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Abstract: In recent decades, the presence of micropollutants in the environment has been extensively
studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed
organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently
ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well
recognized, highlighting the need to include enantioselectivity in environmental risk assessment.
Additionally, the information about enantiomeric fraction (EF) is crucial since it gives insights
about: (i) environmental fate (i.e., occurrence, distribution, removal processes and (bio)degradation);
(ii) illicit discharges; (iii) consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational
drugs, illicit use of pesticides); and (iv) enantioselective toxicological effects. Thus, the purpose
of this paper is to provide a comprehensive review about the enantioselective occurrence of
chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals,
illicit drugs, pesticides, polychlorinated biphenyls (PCBs) and polycyclic musks (PCMs). Most
frequently analytical methods used for separation of enantiomers were liquid chromatography and
gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents)
and direct methods (chiral stationary phases). The occurrence of these chiral micropollutants in the
environment is reviewed and future challenges are outlined.

Keywords: chiral drugs; pharmaceuticals; illicit drugs; pesticides; chiral chromatography; environment

1. Introduction

In recent decades, thousands of synthetic and naturally occurring compounds have been
constantly released into the environment, becoming an issue of serious concern to public, scientists
and regulatory authorities [1–4]. Among various environmental pollutants, organic contaminants
as pesticides, polychlorinated biphenyls (PCBs), and pharmaceuticals are of most concern due to
their high toxicity, persistence and constant release. In addition, many of these pollutants are
chiral and commercialized as racemic mixtures or enantiomerically pure [5]. Enantiomers of chiral
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bioactive compounds may exhibit different biological and toxicological properties as a result of their
enantioselective interaction with other naturally occurring chiral molecules [6–8]. Therefore, when
released into the environment, enantiomers can suffer different degradation and biodegradation
pathways and conduct to a wider variety of compounds [8–10]. Selective microbial degradation of the
enantiomers was observed in either field applications or laboratory microcosms [10–13], as recently
reviewed by Maia et al. [14]. However, most environmental regulations, occurrence or ecotoxicological
studies consider these compounds as unique molecular entities. These can lead to inaccurate data since
enantiomers of the same chiral compound may differ in its environmental behavior (e.g., occurrence,
distribution, (bio)degradation) and toxicological effects. Therefore, understanding the environmental
behavior (i.e., occurrence, distribution and toxicity) of the individual enantiomers is important
for determining their environmental damage, ecological risk and for the implementation of safety
regulations. Additionally, enantiomeric analysis of chiral compounds in the environment may give
insights about illicit discharges, consumption pattern of substances as illicit drugs, pharmaceuticals
used as recreational drugs or illegal use of pesticides (Figure 1). Hence, this paper intends to
(a) summarize basic concepts of chirality; (b) offer a brief review of the chromatographic methods
used for the analysis of chiral bioactive drugs in environmental matrices; and (c) summarize the
occurrence of chiral bioactive compounds, namely pharmaceuticals, illicit drugs, pesticides, PCBs
and polycyclic musks (PCMs). The search was based in ScienceDirect and ISI web of Knowledge
databases, considering articles up to 2017 that comprise surface waters, ground and drinking waters
and wastewaters as aquatic environmental matrices.
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Figure 1. Schematic representation of the importance of determination of enantiomeric fraction (EF) in
environmental analysis of chiral pollutants.

2. Basic Concepts of Chirality

According to IUPAC definition, chirality is “The geometric property of a rigid object (or spatial
arrangement of points or atoms) of being non-superposable on its mirror image; such an object
has no symmetry elements of the second kind (a mirror plane, σ = S1, a center of inversion, i = S2,
a rotation-reflection axis, S2n). If the object is superposable on its mirror image the object is described
as being achiral” [15]. When an atom holds a set of ligands in a spatial arrangement that is not
superposable on its mirror image, it originates a chirality center with a stereoelement (stereogenic
unit), the most common type of chirality [15]. The interchange of any two of the substituents leads
to its enantiomer [15], defined by IUPAC as “one of a pair of molecular entities which are mirror
images of each other and non-superposable” [15]. In an achiral environment, enantiomers have
identical properties except for their chiroptics (polarimetry, circular dichroism (CD) and optical
rotatory dispersion (ORD)). The stereogenic unit is frequently generated by a tetrahedron carbon
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with four different groups of substituents, or other atoms (e.g., sulfur, phosphorous, silicon) [16].
The presence of a unique chirality center in a molecule guarantees that it is chiral and enantiomeric
forms are possible; however, molecules with more than one stereogenic center may not be chiral [17].
Other forms of chirality exist, namely axial, planar, and helical [18]. Enantiomers normally have
similar physical and chemical characteristics (e.g., boiling point, melting point, solubility, pH,
partition coefficient) except for the fact that they rotate the plane of polarized light in opposite
direction (optical activity). Thus, the conventional and straightest way to distinguish enantiomers
is polarimetry based on the different rotation of polarized light (i.e., to the right or clockwise in
the case of dextrorotatory, (d) or (+)-enantiomers; and to the left or counterclockwise in the case
of levorotatory, (l) or (-)-enantiomers). Enantiomers can be designated as (R)- and (S)- from the
Latin rectus and sinister, respectively, depending on the spatial placement of the substituents of the
stereogenic unit. They can be present in different proportions, as enantiomerically pure substances or
as racemate or racemic mixture, when they are equimolar and consequently do not rotate the polarized
light [19]. The equivalent thermodynamic properties are observed in an achiral medium, however in
a chiral medium (e.g., biological system or reaction with other chiral compound), enantiomers usually
have different behavior. Biological structures are often chiral due to the “intrinsic chirality” of their
constituents (e.g., amino acids and carbohydrates) [20]. This is the reason why enantiomers of a chiral
compound can lead to different biological effects. Thus, enzymes, receptors, membrane proteins or
other binding molecules in organisms can discriminate enantiomers, a selective mechanism called
chiral recognition [5]. The interaction chiral compound-receptor may result in different effects and
consequently, in the case of micropollutants, enantioselective toxicity [5,21–23].

Chiral compounds such as pharmaceuticals, as well as illicit drugs, and pesticides, among
others, are administrated/used as racemates or as enantiomerically pure forms, despite the desired
pharmacological/biological activity is normally exclusive of one enantiomer. Often the other
enantiomer has less or no activity, a different activity, originates adverse effects of variable intensity,
or differs in their kinetic parameters [24]. Natural chiral compounds are frequently pure enantiomers
such as morphine, epinephrine, hyoscine, levothyroxine, levodopa, among others [20,25]. Currently,
the use of enantiomerically pure compounds is a trend, however there are many pharmaceuticals
and pesticides still commercialized as racemates [8,20]. Some approaches have been employed
as possible solutions to deal with chiral bioactive environmental contaminants, using strategies
conducting to enantioselectivity. For example, biodegradation studies using activated sludge have
been shown enantioselectivity for the removal of some pharmaceuticals [26–30]. Enantioselectivity
can also be dependent on the pH when different microorganisms and enzymes are involved in the
degradation, as verified recently in a work reporting the enantioselective degradation of fungicides in
soils [31]. A recent work highlighted the importance of studying the effect of achiral additives
that can be present in soils and alter the community of microorganisms, leading to changes in
the enantioselective degradation [32]. Another completely different approach is the recovery of
enantiomers from wastewaters. For instance, wastewater effluents from the pharmaceutical industry
can be treated using membrane technology, in order to recover high-value enantiomeric pure forms of
pharmaceuticals (e.g., (S)-amlodipine) [33].

3. Analytical Methodologies for Enantioseparation of Chiral Bioactive Compounds

Enantioselective discrimination of chiral molecules has received a great attention in the last
decade, namely using new enantiopure crown ethers [34], functionalized nanoporous graphene [35],
chiral imprinted polymers [36], enantioselective inclusion complexation–organic solvent nanofiltration
membranes [37], and chiral optical force [38]. Another useful approach for the investigation of
enantiomerization processes is the stopped-flow multidimensional gas chromatography (GC) technique
(stopped-flow MDGC) employing CSP for enantioseparation. This technique was applied for
the determination of the rotational barriers of atropisomeric PCBs via on-line enantiomerization
kinetics [39–41]. However, the most-used methodologies to analyze and quantify enantiomers
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include liquid chromatography (LC) [42], GC [43,44], capillary electrophoresis (CE), supercritical
fluid chromatography (SFC), among others [45–47]. Among these technologies, chromatography
has been the most used technique for the analysis of chiral pollutants, by two different approaches:
direct and indirect methods [48,49]. The direct method using chiral stationary phases (CSPs) has
demonstrated many advantages and many applications [50,51]. Many types of CSPs are available,
but Pirkle-type, polysaccharide derivatives, cyclodextrin (CD), protein, macrocyclic glycopeptides
antibiotics-based, and polymeric-based [50,52,53] are mostly applied.

The central challenges in the analysis of environmental matrices (e.g., wastewater, surface water,
soil, sediment) are the trace concentrations of the target compounds present in an extremely complex
medium with an enormous diversity of non-target analytes [54,55]. This struggle highlights the
significance of an efficient clean-up during the sample preparation in order to eliminate interferences
and therefore reduce the matrix effects that negatively affect selectivity and limits of quantification [56].
Matrix effect can be caused by endogenous compounds (e.g., humic or fluvic acids, lipids, among
others) or exogenous compounds resulting from the analytical method (e.g., as salts or other reagents
added to the matrix), that can originate enhancement or more frequently suppression of the analytical
signal (e.g., GC-MS or LC-MS). The effect of matrix composition on the electrospray ion source
in LC-MS methods interferes with the ionization ability of the substances and their signal [57].
This phenomenon influences both qualitative and quantitative analysis. For example, cleanup during
sample preparation is very important to avoid large amounts of co-extracted matrix constituents [58].
In the case of environmental matrices, they are complex and present high variability, and even the same
type of matrix collected in different locations and/or time, may have different composition [56]. Chiral
analysis encompasses an additional challenge because different matrix effect may arise for a pair of
enantiomers. The possible chiral environment of the matrix (e.g., wastewater effluents contain a high
variety of microorganisms, which is not expected in pharmaceuticals streams) can lead to differences in
matrix effect for a pair of enantiomers. Additionally, as matrix effect results from different components
which decrease or increase the analytical signal, it is expected to be more pronounced with increasing
complexity of the matrix [59]. Therefore, matrix effect has to be estimated for each enantiomer in the
matrices to be analyzed. The most common methods for matrix effect assessment are: post-column
infusion method, post-extraction addition method and calibration graph slopes comparison, where
two calibration graphs (one in the solvent and the other in the post-extraction spiked samples) are
drawn and compared [56].

Enantioselective studies on environmental matrices frequently employ solid phase extraction
(SPE) [60,61]. Solvent extraction coupled to ultrasonic baths [9] was already reported and only
a few works reported the use of liquid–liquid extraction (LLE) [11,62] and dispersive liquid–liquid
microextraction (DLLME) [63,64]. One recent work described the use of supramolecular solvent
(SUPRAS) microextraction [65] and another one microwave assisted extraction for sludge [66]. Since
2009, SPE has been generally used as sample preparation procedure in enantioselective environmental
analysis [13,57,61,62,64,66–95]. Two on-line methods were also reported, using RAM-BSA columns in
a 2D LC-MS/MS system coupled to polysaccharide-based CSPs under reversed elution mode [54,55].

Until the last decade, enantioselective studies for analysis of chiral compounds in the
environment employed CD-based CSPs [61,85,96–99] or indirect methods using enantiomerically-pure
derivatizing reagents [9,60], which have been used until today [67,70,80,83,89]. Since 2010, a trend
is being verified for the use of three types of CSPs: protein-based [68,69,74–77,81,82,100,101],
polysaccharide-based [54,55,78,79,102] and macrocyclic antibiotic-based CSPs [13,26,27,63,64,71–73,
76,78,88,91,103]. The first reports describing the use of macrocyclic antibiotic-based CSPs for
environmental analysis were published in 2006–2007 [84,104], but its application was later intensely
reported from 2010 [13,26,27,57,71–73,76,78,86,87,90,93,94,103,105]. Other works were published
using normal elution mode, namely for the study of beta-blockers in surface waters [78,79] and
for the monitoring of enantioselective biodegradation of warfarin in soils [11]. The majority of
enantioselective analysis for environmental applications have been employing the reversed elution
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mode [54,55,57,62,68,69,72,74–77,81,82,86,100,103–105]. The polar ionic elution mode is nowadays
used frequently with macrocyclic antibiotic-based CSPs, being reported either in biodegradation
studies and environmental monitoring of pharmaceuticals and some illicit drugs [13,26,27,66,71,76,87].

Both enantioselective GC [106] and LC [107] methods can be implemented by direct method with
CSPs, even though there are few CSPs available for GC [108–110]. Enantioselective GC methods have
advantages as fast analysis and high sensitivity, reproducibility and selectivity, with no need of using
solvents and additives that are often toxic [111]. Nevertheless, enantioselective GC analytical methods
are often limited to the analysis of high thermally stable and volatile compounds [111]. In the case of
non-volatile analytes, derivatization using a chiral derivatization reagent is needed for chiral separation,
enhancement of thermal stability and volatility of the analytes [111]. GC methods have been used
widely for the enantioselective analysis of various environmental pollutants [111], such as agrochemical
pesticides, using electron capture detector (ECD) and mass spectrometry (MS) detection. GC-MS/MS
was employed in the first works reporting enantioselective environmental analysis by indirect methods
using enantiomerically-pure derivatizing reagents [9,60], or by direct methods using CSPs [61,85].
Despite indirect [70,83] and direct methods [67,80,89] remaining in some studies, LC-MS/MS has been
the analytical technique of election for illicit drugs and pharmaceutical while GC-MS and GC-ECD
have been the most used for pesticides [13,54,55,57,62,64–69,71–77,80–82,84,87,88,90–92,95,100–105].
Although much less used, LC-DAD, LC-UV and LC-FD detection have been used in some of the
studies [11,26,27,54,63,78,79,86]. On the other hand, most pesticides are transparent towards UV
radiation and therefore, ECD and MS have been the most used detection techniques [12,97,112–115].

4. Chiral Bioactive Compounds of Environmental Concern

This section describes the reports on occurrence of illicit drugs and pharmaceuticals, pesticides,
PCBs and PCMs in aquatic environmental matrices. In environmental analysis, two main descriptors
are used to describe chiral signatures, the Enantiomeric Fraction (EF) and the Enantiomeric Ratio
(ER) [116]. However, two other terms for the quantitation of a mixture of stereoisomers can be found
in the literature, Enantiomeric Excess (ee) and Enantiomeric Composition (ec) [116]. The ee represents
the excess of one enantiomer over the other:

ee =
(E1− E2)
(E1 + E2)

× 100

while ec is the mole fraction of one enantiomer in a mixture:

ec =
E1 (or E2)
(E1 + E2)

and can be simply quoted as % E1, or alternatively % E2. This term was recently replaced by EF, which
is given by:

EF1(or EF2) =
E1 (or E2)
(E1 + E2)

ER is described as the ratio between the one enantiomer over the other, being 1 the ER of racemic
mixtures and infinite for pure enantiomers:

ER =
E1
E2

4.1. Illicit Drugs and Pharmaceuticals

Only a few illicit drugs and some therapeutic classes of pharmaceuticals such as beta-blockers,
antidepressants and its metabolites, antifungals, and NSAIDs have been enantioselectively analyzed
in environmental matrices (Table 1) [9,11,13,26,27,54,55,57,60–64,67–93,95,100–105,117].
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The first study on enantioselective occurrence of pharmaceuticals in the environment reported
ibuprofen and its metabolites in WWTP influents (Switzerland), with an enrichment of the
(S)-ibuprofen and a ee decrease from raw wastewater to effluent [60]. However, in the same study,
surface waters were also generally enriched with the (S)-form, showing that although this enantiomer
is mostly excreted by humans, it is also degraded at a higher extent in the WWTPs and in surface
water [60]. The NSAIDs ibuprofen, naproxen, and ketoprofen were studied by Hashim et al. (2011)
and were found at concentrations levels of ng/L and EFs frequently superior than 0.5 in WWTP
effluents in Australia [80]. In another study, these authors reported a decreasing of these compounds
concentrations from influent (µg/L levels) to effluent (ng/L levels) [67]. In that work, EF varied
considerably between influents and effluents, mainly for ibuprofen and naproxen. Another study
showed that the (S)-enantiomers of naproxen and ibuprofen were predominant in influent wastewaters,
however EF decreased in WWTP effluents, suggesting that enantiomerization of profens may occur
during processes occurring at WWTPs [89].

The proton pump inhibitors omeprazole, lansoprazol and pantoprazol were studied in
environmental matrices, being omeprazol enantiomers detected in an influent sample of a WWTP
(Brazil) and in an estuarine water sample (Douro River, Portugal) [54,55]. In another study [64], EFs of
lansoprazole, pantoprazole, and rabeprazole were close to 0.5 in influents, effluents and river water,
however omeprazole was found enriched with (S)-enantiomer. Its EF decreased significantly during
wastewater treatment, from 0.70 in the influent to 0.53 in the effluent, indicating its stereoselective
degradation. In the same study, the EF values of the four proton pump inhibitors in river water were
similar to those determined in the effluent.

Another therapeutic class frequently studied is beta-blockers. Metoprolol was determined in
influents and effluents of some WWTPs in France [90], being detected in all samples with mean
concentrations ranging between 97 and 687 ng/L in influents (close to racemic) and from 18.6 to
157 ng/L in effluents, where EF varied from 0.57 up to 0.70, except in one WWTP effluent (EF = 0.5).
The results of that work indicated a (S)-metoprolol enrichment during wastewater treatment in most
cases, which extent was dependent on the WWTP [90].

The antidepressant fluoxetine has been enantioselectively analyzed in some works. For example,
it was found enriched in its (S)-form in a study dealing with analysis of both raw wastewater and
treated effluent, with an EF between 0.68 and 0.71 [81,100].

A study focused in the enantioselective determination of azole antifungals showed that these
pharmaceuticals were racemic or almost racemic in the raw wastewater (EFs = 0.45–0.53) and a weak
enantioselectivity was observed during treatment at WWTP [88]. The EFs of the dissolved antifungals
differed from those of the sorbed fraction in the suspended particulate matter, proposing different
behaviors for these enantiomers in the two distinct phases of the wastewater.

Recently, a new method was proposed to distinguish metabolic excretion from industrial discharge
through the EF analysis [87]. In this work, the authors reported EF values of salbutamol in wastewater
effluents differing significantly from commercial preparations, which were expected due to the known
stereoselective metabolism. However, one-day peaks of this pharmaceutical were observed and the
EFs were similar to commercial preparations, indicating a possible industrial disposal [87].

Multi-Class Enantioselective Analysis

The challenge in environmental analysis is the development of multi-residue analytical methods.
Concerning achiral methods, this is well established, e.g., for pharmaceuticals from various therapeutic
classes [118]. However, enantioselective analytical methods are normally limited to pharmaceuticals
belonging to one or few therapeutic classes, due to the difficult simultaneous enantioselective
separation of different therapeutic classes/chemical natures using the same chromatographic
conditions. MacLeod et al. (2007) were the pioneers of multi-class enantioselective analysis of
pharmaceuticals in environmental samples, using LC-MS/MS and a Chirobiotic V™ in reversed elution
mode to analyze beta-blockers (atenolol, metoprolol, nadolol, pindolol, propranolol, and sotalol),
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selective serotonin re-uptake inhibitors (citalopram, fluoxetine) and a beta2-agonist (salbutamol)
in wastewaters [104]. The same chromatographic conditions were applied by MacLeod and
Wong (2010) to analyze in the same matrix, beta-blockers (atenolol, metoprolol, propranolol,
sotalol), selective serotonin re-uptake inhibitors (citalopram and paroxetine), the NSAID naproxen
and the benzodiazepine temazepan [103]. More recently, López-Serna (2013) used LC-MS/MS
and a vancomycin-based CSP under polar ionic elution mode to analyze 16 pharmaceuticals
(analgesics, antibiotics, beta-agonists, psychiatric and cardiovascular drugs) and 2 metabolites
in WWTP influents and effluents, and river water (Spain) [71]. Enantioselective determination
of multiclass pharmaceuticals and drugs of abuse was first reported in 2010, using LC-MS/MS
and a protein-based CSP under reversed elution mode [82]. The same research group used
LC-MS/MS and a system of two CSPs, a protein-based CSP under reversed elution mode and
a vancomycin-based CSP under polar ionic elution mode, to quantify in wastewater effluents and river
water (United Kingdom), amphetamine-like drugs of abuse (amphetamine, methamphetamine, MDA
(3,4-methylenedioxyamphetamine), MDMA (3,4-methylenedioxy-methamphetamine)), beta-blockers
(propranolol, atenolol, metoprolol), and antidepressants (fluoxetine and venlafaxine) [76].

Two studies focused on the enantioselective determination of 11 chiral veterinary and human
pharmaceuticals in environmental water samples [101] and another including 15 pharmaceuticals [102]
showed respectively, an EF of 0.5 and 0.6 for an anti-helminthic tetramisole, which is administrated
in the (S)-form as veterinary drug, suggesting its enantiomerization or its use as adulterant in
illicit cocaine production. Kasprzyk-Hordern and co-workers published recently a multi-residue
method for enantioselective separation of chiral pharmaceuticals using teicoplanin as chiral selector
for the simultaneous enantioresolution of carboxyibuprofen, chloramphenicol, 2-hydroxyibuprofen,
ibuprofen, ifosfamide, indoprofen, ketoprofen, naproxen and praziquantel. An eco-friendly analytical
method was developed for the first time for multi-residue enantioselective determination of selective
serotonin reuptake inhibitors and a metabolite, beta-blockers and one beta2-adrenergic agonist,
with venlafaxine being determined in WWTP effluents with EF values between 0.54 and 0.55 [57].
Evans et al. published the first method for enantioselective determination of chiral drugs in solid and
liquid environmental matrices, highlighting the importance of studying the solid fraction to avoid
overestimation of the removal rates occurring at WWTPs [66]. The diurnal variation on EF was also
addressed recently, since it can be related to direct disposal of unused medicines, but no diurnal
variability in the enantiomeric distribution of the target chiral analytes was observed [95].
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Table 1. Environmental chiral analysis of pharmaceuticals and drugs of abuse.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Amphetamine
Methamphetamine
MDMA
MDA

UPLC-MS/MS;
Chiral-CBH column (100 mm × 2 mm i.d., 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm i.d.);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate, pH 5.0.

United Kingdom
Influent (IWW) and effluent (EWW)
wastewater;
River water.

IWW: EF = 0.6; EWW: EF = 0.4;
IWW: EF > 0.5; EWW: EF > 0.5;
IWW: EF < 0.5; EWW: EF < 0.5;
IWW: EF > 0.5; EWW: EF < 0.5.

[92]

Amphetamine
Methamphetamine
MDMA
MDA
MDEA
Ephedrine
Norephedrine

UPLC-MS/MS;
Chiral-CBH column (100 mm × 2 mm i.d., 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm i.d.);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate, pH 5.0.

England
Influent (IWW) and effluent (EWW)
wastewater River water
(RW): 6 locations near the WWTP
discharge zone

17.4–3112.5 ng L−1 (IWW); 4.3–145.2 ng L−1

(EWW); 0.3–4.3 ng L−1 (SW);
0.6–70.3 ng L−1 (IWW); 0.4–1.3 ng L−1 (EWW);
0.3–0.4 ng L−1 (SW);
7.2–32.4 ng L−1 (IWW); 6.3–24.5 ng L−1

(EWW); 0.9–1.9 ng L−1 (SW);
0.7–455.4 ng L−1 (IWW); 0.6–177.7 ng L−1

(EWW); 0.5–24.8 ng L−1 (SW);
1.4 ng L−1 (IWW); n.d. (EWW); n.d. (SW);
8.7–1979.5 ng L−1 (IWW); 5.3–265 ng L−1

(EWW); 6.3–28.9 ng L−1 (SW);
15–99.9 ng L−1 (IWW); n.d. (EWW); n.d. (SW).

[68]

Amphetamine
Methamphetamine
MDMA
MDA
Ephedrine
Pseudoephedrine

UPLC-MS/MS;
Chiral-CBH column (100 mm × 2 mm i.d., 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm i.d.);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate, pH 5.0.

England
Wastewater influent and effluent

EF = 0.52–0.84;
EF ≥ 0.5;
EF = 0.68 (mean);
EF > 0.5;
EF = 0.81–0.96;
-

[69]

Amphetamine
Methamphetamine
MDMA
MDA
Ephedrine
Pseudoephedrine
Norephedrine
Alprenolol
Atenolol
Citalopram
Desmethylcitalopram
Desmethylvenlafaxine
Fluoxetine
Mirtazapine
Metoprolol
Propranolol
Salbutamol
Sotalol
Tramadol
Venlafaxine

UPLC-MS/MS;
Chiral-CBH column (100 mm × 2 mm i.d., 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm i.d.);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate, pH 5.0.
Chirobiotic V column, (250 × 2.1 mm, i.d. 5 µm)
with a Chirobiotic V guard column (20 × 1.0 mm, i.d. 5 µm);
Methanol (4 mM ammonium acetate, 0.005% formic acid)

Not referred
Influent (IWW) and effluent (EWW)
wastewater;
Sludge (Sl.).

IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = 0.7;
IWW: EF = 0.6; EWW: EF = 0.5; Sl.: EF = 0.5;
IWW: EF = 0.7; EWW: EF = 0.9; Sl.: EF = 0.4;
IWW: EF = 0.6; EWW: EF = 0.5; Sl.: EF = 0.3;
IWW: EF = 0; EWW: EF = 0; Sl.: EF = n.d.;
IWW: EF = 1; EWW: EF = 0.2; Sl.: EF = n.d.;
IWW: EF = 0; EWW: EF = 0.3; Sl.: EF = 0.1;
IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = 0.7;
IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = 0.4;
IWW: EF = 0.6; EWW: EF = 0.7; Sl.: EF = 0.6;
IWW: EF = 1; EWW: EF = n.d.; Sl.: EF = 0.6;
IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = 0.5;
IWW: EF = 0.7; EWW: EF = 0.7; Sl.: EF = 0.7;
IWW: EF = 0.3; EWW: EF = 0.2; Sl.: EF = 0.5;
IWW: EF = 0.3; EWW: EF = n.d.; Sl.: EF = 0.4;
IWW: EF = 0.4; EWW: EF = 0.4; Sl.: EF = 0.5;
IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = n.d.;
IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = 0.5;
IWW: EF = 0.7; EWW: EF = 0.7; Sl.: EF = 0.7;
IWW: EF = 0.5; EWW: EF = 0.5; Sl.: EF = 0.5;

[66]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

MDMA
Atenolol
Citalopram
Desmethylcitalopram
Fluoxetine
Mirtazapine
Metoprolol
Propranolol

UPLC-MS/MS;
Chiral-CBH column (100 mm × 2 mm i.d., 5 µm);
H2O-2-propanol (85:15, v/v) (1 mM ammonium acetate)
Chirobiotic V column, (100 × 2.1 mm, i.d. 5 µm);
Methanol (4 mM ammonium acetate, 0.005% formic acid)

Not referred
Effluent wastewater.

EF showed temporal changes (0.24–0.38);
EF did not show temporal changes;
EF did not show temporal changes;
EF did not show temporal changes;
EF did not show temporal changes;
EF did not show temporal changes;
EF did not show temporal changes;
EF did not show temporal changes.

[95]

Amphetamine
Methamphetamine
MDMA
MDA
Alprenolol
Atenolol
Citalopram
Desmethylcitalopram
Desmethylvenlafaxine
Fluoxetine
Mirtazapine
Metoprolol
Propranolol
Salbutamol
Sotalol
Venlafaxine

UPLC-MS/MS;
Chiral-CBH column (100 mm × 2 mm i.d., 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm i.d.);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate,
pH 5.0.
Chirobiotic V column, (250 × 2.1 mm, i.d. 5 µm)
with a Chirobiotic V guard column (20 × 1.0 mm,
i.d. 5 µm);
Methanol (4 mM ammonium acetate, 0.005% formic acid)

Not referred
Influent (IWW) and effluent
(EWW) wastewater;
Sludge (Sl.).

IWW: EF = 0.64; EWW: EF = 0.42;
IWW: EF = 0.89; EWW: EF = 0.63;
IWW: EF = 0.36; EWW: EF = 0.22;
IWW: EF = 0.59; EWW: EF = 0.42;
IWW: EF = 0.51; EWW: EF = 0.48;
IWW: EF = 0.50; EWW: EF = 0.54;
IWW: EF = 1.0; EWW: EF = 1.0;
IWW: EF = 0.26; EWW: EF = 0.10;
IWW: EF = 0.57; EWW: EF = 0.52;
IWW: EF = 0.69; EWW: EF = 0.62;
IWW: EF = 0.25; EWW: EF = 0.19;
IWW: EF = 0.33; EWW: EF = n.d.;
IWW: EF = 0.46; EWW: EF = 0.41;
IWW: EF = 0.65; EWW: EF = 0.57;
IWW: EF = 0.50; EWW: EF = 0.50.
Venlafaxine

[93]

Ibuprofen
Naproxen
Fexofenadine
Tetramisole
Ketoprofen
Aminorex
Chloramphenicol
3-N-Dechloroethylifosfamide
10,11-dihydro-10-hydroxycarbamazepine
Dihydroketoprofen
Ifosfamide
Praziquantel

LC-MS/MS
Chiral-AGP (100 × 2 mm, i.d. 5 µm) column
with a Chiral-AGP (10 × 2.0 mm, i.d. 5 µm) guard column;
Aqueous solution of 10 mM ammonium acetate with 1%
of acetonitrile, pH 6.7

United Kingdom
Effluent wastewater;
River water (South West
England).

EF = 0.65
EF = 0.92
EF = 0.55
EF = 0.50
-
-
-
-
-
-
-
-

[101]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Aminorex
2-hydroxyibuprofen
Ibuprofen
Imazalil
Naproxen
Ofloxacin
Tetramisole
Carprofen
Chloramphenicol
3-N-dechloroethylifosfamide
Flurbiprofen
Ifosfamide
Omeprazole
Praziquantel
Indoprofen

LC-MS/MS
Polysaccharide amylose
tris-3,5-dimethylphenylcarbamate column and a cellulose
tris-(3-chloro-4-methylphenylcarbamate column
(150 × 2.1 mm, i.d. 2.5 µm);
CO2-methanol/acetonitrile/2-propanol, 1:1:1, v/v with
10 mM ammonium acetate and 0.1% ammonium
hydroxide under a gradient program
(in positive ionization);
Polysaccharide amylose
tris-3,5-dimethylphenylcarbamate column (150 × 2.1 mm,
i.d. 2.5 µm);
CO2-methanol with 0.1% ammonium hydroxide under
a gradient program (in negative ionization).

Northern and Western Europe
Influent and effluent
wastewater.

EF = 0.4 (IWW)
EF = 0.2 (IWW)
EF = 1.0 (IWW)
EF = 0 (IWW)
EF = 1.0 (IWW and EWW)
EF = 0 (IWW)
EF = 0.6 (IWW and EWW)
-
-
-
-
-
-
-
-

[102]

Carboxyibuprofen
Chloramphenicol
2-hydroxyibuprofen
Ibuprofen
Ifosfamide
Indoprofen
Ketoprofen
Naproxen
Praziquantel

Chirobiotic T column (250 × 2.1 mm, i.d. 5 µm);
Methanol-10 mM ammonium acetate (30/70, v/v), pH 4.2.

United Kingdom
Influent and effluent
wastewater;
River water (South West
England).

EF = 0.83 (IWW)
-
EF = 0.79 (IWW)
EF = 1.0 (IWW)
-
-
-
EF = 1.0 (IWW)
-

[105]

MDMA
MDA
Amphetamine
Methamphetamine
Ephedrine
Venlafaxine
Atenolol

LC-MS/MS;
Chiral-CBH column (100 mm × 2 mm, 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate,
pH 5.0.

Location n.a.;
River water;
Influent and effluent
wastewater (7 WWTPs using
mainly activated sludge and
trickling filters technologies).

IWW: <LOQ—455 ng L−1; EF = 0.68; EWW:
<LOQ—115 ng L−1; EF = 0.78.
IWW: 11.8—45.8 ng L−1; EF = 0.26–0.47;
EWW: 12.3—19.0 ng L−1; EF = 0.4–0.58.
IWW: <LOQ—3112.5 ng L−1; EF = 0.59–0.84;
EWW: <LOQ—19.7 ng L−1; EF = 0.68–1.0.
IWW: <LOQ—1.8 ng L−1; EF = 0.22–0.53;
EWW: <LOQ; EF = 0.70–1.0.
IWW: <LOQ—15171 ng L−1; EF = 0.81–1.0;
EWW: <LOQ—84.1 ng L−1; EF = 0.72–1.0.
IWW: 28.8–325.5 ng L−1; EF = 0.35–0.65;
EWW: 25–222 ng L−1; EF = 0.46–0.69.
IWW: 4288–19160 ng L−1; EF = 0.30–0.47;
EWW: 1480–18831 ng L−1; EF = 0.40–0.61.

[77]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Amphetamine
Methamphetamine
MDA
MDMA
Propranolol
Atenolol
Metoprolol
Fluoxetine
Venlafaxine

LC-MS/MS;
Chiral-CBH column (100 × 2 mm, i.d. 5 µm) with a Chiral-CBH
µm guard column (10 × 2.0 mm i.d., 5 µm);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate, pH 7.0.

United Kingdom
River water (River Avon,
Salford, Somerset).

<MQL;
<MQL;
<MQL;
<MQL;
<MQL;
<MQL;
<MQL;
<MQL;
<MQL.

[76]
Amphetamine
Methamphetamine
MDA
MDMA
Propranolol
Atenolol
Metoprolol
Fluoxetine
Venlafaxine

LC-MS/MS;
Chirobiotic V column, (250 × 4.6 mm, i.d. 5 µm)
with a Chirobiotic V guard column (20 × 4.0 mm, i.d. 5 µm);
Methanol containing 4 mM ammonium acetate and 0.005%
formic acid.

United Kingdom
River water (River Avon,
Salford, Somerset);
Effluent wastewater

EWW: <MQL; RW: <MQL;
EWW: <MQL; RW: <MQL;
EWW: <MQL; RW: n.d.;
EWW: <MQL; RW: <MQL;
EWW: EF = 0.43; RW: EF = 0.45;
EWW: EF = 0.55; RW: EF = 0.47;
EWW: EF = 0.54; RW: < MQL;
EWW: EF = 0.43; RW: EF = 0.58;
EWW: <MQL; RW: < MQL.

Amphetamine
Methamphetamine
MDA
MDEA
MDMA
Ephedrine 1R,2S (−)
Pseudophedrine 1S,2S (+)
Norephedrine
Venlafaxine

LC-MS/MS;
Chiral-CBH column (100 mm × 2 mm, 5 µm)
with a Chiral-CBH guard column (10 mm × 2.0 mm);
H2O-2-propanol (90:10, v/v), 1 mM ammonium acetate, pH 5.0.

Location n.a.
Wastewater influent and
effluent (4 WWTPs).

IWW: (S)-form 24.2–155.2 ng L−1; (R)-form 39.5–212.9
ng L−1; EF = 0.54–0.62; EWW: n.d.;
IWW: (S)- and (R)-forms n.d.; EWW: (S)-form n.d. - <
MQL; (R)-form n.d.;
n.d.;
IWW: n.d. - < MQL; EWW: n.d.;
IWW: E1 < MQL—5.5 ng L−1; E2 < MQL—13.9 ng
L−1; EF = 0.53–0.72; EWW: E1 n.d.–4.0 ng L−1; E2 <
MQL—10.0 ng L−1; EF = 0.71
IWW: 14.3–72.3 ng L−1; EWW: <MQL—14.8 ng L−1;
IWW: 51.0–329.7 ng L−1; EWW: <MQL—27.7 ng L−1;
n.d.
IWW: E1 57.2–286.5 ng L−1; E2 56.7–343.8 ng L−1; EF
= 0.45–0.50; EWW: E1 80.2–178.2 ng L−1; E2
123.7–248.3 ng L−1; EF = 0.37–0.48.

[82]

Metoprolol
Propranolol
Atenolol
Fluoxetine
Venlafaxine
Ibuprofen
Flurbiprofen
Naproxen

LC-MS/MS;
Chirobiotic V column, (250 × 4.6 mm, i.d. 5 µm)
with a Chirobiotic V guard column (20 × 4.0 mm, i.d. 5 µm);
Chiralpak AD-RH column, (150 × 4.6 mm, i.d. 5 µm).

China
Surface water (Dongting Lake).

0.48–0.64
0.44–0.56
n.d.
-
0.46–0.51
-
n.d.
-

[94]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

16 pharmaceuticals (analgesics,
antibiotics, beta-agonists,
psychiatric and cardiovascular
drugs) and two metabolites

LC-MS/MS;
Chirobiotic V (250 × 2.1 mm i.d., 5 µm) with a Chirobiotic V
guard column (20 mm × 1.0 mm i.d., 5 µm);
Methanol(4 mM ammonium acetate)-formic acid
(99.95:0.005, v/v).

Spain
Influent and effluent
wastewaters;
River water (24 sampling
locations; Guadalquivir River
basin).

[71]

Venlafaxine
Fluoxetine
Norfluoxetine
Alprenolol
Bisoprolol
Metoprolol
Propranolol
Salbutamol

LC-MS/MS;
Chirobiotic V column (150 mm × 2.1 mm i.d., 5 µm);
Ethanol-10 mM ammonium acetate aqueous solution
(92.5:7.5, v/v), pH 6.8.

Portugal
Effluent wastewater from 3
WWTPs.

EF = 0.54–0.55
-
-
-
-
-
-

[57]

Salbutamol

LC-MS/MS;
Chirobiotic V column (250 mm x 2.1 mm i.d., 5 µm);
Methanol(4 mM ammonium acetate)-formic acid
(99.95:0.005, v/v).

Italy
24-h raw wastewater composite
samples from 2 WWTPs
(Nosedo and San Rocco, Milan).

EF one-day peaks = 0.484 ± 0.019
EF regular = 0.452 ± 0.018. [87]

Atenolol
Metoprolol
Propranolol
Sotalol
Citalopram
Paroxetine
Naproxen
Temazepan

LC-MS/MS;
Chirobiotic V column (250 mm × 4.6 mm i.d., 5 µm) and
Chiralpak AD-RH column (150 mm × 4.6 mm i.d., 5 µm) for
temazepan;
Methanol-20 mM ammonium acetate aqueous solution
(90:10, v/v), 0.1% formic acid (pH 4).

Canada
Wastewater effluents from 1
rural aerated lagoon and 2
urban tertiary WWTP (Alberta).

EF = 0.40–0.52;
EF = 0.39–0.52;
-
EF = 0.34–0.41;
EF = 0.44–0.62;
-
-
EF = 0.39–0.49.

[103]

Atenolol
Citalopram
Fluoxetine
Metoprolol
Nadolol
Pindolol
Propranolol
Salbutamol
Sotalol

LC-MS/MS;
Inline filter and a Chirobiotic V (250 mm × 4.6 mm i.d., 5 µm)
with a nitrile guard cartridge (10 mm × 3 mm i.d.);
Methanol-20 mM ammonium acetate aqueous solution
(90:10, v/v), 0.1% formic acid (pH 4).

Canada
Raw and treated wastewater
from a tertiary WWTP (Alberta).

IWW: 971 ± 30 ng L−1; EWW: 664 ± 22 ng L−1;
IWW: 307 ± 18 ng L−1; EWW: 207 ± 11 ng L−1;
IWW: 18 ± 2 ng L−1; EWW: 14 ± 0.1 ng L−1;
IWW: 411 ± 15 ng L−1; EWW: 375 ± 24 ng L−1;
IWW: 51 ± 2 ng L−1; EWW: 20 ± 0.5 ng L−1;
IWW: <MQL; EWW: <MQL;
IWW: 10 ± 1 ng L−1; EWW: 45 ± 1 ng L−1;
IWW: 20 ± 3 ng L−1; EWW: 17 ± 1 ng L−1;
IWW: 529 ± 10 ng L−1; EWW: 466 ± 24 ng L−1.

[104]

Atenolol
Metoprolol
Propranolol

LC-MS/MS;
In-line filter Chirobiotic V (250 mm × 4.6 mm i.d., 5 µm)
with a nitrile guard cartridge (10 mm × 3 mm i.d.);
Methanol-0.1% TEAA in water (90:10, v/v), acetic acid (pH 4).

Canada
Influents and effluents
wastewaters from 1 rural
aerated lagoon and 2 urban
tertiary WWTP (Alberta).

160–1100 ng L−1; EF ≈ 0.5 (both influent and effluent).
170–520 ng L−1; EF = 0.5 (influent) EF 6= 0.50 (effluent).
20–92 ng L−1; EF ≈ 0.5 (both influent and effluent).

[84]



Symmetry 2017, 9, 215 13 of 33

Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Propranolol

GC-MS after diastereomer formation with the chiral
derivatizing reagent α-methoxy-α-(trifluoromethyl)phenylacetic
acid;
MDN-5S column (30-m, 0.25-mm i.d., 0.25-µm film
thickness), carrier gas helium.

USA
Surface water
Wastewater influent
Wastewater effluent after
secondary treatment (7 WWTPs
in California and New York).

<0.1–32 ng L−1; EF = 0.42–0.53.
13–250 ng L−1; EF = 0.50 ± 0.02.
3–160 ng L−1; EF ≤ 0.42.

[61].

Metoprolol

GC-MS after diastereomer formation with the chiral
derivatizing reagent
(-)-α-methoxy-α-(trifluoromethyl)phenylacetic acid);
MDN-5S column (30-m, 0.25-mm i.d., 0.25-µm film
thickness), carrier gas helium.

USA
River water (Trinity River,
Dallas, TX);
Effluent wastewater.

10–571 ng L−1; EF = 0.31–0.44.
<1–2269 ng L−1; EF = 0.50 ± 0.03.

[85].

Metoprolol

LC-MS/MS;
Reprosil AGP column (100 × 2 mm i.d., 5 µm);
H2O-acetonitrile (98:2, v/v), containing 10 mM
ammonium acetate.

Germany
River water (stretch of river
Gründlach, Northern Bavaria).

42–440 ng L−1; EF = 0.43–0.49. [75]

Metoprolol and two of its metabolites:
α-Hydroxymetoprolol
(α-OH-metoprolol)
Deaminated metoprolol
(COOH-metoprolol)

LC-MS/MS;
enantiomers of metoprolol and four stereoisomers of
α-OH-metoprolol: in-line high-pressure filter (4 mm,
0.5 µm) and a Chiral-CBH column (100 × 2.0 mm i.d.,
5 µm) with a Chiral-CBH guard column;
2% (v/v) methanol in hydroxylamine (5.0 mM)-acetic acid
(0.65 mM) buffer at pH 7.0.

Sweden
Treated wastewater samples
from a municipal WWTP,
Uppsala).

(S)-metoprolol: 1140–1860 pM;
(R)-metoprolol: 939–1770 pM;
EF metoprolol = 0.51–0.55;
EF α-OH-metoprolol = 0.13–0.48.

[62]

LC-MS/MS;
enantiomers of COOH-metoprolol: in-line high-pressure
filter with a replaceable cap frit (4 mm, 0.5 µm)
and a Chiral AGP column (100 mm × 2.0 mm, 5 µm)
with a Chiral-AGP guard column (10 × 2.0 mm);
Methanol-10 mM ammonium acetate buffer at pH 5.0
(5:95, v/v)

n.d.

Metoprolol and three of its metabolites:
α-Hydroxymetoprolol
Metoprolol acid
O-desmethylmetoprolol

LC-MS/MS;
CHIROBIOT V (250 mm × 4.6 mm i.d., 5 µm);
Mobile phase not referred.
H2O-30 mM ammonium acetate in methanol at pH 6.0
(10:90, v/v).

France
Influent and effluent
wastewater.

IWW: 0.49–0.52; EWW: 0.57–0.70. [90]

Atenolol
Metoprolol
Pindolol
Propranolol

LC-UV;
Chiralpak AD-H, Lux Cellulose-1, Sumichiral OA-4900
and Chirobiotic T, (250 × 4.6 mm i.d., 5 µm);
n-hexane-ethanol-DEA (70:30:0.3, v/v/v)

Spain
River water (Cega River,
Segovia).

Not determined;
Not determined;
Not determined;
(S)-propranolol: 1.22 (±0.07) ng L−1;
(R)-propranolol: 1.35 (±0.07) ng L−1.

[78]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Atenolol
Metoprolol
Pindolol
Propranolol

LC-UV;
Lux Cellulose-1 (250 × 4.6 mm i.d., 5 µm);
Gradient elution mobile phase polarity from
n-hexane-Ethanol-DEA (90:10:0.5, v/v/v) to
(60:40:0.5, v/v/v)

Spain
River water (Cega River,
Segovia).

<LOQ;
<LOQ;
<LOQ;
<LOQ.

[79]

Ibuprofen, and its main metabolites

GC-MS;
Homemade OV1701-DMPen (DMPen )
heptakis(2,6-O-dimethyl-3-O-n-pentyl)-â-cyclodextrin;
1:1 diluted with OV1701) fused silica column (16 m, i.d.
0.25 mm)

Switzerland
Lake, rivers and sea water
(North Sea)
Influents wastewaters
Effluent wastewaters after
secondary treatment.

n.d.—7.8 ng L−1; ER = 0.7–4.2.
990–3300 ng L−1; ER = 5.8–8.0.
2–81 ng L−1; ER 0.9–2.

[60]

Ibuprofen
Naproxen

GC-MS;
Astec Chiraldex chiral column (20-m, 0.25-mm i.d.,
0.12-µm film thickness) coated with
dimethyl-b-cyclodextrin as CSP, carrier gas helium.

Spain
Influent and effluent
wastewaters from a
conventional WWTP from León
(Castilla y León, Spain).

IWW EF = 0.73–0.90, EWW EF = 0.60–0.76;
IWW EF = 0.88–0.90, EWW EF = 0.71–0.86. [83]

Ibuprofen
Ketoprofen
Naproxen

LC-MS/MS
Sumichiral OA-2500 (stationary
phase:(R)-1-naphthylglycine and 3.5-dinitrobenzoic acid
(250 mm × 46 mm i.d., 5 µm);
Tetrahydrofuran-50 mM ammonium acetate in methanol
(90:10, v/v).

Spain
Influents and effluents
wastewaters from 2 WWTPs
(Córdoba)

EF IWW: 0.79–0.86; EF EWW: 0.63–0.68;
EF IWW: 0.54–0.68; EF EWW: 0.61–0.68;
EF IWW: 0.99; EF EWW: 0.93–0.96.

[65]

Ibuprofen
Naproxen

GC-MS after diastereomer formation with the chiral
derivatizing reagent (R)-1-phenylethylamine;
HP5-MS fused silica capillary column (30 m, 0.25 mm
i.d., 0.25 µm film thickness), carrier gas helium.

Australia
Influent and effluent
wastewater from 3 WWTPs

EF IWW: 0.6–0.8; EF EWW: 0.5.
EF IWW: 1.0; EF EWW: 0.7–0.9. [89]

Ibuprofen
Ketoprofen
Naproxen

GC-MS after diastereomer formation with the chiral
derivatizing reagent (R)-1-phenylethylamine;
HP5-MS fused silica capillary column (30 m, 0.25 mm
i.d., 0.25 µm film thickness), carrier gas helium.

Australia
Effluent wastewater from
a tertiary
wastewater treatment plant
(Sydney)

4.6–120 ng L−1; EF = 0.49–0.62;
3.1–207 ng L−1; EF = 0.54–0.66;
1.6–178.9 ng L−1; EF = 0.66–0.86.

[80]

Ibuprofen
Ketoprofen
Naproxen

GC-MS after diastereomer formation with the chiral
derivatizing reagent (R)-1-phenylethylamine;
HP5-MS fused silica capillary column (30 m, 0.25 mm
i.d., 0.25 µm film thickness), carrier gas helium.

Australia
Effluent wastewater from MBR
of a WWTP (Bega Valley)

EF IWW: 0.88–0.94 EF EWW: 0.38–0.40;
EF IWW: 0.56–0.60 EF EWW: 0.54–0.68;
EF IWW: 0.99 EF EWW: 0.86–0.94.

[67]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Naproxen
6-O-desmethyl desmethyl-naproxen

LC-MS/MS;
Chiralpak AD-RH (150 mm × 4.6 mm i.d.);
Acetonitrile-0.1% formic acid (50:50, v/v).

Japan
Influent and effluent
wastewaters (Tokyo);
River water
(Tama River basin, Tokyo).

EF IWW: 1.0; EF EWW: 0.88–0.91; RW:
0.84–0.98. [91]

Lansoprazole
Pantoprazole

LC-MS/MS;
Amylose tris-(3,5-dimethoxyphenylcarbamate)
(150 mm × 4.6 mm i.d.) coated onto APS-Nucleosil
(500 Å, 7 µm, 20%, w/w);
Acetonitrile-H2O (35:65, v/v).

Brazil
Influent and effluent
wastewater;
River water (Monjolinho River;
São Carlos, SP).

Lansoprazole: n.d.;
Pantoprazole: 0.15–0.18 µgL−1 in treated
effluents; 0.013 µgL−1 in river water.

[55]

Omeprazole

LC-MS/MS; LC-UV;
Amylose tris-(3,5-dimethylphenylcarbamate) (150
mm × 4.6 mm i.d.) coated onto APS-Nucleosil
(500 Å, 7 µm, 20%, w/w);
Acetonitrile-H2O (35:65, v/v).

Brazil
Influent and effluent
wastewater;
River water (Monjolinho River;
São Carlos, SP).
Portugal
Estuarine water samples
(Douro River).

Both enantiomers were detected in one
influent sample (not quantified);
Both enantiomers were detected in one
estuarine water sample (not quantified).

[54]

Omeprazole
Lnsoprazole
Pantoprazole
Rabeprazole

LC-MS/MS; LC-UV;
Chiralpak IC (250 mm × 4.6 mm i.d., 5 µm) Cellulose tris
(3,5-dichlorophenylcarbamate) immobilized on silica;
Acetonitrile-5 mM ammonium acetate in water
(40:60, v/v)

China
Influent and effluent
wastewater from a municipal
WWTP (Shenyang);
River water (riverbank from the
South Canal of Shenyang).

IWW: 0.70; EWW: 0.53; RW: 0.54.
IWW: 0.51; EWW: 0.52; RW: 0.52.
IWW: 0.54; EWW: 0.51; RW: 0.53.
IWW: 0.52; EWW: <MQL; RW: 0.51.

[64]

Venlafaxine

LC-MS/MS;
Chirobiotic V column (250 mm × 2.1 mm i.d., 5 µm)
with a Chirobiotic guard column (10 mm × 2 mm i.d.);
Tetrahydrofuran-8.7 mM ammonium acetate aqueous
solution at pH 6.0 (10:90, v/v).

France
Wastewater effluent
River water

EF = 0.46–0.74. [72]

Venlafaxine and its metabolites
O-desmethylvenlafaxine,
N-desmethylvenlafaxine,O,N-
didesmethylvenlafaxine,N,N-
didesmethylvenlafaxine and
tridesmethylvenlafaxine

LC-MS/MS;
CHIROBIOT V (250 mm × 4.6 mm i.d., 5 µm);
LC-MS/MS
α1-acid glycoprotein column (100 mm × 4.0 mm
i.d., 5 µm)

Israel
Six wastewater treatment plants
(WWTPs) operating under
different conditions.

[73]
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Table 1. Cont.

Chiral Compounds Analytical Method Location/Matrix Concentration/ER, EF Ref.

Fluoxetine and norfluoxetine

LC-MS/MS;
In-line high-pressure filter with a replaceable cap frit
(4 mm, 0.5 µm) and a Chiral AGP column
(100 mm × 2.0 mm, 5 µm) with a Chiral-AGP guard
column (10 mm × 2.0 mm);
Acetonitrile-10 mM ammonium acetate buffer, pH 4.4
(3:97, v/v).

Sweden
Influent and effluent
wastewater from a municipal
WWTP (Uppsala).

IWW: (S)-fluoxetine: 52 pM; (R)-fluoxetine:
21 pM; EF = 0.71;
EWW: (S)-fluoxetine: 48 pM; (R)-fluoxetine:
19 pM; EF = 0.71;
IWW: (S)-norfluoxetine: 27 pM;
(R)-norfluoxetine: 12 pM; EF = 0.69;
EWW: (S)-norfluoxetine: 9 pM;
(R)-norfluoxetine: 4 pM; EF = 0.68.

[81,100]

Fluoxetine and norfluoxetine

LC-FD;
Chirobiotic V column (150 mm × 4.6 mm i.d., 5 µm);
Ethanol-10 mM ammonium acetate buffer (87.5:12.5, v/v),
pH 6.8.

Portugal
Effluent wastewater from
a municipal WWTP.

n.d. [86]

Hexaconazole
Triadimefon
Tebuconazole
Penconazole

LC-DAD
Chiralpak IC column 250 mm × 4.6 mm i.d., 5 µm). with
the CSPs [cellulose tris-(3,5-dichlorophenylcarbamate)]
polymer immobilized on silica;
n-hexane/2-propanol (90:10, v/v).

Ground water
River water n.d. [63]

Econazole
Miconazole
Tebuconazole
Ketoconazole

LC-MS/MS;
α1-acid glycoprotein column (100 mm × 4.0 mm i.d., 5
µm);
Mobile phase not referred.

China
Wastewater (dissolved and
suspended particulate matter)
sludge and river water (Pearl
River Delta)

EF (dissolved phase) = 0.47–0.53;
EF (suspended particulate matter) = 0.45–0.53;
EF (sludge) 0.47–0.53;
EF (river water) = 0.47–0.61.

[88]

Ketoconazole

LC-MS/MS;
HSA column (100 mm × 2 mm i.d., 5.0 µm) with a HSA
guard column (10 mm × 2 mm i.d.);
Acetonitrile-H2O (10:90, v/v) containing 10 mM
ammonium acetate (pH 7.0).

China
Influent and effluent
wastewater and sludge from
a sewage treatment plant
(Guangzhou, South China).

IWW: <MQL—91.6 ng L−1; EF = 0.48;
EWW: <MQL—12.4 ng L−1; EF = 0.48;
Sludge: 230.9–231.9 ng g−1 (dw);
EF = 0.49–0.50.

[74]

Econazole
Miconazole
Tebuconazole
Propiconazole

LC-MS/MS;
AGP column (100 mm × 4 mm i.d., 5.0 µm) with an AGP
guard column (10 mm × 4 mm i.d.);
Gradient of H2O containing 10 mM ammonium acetate
(pH 7.0) and acetonitrile.

IWW: 1–1.2 ng L−1; EF not determined;
EWW: 0.29–0.51 ng L−1; EF not determined;
Sludge: 8.3–120.8 ng g−1 (dw);
EF = 0.50–0.51;
IWW: 6.0–11.3 ng L−1; EF = 0.50;
EWW: 0.25–0.87 ng L−1; EF = 0.47;
Sludge: 87.9–1258.0 ng g−1 (dw);
EF = 0.49–0.50.
n.d.;
n.d.

IWW: influent of WWTP; EWW: effluent of WWTP; EF: Enantiomeric fraction; ER: Enantiomeric ratio; MDA: 3,4-methylenedioxyamphetamine; MDMA: 3,4-
methylenedioxy-methamphetamine).
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4.2. Environmental Chiral Analysis of Pesticides, PCBs and PCMs

Besides pharmaceuticals and illicit or abuse drugs, many other relevant environmental pollutants
(e.g., pesticides, organohalogenated compounds, polycyclic aromatic hydrocarbons, among others) are
chiral compounds and are used as racemic mixtures or as enantiomerically pure forms. Pesticides are
the most well studied class of environmental pollutants concerning enantiomeric composition. Several
reports have demonstrated their occurrence, distribution and biodegradation in various matrices
including biota. Besides pesticides, to the best of our knowledge, only PCBs and PCMs were reported
in aquatic environmental samples (surface waters, sediments, rain water and wastewaters).

4.2.1. Pesticides

The extensive and intensive use of pesticides has led to a broad distribution and high levels
of pesticides in all environmental compartments. Some pesticides are lipophilic and tend to
accumulate not only in soil and sediments, but also in the food web, persisting for more time than
expected and causing adverse effects [6,98,119]. In fact, pesticides already banned for many years as
α-hexachlorocyclohexane (lindane, α-HCH), chlordane and DDT are still found in aquatic animals and
in different regions of the globe [120,121]. Besides their persistence and toxicity, various pesticides are
chiral and used as racemic mixtures or enantiomerically pure. Data about enantioselective occurrence,
distribution, degradation and toxicological effects is imperative for an accurate environmental risk
assessment [98]. Selective degradation or accumulation of single enantiomers may have toxicological
implications. Indeed, some studies demonstrated that pesticides enantiomers selectively interact with
biological systems and may behave as completely different substances [120]. For instance, the (-)
enantiomer of o,p’-DDT has a higher estrogenic activity than (+) o,p’-DDT [122]. Song et al. reported
the enantioselective estrogenic activities of seven chiral pesticides and thyroid hormone antagonistic
effects of two chiral pesticides [6].

Enantiomers of α-HCH and chlordane, among others, were found in aquatic animals from the
Baltic Sea (fish and seals), Arctic (seals) and Antarctic Seas (penguins) with changed isomeric and
EF [98,120,121]. Table 2 shows the concentration and enantiomeric composition (ER or EF) of α-HCH,
cis and trans-chlordane, octachlorochlordane, heptachlor-exo-epoxide, oxychlordane, dichlorprop
(DCPP), mecoprop (MCPP), pentachloro-cyclohexene and bromocyclin in environmental samples,
namely surface waters (e.g., river, sea and lake), sediments, rain water and wastewaters (Table 2).
The ER of α-HCH enantiomers was evaluated for the first time in a study developed by Faller et at
in 1991 [97] in North Sea regions. In this study, concentrations of the isomers α-HCH and γ-HCH
were up to 2.89 and 2.72 ng L−1 respectively [97]. The authors found that the ER of (+/-) α-HCH
varied among the different regions of the North Sea. The relation (+/-) α-HCH was lower than 1
in an area of the North Sea where concentrations of γ-HCH were higher than α-HCH. This result
suggested a possible transformation of (-)-α-HCH from γ-HCH. In contrast, in another North Sea area,
the ER of (+/-) α-HCH was higher than 1 suggesting a different microbiological process in this region.
In this case, (-)-α-HCH was degraded preferably than (+)-α-HCH. The authors showed that different
microbiological process influenced the degradation of α-HCH isomers and suggested a correlation
between the ER of (+/-) α-HCH and the concentrations of isomers α-HCH and γ-HCH. Another
study developed by Padma et al. 2003 investigated the variation in ER of α-HCH enantiomers in
the York river estuary due to the microbiological activity (Table 2) [114]. Surprising, the α-HCH
ER values were close to 1 in the freshwater region of the estuary, i.e., in the head of the river,
where the bacterial activity was high. In contrast, at the mouth of the river, where salinity of the
estuary was higher and bacterial activity was lower, the ER values were non-racemic (ER 6= 1) and
α-HCH concentrations were significantly higher. A degradation study of the fungicide metalaxyl
showed that soil pH and redox conditions are important factors affecting the enantioselectivity of
metalaxyl degradation [123]. These studies demonstrated that ERs can provide important information,
nevertheless these data must be carefully interpreted in the context of other information. The chiral
separation of other pesticides as DCPP and MCPP were reported in various matrices from Switzerland
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(e.g., rain water, lake and rivers) [115,124]. Buser et al. reported the occurrence of various pesticides and
the enantioselective analysis of DCPP and MCPP [124]. Results showed that both enantiomers (R and S)
of MCPP were found though only the (R)-enantiomer was registered and used as an herbicide in
Switzerland. The pesticide DCPP was hardly present. Authors suggested enantioselective degradation
of MCPP and DCPP in soil leading to residues enriched in (R)-enantiomers. A biodegradation study of
MCPP conducted by the same group, showed compositions of (R)-form higher than (S)-enantiomer,
as expected from the soil degradation data. However, in other lakes, unexpectedly, a “reversed”
composition of S > R was found. This suggested the occurrence of additional biotic processes in the
aquatic environment and/or contamination with racemic MCPP from another source. Laboratory
incubation of MCPP and DCPP in lake and river water confirmed significant racemization [124].
The racemization was biologically mediated and led to residues of MCPP and DCPP in these waters,
which were enriched in the (S)-enantiomers. Gerecke et al. also reported ER of MCPP [125]. MCPP
is used in a racemic ratio (R/S-MCPP) in urban areas for protection and conservation of materials,
whereas only (R)-MCPP is used in all other applications as agriculture. Thus, the authors showed that
ER could be employed to distinguish between these sources and potential contaminations. Bethan
et al. reported the enantioselective analysis of bromocyclen in water and muscle tissues of trout
and beam from the river Stor, Germany and WWTPs. The authors found non-racemic ERs of (+/-)
bromocyclen in surface water and a higher degradation of (+)-bromocyclen in the fish muscle tissue
of breams [126]. They also suggested a possible correlation between ER and pesticide concentration.
Jantune et al. investigated the spatial distribution of various chiral organochloride pesticides in Arctic
surface waters [121]. In this study, again, different spatial enantioselective degradation was found
for α-HCH. Enrichment of (+) heptachlor-exo-epoxide (a metabolite of heptachlor) was found in all
regions, while trans- and cis-chlordane were nearly racemic.

4.2.2. Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls (PCBs) are ubiquitous contaminants of great environmental concern.
Due to their persistence, toxicity, and bioaccumulation [127], these compounds were included in the
list of Priority Substances of the Water Frame Directive and Stockholm Convention [128,129]. PCBs and
their metabolites methylsulfonyl-PCBs have been found in various species as in blubber from Baltic
grey seals, fish, birds and mammalian species including humans [130–135]. High contaminant levels
were found in grey seals from the Baltic Sea and PCBs and their metabolites methylsulfonyl-PCBs were
reported as the third most abundant class of anthropogenic substances, present at levels at 10–20% of
the total PCBs [136]. Surprisingly, few works reported the occurrence of these compounds in aquatic
matrices. Wong et al. reported the occurrence of PCB 91 in non-racemic levels with ER of 0.56 in
sediments from lake Hartwell [10]. Also, Benická et al. reported non-racemic occurrence of PCB 95
in sediments from Hudson River, USA [137]. In contrast, Glausch et al. reported racemic levels of
PCBs 95, 132, and 149 in Elsenz River sediment in southern Germany [138]. Wong et al. also found
non-racemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 in sediment cores from Lake Hartwell [10]
and in bed-sediment samples from the Hudson and Housatonic Rivers indicating that some of the PCB
biotransformation processes identified at these sites were enantioselective [10]. Similar to pesticides,
the enantioselectivity of PCB 91 was reversed between the Hudson and Housatonic River sites, which
suggested that the two sites would have different PCB biotransformation processes with different
enantiomer preferences.

4.2.3. Polycyclic Musks (PCMs)

To the best of our knowledge there are only three reports about the occurrence of chiral polycyclic
musks (PCMs) in environmental samples as surface waters and WWTPs [139,140]. These substances
are fragrances used in personal care products. Due to their lipophilicity these compounds might
adsorb in suspend matter during wastewater treatment and contribute for their occurrence in influents
and effluents from WWTPs, surface waters and aquatic organisms. Concern about these compounds is
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growing due to their potential harmful effects on aquatic organisms and human health [141]. Berset
et al reported the enantioseparation of various PCMs [140]. Though the ER were not determined for
all compounds due to their low resolution, HHCB, AHTN, AHDI and ATII showed non-racemic ER
suggesting a enantioselective biodegradation during wastewater treatment [140]. Lee et al. reported
the occurrence of five PCMs enantiomers in river and WWTPs samples [139]. Isomers cis and trans
from HHCB were found and their enantiomeric composition was nearly racemic river and in influent
samples. In contrast, significant non-racemic ER for HHCB was observed in the effluent of one of the
WWTPs. Nevertheless, other WWTPs investigated did not show enantioselective biotransformation.
The authors suggested that not only biotransformation may occur but also sorption on sludge may
contribute to the removal of PCMs from wastewater and difference in the enantiomeric composition.
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Table 2. Environmental chiral analysis of pesticides, PCBs and PCMs.
Pe

st
ic

id
es

Chiral Compound Analytical Method Location/Matrix Concentration/ER, EF Ref.

α-HCH
GC-ECD
heptakis (3-O-butyryl-2,6-di-O-pentyl)-β-CD (60 m),
carrier gas hydrogen

North Sea regions
α-HCH: 0.54–2.86 ng L−1

ER (+/-, α-HCH)= 0.88–1.19
γ-HCH: 0.31–2.72 ng L−1

[97]

α-HCH GC-ECD
β-dex 120 chiral column

USA
York river estuary

(+) α-HCH: 11.6–79.3 pg L−1

(-) α-HCH: 20.6–103.0 pg L−1

ER (+/-, α-HCH) = 0.71–1.06
[114]

α-HCH
GC-ECD
γ-DEX 120 column (20%-γ-CD, 20 m, i.d. 0.25 mm,
0.25 µm film thickness), carrier gas hydrogen

Island
Water rivers and lakes

α-HCH: 1.2–5.8 ng L−1

γ-HCH: 0.23–0.65 ng L−1

ER (α/γ, HCH) = 3.5–13.8
[142]

α-HCH

GC-ECD
column A: heptakis (3-O-butyryl-2,6-di-O-pentyl)-β-CD
(25 m, i.d. 0.25 mm);
column B: 50% heptakis (2,3,6-tri-O-n-pentyl)-β-CD and
50% OV1701(25 m, i.d. 0.25 mm), carrier gas helium

North sea and Baltic sea

γ-HCH: 2.0–7.7 ng L−1

α-HCH: 0.2–5.8 ng L−1

ER (γ/α, HCH) = 0.67–10.0
ER (+/-, α-HCH) = 0.81–0.92

[99]

α-HCH
GC-MS
30% tert-butyldimethylsilylated-β-CD in PS-086 (20 m,
i.d. 0.25 mm, 0.25 µm film thickness)

Arctic regions
water from Bering and Chukchi Seas

α-HCH: 0.05–5.32 ng L−1

γ-HCH: 0.10–1.33 ng L−1

ER (α/γ, HCH) = 0.35–12.40
[121]

α-HCH

GC-MS
Beta-DEX (20% permethylated-β-CD in
polydimethylsiloxane, (30 m, i.d. 0.25 mm, 0.25 µm film
thickness) and BGB-172 (20%
tert-butyldimethylsilylated-β-CD in OV-1701, (30 m, i.d.
0.25 mm, 0.25 µm film thickness), carrier gas helium

Arctic Ocean
Surface water ER (+/-,α-HCH) = 0.68–1.09 [143]

α-HCH
GC-MS
Betadex-120 (20% permethylated β-CD in methyl
phenylpolysiloxane (30 m, i.d. 0.25 mm)

Canada
Lake Ontario and Niagara River
Rain water

ER (+/-, α-HCH) = 0.86
ER (+/-, α-HCH) = 0.99 [112]

α-HCH Not described
Scotland
Kintyre Peninsula
Air

EF (α-HCH) = 0.480 [144]

α-HCH
GC-MS
20% tert-butyldimethylsilylated β-cyclodextrin in
OV-1701

China
Pearl River Delta EF(α-HCH) = 0.104–0.910 [12]
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Table 2. Cont.

Chiral Compound Analytical Method Location/Matrix Concentration/ER, EF Ref.

α-HCH
GC-MS
BGB (20% tert-butyldimethylsilylated β-CD, 30 m, i.d. 0.25
mm, 0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF(α-HCH) = 0.48–0.53
EF(α-HCH) = 0.50 [113]

PCCH

GC-ECD
column A: heptakis (3-O-butyryl-2,6-di-O-pentyl)-β-CD (25
m, i.d. 0.25 mm); column B: 50% heptakis (2,3,6-tri-O-n-
pentyl)-β-CD and 50% OV1701(25 m, i.d. 0.25 mm), carrier
gas helium

North sea and Baltic sea ER (γ1/γ2) PCCH = 1.12–1.17
ER (β1/β2) PCCH = 0.97 [99]

bromocyclin

GC-ECD
50%
heptakis(6-O-tert-butyl-dimethylsilyl-2,3-di-O-methyt)-β-CD
and 50% OV-I7O1
~w/w (25 m, i.d. 0.25 mm, 0.125 µm film thickness) carrier
gas hydrogen

Germany
River Stör
WWTPs

n.d.–261 pg L−1;
ER (-/+) = 1.01–1.0
760–11,500 pg L−1

[126]

MCPP
GC-MS
FS 71 PS-086 + 20% Me-β-CD, (15 m, 0.25 mm i.d., 0.13 µm
film thickness)

Switzerland
Rain water

R-MCPP: up to 50 ng L−1

S-MCPP: up to 19 ng L−1 [115]

MCPP

GC-MS
OV1701-TBDM (TBDM,
heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-β-CD)
fused silica (20 m, i.d. 0.25 mm) column with 35% of the
chiral selector (amount relative to OV1701)

Switzerland
Lake and rivers

R-MCPP: <0.2 to 25 ng L−1

S-MCPP: <0.2 to 121 ng L−1

ER (R/S) = 0.21–4.36
[124]

MCPP GC-MS
Not described

Switzerland
WWTPs and Lake Greifensee ER (R/S )= ~1 to 2 [125]

DCPP
GC-MS
FS 71 PS-086 + 20% Me-β-CD, (15 m, 0.25 mm i.d., 0.13 µm
film thickness)

Switzerland
Rain water

R-dichlorprop: up to 106 ng L−1

S-dichlorprop: up to 11 ng L−1 [115]

DCPP

GC-MS
OV1701-TBDM (TBDM,
heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-β-CD)
fused silica (20 m, i.d. 0.25 mm) column with 35% of the
chiral selector (amount relative to OV1701)

Switzerland
Lake and rivers

R-DCPP: <0.2 to 2.7 ng L−1

S-DCPP: <0.2 to 2.7 ng L−1 [124]
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Table 2. Cont.

Chiral Compound Analytical Method Location/Matrix Concentration/ER, EF Ref.

TC

GC-MS
BGB-172 (20% tert-butyldimethylsilylated-β-CD in
OV-1701, (30 m, i.d. 0.25 mm, 0.25 µm film thickness),
carrier gas helium

Arctic Ocean
Surface water ER (+/- TC): 0.97–1.03 [143]

TC Not described
Scotland
Kintyre Peninsula
Air

EF (TC) = 0.476 [144]

TC
GC-MS
20% tert-butyldimethylsilylated β-cyclodextrin in
OV-1701

China
Pearl River Delta EF (TC) = 0.112–0.734 [12]

TC
GC-MS
Betadex (20% permethylated β-CD, 30 m, i.d. 0.25 mm,
0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF (TC) = 0.47–0.49
EF (TC) = 0.40–0.50 [113]

CC

GC-MS
BGB-172 (20% tert-butyldimethylsilylated-β-CD in
OV-1701, (30 m, i.d. 0.25 mm, 0.25 µm film thickness),
carrier gas helium

Arctic Ocean
Surface water ER (+/- CC) = 0.94–1.06 [143]

CC Not described
Scotland
Kintyre Peninsula
Air

EF (CC) = 0.511 [144]

CC
GC-MS
20% tert-butyldimethylsilylated β-cyclodextrin in
OV-1701

China
Pearl River Delta EF (CC) = 0.043–0.813 [12]

CC
GC-MS
Betadex (20% permethylated β-CD, 30 m, i.d. 0.25 mm,
0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF (CC) = 0.50–0.56
EF (CC) = 0.48–0.53 [113]

OXY
GC-MS
BGB (20% tert-butyldimethylsilylated β-CD, 30 m, i.d.
0.25 mm, 0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF (OXY) = 0.55–0.60
EF (OXY) = 0.550 [113]

HEPX
GC-MS
BGB (20% tert-butyldimethylsilylated β-CD, 30 m, i.d.
0.25 mm, 0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF (HEPX) = 0.69–0.73
EF (HEPX) = 0.50–0.76 [113]
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Table 2. Cont.

Chiral Compound Analytical Method Location/Matrix Concentration/ER, EF Ref.

MC5
GC-MS
Betadex (20% permethylated β-CD, 30 m, i.d. 0.25 mm,
0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF (MC5) = 0.25–0.46
EF (MC5) = 0.41–0.47 [113]

DDT
GC-MS
20% tert-butyldimethylsilylated β-cyclodextrin in
OV-1701

China
Pearl River Delta EF (o,p’-DDT) = 0.102–0.801 [12]

DDT
GC-MS
BGB (20% tert-butyldimethylsilylated β-CD, 30 m, i.d.
0.25 mm, 0.25 µm film thickness), carrier gas helium

USA
Alabama
Agricultural soil
Cemeteries

EF (o,p’-DDT) = 0.41–0.55
EF (o,p’-DDT) = 0.50–0.57 [113]

P
B

s

PCB 91 GC-ECD and GC-MS
Chirasil-Dex

USA
Lake Hartwell sediment ER (first/second enantiomer) = 0.56 [110]

PCBs 95, 132, and
149

GC-ECD
Chirasil-Dex (10 m, i.d. 0.25 mm, 0.2 µm film thickness),
carrier gas hydrogen

Germany
River Elsenz ER (PCBs 95, 132, and 149) ~1 [138]

PCB 95
GC-ECD
Chirasil-Dex CB (25 m, i.d. 0.25 mm 0.25 µm film
thickness), carrier gas hydrogen

USA
Sediments Hudson River in New York
State

ER = 0.5–0.6 [137]

PCBs 91, 95, 132, 136,
149, 174, and 176

GC-MS
Chirasil-Dex
Cyclosil-B

USA
Sediments Hudson and Housatonic
Rivers

ER (E1/E2, PCB 91) = 0.56–1.28
ER (E1/E2, PCB 95) = 0.67–1.02
ER (+/-, PCB 132) = n.d.–1.32
ER (+/-, PCB 136) = n.d.–5.33
ER (+/-, PCB 149) = 0.91–2.31
ER (+/-, PCB 174) = n.d.–3.71
ER (+/-, PCB 176) = n.d.–1.02
ER (+/-, PCB 183) = n.d.–1.04

[10]

PCBs 95, 136, 149

GC-MS
Chirasil-Dex (10% permethylated
2,3,6-tri-O-methyl-β-CD (25 m × 0.25 mm × 0.25 µm film
thickness)

U.K
West Midlands
Air
Soil

EF (95) = 0.488–0.499
EF (136) = 0.495–0.503
EF (149) = 0.495–0.500
EF (95) = 0.444–0.496
EF (136) = 0.472–0.522
EF (149) = 0.490–0.544

[145]
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Table 2. Cont.

Chiral Compound Analytical Method Location/Matrix Concentration/ER, EF Ref.
P

ol
yc

yc
li

c
m

us
k

HHCB

GC-MS/MS
Cyclosil-B: heptakis
(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl-β-CD in
DV-1701 (25 m, i.d.0.25 mm, 0.25 µm film thickness),
carrier gas helium

Korea
Nakdong River
WWTPs
Influent
Effluent

<18.0–342.0 ng L−1;
ER (trans-HHCB) = 0.86–1.09
ER (cis-HHCB) = 0.95–1.10
<785.0–3491 ng L−1;
ER (trans-HHCB) = 0.91–1.01
ER (cis-HHCB) = 1.03–1.14
<284.0–576.0 ng L−1;
ER (trans-HHCB) = 0.74–1.04
ER (cis-HHCB) = 0.69–1.25

[139]

HHCB

GC-MS/MS
14% cyanopropylphenyl/86% dimethyl polysiloxane)
doped with proprietary amounts of cyclodextrin material
(30 m, i.d. 0.25
mm, 0.25 µm film thickness) OV 1701 capillary column,
carrier gas helium

Switzerland
WWTPs
Influent
Effluent
Sewage sludge
Aerobic
Anaerobic

ER (trans-HHCB) = 1.0
ER (cis-HHCB) = 0.97
ER (trans-HHCB) = 0.81
ER (cis-HHCB) = 1.00
ER (trans-HHCB) = 0.93
ER (cis-HHCB) = 0.98

[140]

HHCB

GC-MS;
Chiral heptakis (2,3-di-O-methyl-6-O-t-butyl
dimethylsilyl)-a-cyclodextrin column combined with a
(non-chiral) HP-5MS column.

Effluent wastewater biologically treated;
Advanced treated recycled water.

1679 ng L−1; EF = 0.25/0.25/0.26;
28.1 ng L−1; EF = 0.24/0.24/0.25;

[70]

AHTN

GC-MS/MS
14% cyanopropylphenyl/86% dimethyl polysiloxane)
doped with proprietary amounts of cyclodextrin material
(30 m, i.d. 0.25
mm, 0.25 µm film thickness) OV 1701 capillary column,
carrier gas helium

Switzerland
WWTPs
Influent
Effluent
Sewage sludge
Aerobic
Anaerobic

ER = 0.94
ER = 0.96
ER = 1.17
ER = 0.99

[140]

AHTN

GC-MS;
Chiral heptakis (2,3-di-O-methyl-6-O-t-butyl
dimethylsilyl)-a-cyclodextrin column combined with a
(non-chiral) HP-5MS column.

Effluent wastewater biologically treated;
Advanced treated recycled water.

31.2 ng L−1; EF = 0.50;
4.6 ng L−1; EF = 0.50;

[70]

AHDI

GC-MS/MS
Cyclosil-B: heptakis
(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl-β-CD in
DV-1701 (25 m, i.d.0.25 mm, 0.25 µm film thickness),
carrier gas helium

Korea
Nakdong River
WWTPs
Influent
Effluent

<69.0 ng L−1

<69.0 ng L−1 [139]
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Table 2. Cont.

Chiral Compound Analytical Method Location/Matrix Concentration/ER, EF Ref.

AHDI

GC-MS/MS
14% cyanopropylphenyl/86% dimethyl polysiloxane)
doped with proprietary amounts of CD material (30 m,
i.d. 0.25
mm, 0.25 µm film thickness) OV 1701 capillary column,
carrier gas helium

Switzerland
WWTPs
Influent
Effluent
Sewage sludge
Aerobic
Anaerobic

ER = 0.97
ER = 1.19
ER = 1.16
ER = 0.95

[140]

ATII

GC-MS/MS
Cyclosil-B: heptakis
(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl-β-CD in
DV-1701 (25 m, i.d.0.25 mm, 0.25 µm film thickness),
carrier gas helium

Korea
Nakdong River
WWTPs
Influent
Effluent

<107.0 ng L−1

<107.0 ng L−1 [139]

ATII

GC-MS/MS
14% cyanopropylphenyl/86% dimethyl polysiloxane)
doped with proprietary amounts of CD material (30 m,
i.d. 0.25 mm, 0.25 µm film) OV 1701 capillary column,
carrier gas helium

Switzerland
WWTPs
Influent
Effluent
Sewage sludge
Aerobic
Anaerobic

ER = 0.86
ER = 2.94
ER = 0.92
ER = 0.79

[140]

ATII

GC-MS;
Chiral heptakis (2,3-di-O-methyl-6-O-t-butyl
dimethylsilyl)-a-cyclodextrin column combined with
a (non-chiral) HP-5MS column.

Effluent wastewater biologically treated;
Advanced treated recycled water.

5.0 ng L−1; EF = 0.55;
n.d.

[70]

DPMI

GC-MS/MS
Cyclosil-B: heptakis
(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl-β-CD in
DV-1701 (25 m, i.d.0.25 mm, 0.25 µm film thickness),
carrier gas helium

Korea
Nakdong River
WWTPs
Influent
Effluent

<79.0 ng L−1

<79.0 ng L−1 [139]

DPMI

GC-MS;
Chiral heptakis (2,3-di-O-methyl-6-O-t-butyl
dimethylsilyl)-a-cyclodextrin column combined with
a (non-chiral) HP-5MS column.

Effluent wastewater biologically
treated;
Advanced treated recycled water.

66.6 ng L−1; EF = 0.48.
2.2 ng L−1; EF = 0.51.

[70]

AHDI: 6-acetyl-1,1,2,3,3,5-hexamethyl-indane; AHTN: 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetra-hydronaphthalene; ATII: 5-acetyl-1,1,2,6-tetramethyl-3-isopropyl-indane; CC: cis-chlordane;
CD: cyclodextrin; DCPP: 2-(2,4-dichlorophenoxy)-propionic acid, (dichlorprop); DDT: dichlorodiphenyltrichloroethane; DPMI: 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone;
EF: Enantiomeric fraction; ER: Enantiomeric ratio; GC-ECD: gas chromatography electron-capture detection; GC-MS gas chromatography mass spectrometry detection; α HCH:
α-l,2,3,4,5,6-hexachlorocyclohexane (lindane); HEPX: heptachlor-exo-epoxide; HHCB: 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclo-penta-2-benzopyrane; MC5: octachlorochlordane;
MCPP: 2-(4-chloro-2-methylphenoxy)propionic acid, (mecoprop); n.d.: not detected; OXY: oxychlordane; PCB 95: 2,2′,3,5′,6-pentachlorobiphenyl; PCB 91: 2,2′,3,4′,6- pentachlorinated
biphenyls; PCB 132: 2,2′,3,3′,4,6′-hexachlorobiphenyl; PCB 136: 2,2′,3,3′,6,6′-Hexachlorobiphenyl; PCB 149: 2,2′,3,4′,5′,6-hexachlorobiphenyl; PCB 174: 2,2′,3,3′,4,5,6′-Heptachlorobiphenyl;
PCB 176: 2,2′,3,3′,4,6,6′-Heptachlorobiphenyl; PCB 183: 2,2′,3,4,4′,5′,6-Heptachlorobiphenyl; PCCH: β-1,3,4,5,6-pentachloro-l-cyclohexene; TC: trans-chlordane.
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5. Conclusions

The reports about the occurrence of chiral bioactivity show the variation in the enantiomeric
composition in aquatic matrices. In this sense, various studies have been demonstrating not
only a selective microbial degradation of the enantiomers in field applications and laboratory
microcosms, but also a possible correlation to other factors as physicochemical parameters or
concentration of compounds. Also, various studies demonstrated the occurrence of enantiomers
of bioactive compounds, nevertheless ecotoxicological studies concerning enantiomerically pure forms
on non-target organisms at the environment level are scarce but of highly important in order to
understand and evaluate the environmental risk and the possible enantioselectivity in ecotoxicity.
In fact, the detection limits (few ng/L) provided by the modern analytical techniques are well below
those usually tested in toxicological effects (µg/L—mg/L). Considering pharmaceuticals and PCBs,
there is an urgent need for more studies about the occurrence, environmental fate and biodegradation
studies and their metabolites to evaluate the ecotoxicological effects of these compounds. Regarding
PCMs, few studies reported their enantiomeric composition. Also, factors that affect enantiomeric
composition are still not understood.

Future studies must be done to elucidate the exact mechanisms responsible for the differences in
EF or ER values in some environmental samples. These findings also show the importance to develop
chiral analytical methods for the quantification of these compounds in environmental samples.
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