine,

N-acetylglucosamine, cysteine, cystine, tyrosine, tryptophan, glycine-betaine and dextrin. +, Positive; –, negative; ND, not determined.

Characteristic 1 2*† 3†

Cell size (µm) 0.5–0.8�5.0–15.0 0.25–0.3�60 0.7 wide

Temperature for growth (
�

C)

Optimum 50 60 60

Range 35–60 35–65 35–65

pH for growth

Optimum 7.5–8.0 6.5 7.0–7.5

Range 6.5–8.5 ND 5.5–9.5

NaCl for growth (%)

Optimum 0 0 1–3

Range 0 0–3 0.5–5

Assimilation of:

Acetate + – –

Pyruvate + – –

Aspartate + – –

L-Glutamate + – –

L-Alanine + – –

L-Proline + – –

L-Glutamine + – –

L-Serine + – –

Tryptone + – –

Peptone + + ND

G+C content (mol%) (HPLC) 39.2 47.0 50.9

*Data from Hudson et al. [4].

†Data from Tenreiro et al. [5].
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catabolism of sugars and is, like strain SPSPC-11T, unable to
grow on any of the sugars examined [5]. In contrast, the
genome sequence of B. fragilis, H. roseosalivarius, Clb. mari-
num and Cyt. hutchinsonii predict the assimilation of hexo-
ses and pentoses through these pathways, as also confirmed
by assimilation tests [35–37].

It is possible that strain SPSPC-11T lacks the genetic ability
to metabolize carbohydrates, confirming the results of the
phenotypic tests that show that sugars do not serve as car-
bon and energy sources for growth. Similar to other
members of the order Cytophagales (B. fragilis, H. roseosali-
varius, Clb. marinum and Cyt. hutchinsonii), the putative
gene for fructose-1,6-bisphosphatase (EC:3.1.3.11) was
identified, suggesting that strain SPSPC-11T can perform
gluconeogenesis. The genome sequence of strain SPSPC-11T

predicts that the tricarboxylic acid cycle is complete.

The draft genome of strain SPSPC-11T indicated that oxida-
tive phosphorylation occurs via NADH dehydrogenase, suc-
cinate dehydrogenase, cytochrome c, cytochrome c oxidase
and an F-type ATPase. The T. rossianum genome sequence
appears to possess several genes coding for the same oxida-
tive phosphorylation functions that were identified in the
strain SPSPC-11T with the exception of the NuoEG subunits
of the NADH dehydrogenase complex. In contrast to strain
SPSPC-11T, genes coding for cytochrome bd complex were
identified in Clb. marinum and B. fragilis. The genome of
B. fragilis lacks not only cytochrome c oxidase-like genes
but also the NuoEFG subunits of the NADH dehydrogenase
complex. The latter organisms also possess some V/A Type
ATPase-associated genes in addition to F-type ATPase.

The absence of assimilatory nitrate or dissimilatory nitrite
reduction genes by strain SPSPC-11T, H. roseosalivarius and
T. rossianum confirms the absence of phenotypic nitrate
reduction. The genes involved in nitrate/nitrite transport
and nitrate reduction, namely the assimilatory nitrate
reductase and the enzymes for denitrification, were not
encountered. The other Cytophagales, namely B. fragilis,
Clb. marinum and Cyt. hutchinsonii, possess putative genes
involved in nitrite reduction, while Clb. marinum and Cyt.
hutchinsonii also had genes involved in the assimilatory
nitrate reduction to nitrite.

From the comparison of environmental sequences from
uncultured organisms it was demonstrated that strain
SPSPC-11T is a cultured representative of a family level phy-
logenetic lineage within the phylum Bacteroidetes that has
been already detected and is represented by 16S rRNA gene
sequences recovered from geographically distant aquatic
environments, many of them geothermal (Fig. 3 and
Table S2). Based on the 16S rRNA gene sequence similari-
ties within the lineage represented by environmental
sequences and now strain SPSPC-11T it is clear that this
lineage contains a number of novel genera and species yet to
be cultured. Phylogenetic analysis demonstrated that strain
SPSPC-11T represents the first cultured member of a novel
family level lineage within the order Cytophagales of the
phylum Bacteroidetes (Figs 2 and 3).

The new lineage represented by strain SPSPC-11T possesses
genotypic and phenotypic features that resembled those of
the species of Thermonema. However, notable differences
include amino acid assimilations: strain SPSPC-11T

Bacteroides fragilis DSM 2151T (AB050106) Bacteroidaceae
Prevotella melaninogenica ATCC 25845T (AY323525) Prevotellaceae
Porphyromonas asaccharolytica ATCC 25260T (L16490) Porphyromonadaceae

Odoribacter denticanis B106T (AY560020) Odoribacteraceae
Marinilabilia salmonicolor NCIMB 2216T (D12672) Marinililiaceae

Rikenella microfusus ATCC 29728T (L16498) Rikenellaceae

Marinifilum fragile JC2469T (FJ394546) Marinifilaceae
Prolixibacter bellariivorans F2T (AY918928) Prolixibacteraceae

Lentimicrobium saccharophilum TBC1T (LC049960) Lentimicrobiaceae
Crocinitomix catalasitica IFO 15977T (AB078042) Crocinitomicaceae

Flavobacterium aquatile DSM 1132T (AM230485) Flavobacteriaceae
Cryomorpha ignava ACAM 647T (AF170738) Cryomorphaceae

Schleiferia thermophila TU-20T (HQ172900) Schleiferiaceae
Sphingobacterium spiritivorum NCTC 11386T (EF090267) Sphingobacteriaceae

Chitinophaga pinensis DSM 2588T (AF078775) Chitinophagaceae
Saprospira grandis ATCC 23119T (M58795) Saprospiraceae

Flammeovirga aprica NBRC 15941T (AB247553) Flammeovirgaceae

Persicobacter diffluens NBRC 15940T (AB260929) Persicobacteraceae
Hymenobacter roseosalivarius AA-718T (Y18833) Hymenobacteraceae

Catalinimonas alkaloidigena CNU-914T (JN368461) Catalimonadaceae
Mooreia alkaloidigena CNX-216T (JN368460) Mooreiaceae

Cytophaga hutchinsonii ATCC 33406T (CP000383) Cytophagaceae
Cyclobacterium marinum DSM 745T (AY533665) Cyclobacteriaceae

Thermonema lapsum DSM 5718T (HE582775) Thermonemataceae
Raineya orbicola SPSPC-11T (KY990922) Raineyaceae

Rubricoccus marinus SG-29T (AB545808) Rubricoccaceae
Rhodothermus marinus DSM 4252T (AF217494) Rhodothermaceae

Salinibacter ruber DSM 13855T (AF323500) Salinibacteraceae

Balneola vulgaris 13IX/A01/164T (AY576749) Balneolaceae
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Fig. 2. Phylogenetic position of strain SPSPC-11T within the radiation of representatives of the families of the phyla Bacteroidetes and

‘Rhodothermaeota’. The phylogenetic dendrogram was generated using the neighbour-joining method [38] in MEGA 6.0 [39]. Bootstrap

values, expressed as percentages of 1000 replications, are given at branching points. Bar, 2 inferred nucleotide substitutions per 100

nucleotides.
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assimilates some single amino acids while the Thermonema
species assimilate only complex mixtures of amino acids;
the optimum growth temperatures of the organisms differ
by about 10

�

C; the inability of new species to grow in
medium with added NaCl and the large difference between
the DNA G+Cmol% of strain SPSPC-11T and the species of
Thermonema (Table 1).

On the basis of these results, we propose that strain SPSPC-
11T represents a novel species of a new genus for which we
recommend the name Raineya orbicola gen. nov., sp. nov.
Moreover, we are of the opinion that the genotypic, phylo-
genetic, chemotaxonomic and phenotypic characteristics
warrant a new family within the phylum Bacteroidetes for
which we propose the name Raineyaceae fam. nov.

DESCRIPTION OF RAINEYA GEN. NOV.

Raineya (Rai.ney.a. N.L. fem. n. Raineya referring to Fred A.
Rainey, for his contributions to the taxonomy and phylog-
eny of archaea and bacteria).

Oxidase- and catalase-positive. Flexirubin-type pigments
are not present. Carbohydrates are not utilized for growth.
The polar lipid profile is composed of aminolipids, amino-
phospholipids and unidentified lipids. The fatty acid com-
position is dominated by iso-branched fatty acids and
hydroxyl fatty acids. The type species of the genus is Rain-
eya orbicola.

DESCRIPTION OF RAINEYA ORBICOLA

SP. NOV.

Raineya orbicola (or.bi¢co.la. L. n. orbis, the whole world; L.
suff. cola, inhabitant, dweller; N.L. n. orbicola, inhabitant of
the whole world).

Forms long filaments and rod-shaped cells 0.5–0.8 µm wide
and 5.0–15.0 µm long; colonies on Thermus medium are
orange-pigmented due to carotenoids. Growth occurs
between 35 and 60

�

C; the optimum growth temperature is
about 50

�

C. The optimum pH for growth is about 7.5–8.0;
growth occurs between pH 6.5 and 8.5. Optimum growth
occurs without added NaCl; no growth occurs with 1%
NaCl. Yeast extract or a vitamin and nucleotide solution is
required for growth. Nitrate is not reduced to nitrite. Gela-
tine, casein and hippurate are degraded; starch, aesculin,
arbutin and xylan are not degraded. DNAse negative. In the
API ZYM alkaline phosphatase, esterase (C4), esterase
lipase (C8), lipase (C14), leucine arylamidase, valine aryla-
midase, cystine arylamidase, trypsin, a-chymotrypsin, acid
phosphatase and naphthol-AS-BI-phosphohydrolase are
positive; other enzyme activities are negative. Acetate, pyru-
vate, aspartate, L-glutamate, L-alanine, L-proline, L-gluta-
mine, L-serine, yeast extract, tryptone, peptone and
casamino acids are assimilated. Other single carbon sources
tested are not assimilated (Table 1). The major fatty acids
are iso-C15 : 0, iso-C15 : 0 2-OH and iso-C17 : 0 3-OH. The
DNA of strain SPSPC-11T has a G+C content of 39.2mol%
(HPLC method) and 37.6mol% (genome sequencing). The
type strain SPSPC-11T (=CECT 9012=LMG 29233) was iso-
lated from a hot spring at S~ao Pedro do Sul in Central
Portugal.

DESCRIPTION OF RAINEYACEAE FAM. NOV.

Raineyaceae (Rai.ney.a.ce¢ae. N.L. fem. dim. n. Raineya,
type genus of the family; suff. -aceae, ending denoting a
family; N.L. fem. pl. Raineyaceae, the Raineya family).

Cells stain Gram-stain-negative and form rod-shaped cells.
Endospores are not formed. Organotrophic and strictly aer-
obic. Slightly thermophilic. Menaquinone 7 is the major
respiratory lipoquinone. Represents a distinct phylogenetic
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Thermonema lapsum DSM 5718T (HE582775)
Thermonemataceae

Raineya orbicola SPSPC-11T (16S_c61_A) (MF125288)
Raineya orbicola SPSPC-11T (16S_c50_W) (MF125287)

Raineyaceae

Thermonema rossianum NR-27T (Y08956)

clone EPS09_OK_002WL_44 (JX521435)

clone TPB_GMAT_RPCR15 (HG327154)

clone LMa-biof-bact_d12 (KP204489)

clone NJFU SLX-S303 (KC791000)

clone AB46 (KF548237)

clone QL10B_8pJ (KU382128)
clone SM1C08 (AF445665)

clone Hyd18 (KC189681)

clone Z32M47B (FJ484382)
clone EPS09_OK_002WL_16 (JX521420)

Fig. 3. Phylogenetic position of strain SPSPC-11T within the radiation of representatives of environmental clone sequences to belong

to the Raineya lineage. The source of the environmental clone sequences is shown in Table S2. The phylogenetic dendrogram was gen-

erated using the neighbour-joinging method [38] in MEGA 6.0 [39]. Bootstrap values, expressed as percentages of 1000 replications, are

given at branching points. Bar, 2 inferred nucleotide substitutions per 100 nucleotides.
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lineage within the order Cytophagales. The type genus of
this family is Raineya.
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