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Abstract  1 

The present study investigated the larval fish dispersal along an estuarine-ocean gradient to 2 

explore connectivity between ocean and estuaries. During spring 2009, a combined ocean-3 

estuarine survey was conducted along the Lima estuarine salinity gradient and in two transects off 4 

the adjacent coast (NW Iberian Peninsula), until the 100m isobaths. Salinity, TPM, POM, TDC, DOC 5 

reached higher values at the ocean, chlorophyll a and nutrients increased at the estuary. From the 6 

total 56 taxa identified, 14 were present along the gradient, including estuarine species (ES), 7 

marine stragglers (MS) and migrants (MM). CCA analysis showed that species were separated 8 

along the gradient according to their ecological functional classification. MM associated with high 9 

salinity were separated from ES correlated with lower salinities and high chlorophyll a 10 

concentrations of inner estuary. Flounder showed a typical spatial gradient of MM, with 11 

abundance increasing from the ocean towards inner estuary. The dispersal of larvae along the 12 

Lima estuarine-ocean gradient was indicative of connectivity between habitats, emphasizing the 13 

need to consider this feature in management plans, mainly for species exploited by commercial 14 

fisheries.  15 

 16 

Key-words: fish larvae; dispersal; estuarine-ocean gradient; nursery function 17 

 18 
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1. Introduction 19 

Dispersal of living organisms implicates departure from the initial site, movement between sites 20 

and arrival in a new site (Clobert et al. 2009), and can be defined as the process by which living 21 

organisms expand actively or passively the space or range where they live (Cote et al. 2010). 22 

Dispersal is a fundamental life-history trait and a process fundamental to the population dynamics 23 

(Schludermann et al. 2012) of spatially structured populations (Cote et al. 2010).  The exchange of 24 

individuals among geographically separated groups, or connectivity (Cowen et al. 2000) is a major 25 

driver of population replenishment (Bignami et al. 2013). Knowledge on connectivity of marine 26 

populations is fundamental to establish marine species spatio-temporal dynamics and the links 27 

between larval dispersal and supply, juvenile abundance, survival, and contribution to adult stocks 28 

(Vasconcelos et al. 2011a), has important applications for management and conservation of 29 

ecosystems (Cowen and Sponaugle 2009).  30 

Most marine fish species experience a planktonic larval phase during which they are vulnerable to 31 

passive transport by currents or a combination of currents and swimming behavior that ends on 32 

dispersing fish larvae through long distances from the initial spawning grounds. During this 33 

dispersal phase, many environmental and biological features control larval survivorship, namely 34 

the high mortality rates typical of this early development stage (Houde 2008; Miller and Kendal 35 

2009; Johnson et al. 2014; Garrido et al. 2015); or a successful dispersal of fish larvae to suitable 36 

nursery areas to ensure the development to the following juvenile phase (Able and Fahay 2010; 37 

Sale et al. 2010). After spawning, planktonic fish stages (eggs and larvae) may be advected and 38 

passively transported by the water currents (Wolanski 2016 and references therein) and therefore 39 
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in order  to reach an estuarine nursery area, the fish larvae may need directional swimming and 40 

competency to overcome coastal and tidal counter currents. (Wolanski 2016). The pelagic larval 41 

phase is dependent on biophysical characteristics related with reproduction strategies, as well as 42 

on the interactions between hydrodynamics and behavioral capabilities of individual larvae to 43 

reach and settle in favorable habitats (Cowen and Sponaugle 2009; Sale et al. 2010; Amorim et al. 44 

2016; Wolanski 2016).  Eastern boundary coastal waters are naturally highly dynamic and 45 

populated by transient structures such as river plumes, eddies and wind driven currents that 46 

contribute to a rather complex environment which could be very challenging for  early life stages 47 

survival playing a role in dispersal, feeding conditions and exposure to predation (Relvas et al. 48 

2007). 49 

Connectivity between ocean and estuaries is vital for fish species with complex life cycles, such as 50 

migratory species and species dependent on coastal or estuarine habitats as nursery grounds 51 

(Harris et al. 2001; Elliott et al. 2007). These species, whose adults inhabit marine environments, 52 

have larvae or early juveniles that migrate to coastal or estuarine nursery grounds, where they 53 

remain until they grow to subadult stages to later join the marine adult populations (Vasconcelos 54 

et al. 2011b). Assuring a good connectivity between the different habitats that a species uses 55 

during its life-history is necessary to allow species to access resources (e.g. nursery habitat, food, 56 

protection) (Teodósio et al. 2016), promoting the resilience of that population and, consequently 57 

of the entire ecosystem (Gawarkiewicz et al. 2007; Mumby and Hastings 2008). Therefore, 58 

management strategies would benefit from considering the continuum between all the habitats 59 

used by the species, and that requires an understanding of the links between those habitats 60 
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(Wolanski 2016). In particular, considering fishes’ connectivity it is essential to implement novel 61 

management strategies as the ecosystem-based fisheries management.  According to this strategy, 62 

management focuses not only on the target species, but also contemplates the ecosystem (Pikitch 63 

et al. 2004), considering ecological and biological features associated with the target species as 64 

nursery grounds and temporarily fish habitats.  65 

Larval dispersal is of crucial relevance not only to further perceive population dynamics of marine 66 

fish populations, but also to help design and implement efficient management strategies to 67 

protect fish species and marine ecosystems, nonetheless data on larval and juvenile dispersal of 68 

coastal fishes are still scarce (Di Franco et al. 2012). The comprehension of the links between 69 

estuarine and coastal environments is still a challenge, and the majority of the studies on larval 70 

dispersal are focused on marine invertebrates and coral reef species (e.g. Cowen et al. 2000; 71 

Kinlan and Gaines 2003; Shanks et al. 2003; Almany et al. 2007). Thus, the present study aims to 72 

investigate the larval fish dispersal along a temperate NE Atlantic estuarine-ocean gradient by 73 

combining simultaneous oceanic and estuarine plankton surveys to specifically: (i) characterize the 74 

spatial trends of environmental parameters and ichthyoplankton along an estuarine- ocean 75 

gradient; and (ii) investigate the influence of environmental drivers on structural and functional 76 

features of the ichthyoplankton assemblages. 77 

 78 
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2. Material and Methods 79 

2.1 Study area 80 

The present study investigated the dispersal of fish larvae along an estuarine-ocean gradient off 81 

the NW Iberian Peninsula, located at the northern end of the Canary Current Coastal Province. As 82 

for other eastern boundary current systems the regional oceanography is largely affected by the 83 

seasonal migration of the trade wind belt that drives the seasonal upwelling which is most intense 84 

during the summer period (Longhurst 2007). The pelagic ecosystem is therefore considerably 85 

controlled by vertical transport of nutrients into the euphotic zone. The occurrence of several 86 

estuaries and rias off the western Iberian shoreline further contributes to the region´s 87 

productivity. The region, laying in between the influence of the sub-polar and sub-tropical central 88 

waters (Mason et al. 2006), typically hosts a variety of fish species with small pelagics being very 89 

relevant. The estuaries available offer feeding opportunities and protection to offshore advection 90 

therefore are used as nursery grounds by many marine species. The present study focused on one 91 

of those estuaries, the Lima estuary, a protected area by the Habitats Directive (1992) and the EU 92 

Natura 2000 that, in spite of the major anthropogenic modifications at the outer estuary, still 93 

encompasses important intertidal saltmarsh areas and natural banks (Ramos et al. 2015) and 94 

functions as nursery area for some fish species amongst which are economically valuable 95 

resources (Ramos et al. 2010). The Lima estuary, located off the NW coast is an essential fish 96 

habitat and jointly with other estuaries in the vicinity (Cabral et al. 2007; Vasconcelos et al. 2011b) 97 

functions as nursery ground for many species, some of them with high economic importance 98 

(Ramos et al. 2010).  99 
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The temperate Lima River is an open estuary, with a semidiurnal and mesotidal regime (3.7 m), 100 

with an annual average river flow of 59 m3s−1  and salt intrusion extends to 12 km upstream, with 101 

an average flushing rate of 0.5 m s−1 and a residence time of 9 days (Ramos et al. 2006a). The Lima 102 

estuary can be divided into three geomorphological regions: the polyhaline lower estuary, a deep 103 

dredged channel, highly urbanized and modified, sheltering a commercial harbor and a shipyard; 104 

the middle estuary, a shallow large area with several tidal islands and salt marsh; and the upper 105 

estuary, a narrow channel with natural banks and few tidal islands.  106 

 107 

2.2 Fish larvae sampling 108 

During the spring of 2009 (in April), the combined ocean-estuarine survey was conducted in six 109 

sampling sites along the entire salinity gradient of the Lima estuary (from the river mouth up to 10 110 

km upstream) and in two transects off the adjacent coastal zone extending approximately 20 km 111 

offshore to the 100m depth isoline (Figure 1). In the Lima estuary, stations depth was on average 6 112 

m, while in the ocean the average station depth was 48 m.  A total of fifteen oceanic stations were 113 

occupied on the two transects: seven stations north and eight stations south of the river mouth 114 

(Figure 1),  onboard IPMA´s RV, during a pelagic fish acoustics campaign. In order to sample the 115 

same water mass, the estuarine survey was performed in the following flood tide after the oceanic 116 

survey, i.e. all samples were taken in a total period of 24 hours, between 31st March and 1st April. 117 

Spring was chosen as many winter/spring marine spawning species colonize northern Portuguese 118 

estuaries during this season (Ramos et al. 2006), including important marine resources as sardine 119 

(Ramos et al. 2009) and flounder (Ramos et al. 2010).  120 
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Environmental surveying consisted of measurements of water column physical and chemical 121 

parameters, namely temperature, salinity and oxygen saturation with a YSI 6820 CTD in the 122 

estuarine stations and CTDF (salinity, temperature, depth and fluorescence) casts in the marine 123 

stations. Water samples were collected, in the estuary, with a Van Dorn bottle for further 124 

analytical determination of chlorophyll a, nutrients (nitrate, nitrite, ammonium, phosphate and 125 

silicate), total particulate matter (TPM) and particulate organic matter (POM), total dissolved 126 

carbon (TDC) and dissolved organic carbon (DOC). At sea, water samples were collected from two 127 

depths, surface and below the river plume. Water samples were transported to the laboratory in 128 

refrigerated ice chests and processed immediately.  129 

Estuarine larval fish assemblages were collected with subsurface (1-2m depth) tows performed at 130 

a constant velocity of ca. 1 ms-1 for 5 min, with a 500 µm mesh size plankton net. In the coastal 131 

region, samples covering the entire water column, were obtained through oblique towing of a 132 

Bongo system with 335 µm mesh size nets. All nets were fitted with flowmeters (Hydro-Bios) for 133 

filtered water volume estimation. The volume of water filtered was on average 154 m3 in the 134 

estuarine stations and 106 m3 in the marine stations. All the plankton samples were immediately 135 

fixed in 4% buffered formalin (pH=8) and after sorting, fish larvae were preserved in 95% ethanol.  136 

 137 

2.3 Laboratorial processing 138 

All the analytical analyses of water parameters were performed in triplicate. The concentration of 139 

chlorophyll a was determined spectrophotometrically after extraction with 90% acetone (Parsons 140 

et al. 1984) with cell homogenization, using the SCOR-UNESCO (1966) trichromatic equation. 141 

Dissolved orthophosphate, nitrite, ammonium and silicate concentrations were quantified by the 142 
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Grasshoff et al. (1983) methods, and nitrate was analyzed by an adaptation of the spongy 143 

cadmium reduction technique (Jones 1984), subtracting nitrite from the total. For TPM and POM 144 

assessment, samples were previously filtered through precombusted GF/F glass-fibre filters, which 145 

were dried at 105ºC (TPM) and then incinerated at 500ºC (POM), according to APHA (1992). TDC 146 

and DOC were determined using a Shimadzu Instruments TOC-VCSN analyzer following Magalhães 147 

et al. (2008).  148 

Fish larvae were sorted and identified to the highest possible taxonomic classification, to species 149 

level whenever possible. For the most abundant taxa, the total and standard length and the 150 

ontogenetic development stage were recorded. Abundance was standardized to the number of 151 

larvae per 100 m3 of water filtered. 152 

 153 

2.4 Data analyses 154 

Environmental variables, larval fish assemblages descriptors (abundance, diversity and species 155 

richness), as well as abundance patterns of Platichthys flesus and Sardina pilchardus along the 156 

Lima estuarine-ocean gradient were mapped using ArcGIS 10.2 (ESRI, Redlands, CA). To 157 

characterize the spatial patterns of each environmental variable, continuous layer maps were 158 

created using a deterministic method, the inverse distance weighting (IDW) interpolation. 159 

 The diversity of larval fish assemblages was expressed by the Shannon-Wiener index (Shannon 160 

and Weaner 1963) and assemblage equitability was measured by Pielou’s evenness index (J’) 161 

(Pielou 1966). Each fish species were assigned to an ecological guild derived from estuarine use 162 

pattern, according to Franco et al. (2008): estuarine residents (ES), marine migrants (MM; spawn 163 
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at sea and regularly enter estuaries in large numbers, including marine species using estuaries as 164 

nursery grounds), marine stragglers (MS; spawn at sea and enter estuaries accidentally in low 165 

numbers), freshwater species (F) and catadromous species (CA).  166 

Differences in water and larval fish composition parameters between estuarine and marine 167 

habitats were investigated by the non-parametric test Kruskal-Wallis ANOVA analysis, with habitat 168 

(estuary/ocean) as fixed factors. The distribution of the larval fish assemblages along the 169 

environmental estuary-coastal gradient was investigated by canonical correspondence analysis 170 

(CCA) (Ter Braak 1986), using the software CANOCO (version 4.5, Microcomputer Power, Ithaca, 171 

NY). Larval abundances were transformed [log (x+1)] and downweighting of rare species was 172 

performed. Only species with frequency of occurrence higher than 1% were included in the 173 

analyses avoiding any undue effect of rare species. The option used for CCA was triplot scaling 174 

with focus on interspecies distances. Significance of the canonical model was given by a Monte 175 

Carlo test (Ter Braak and Smilaeur 2002). Inter-set correlation coefficients were used to assess the 176 

importance of the environmental variables, and when inter-set ≥ |0.4| variables were considered 177 

to be biologically important (Rakocinski et al. 1996). Environmental variables were added in their 178 

standardized form, namely: mean temperature and salinity of the water column; mean chlorophyll 179 

a, nitrate, nitrite, ammonium, phosphate, TPM, POM, TDC and DOC of surface and bottom 180 

samples; and depth of the water column.  181 

 182 
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3. Results 183 

3.1 Environmental conditions 184 

The spatial salinity pattern clearly showed the horizontal salinity gradient along the estuary, with 185 

salinity decreasing from the euhaline (>30) to the oligohaline range (<0.05) (Figure 2).  Along the 186 

study area, salinity of the water column ranged between 0.3 (uppermost estuarine station) and 187 

35.8 (marine station), significantly decreasing from the oceanic stations towards inland stations 188 

(H=12.3 p<0.01) (Table 1). In contrast, the water temperature did not vary between the ocean and 189 

estuary (Table 1), and the minimum (11.1 °C) and maximum (13.2 °C) values were both registered 190 

in the Lima estuarine stations (Figure 2). TPM ranged between 4.8 mg L-1 (estuarine station) and 191 

65.8 mg L-1 (oceanic station) and POM varied between 2.4 mg L-1 (estuary) and 12.6 mg L-1 (ocean). 192 

Both TPM and POM reached higher concentrations in coastal northern and southern stations 193 

(Figure 2), decreasing offshore and mainly along the estuarine stations. Significantly higher 194 

concentrations of TPM (H=11.4 p<0.01) and POM (H=7.4 p<0.01) were observed at marine stations 195 

(Table 1). In the Lima estuary, higher TPM and POM concentrations were associated with the salt 196 

marsh area (Figure 2). A similar scenario was observed for the dissolved carbon (Table 1), with 197 

significantly higher TDC (H=11.4 p<0.01) concentration at oceanic stations, mainly at the most 198 

offshore stations (Figure 2). Although the organic fraction of dissolved carbon was also more 199 

concentrated at the most offshore stations (Figure 2), DOC reached significantly higher 200 

concentration in the Lima estuary (H=5.1 p<0.05) (Table 1). In the Lima estuary chlorophyll a 201 

significantly decreased from the estuarine stations towards offshore (H=12.3 p<0.01) (Figure 3). In 202 

fact, in the Lima estuary chlorophyll a ranged between 2.3-3.8 mgL-1 in comparison with marine 203 
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stations that in average registered a chlorophyll a concentration of 0.7± 0.2 mgL-1. Nutrients 204 

concentration also differed along the estuarine-ocean gradient (Figure 3). In average there were 205 

higher nutrients concentrations in the Lima estuary (Table 1), mainly nitrates (H=11.4 p<0.01), 206 

nitrites (H=3.9 p<0.05) and silica (H=11.4 p<0.01).  207 

 208 

3.2 Larval fish assemblages 209 

A total of 1226 fish larvae collected during the study corresponding to 56 taxa identified, from 210 

which 16 taxa were collected within the Lima estuary and 54 at the oceanic stations (Table A-211 

supplementary data). A total of 14 taxa were spread along the estuarine-oceanic gradient (Table 212 

2). There was a tendency for these common species to reach higher abundances at the ocean, 213 

namely Clupeidae ni (ni – not identified) that was significantly more abundant at the ocean than at 214 

Lima estuary (H= 10.7 p<0.01). In contrast, the common goby Pomatoschistus microps and 215 

flounder Platichthys flesus were significantly more abundant at the Lima estuary (H= 8.6 p<0.01; 216 

H= 9.7 p<0.01, respectively). 217 

The total larval fish abundance varied along the gradient (Figure 4), increasing from the upper 218 

estuary towards offshore. Fish larvae were significantly (H= 7.0 p<0.01) more abundant at the 219 

ocean (Table 2), where abundance varied from a minimum of 21.7 larvae 100 m-3 at the 220 

northernmost coastal station until a maximum of 196.3 larvae 100 m-3 observed at the southern 221 

(Figure 4). Such high abundances observed closely to the Lima river mouth (Figure 4), were mainly 222 

composed by Clupeiforms (34%) and Labridae (28%). In the Lima estuary, the larval fish 223 

assemblage ranged between 6.1-58.5 fish larvae 100 m-3, and the highest abundances were 224 

observed in salt marsh area (Figure 4) and were dominated by P. microps.  225 
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The larval fish assemblages showed a tendency to include more species and became more diverse 226 

from the upstream estuarine stations towards offshore (Figure 3). In fact, the Shannon Wienner 227 

index as well as the species richness reached significantly higher values at marine stations than in 228 

the Lima estuary (H= 10.7 p<0.01; H= 8.9 p<0.01, respectively) (Table 2).  229 

From the 56 taxa identified, only six taxa were not assigned to an ecological guild, and 48% of the 230 

taxa were classified as MS, 23% as MM and 18% as ES. The coastal larval fish assemblages included 231 

five ecological guilds, but only three were observed in the Lima estuary, namely MS, MM and ES, 232 

whose relative abundance varied between the Lima estuary and the sea (Figure 5). The spatial 233 

distribution of each of these functional groups showed that estuarine species (ES) were more 234 

abundant within the Lima estuary, mainly in the saltmarsh zone (Figure 6), representing more than 235 

75% of the assemblage. In fact, this group of species were significantly more abundant at the Lima 236 

estuary than in the marine stations (H= 9.7 p<0.05). In contrast, marine straggler species (MS) that 237 

were only observed in the lower section of the Lima estuary (Figure 6) reached significantly higher 238 

abundances in marine stations (H= 5.5 p<0.01). 239 

The spatial distribution of estuarine dependent species (MM) showed that although these species 240 

occurred along the gradient without significant differences between marine and estuarine stations 241 

(H=0.55 p>0.05), they tended to concentrate in the middle and upper sections of the Lima estuary 242 

(Figure 6). Focusing on the most abundant MM species that occurred along the gradient, the 243 

spatial distribution showed that flounder abundance, gradually increased from offshore towards 244 

the upper estuary (Figure 7), where flounder reached significantly higher abundances (H= 9.7 245 

p<0.01), overreaching 25 larvae 100m-3. On the other hand, sardines, Sardina pilchardus, were the 246 
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second most abundant MM species, and they were more abundant at the marine stations, and 247 

were only present in small numbers in the lower sections of the Lima estuary (Figure 7).  248 

 249 

3.3 Environmental influence 250 

Canonical correspondence analysis showed that species were distributed along the first two CCA 251 

axes. The first CCA axis (eigenvalue = 0.6) and the second CCA axis (eigenvalue = 0.4) exhibited a 252 

high species–environment correlation (0.9) and the effect of the environmental variables on 253 

explained distribution of the CCA axes was significant (F= 1.5 p< 0.01, Monte Carlo permutation 254 

test). According to the inter-set correlation coefficients chlorophyll a, nitrates and DOC were 255 

positively related with first CCA axis, while depth, salinity, TPM and TDC were negatively 256 

correlated with the first CCA axis (Table 3). Samples clustered according to their origin, with 257 

estuarine and oceanic samples being separated along the first CCA axis. Estuarine samples with 258 

higher concentrations of chlorophyll a, nitrates and DOC clustered on the positive side of the 259 

ordination plot, while oceanic samples characterized by high salinity and TPM and TDC 260 

concentrations clustered on the negative side of first CCA axis (Figure 8a). Oceanic samples were 261 

separated along the second CCA axis that was negatively correlated with depth of the water 262 

column (Table 3). In fact, samples with less than 50 m depth clustered on the positive part of 263 

second CCA axis, while deeper samples located offshore of the 50 m isobaths were associated with 264 

the negative part of the second CCA axis (Figure 8a). The species classification in ecological guilds 265 

showed that functional groups were distributed along the first CCA axis, with MS tending to cluster 266 

in the negative part of first CCA axis, associated with high salinity. In contrast, ES showed a wider 267 
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distribution along the estuarine-ocean gradient (Figure 8b) and were associated with lower 268 

salinities and high Chlorophyll a and nitrates concentrations. MM species occurred in between 269 

these two functional groups along the estuarine gradient.  270 

 271 

4. Discussion 272 

4.1 Larval fish dispersal according to species functional traits 273 

The present study showed for the first time the dispersal of larval fish assemblages along the Lima 274 

estuarine-ocean gradient. The coordinated plankton collection in the ocean and estuary allowed to 275 

verify a mixture of estuarine and marine species occurring along a gradient of 30 km from the 276 

100m isobaths offshore until the upper section of the Lima estuary. The species collected in this 277 

study are frequently observed in planktonic studies of the region, and the abundances registered 278 

were within the range of previous studies for the same time of the year (e.g. Azeiteiro et al. 2006; 279 

Ramos et al. 2006a; Garrido et al. 2009). These evidences support the representativeness of the 280 

data collected during this study and constitutes valuable baseline information to help 281 

understanding the connectivity between the ocean and the Lima estuary. 282 

A major finding of the present study was to show that species distribution along the Lima 283 

estuarine-ocean gradient were in accordance with their ecological traits relative to species use of 284 

estuarine environments. Overall, each ecological guild group exhibited the expected spatial 285 

distribution along the gradient: estuarine species (ES) were more abundant in the Lima estuary, 286 

mainly in the salt marsh zone, while marine stragglers (MS) were associated with the ocean and 287 

restricted to the lower section of the Lima estuary, and finally marine migrants (MM) were spread 288 
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along the gradient, with higher abundances in the middle and upper sections of the Lima estuary. 289 

The ecological guild classification is based on all life-cycle of the species (Elliott et al. 2007), and 290 

this study emphasized the importance of early larval stages for the determination of the species 291 

traits.  One example was the European flounder P. flesus, whose larvae presented a typical spatial 292 

gradient of a marine migrant species, since its abundance gradually increased from offshore 293 

(spawning areas) towards the upper estuary where abundance peaked. This species, a typical user 294 

of coastal/estuarine nursery areas (Elliott et al. 2007), reproduces in winter/early spring in marine 295 

waters (e.g. Campos et al. 1994; Dando et al. 2011; Koubbi et al. 2006) and migrates during the 296 

early life stages to nursery grounds (e.g. Jager 2001; Martinho et al. 2008). The spatial pattern of 297 

flounder larvae observed in this study (i.e. abundance increasing from offshore towards the 298 

estuary) was in accordance with the previous studies that proposed the Lima estuary as a nursery 299 

area (Ramos et al. 2010; Amorim et al. 2016). According to those studies, P. flesus recruitment to 300 

estuary occurs early during the larval phase, with larvae migrating from the offshore spawning 301 

grounds to the estuarine nursery area. The present results further reinforce the evidence of 302 

connectivity between the ocean and the Lima estuary for a marine migrant species as P. flesus.  303 

On the other hand, sardine S. pilchardus larvae were more abundant at the sea and were only 304 

present in small numbers in the lower sections of the estuary. Such spatial distribution is typical of 305 

marine stragglers, although S. pilchardus was classified as marine migrant species, in accordance 306 

with the classification proposed by Franco et al. (2008) and also corroborating previous studies in 307 

the Lima estuary during which high abundances of S. pilchardus larvae were observed in the inner 308 

sections of the estuary (Ramos et al. 2009). European sardine larvae tend to dominate the 309 
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ichthyoplankton community in the Western Iberian upwelling ecosystem, particularly during 310 

colder months of the year (Garrido et al. 2009) and are thought to be limited to coastal areas (e.g. 311 

John et al. 1996; Chícharo et al. 1998; Olivar et al. 2003; Santos et al, 2004), and that is in 312 

agreement with the results from this work, since higher S. pilchardus abundance were observed at 313 

the oceanic stations. However, the observed abundances within the estuarine stations (0.5-3.2 314 

sardine larvae 100 m-3) were lower than those found in prior studies in the Lima estuary, where S. 315 

pilchardus larval abundance reached 60.8 larvae 100 m-3 (Ramos et al. 2006a; 2009). The 316 

comparatively lower abundances of the sardine larvae observed during this work (also quite 317 

restricted in time) might reflect the inter-annual variability of estuarine recruitment, derived from 318 

variability in the sardine densities (Massé et al. 2016) and inter-annual variation of oceanographic 319 

and estuarine hydrological conditions (Ramos et al. 2009; Amorim et al. 2016). This study gives 320 

support to the need of further research in understanding the sardine early life history and 321 

ascertaining the importance of estuarine habitats for this pelagic species. 322 

 323 

4.2 Environmental drivers of larval dispersal 324 

The spatial distribution of the environmental variables showed that the study area covered two 325 

distinct water masses, and some variables varied greatly along the estuarine-ocean gradient, 326 

namely S, Chla, TPM, POM, TDC, DOC, NO3, NO2 and Si. The Lima estuary was characterized by 327 

lower salinity and higher concentrations of chlorophyll a, nitrates, nitrites and silica, typical 328 

features for the time of the year (April) (Ramos et al. 2006b; Amorim et al. 2016). At the oceanic 329 

stations, temperature and salinity values (Massé et al. 2016) and chlorophyll a and nutrients 330 
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concentrations (Moita 2001; Cabrita et al. 2015) were within the ranges commonly observed in 331 

the region during spring.  Coastal salinity was considerably higher, as expected and presented 332 

higher concentrations of particulate matter, including the organic fraction and total carbon. The 333 

present study showed that the adjacent northern coastal stations presented higher values of 334 

particulate matter (TPM and POM), what is an unusual pattern, since estuaries are typically more 335 

turbid than coasts. However, the Lima estuary is characterized by clear waters with reduced 336 

turbidity levels (Ramos et al. 2006b; Ramos et al. 2009). Also, the observed higher TPM and POM 337 

concentrations in the northern adjacent coast may be associated with the presence of several 338 

small estuaries located northerly of the Lima river mouth, whose run-off is advected southwards 339 

due to the prevailing northern-southern currents (Amorim et al. 2016). The water characteristics 340 

varied less at the ocean in comparison with estuarine stations. Estuaries are interface ecosystems 341 

functioning as boundaries between rivers and the ocean, where abrupt changes in salinity, 342 

temperature, oxygen and turbidity occur due to the influence of tides and the mixing of marine 343 

and fresh waters (e.g. Elliott and Wollanski 2015). In this study, the extreme and steep gradients 344 

observed in many physical and chemical variables were derived from the mixing of the oceanic 345 

water mass with the freshwater inflow, since the sampling survey was conducted during the flood 346 

tide. Not many species can cope with the physiological stress induced by the environmental 347 

variability of estuarine habitats (Elliott and Hemingway 1995; Elliott et al. 2007), and as result, 348 

estuaries are characterized by comprising less species than the adjacent coastal areas. In fact, our 349 

results illustrated this feature, since the species richness and assemblage diversity were lower in 350 

the estuary in comparison with the oceanic stations.  351 
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Larval fish dispersal contemplates passive and active transport mechanisms (e.g. Harris et al. 2001; 352 

Schulderman et al. 2012), controlled by hydrodynamic conditions and by water characteristics as 353 

temperature, salinity, turbidity (e.g. Grouthes and Cowen 1999; Harris et al. 2001; Santos et al. 354 

2004; Ramos et al. 2006b; Amorim et al. 2016). According to the canonical correspondence 355 

analysis results, salinity, chlorophyll a, nitrates, and depth were the most relevant environmental 356 

variables correlated with the larval fish assemblages of the Lima estuarine-oceanic gradient. In 357 

fact, these water parameters have been usually associated with the occurrence of abundance 358 

fluctuations of larval stages of fishes. Salinity and depth (which also reflect location) have been 359 

widely identified as important environmental drivers of larval fish assemblages (Harris et al. 2001; 360 

Ramos et al. 2006b and references therein), controlling the species composition of 361 

ichthyoplankton assemblages in function of the species tolerance to salinity gradients. Chlorophyll 362 

a has also been identified as an important environmental control of larval fish assemblages, since 363 

spring peaks of chlorophyll a derived from phytoplankton blooms have been associated with 364 

estuarine peaks of larval fish abundance (e.g. Livingston et al. 1997; Garcia et al. 2003; Amorim et 365 

al. 2016). In fact, some authors consider this synchronization as a strategy following the ‘match-366 

mismatch’ hypothesis (Cushing 1990), according to which the temporal and spatial overlap 367 

between peaks in food resources (e.g., phytoplankton and subsequently zooplankton) and larval 368 

abundance regulates survival of larval fishes and subsequent recruitment (Cushing 1990; Chick and 369 

Van Den Avyle 1999).  370 

The first canonical axis, which represented the spatial Lima estuarine–ocean gradient, separated 371 

typical marine species associated with high salinity from estuarine resident species as P. microps 372 
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and P. minutus and estuarine-dependent species as P. flesus. Interestingly, species were more or 373 

less separated along the spatial gradient accordingly to their ecological functional classification. 374 

Results showed that MS species were positively correlated with salinity and were associated with 375 

marine stations. On the other hand, ES species showed a wider distribution and were associated 376 

with lower salinities and high chlorophyll a concentrations of the inner Lima estuarine stations. ES 377 

were more abundant in the Lima estuary, mainly in the salt marsh zone, where species like P. 378 

microps and P. minutus tend to concentrate (Ramos et al. 2006a; and data not published). Marine 379 

migrant species were distributed along the estuarine-ocean gradient, with some species positively 380 

correlated with salinity as sea bass Dicentrarchus labrax.  Others as P. flesus were negatively 381 

correlated with salinity and associated with high concentrations of chlorophyll a. Actually, 382 

chlorophyll a has been identified as a major environmental driver of the occurrence of P. flesus 383 

larvae in the Lima estuary (Amorim et al. 2016). The second canonical axis was negatively 384 

correlated with depth, and represented a second environmental gradient separating shallow 385 

coastal stations from deep offshore stations. Species were also separated along this coastal-386 

offshore gradient, and species like Centrolabrus exoletus, Labrus merula, and Lipophrys trigloides 387 

were negatively correlated with depth, since they are typical coastal species associated with 388 

shallow habitats (Whitehead et al. 1984). In contrast, larval stages of demersal species as Ciliata 389 

mustela or bathypelagic species as Micromessistius poutassou were positively correlated with 390 

depth and clustered associated with the deepest stations. Hence, the results of this study clearly 391 

showed the importance of the water characteristics in controlling the spatial patterns and 392 

dispersal of the larval fish species along an estuarine-oceanic gradient. 393 
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 394 

4.3 Importance of larval fish dispersal and connectivity to management  395 

Processes occurring during the pelagic larval phase of fish life are well acknowledged to influence 396 

the spatial distribution of fish populations (e.g. McGilliard and Hilborn 2008; Schludermann et al. 397 

2012), and ultimately the strength of annual recruitment (Cowen and Sponaugle 2009; 398 

Vasconcelos et al. 2011b) and abundance of adult populations (Able and Fahay 2010).  399 

Connectivity between marine and estuarine environments is fundamental for several fish species 400 

(Cowen and Sponaugle 2009), in some particular phase of their life cycle (Elliott et al. 2007; Franco 401 

et al. 2008). Larval dispersal is then essential to marine species to reach suitable coastal/estuarine 402 

nursery areas, where early development stages of marine fishes can growth faster and thus 403 

increasing their probability of survivorship before joining the adult populations. The results of this 404 

study showed that larval stages of species commercially exploited, as sardine and flounder, were 405 

dispersed along the Lima estuary-ocean corridor, indicative of the connectivity between the 406 

habitats.  Particularly for these species is mandatory that human activities do not compromise the 407 

connectivity between ocean and estuarine habitats, what could pose additional pressures to the 408 

stocks. Thus, larval dispersal and connectivity with nursery areas should not be forgotten in 409 

management plans and the scientific research needs to continue increasing our understanding of 410 

the population’s movements which then will help in the conservation and preservation of the 411 

marine ecosystems. Knowing that larval fish dispersal is fundamental to the efficiency of 412 

governance practices as MPA (McGilliard and Hilborn 2008; Di Franco et al. 2012), the present 413 

study contributed to give empirical evidences of estuarine-ocean connectivity and, in the future it 414 
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will be interesting to integrate estuarine stations in the current stock monitoring plans for some 415 

fisheries. Given that the Atlanto-Iberian sardine stock has reached historically minimum values of 416 

population abundance and recruitment strength (ICES 2015; Massé et al. 2016), the relevance of 417 

studies as the present one is important to foster comprehensive understanding of estuarine-ocean 418 

connectivity (and should be replicated in other larger estuaries), what has been acknowledged as 419 

having important applications for management and conservation of ecosystems (Cowen and 420 

Sponaugle, 2009).  421 

 422 
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Figures Captations 

Figure 1. Location of the sampling stations of the northern (!) and southern (●) transects, and 
estuarine (!) stations along the Lima estuary-ocean gradient.  

Figure 2. Spatial variation of a) salinity (psu); b) temperature (ºC); c) total particulate matter (TPM: 
mg L-1); d) particulate organic matter (POM: mg L-1); e) total dissolved carbon (TDC: mg L-1); and f) 
dissolved organic carbon (DOC: mg L-1) along the Lima estuarine-ocean gradient in April 2009. 

Figure 3. Spatial variation of a) chlorophyll a (mg m-3); and nutrients (µM L-1) (b) NH4- ammonium; 
c) NO3- nitrates; d) NO2-nitrites; e) PO4- phosphates; f) Si- silica) concentrations along the Lima 
estuarine-ocean gradient in April 2009. 

Figure 4. Spatial variation of a) larval fish abundances (no. larvae 100 m-3), b) diversity (H’) and c) 
species richness (no. species) along the Lima estuarine-ocean gradient in April 2009. 

Figure 5. Relative abundance (%) of each ecological guilds of the Lima estuary (estuary) and marine 
larval fish assemblages, considering all species collected. ES- estuarine residents; MM-marine 
migrants; MS marine stragglers; other (species without an ecological guild assigned). 

Figure 6. Spatial variation of the relative abundance (in %) of each functional groups of the larval 
fish assemblages along the Lima estuarine-ocean gradient in April 2009. ES- estuarine residents; 
MS marine stragglers; and MM-marine migrants. 

Figure 7. Spatial variation of flounder (Platichthys flesus) and sardine (Sardina pilchardus) larval 
fish abundance (no. larvae 100 m-3) along the Lima estuarine-ocean gradient in April 2009. 

Figure 8. Ordination diagrams for the first two canonical correspondence axes of the canonical 
correspondence analysis: a) triplot between larval fish species, environmental variables and 
sampling stations (blue-ocean; green-estuarine); and b) biplot between environmental variables 
and larval fish species classified accordingly to their ecological guild classification in terms of 
estuarine use (green-estuarine species (ES); blue-marine stragglers (MS); and yellow- marine 
migrant species (MM). S- sanility; T- temperature; Depth-depth of the water column; TPM- total 
particulate matter; POM- particulates organic matter; TDC- total dissolved carbon; DOC- dissolved 
organic carbon (DOC); NH4- ammonium; NO3- nitrates; NO2-nitrites; PO4- phosphates; Chla-
chlorophyll a concentration. For species codes please see Table 2 and Table A-supplementary data. 
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8.  
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Tables 

Table 1. Water parameters of the Lima estuary and adjacent coastal zone along the water column.  

 Lima estuary Ocean 

  Average SD Average SD 

Temperature (ºC) 12.60 0.69 12.56 0.09 

Salinity (psu) 13.00 15.73 35.69 0.09 

Chlorophyll a (mg m-3) 3.20 1.50 0.65 0.16 

TPM (mg L-1) 28.88 23.06 54.22 5.90 

POM (mg L-1) 6.07 3.33 9.18 1.52 

TDC (mg L-1) 15.01 8.80 25.25 1.93 

DOC (mg L-1) 1.95 0.19 1.67 0.28 

Nh4 (µM L-1) 1.28 0.60 0.94 0.83 

NO3 (µM L-1) 29.79 18.68 6.56 1.28 

NO2 (µM L-1) 0.20 0.06 0.15 0.06 

PO4 (µM L-1) 1.24 0.94 1.05 0.71 

Si (µM L-1) 54.62 38.16 3.69 1.75 
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Table 2. Abundance (no. larvae 100 m-3), Shannon Wienner index (H’) and species richness (no. of 

species) of the larval fish assemblages of Lima estuary and coastal area, and the ecological guild 

classification and abundance of the fourteen fish larvae species common along the estuarine-ocean 

gradient.   

 Species CCA  EG Lima estuary Ocean 

  code  Average SD Average SD 

Centrolabrus exoletus Cexo MS 0.33 0.81 3.46 7.29 

Cupeidae ni Clup MS 0.08 0.20 7.89 8.68 

Gobius niger Gnig ES 0.43 1.06 0.70 2.08 

Labridae ni Labr MS 0.16 0.25 2.25 2.73 

Labrus bergylta Lber MS 0.27 0.66 1.74 2.50 

Lipophrys pholis Lpho MS 0.28 0.69 0.65 1.60 

Platichthys flesus Pfle MM 5.84 9.96 1.58 5.29 

Pomatoschistus microps Pmic ES 15.39 18.25 0.41 0.89 

Pomatoschistus minutus Pmin ES 1.03 1.70 0.12 0.34 

Pomatoschistus pictus Ppic MS 0.08 0.19 1.51 2.74 

Sardina pilchardus Spil MM 0.95 1.36 5.33 7.91 

Sparidae ni Spar MM 0.08 0.20 1.17 2.69 

Symphodus melops Smel ES 1.49 2.42 5.59 9.47 

Zeugopterus punctatus Zpun MS 0.43 1.06 0.46 1.35 

       

Total abundance   30.45 23.46 73.23 39.49 

Diversity (H’)   0.97 0.95 2.25 0.44 

Species richness   5.17 4.89 14.47 6.32 
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Table 3. Inter-set correlations of environmental variables with the first two CCA axes, based on the 

log-transformed abundance of larval fish assemblages of the estuarine-coastal gradient.  

Environmental variables CCA1 CCA2 

Depth (m) -0.64* -0.71* 

Temperature (ºC) 0.25 0.13 

Salinity (psu) -0.90* 0.20 

Chlorophyll a (mg m-3) 0.88* -0.16 

TPM (mg L-1) -0.51* 0.36 

POM (mg L-1) -0.23 0.33 

TDC (mg L-1) -0.52* 0.18 

DOC (mg L-1) 0.42* -0.29 

Nh4 (µM L-1) 0.04 -0.30 

NO3 (µM L-1) 0.70* -0.16 

NO2 (µM L-1) 0.39 0.00 

PO4 (µM L-1) 0.16 0.26 

* inter-set ≥ |0.4| corresponding to biologically important variables. 
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