
 

 
HED-TIE: A wafer-scale approach for fabricating hybrid 

electronic devices with trench isolated electrodes and its 
application in sensing devices 

Dissertation 

�Von der Fakultät für Naturwissenschaften der Technischen Universität Chemnitz genehmigte 

Dissertation zur Erlangung des akademischen Grades  

Doctor rerum naturalium� 

(Dr. rer. Nat.) 

 

von M. Sc. Sreetama Banerjee 

geboren am 05. September 1986 in Indien 

Tag der Einreichung: 12. Dezember 2017  

 

Gutachter:��

Prof. Dr. Dr. h.c. D. R. T. Zahn  

Prof. Dr. L. Hueso��

Tag der Verteidigung: 4. Februar 2019  

 



 

 

  



 

 

 

Dedicated to  

Maa, Baba, Didi and Sandeep  

 

 

 

 

 

 

 

 

 

 

 

 



 

  



Table of Contents 

Bibliografische Beschreibung ………………………………………………………………1 

Chapter 1.  Introduction …………………………………………………………………….3 

 1.1 Organic-inorganic hybrid electronics ………………………………………….4 

1.2 Inorganic semiconductors versus organic semiconductors ………………...5 

1.3 Electronic properties of a molecular layer ……………………………………5 

1.4 Vertical HEDs and planar HEDs ………………………………………………6 

Chapter 2.  Wafer-scale fabrication approach for planar HED-TIEs ………………...8 

 2.1 Overview of nano-patterning techniques ……………………………………..8 

  (a) Electron beam lithography (EBL) ………………………………………….8 

  (b) Nanostencil lithography (NSL) ……………………………………………..8 

  (c) Nanoimprint lithography (NIL) ………………………………………………9 

2.2  Fabrication of planar organic-inorganic HED-TIEs ………………………….12 

2.2.1 Trench refill approach for fabricating HED-TIEs ……………………..12 

2.2.1.1 Deposition of the trench refill layer ………………………….15 

2.2.1.2 Deposition of the organic channel material …………..…….16 

(a) HED-TIE with thermally evaporated organic channel …..16 

(b) HED-TIE with solution processed organic channel …….18  

2.2.2 Spacer approach for fabricating HED-TIEs …………………………..21 

   2.2.2.1 Deposition of the isolation layer ……………………………...23 

 2.3  Characterization techniques ………….……………………………...……….26 

  (a) Electrical characterization …………………………………………………26 

  (b) Raman spectroscopy ………………………………………………………26 

  (c) Photoluminescence spectroscopy ………………………………………..27 



2.4  Summary and outlook ………………………………………………………...27 

Chapter 3.  Electrical characterization of HED-TIEs ………………………………….29 

 3.1  Theoretical background ……………………………………………………….29 

  3.1.1   Space charge limited current (SCLC) conduction mechanism…..…29 

3.2 Experimental details ……………………………………………………...……32 

 3.3 Results and discussions ……………………………………………………….34 

 3.4 Summary and outlook ………………………………………………………….40 

Chapter 4.  Application of HED-TIEs as optical sensors …………………….....…..41 

 4.1  Photosensing properties of TIPS-pentacene based HED-TIEs …………..41 

  4.1.1 Theoretical background …………………………………………………41 

  4.1.2 Experimental details …………………………………………………….43 

  4.1.3 Results and discussions …………………………………………….…..44 

  4.1.4 Summary and outlook ……………………………………………….…..49 

4.2  Photosensing properties of TIPS-pentacene based HED-TIEs with Au 

nanoparticles in the channel matrix ……………………………………………….………….50 

4.2.1 Theoretical background …………………………………………………50 

  4.2.2 Experimental details …………………………………………………….51 

  4.2.3 Results and discussions ………………………………………………...52 

  4.2.4 Summary and outlook …………………………………………………...59 

Chapter 5.  Application of HED-TIE devices as magnetoresistive sensors……….61 
 5.1 Theoretical background ……………………………………………………….61 

  5.1.1. Organic spintronics ……………………………………………………..61 

  5.1.2 Mechanisms of organic magnetoresistance (OMAR) ………………65 

   (a) Bipolaron model …………………………………………………….68 



   (b) Electron-hole (e-h) pair model …………………………………….69 

   (c) Exciton–charge interaction model ………………………………..70 

 5.2. OMAR measurements on TIPS-pentacene OFETs and HED-TIEs ……...71 

  5.2.1 Experimental details …………………………………………………….71 

 5.3 Results and discussions ………………………………………………………73 

 5.4 Summary and outlook …………………………………………………………79 

Chapter 6.  Summary and outlook ……………………………………………….………81 

References …………………………………………………………………………………….86 

List of Figures ………………………………………………………………………………...97 

List of Tables ………………………………………………………………………………..103 

List of Abbreviations ……………………………………………………………………….104 

Acknowledgements ………………………………………………………………………...106 

List of Publications …………………………………………………………………………108 

List of Conference Presentations and Posters ………………………………………..109 

Selbstständigkeitserklärung ……………………………………………………………...111 

Curriculum Vitae ……………………………………………………………………………112 



Bibliografische Beschreibung 
 

	 1	

Bibliografische Beschreibung  
 
M. Sc. Sreetama Banerjee  
 
HED-TIE: a wafer-scale approach for fabricating hybrid electronic devices with 
trench isolated electrodes and its application in sensing devices 

Technische Universität Chemnitz 

Dissertation (in englischer Sprache), 2017  

Die organisch-anorganische Hybridelektronik bietet verschiedene Möglichkeiten zur 

Entwicklung neuartiger Bauelemente, welche die Vorteile von organischen und 

anorganischen Halbleitern vereinen. Planare Bauelemente werden typischerweise 

mittels Schattenmasken-basierter Strukturierung hergestellt. Ein Grund hierfür ist die 

Empfindlichkeit organischer Halbleiter gegenüber Ultraviolettem Licht und 

Lösungsmitteln, welche in den Standard-Photolithographieprozessen eingesetzt 

werden. Die Schattenmasken-Strukturierung führt allerdings zu Bauelementen mit 

kleinsten Abmessungen im Mikrometerbereich. Für die Reduzierung der 

Kanalabmessungen von planaren organisch-anorganischen Hybridbauelementen 

unterhalb eines Mikrometers ist die Elektronenstrahllithographie die am häufigsten 

verwendete Technik. Aufgrund des hohen Kosten- und Zeitaufwandes ist es nicht 

möglich, diese Technik für Wafermaßstab-Herstellung in der industriellen Anwendung 

einzusetzen.  

In dieser Arbeit wird eine alternative Technologie zur Herstellung von planaren 

Bauelementen mit isolierten Grabenelektroden und Kanalabmessungen von wenigen 

Hundert Nanometer bis unter 100 nm vorgestellt. Gräben kleiner als ein Mirkometer 

werden zunächst auf Silizium-Substraten strukturiert und anschließend mit einer 

isolierenden SiO2 Schicht aufgefüllt. Diese hilft dabei die gewünschten 

Elektrodenabstände, also die gewünschte Kanallänge, zu erreichen.  

Die Flexibilität des neuen Herstellungsverfahrens ermöglicht es nicht nur 

verschiedenen Kanallängen und Bauelement-Geometrie, sondern auch die 

Verwendung verschiedener Materialien für Elektroden und organischen Kanäle. Dies 

wiederum ermöglicht eine Vielfalt von potentiellen Anwendungen der hybriden 

Bauelemente. In dieser Arbeit wurde 6,13-bis (triisopropylsilylethinyl)-Pentacen (TIPS-

Pentacen) Lösung und metallfreie Phthalocyanin als organisches Material verwendet 

und als Elektrodenmaterial diente Gold. Die entstandenen auf TIPS-Pentacen-Lösung 
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basierenden planaren hybriden Bauelemente wurden für potentielle Anwendungen als 

optische sowie magnetoresistive Sensoren getestet. 

 
Schlagwörter:  
hybride Bauelemente, planare Bauelemente, Kanalabmessungen unter 100 nm, UV-

lithographie, Grabenelektroden, TIPS-Pentacen Lösung, metallfreie Phthalocyanin, 

optische Sensoren, magnetische Sensoren. 
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Chapter 1  
	
Introduction 
 
This dissertation focuses on the development of a new technique for fabrication of 

planar hybrid electronic devices with electrode gap dimensions of ~100 nm using 

conventional UV-lithography (365 nm). In standard microtechnology wafer processing,  

depending on the UV wavelength used for photolithography, the minimum achievable 

electrode gap dimension fabricated by conventional UV-lithography are limited to 800 

nm to 1 µm approximately. Usually for fabrication of patterns below 1 µm dimensions, 

various alternative patterning techniques are used 1,2,3. The most commonly used 

technique is electron beam lithography which is an expensive and time consuming 

method, making it unsuitable for industrial applications 1,4.  

In this dissertation, an alternative technique for fabrication of electrode gaps down to 

~100 nm is demonstrated by using devices with trench isolated electrodes. Chapter 1 

introduces the topic of hybrid electronics in general and discusses the various possible 

applications of it. Some basic properties of organic semiconductors are also discussed 

in this chapter. It also presents the two different types of device architectures which 

are commonly used for hybrid electronic devices. Chapter 2 of this dissertation focuses 

on the fabrication technologies used for the planar hybrid electronic devices with 

trench isolated electrodes or in short, the planar HED-TIEs. Chapter 3 discusses the 

electronic transport properties of the HED-TIEs. To demonstrate the compatibility of 

the technology with both thermally evaporated and solution processed organic channel 

materials, the electrical transport properties of both types of devices are discussed. 

For this purpose, thermally evaporated metal free phthalocyanine (H2Pc) based HED-

TIEs and solution processed 6,13-bis(triisopropylsilylethynyl) pentacene or commonly 

known as TIPS-pentacene based HED-TIEs are fabricated and characterized.  

Following this, in chapter 4 and chapter 5, two possible applications of the HED-TIEs 

are demonstrated. As TIPS-pentacene is an air-stable photosensitive material 5,6,7, the 

first possible application of HED-TIEs is demonstrated as light sensing devices. 

Chapter 4 discusses various results obtained from the light sensing experiments of the 

TIPS-pentacene based HED-TIEs. The light sensing properties of these devices are 

tuned further by incorporating metal nanoparticles in the TIPS-pentacene matrix. 

Chapter 5 discusses the possibility of using HED-TIEs as magnetoresistive sensors. 
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For the first time, organic magnetoresistance or OMAR is demonstrated in solution 

processed small molecule based devices, measured at room temperature and under 

ambient conditions. Solution processed TIPS-pentacene based HED-TIEs, same as 

those used for the light sensing applications, are used for this purpose. The HED-TIEs 

are also compared with commercial bottom contact organic field effect transistors 

(OFETs) to demonstrate the advantages of reducing the electrode gap dimensions in 

HED-TIEs compared to conventional planar devices. Chapter 6 summarizes the work 

done in this dissertation and gives an outlook towards the possibilities of further 

research work. 

 

1.1 Organic-inorganic hybrid electronics 
Rapid development of various electronic devices has drastically changed our daily lives 

over the last sixty years. These electronic devices were based on conventional 

inorganic semiconductors like Si, GaAs, etc.8,9,10,11. Though organic semiconductors 

have been investigated since the 1940s, it failed to play an important role in industrial 

applications until very recently. In 1948, thermally activated conductivity in metal free 

and copper phthalocyanines were demonstrated12. Following this discovery, 

electroluminescence in organic molecular crystals were discovered13,14. However, 

these devices had drawbacks of high operating voltage, low output and poor stability, 

making it unsuitable for practical applications. Since then various research areas 

ranging from new material synthesis, device design, fabrication/deposition methods, 

device modelling, up to possibility of numerous application areas of these devices, 

have widely been investigated. The field of organic-inorganic hybrid electronics, based 

on either small molecules or conjugated polymers15,16, has come a long way in the past 

few  decades. The tailorability of the chemical structure of organic molecules according 

to device requirements along with their light weight already yielded to the breakthrough 

of organic light emitting diodes (OLEDs), and still leave open possibilities of realizing 

novel device concepts. Remarkable improvements in device performance and stability 

have also been demonstrated in organic field effect transistors (OFETs)17,18, organic 

photovoltaic devices (OPVs)19,20, memory devices21,22 or even various sensing 

devices23,24. Properties of organic materials were also explored for various spintronic 

device applications1. Presently, other application areas like wearable electronics, 

smart textiles, various health monitoring devices are also gaining more and more 

research interests25,26,27,28, and perhaps awaits a great future in the commercial world. 
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1.2 Inorganic semiconductors versus organic semiconductors 
One reason for the scientific charm of the hybrid electronic devices (HEDs) lies in the 

complementarity of the electronic and structural properties of the organic or inorganic 

materials, which offers opportunities for novel functions that are not easily obtainable 

with either organic or inorganic materials individually. Compared to inorganic 

semiconductors, organic semiconductors offer various advantages such as lower 

production costs, flexibility and low weight29,30. These advantages make it ideal for 

various commercial applications. Another reason for the wide interest in HEDs relates 

to the processability of the organic/inorganic materials: inorganic materials 

(semiconductors, metals) possess robustness and are mostly compatible with 

standard microtechnology processing techniques, while organic semiconductors 

(OSCs) can easily be deposited as thin films by low temperature thermal sublimation 

or even solution processing15. 
If the electronic state configurations of organic and inorganic semiconductors are 

considered, there is a significant difference between these two types of materials. 
Inorganic semiconductors are formed by a continuum of states and electrons are 

delocalized within the bands, whereas organic semiconductors are composed by 

discrete energy levels. This energy level is associated to a molecular orbital that can 

be strongly localized on a group or bond of the molecule, or delocalized over an entire 

molecule. These two orbitals that are involved in the charge transport are known as 

the “Highest Occupied Molecular Orbital” (HOMO) and the “Lowest Unoccupied 

Molecular Orbital” (LUMO) that are separated by an energy gap31. These orbitals can 

be compared to the conventional valence band and conduction band of inorganic 

semiconductors. In the case of inorganic materials, the electrons are delocalized and 

give rise to bands, which is not the case in a molecule.  

 

1.3 Electronic properties of a molecular layer 
Molecules can be arranged in amorphous, polycrystalline or single crystalline phase 

depending on the deposition conditions of the molecular film. In a thin layer, the 

molecules interact with each other through Van der Waals interactions and this is 

responsible for the layer cohesion. Van der Waals forces that exist between molecules 

are weaker compared to the covalent or ionic bonds in inorganic materials. This is the 

main reason behind the less rigidity of organic molecules in comparison with inorganic 

materials. Additionally, the overlap between orbitals in adjacent molecules is often 
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weak and it resists the delocalization of electrons on other molecules. Depending on 

the orbital overlapping there can be two types of electronic transport in molecules: (i) 

band transport when the overlap between p-orbitals is strong enough to allow the 

delocalization of charges in an energy band formed by a quasi-continuum of states, (ii) 

hopping transport where the charges jump from one localized state of a molecule to 

another to form carrier conduction31. Figure 1.1 represents the mechanism of band 

transport and the hopping transport of charge carriers. 

 

Figure 1.1 (a) Representation of the structure for band transport. If the overlap between molecules 

is strong enough, the overlap of bonding and anti-bonding p orbitals leads to the formation of energy 

bands formed by a quasi-continuum of states. (b) Representation of the structure for hopping 

transport. In an amorphous material, disorder leads to a dispersion of localized states. Transport 

occurs by hopping and it is assisted by phonons. Figure adapted from ref.31. 

The weak Van der Waals interactions result in a charge transport in the bulk material 

mainly based on charge hopping, leading to a lower mobility of the organic molecules 

compared to inorganic materials.  

 
1.4 Vertical HEDs and planar HEDs 
There are two types of organic–inorganic HED architectures which have been 

described in the literature so far: (i) the vertical device architecture and (ii) the planar 

or lateral device architecture32. The vertical and planar terminology originates from the 

direction of the carrier transport with respect to the electrodes. OLEDs or OPV devices 

mostly use the vertical type of device19,33 architecture, while OFETs or organic thin film 

transistors (OTFTs)5,34 are the most common example for planar type hybrid devices. 

Vertical type HEDs offer the advantage of defining the device channel length by 

controlling the thickness of the active organic layer with an accuracy specific to the 

deposition method used. These devices are expected to perform at high speed for low 
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applied voltages due to the channel length dimensions in the range of a few nm to a 

few hundreds of nm. Another advantage of vertical HEDs is the possibility of depositing 

two different metals for the different electrodes which is common practice in various 

applications35. However, common deposition techniques for the metal electrode layers, 

such as sputtering, often damage the molecular layers36,37. 

 

Figure 1.2 Schematic diagram of vertical and planar type hybrid electronic device structures.  

Additionally, the metal tends to penetrate through pinholes and goes into the organic 

layers, shorting the device electrodes. Planar HEDs are mostly fabricated using 

shadow mask based patterning owing to the fragility of OSCs to standard 

photolithography processes. This procedure results in devices with larger active 

areas38. Figure 1.2 shows schematic diagram of basic device structures of planar and 

vertical HEDs. One main advantage of planar HEDs is the possibility of fabricating 

three terminal transistor devices or fabricating sensors where the active channel of the 

device is fully accessible from the top23,39.  The various possibilities of fabricating 

planar hybrid devices and their associated advantages or disadvantages will be 

discussed in detail in the next chapter.  
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Chapter 2  
	
Wafer-scale fabrication approach for planar HED-TIEs  
 
2.1 Overview of nano-patterning techniques 
In the previous chapter, we discussed about the two types of hybrid electronic device 

architectures reported so far in the literature. As already mentioned, in the vertical 

HEDs, it is possible to control the channel length dimensions by various deposition 

techniques and hence this can go down to few nanometres. On the other hand, planar 

HEDs are mostly fabricated using shadow mask based patterning due to fragility of 

OSCs to standard photolithography processes using UV-light. The usage of shadow 

masks results in devices with at least μm-large active areas38. In this chapter, at first a 

few alternatives to shadow mask technique which have already been tested for down-

scaling the channel dimension of planar HEDs will be presented. In the following 

section, the development of the technology for fabricating HED-TIEs achieved in this 

work, and its associated advantages over the other technologies reported in literature 

will be discussed. A part of the results discussed in this chapter was published in ref.40. 

 

(a) Electron beam lithography (EBL) 
The most commonly used technique for patterning planar HEDs with sub-micron 

channel dimensions is the electron beam lithography (EBL)1,4. In EBL, an electron 

beam scans across the whole desired pattern pixel-by-pixel. This considerably 

increases the exposure time compared to photolithography, where the entire pattern 

is exposed at once using a mask. The high maintenance costs along with the long 

exposure times make EBL difficult to implement in wafer-scale fabrication for industrial 

applications.  

 

(b) Nanostencil lithography (NSL)  
Nanostencil lithography or NSL was introduced as an alternative technique to EBL and 

it uses a silicon nitride shadow mask patterned by EBL within a complex process 

flow2,3. For the nanostructuring using NSL, full wafer stencils can be used. A double 

sided polished Si wafer is first cleaned, and then a low pressure chemical vapour 

deposition (LPCVD) of a slightly strained silicon nitride (SiN) layer is carried out with a 

thickness of 100 nm to 500 nm. The thickness of the layer depends on the particular 
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application and the design that is being targeted. The optimum value of the SiN layer 

thickness is a trade-off between the mechanical stability of the membrane and the 

smallest aperture size. On one hand, the thicker the SiN layer, the larger deformations 

it can sustain. On the other hand, the aspect ratio of the SiN membrane 

thickness/aperture width needs to be ≤2 due to fabrication restrictions2, which means 

that in order to have small patterns, thin membranes are required. This SiN layer is 

deposited on both sides of the wafer. Following this, a lithography step is performed 

on the front-side of the wafer via EBL, using an electron-sensitive resist. Then, the SiN 

layer is patterned using dry etching. Subsequently, another lithography step is 

performed on the backside of the wafer using UV-lithography to define the windows for 

KOH bulk micromachining on the backside to release the patterned membranes from 

the wafer. The fabricated stencil is then used for patterning structures. The figure 2.1 

shows the simplified process flow for nanostencil fabrication and the use of the 

nanostencils for fabrication of nanostructured patterns. 

 

 

Figure 2.1 Schematic of the fabrication process flow for fabricating nanostencils and how the 

nanostencil is used for fabricating nanostructured patterns on substrates. Figure taken from ref.2. 

(c) Nanoimprint lithography (NIL) 
Nanoimprint lithography or NIL is another commonly used technique that can produce 

high-resolution structures with dimensions in the sub-μm range by using polymer 

stamps2,41. This technique can also be applied on a wafer level. The fabrication of the 

NIL polymer stamp itself, however, uses complex and expensive processes like EBL, 

NSL, or ion beam lithography2,42,43, which still makes the overall process expensive. 

The NIL process is a mechanical replication process where surface released from the 

template are embossed into a thin layer on the substrate. In principle, there are two 

types of NIL. One is based on thermoplastic polymers and the second one is based on 

Micromachines 2013, 4  
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can be observed [19,20]. We then perform the etching of the Si to define the stamp itself. A short 
aluminum etching is performed prior to the Si etching. This is done to remove the very-thin layer that 
is spread around the patterns due to surface diffusion of Al [20,21]. Si etching is performed using an 
ICP 601-E dry etcher from Alcatel with a mixture of 100 sccm of SF6 and 100 sccm of C4F8 at 3 Pa 
with 50 W platen power and 1800 W coil power (Figure 2d,e). Finally, Al leftovers are etched using a 
wet chemical etching (Al-etch, commercially available) and an anti-sticking self-assembled monolayer 
(SAM) is deposited on the stamp (Figure 2f). 

Figure 2. Nanoimprint lithography (NIL) stamp fabrication process flow. The fabrication 
starts with (a) silicon wafers, where the stencil is placed to perform (b) a localized 
deposition of metal (Al) and (c) subsequently removed from the substrate. A short 
corrective etching is performed to remove a very thin metal layer that spreads due to 
surface diffusion. Subsequently, the transfer of the metal patterns into the Si is performed 
via dry etching (d, e) and eventually the metal is removed via wet chemical etching (f). The 
last detail is the deposition of an anti-sticking self-assembled monolayer. 

 

This fabrication process flow (with slight modifications) can be also applied to stamps made out of 
different materials. The use of Si stamps is preferred for thermal NIL, but for UV-NIL a transparent 
stamp is required and this technique can be used to pattern, e.g., glass wafers into a usable stamp. The 
slight modifications in the process flow consist of a different etching recipe for the stamp material and, 
in addition, the choice of a different metal to attain a sufficiently high selectivity so that the stamp can 
be properly patterned. 

Figure 3 shows some typical results obtained following the fabrication process flows described 
above. In particular, Figure 3a shows the nano-apertures in a stencil membrane. On the right, Figure 3b,c 
shows the transfer of some of these apertures into a Si substrate, yielding a stamp. Figure 3d,e shows 
some of the smallest features in the fabricated stamps: 100 nm pillars (Figure 3d) and 50 nm lines 
(Figure 3e). Across the whole wafer, pattern sizes are within ±5 nm of the stencil aperture sizes 
(extracted from the measurement of 50 different structures across the wafer). 

a. Stencil placement

b. Metal evaporation

c. Stencil release

d. Dry etching of Si

e. Result after etching

f. Metal removal

Micromachines 2013, 4  
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particular application and design that is being targeted) is deposited at 840 °C (Figure 1b) on both 
sides of the wafer. A lithography step is performed on the front-side of the wafer via EBL, using ZEP 
as the electron-sensitive resist. Then, the nitride layer is patterned using an ICP 601-E dry etcher from 
Alcatel, with 20 sccm of C2F6 as the etching gas, at 0.5 Pa with 450 platen power and 1200 W coil 
power (Figure 1c). Once those patterns are transferred into the nitride, the functional apertures are 
opened on the front-side. Subsequently, another lithography step is performed on the backside  
(UV-lithography) to define the windows for KOH bulk micromachining on the backside (Figure 1d). 
Finally, the release of the membranes is made using a KOH etching (60 °C, 40% in weight; Figure 1e). 

Figure 1. Simplified stencil fabrication process flow. The fabrication starts with (a) double 
side polished silicon wafers, where a layer of low stress silicon nitride (LS-SiN) is 
deposited on both sides of the wafer (b). The thickness depends on the particular 
dimension requirements of the application. (c) LS-SiN is patterned on the front side by 
using electron beam lithography (EBL) and reactive ion etching. (d) LS-SiN is patterned 
on the backside in order to define the windows for the subsequent KOH etching (e), which 
actually releases the membranes. 

 

The thickness of the nitride layer is chosen depending on the required stencil characteristics. The 
optimum value is a trade-off between the mechanical stability of the membrane and the smallest 
aperture size. On the one hand, the thicker the membrane, the larger deformations it can endure [15]. 
On the other hand, the aspect ratio—membrane thickness/aperture width—needs to be ≤2 due to 
fabrication restrictions [16], which means that in order to have small patterns, thin membranes  
are required. 

3. Stamp Fabrication 

Using the stencils described in the previous section, we perform the fabrication of NIL stamps in 
silicon by following a similar procedure to that described elsewhere [17,18]. We first place the stencil 
on top of a 100 mm diameter Si wafer, deposit a thin aluminum layer (25 nm, e-beam evaporated,  
P = 10−6 mbar, 0.1 nm/s, the sample being placed at a distance of 1 m from the metal source with an 
average evaporation angle of 0°) and withdraw the stencil from the substrate (Figure 2a–c). Once the 
stencil is removed, metal patterns are visible on the substrate but distortion of the patterns (blurring) 

a. Si wafer

b. SiN deposition

c. Nano apertures in SiN

d. Backside windows
e. KOH etching
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UV-curable polymers. The NIL process and imprint instrument are conceptually very 

simple, but allow extremely good resolution and a relatively fast replication of the 

patterns. Thermal-NIL, as illustrated in figure 2.2, was the original version of NIL. It is 

based on the use of a layer of thermoplastic polymer, spin coated on a substrate. The 

thermoplastic polymer is heated above the glass transition point of the polymer, and 

then the heated template is brought into contact with the thermoplastic polymer. Once 

the polymer fills up all the cavities of the template, the substrate and the template are 

cooled down and the template is separated from the substrate. A negative replica of 

the template is created on the polymer. In order to use the imprinted polymer for pattern 

transfer to other layers on the substrate, polymer left on the indented areas is removed.  

 

Figure 2.2 Schematic of thermal nanoimprint lithography process. Tg denotes the glass transition 

temperature of the thermoplastic polymer. 

A few other interesting approaches have been shown to reach sub-micron electrode 

patterning, but their implementation has not yet been extended to the wafer-scale 

fabrication. For example, Min et al.44 made use of organic nanowire printing for 

producing the organic channel, while Grünewald et al.45 proposed a shadow 

evaporation technique to fabricate organic–inorganic planar HEDs for spintronic 

applications. Nevertheless, all these technologies do have their associated drawbacks. 

There is, therefore, still demand for the development of new, wafer-level technologies 

for the fabrication of planar HEDs.  

In the frames of this work, the trench isolated electrode (TIE) technology as a wafer-

scale approach for the fabrication of planar hybrid devices with an electrode distance 

down to ~ 100 nm was developed. This TIE technology is inspired from the process 



Wafer-scale fabrication approach for planar HED-TIEs 
 

	 11	

flow that has been successfully implemented in the fabrication of MEMS or 

microelectromechanical systems46,47. In the first part of the fabrication process flow, 

the “trench refill approach” will be discussed. In the next step, an additional spacer 

layer was introduced in the fabrication process flow for producing trenches with more 

controlled and sharper geometry. This modified technology was named as the “spacer 

approach”. Figure 2.3 shows the device architecture of a conventional planar HED and 

a HED-TIE. Both types of devices are patterned by photolithography. In conventional 

planar device, the channel length is defined by the photolithography technique 

whereas in HED-TIE the final channel length is defined by the thickness of the 

deposited isolation layer. Development of this technology was started as a task for a 

master’s thesis and various optimization steps for development of the technology can 

be found in ref.48. In the duration of this dissertation work, some necessary changes in 

the fabrication flow were implemented for improving the device geometry and the 

electrical properties of the devices. 

  
 

 

Figure 2.3 Schematic representation of the device architectures of conventional planar device (left) 

and HED-TIE (right). 

The key aspects of the proposed technology are as follows: (i) the TIE process flow is 

compatible with standard silicon technology and can be scaled up for high-volume 

manufacturing on 200 mm or 300 mm wafers; (ii) the device geometry is not limited to 

two-terminal architecture, but can easily be varied to multiple electrodes design with 

fully tuneable channel dimensions in the range of 100 nm or even below, and various 

materials, including ferromagnetic metals or oxides can be used for the electrode layer; 

(iii) the HEDs fabrication is compatible with various deposition techniques of the active 
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transport channel, such as solution processing techniques (inkjet printing, spin-

coating, drop-coating, or the ‘doctor blade’ method), stamping or vacuum deposition 

by thermal evaporation; (iv) the HEDs fabrication is not restricted to organic channels: 

other materials such as polymers, oxides, or even 2D materials (graphene, MoS2, etc.) 

can be implemented in the highly flexible fabrication process flow. In addition to 

providing a platform for fundamental investigations of nanoscale transport 

mechanisms with systematic variation of the transport channel length on a single chip, 

the HED-TIE technology offers full accessibility of the active transport channel to 

external stimuli such as light or gases. This type of device structures can find a wide 

range of applications in spintronic devices, waveguides, photodetectors, or gas 

sensors, depending on the channel material and/or in combination with the electrode 

material used in the devices. As this work focuses on developing a new fabrication 

technology for planar hybrid devices, it is important to check the compatibility of the 

technology with the standard deposition techniques available for organic molecules. It 

is demonstrated that the HED-TIEs are suitable for both solution processing of organic 

molecules as well as thermal evaporation of organic molecules in vacuum. For this 

purpose, thermally evaporated metal free phthalocyanine (H2Pc) based HED-TIEs and 

solution processed 6,13–bis(triisopropylsilylethynyl)pentacene or commonly known as 

TIPS-pentacene based HED-TIEs are fabricated and characterized. The device 

characterizations and the possible applications of the fabricated devices will be 

discussed in the following chapters.  

 
2.2 Fabrication of planar organic-inorganic HED-TIEs 
2.2.1 Trench refill approach for fabricating HED-TIEs 
Figure 2.4 shows the fabrication process flow of the HED-TIEs using the “trench refill 

approach”. (a) The process starts with cleaning the 100 mm n-type (100) silicon wafer 

with a specific resistance of 6–7 Ω cm. (b) Thermal oxidation of the wafer is performed 

to form a 500 nm SiO2 layer which acts as the hard mask layer. (c–d) Sub-micron 

trenches with dimensions ranging from 850 nm to 1050 nm are patterned on the hard 

mask layer using standard photolithography, and the SiO2 layer is etched away using 

reactive ion etching. (e) Deep reactive ion etching of silicon with an etch depth of 4 μm 

is carried out in a Surface Technology Systems (STS) multiplex inductively coupled 

plasma system to create the trenches. For this step, a time multiplexed reactive ion 

etching was used by supplying SF6 and C4F8 in an alternating way. The SF6 chemically 



Wafer-scale fabrication approach for planar HED-TIEs 
 

	 13	

etches away the silicon whereas the C4F8 forms a chemically inactive polymer 

deposited on the surface. Due to the highly directional nature of the ions, the SF6 can 

only attack the bottom surface, whereas the sidewalls are protected by the polymer49. 

This alternate etching and passivation process introduces small scallops on the 

sidewalls. (f) Deposition of a 200 nm thick SiOx layer is then carried out by plasma 

enhanced chemical vapour deposition (PECVD). This layer protects the vertical 

sidewalls of the trenches in the following step. (g) The deposited SiOx layer is then 

removed from the bottom of the trenches by a highly anisotropic etch step using a 

reactive ion etching process based on CF4. This step allows for isotropic etching of the 

silicon substrate in the following step while the vertical sidewalls are still protected by 

the SiOx layer. (h) Isotropic etching of Si is carried out using a SF6/O2 plasma for 20s. 

This forms a cavity at the bottom of the trench, which is needed for electrical isolation 

of the electrodes. (i) The SiOx layer which was used to protect the sidewalls of the 

trench is then completely removed by hydrofluoric acid (HF). (j) Deposition of an 800 

nm SiOx layer by LPCVD is then carried out. This SiOx layer reduces the device 

channel dimensions by refilling the trenches partially, and also serves as the electrode 

isolation layer.  

 
Figure 2.4 Schematic representation of the fabrication process flow of the HED-TIEs using “trench 

refill approach”. Figure taken from ref.40. 

As can be seen in figure 2.5, the thickness of the LPCVD SiOx layer on the electrode 

area is much larger than that in the trench opening. This produces a ‘cone’-shaped 

trench opening at the top part of the trench. The thickness of 800 nm was chosen to 

obtain the desired electrode gap dimensions without closing the trench. (k) Sputtering 

of a 50 nm thick gold layer is then carried out to form the device electrodes along with 

a 10 nm thick Cr adhesion layer. (l) Finally, the wafer is diced into 1 cm × 1 cm chips 

followed by the organic channel formation.  
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It should be emphasized that the developed technology offers the possibility of tuning 

the electrode gaps to reach any desired channel dimension, even below 100 nm, by 

tuning the thickness of the refilling SiOx layer and/or the metal layer. It should be noted, 

however, that during sputtering the metal gets deposited partially on the sidewalls of 

the trench and also at the bottom of the trench. As long as the deposited metal layers 

on the sidewalls do not touch each other, or the metal layer on the sidewalls are 

properly isolated by the cavity at the bottom of the trench, the metal layer thickness 

can be tuned to the desired range.  

The widths of the electrical transport channels are kept to either 30 μm or 40 μm. 

Depending on the initial trench dimensions obtained from photolithography, which is 

varied from 850 nm to 1050 nm. Device structures with electrical transport channel 

lengths of 120 nm, 170 nm, 210 nm, 250 nm, and 300 nm were fabricated. The channel 

dimensions can have variations of ±10 nm due to aspect ratio-dependent variation in 

the fabrication processes (such as etching or deposition), while the measurement error 

from scanning electron microscopy (SEM) imaging itself is ±3%. For simplicity, the 

channel dimensions will be given without error bars throughout the dissertation.  

Up to the point of deposition of the metal layer, the fabrication process described is 

based on standard wafer-level silicon processing technology and optimized for 100 

mm wafer fabrication. The organic channel formation for the devices described in this 

dissertation was done on diced chips from the fabricated wafer for both drop-coated 

and evaporated channel materials. This was done for making it compatible with the 

measurement set-up used for further experiments. Availing options like inkjet printing 

of organic molecules on the channel area can take this technology a step further and 

make it a complete wafer-level fabrication process for planar hybrid devices. Spin-

coating can also be an alternative for coating the whole wafer uniformly with organic 

molecules.  

Before the deposition of the organic material, the electrical isolation of every single 

device was checked to ensure that the current obtained during the electrical 

characterization was indeed from the channel material but not from the metal sidewalls 

touching each other and creating shorted electrodes. Typically, more than 97% of the 

tested devices on a 100 mm wafer were properly isolated.  

Figure 2.5 (a) shows the cross-sectional SEM (XSEM) image of a fabricated HED-TIE 

with solution processed TIPS-pentacene as channel material. Figure 2.5 (b) shows the 

cross-sectional SEM image of a fabricated HED-TIE with evaporated metal free 
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phthalocyanine (H2Pc) as channel material. The details of the organic channel 

deposition process will be discussed in the following section. 

	  

	 

Figure 2.5 XSEM image of fabricated HED-TIEs with (a) solution processed TIPS-pentacene channel 

and (b) thermally evaporated H2Pc channel. Figures taken from ref.40. 

2.2.1.1 Deposition of the trench refill layer  
During the optimization process of the developed technology for HED-TIEs, both 

thermally grown oxide and LPCVD oxides were tried out for the deposition of the trench 

refill layer. Figure 2.6 shows the XSEM images of the fabricated structures with both 

types of trench refill layers. During the LPCVD oxide deposition, the thickness of the 

deposited layer on the electrode area is much more compared to the deposited 

thickness at the trench opening. It can clearly be seen from the XSEM image. The 

deposition rate declines due to shrinking gap. It also depends on the aspect ratio of 

the structure at the beginning of the deposition step. The larger the aspect ratio, the 

higher would be the deposition rate. On the other hand, once the trench opening 

becomes narrower, the deposition rate declines. This creates a “cone” shaped opening 

at the top part of the trenches. Judging from the initial trench dimension and the final 

trench dimension, it can be concluded that narrowing effect is more significant for the 

larger trenches. With this kind of ‘cone’ shaped trench openings, it is necessary to 

decide the layer thicknesses in such a way that the smaller trenches do not get closed 

during the LPCVD process or during the metal deposition, i.e. before the deposition of 

the organic material. Thermally grown SiO2 layer is able to solve the problem of poor 

step coverage of oxide layer but it produced rounded corners which was again not 

beneficial for the device geometry. Metal deposition was not carried out in the case of 

(a) (b) 
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structures with the thermally grown oxide layer as the narrowed region in the trenches 

would have produced shorted electrodes. Finally, LPCVD oxide was chosen as the 

suitable trench refill layer over the thermally grown oxide layer for further processing 

of device fabrication.  

  

Figure 2.6 XSEM image of fabricated structures with two types of trench refill oxide layer:  

(a) thermally grown SiO2 layer and (b) LPCVD SiOx layer.  

The deposition of such a thick oxide layer on various structures with different aspect 

ratios can lead to process parameter variations. This step can be subject of further 

optimization in the fabrication process in order to reduce the sensitivity of the electrode 

gaps to process variations. A further development of the fabrication technology using 

the “spacer approach” in the frames of this work yielded in better defined device 

geometry as described in the section 2.2.2.  
 
2.2.1.2 Deposition of the organic channel material 
(a) HED-TIE with thermally evaporated organic channel  
In the initial phase of the work, different thermally evaporated channel materials were 

used to form the organic channels and their electrical characterizations were carried 

out48. Exemplary, here we will focus on only thermally evaporated metal free 

phthalocyanine or H2Pc based HED-TIEs. Phthalocyanines are a class of organic 

semiconductors, which have been a significant part of the research studies on 

molecular semiconductors due to their high chemical and thermal stability50. 

Phthalocyanines are macrocyclic planar aromatic compounds, exhibiting 

semiconducting properties. Figure 2.7 shows the molecular structure of H2Pc 

(b) (a) 



Wafer-scale fabrication approach for planar HED-TIEs 
 

	 17	

molecules. The bandgap of H2Pc is ~2.4 eV as reported in literature51.  

 

Figure 2.7 Molecular structure of metal free phthalocyanine molecule. Figure taken from ref.52. 
 

In figure 2.8, the photograph of an array of TIE structures metallized with gold can be 

seen. 

 
Figure 2.8 Photograph of an array of HED-TIE structures with gold electrodes. The inset shows 

scanning electron microscopic top-view of a HED-TIE with W = 30 μm and channel length L= 210 

nm, after the evaporation of a nominal 300 nm phthalocyanine film thickness. Figure taken from ref.40. 

In case of the thermally evaporated channel devices, after the metallization step, a UV-

curable adhesive polymer mask was aligned and positioned on top of the TIE gold 

structures. The shadow mask protects the electrode area from getting covered with the 

organic layer during thermal evaporation.  The thermal evaporation of the molecules 

was performed in a vacuum chamber with a base pressure of ~5×10-8 mbar. The 

phthalocyanine powder was purchased from Sigma Aldrich and had a purity of 98%. 

The evaporation temperature was approximately 380 oC and the deposition rate was 

~1 nm/min. During the organic film deposition, the substrate was kept at room 

temperature. The typical nominal film thickness required to form all the channels was 

~300 nm. The inset of Figure 2.8 shows the SEM top view of the HED-TIEs with H2Pc 

channels. The XSEM image of a similarly fabricated structure is shown in figure 2.5 
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(b), where it can be seen that the evaporated organic material forms a “free-standing” 

membrane between the electrodes. It is this membrane which forms the current 

conduction channel. The electrical properties of these devices will be discussed in 

chapter 3. The formation of such a “free-standing membrane” was observed in all 

devices fabricated by thermal evaporation of organic materials. 

 
(b) HED-TIE with solution processed organic channel  
To demonstrate the compatibility of the developed HED-TIE technology with standard 

solution processing techniques of the organic semiconductors, we fabricated 6,13-bis 

(triisopropylsilylethynyl)-pentacene or TIPS-pentacene solution-processed devices 

with trench isolated gold electrodes. TIPS-pentacene was chosen because it is a 

solution processable molecule and also is known to exhibit high carrier mobility values. 

TIPS-pentacene is a soluble derivative of pentacene and is frequently used in various 

organic devices such as OFETs or other electronic devices5,53,23.  As reported in 

previous studies, the highest unoccupied molecular orbital (HUMO) of TIPS-pentacene 

lies at ~5.20 eV while the lowest unoccupied molecular orbital lies at ~3.55 eV 54, 55. 

The bandgap of the material is ~1.65 eV 54,55. Figure 2.9 shows the molecular structure 

of TIPS-pentacene molecule.  

 

Figure 2.9 Molecular structure of TIPS-pentacene. 

In the following chapters (chapter 4 & chapter 5), we will explore the possible 

applications of the TIPS-pentacene based HED-TIEs. To underline one key feature of 

the planar HED-TIEs, namely, the full accessibility of the active transport channel to 

external stimuli such as light, the devices were successfully tested for possible 

application as hybrid photodetectors. The devices were also found to exhibit light 

induced magnetoresistive properties.  

TIPS-pentacene powder with a purity of 99.9 % was purchased from Ossila. The 
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solution was prepared in a mixture of toluene:tetralin (2:1) with a concentration of 8 

mg/ml. Prior to drop-coating, the fabricated structures with gold electrodes were 

cleaned using acetone, ethanol and deionized water respectively. 3 µl solution was 

used to drop-coat the HED-TIE devices for a chip of 1 cm x 1 cm area. The drop-

coating of the substrates was performed at 65 °C on a hot plate and the samples were 

kept at 65 °C for 30 min after drop-coating. This was to initiate crystallization of the 

TIPS-pentacene film and to ensure evaporation of the solvents from the film. The 

thickness of the drop-coated film was measured by atomic force microscopy (AFM). 

The largest thickness of the drop-coated TIPS-pentacene layer on the gold electrode 

area was found to be ~300 nm. The Raman spectrum of the drop-coated thin film 

compared with that of the as purchased TIPS-pentacene powder (both recorded at 

514.7 nm excitation wavelength) and the spectra are shown in the figure 2.10.  

 
Figure 2.10 Comparison of the Raman spectra of the TIPS-pentacene powder and the drop-coated 

film (excitation wavelength used: 514.7 nm). Figure taken from ref.40. 

The typical features of TIPS-pentacene can be seen in both Raman spectra, indicating 
that the molecular structure is preserved upon drop-coating from solution. Figure 2.11 
shows a photograph of a 1 cm x 1 cm chip with an array of gold TIE structures. The 
inset of figure 2.11 shows the optical microscopic image of an exemplary device with 
TIPS-pentacene channel. While the crystallized film of TIPS-pentacene does not cover 
the TIE structure homogeneously, the channel trench is covered almost 
homogeneously. The isolation trenches are, nevertheless, not completely filled and 
hence isolating. For the TIPS-pentacene devices, the adhesive shadow mask (as 
described for devices with evaporated channel materials) was not used, since UV-
curing of the mask is needed to remove the mask from the devices, and TIPS-
pentacene is a photosensitive material which can be photo-oxidized under UV 
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exposure in air40. The contact pads were, therefore, covered with TIPS-pentacene 
films; however, it was still possible to contact the electrodes through the thin organic 
layer. 

 
Figure 2.11 Photograph of a silicon chip with an array of gold TIE structures prior to deposition of 

the organic film. The inset shows an optical microscopic image of a fabricated device with channel 

width W = 40 μm and channel length L= 210 nm after drop-coating with TIPS-pentacene solution. 

Figure taken from ref.40. 

XSEM image of a representative TIPS-pentacene based HED-TIE is shown in figure 
2.5 (a). Unlike the devices with thermally evaporated channels, where the organic 
channel was found to form a “free-standing” membrane, the TIPS-pentacene was 
found to go inside the trench and partially fill it to form the transport channels. It should 
be noted that the non-polar solvent in the TIPS-pentacene solution exhibits a very good 
wetting of the gold electrodes which allows the solution to wet with the inner part of the 
trench and thus ensures the transport channel formation. The post-deposition thermal 
treatment leads to the growth of elongated, presumably crystalline, grains (darker 
areas in the inset of Figure 2.11).  
The thermally evaporated phthalocyanines formed smaller crystals (grain size < 100 
nm) as shown in the inset of figure 2.8. When the electrical measurements were carried 
out for longer duration or repetitively, the phthalocyanine channel was found to get 
damaged, perhaps due to very high current density at the points where two or more 
grains touch each other. This issue was not present in the case of TIPS-pentacene 
based devices presumably due to the larger size of the crystalline domains (> 50 µm, 
as shown in inset of figure 2.11) which was found to cover the device channel area 
uniformly and thus avoiding the issue created by localized high current densities.  

 
 



Wafer-scale fabrication approach for planar HED-TIEs 
 

	 21	

2.2.2 Spacer approach for fabricating HED-TIEs 
The motivation behind modification of the process flow for fabricating HED-TIEs was 

to achieve a better control and reproducibility over the trench geometry. In trench refill 

approach, since the initial trench dimensions are 850 nm to 1050 nm, most of the 

channel opening reduction occurred during the LPCVD oxide deposition. Deposition of 

~800 nm thick layer (or thicker depending on requirements) on various structures with 

different aspect ratio can lead to process parameter variations. Moreover, as discussed 

earlier, this LPCVD oxide layer was found to produce a “cone” shaped trench opening. 

Hence it was desirable to introduce some other step in the fabrication technology which 

can reduce the thickness of the deposited oxide layer. One possible option was to 

introduce an atmospheric pressure CVD (APCVD) deposited SiOx layer, to tune the 

hard mask geometry in such a way that the gap is further reduced even before the 

deep etching of silicon is carried out. Figure 2.12 illustrates the difference in the 

fabrication approach using both the techniques.  

 

Figure 2.12 Schematic illustration of “trench-refill approach” (left) and “spacer approach” (right) for 

fabricating HED-TIEs. In “trench refill approach”, the electrode gap is determined by the thickness of 

the trench refill layer. In “spacer approach”, an APCVD oxide layer is used to alter the hard mask 

geometry for reducing the electrode gaps even before the trenches are etched.  

Figure 2.13 shows the fabrication process flow of the hybrid devices with trench 

isolated electrodes using the “spacer approach”. (a) The process starts with cleaning 

the 100 mm n-type (100) silicon wafer with a specific resistance of 6–7 Ω cm. (b) 

Thermal oxidation of the wafer is performed to form a 1000 nm SiO2 layer which acts 

as the hard mask layer. (c–d) Sub-micron trenches with dimensions ranging from 850 

nm to 1050 nm are patterned on the hard mask layer using standard photolithography, 

and the SiO2 layer is etched away using reactive ion etching. Following this, a 450 nm 

APCVD SiOx layer is deposited as the spacer layer to alter the hard mask geometry. 
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APCVD oxide was found to have very good step coverage over the trenches, as 

desired. The thickness of this APCVD oxide depends on the thickness of the hard mask 

silicon dioxide layer. (e) Anisotropic etching of SiOx is carried out to remove the APCVD 

oxide layer from the floor of the trench and only the vertical part of this layer is left near 

the trench opening. This remaining APCVD oxide forms the spacer, thus reducing the 

trench dimension by adjusting the hard mask geometry.  (f) Deep reactive ion etching 

of silicon with an etch depth of ~2 μm is carried out in a Surface Technology Systems 

(STS) multiplex inductively coupled plasma system to create the trenches. For this 

step, silicon etching was carried out first by using SF6 and then the sidewalls were 

protected by polymers by using CF4. This polymer is then removed from the bottom of 

the trench to open the bottom of the trench for the isotropic etching step. (g) Isotropic 

etching of Si is carried out using a SF6/O2 plasma for 45 s. This forms a cavity at the 

bottom of the trench, which is needed for electrical isolation of the electrodes. 

 
Figure 2.13 Schematic representation of the fabrication process flow of the HED-TIEs using “spacer 

approach”. 

(h) The SiOx layer which was used to protect the sidewalls of the trench is then 

completely removed by hydrofluoric acid (HF). (i) Thermally grown SiO2 with a 

thickness of 130 nm is grown to form the isolation layer for isolating the electrodes. 

This also reduces the trench dimensions further. It should be noted; the thickness of 

the isolation layer could be brought down to 130 nm from the 800 nm LPCVD SiOx 

layer which was used in trench refill approach. (j) Sputtering of a 30 nm thick gold layer 

is then carried out to form the device electrodes along with a 10 nm thick Cr adhesion 

layer. (k) Finally, the wafer is diced into 1 cm × 1 cm chips followed by the organic 
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channel formation. The organic channel formation was carried out in the same way as 

described for “trench-refill approach”. For the chips fabricated using “spacer 

approach”, only solution processed TIPS-pentacene based HED-TIEs were fabricated 

and characterized. 

Figure 2.14 shows the XSEM image of a fabricated structure using spacer approach. 

The minimum achieved electrode gap dimension was ~100 nm using an isolation layer 

of ~130 nm thermally grown oxide and a 30 nm gold, with 10 nm Cr adhesion layer as 

electrodes. Unlike the trench refill approach, where scallops were observed on the 

sidewalls, smooth vertical sidewalls were obtained using the above mentioned etching 

process. 

 
Figure 2.14 XSEM image of fabricated HED-TIE structure using spacer approach, prior to deposition 

of the organic channel. 

2.2.2.1 Deposition of the isolation layer 
For deposition of the isolating SiO2 layer between two electrodes, it was necessary to 

find an oxide deposition process which would provide good step coverage, uniform 

layer thickness and sharp cornered, non-rounded trench openings. Along with 

thermally grown oxide and LPCVD oxide (similarly to the tests performed in the trench 

refill approach), APCVD oxide was also tested in the spacer approach.  

Figure 2.15 shows the XSEM of HED-TIE structures with thermally grown oxide as the 

isolation layer. Unlike the trench refill technology, where the thermally grown oxide was 

found to produce rounded corners (shown in figure 2.6), in spacer approach, the 

thermally grown oxide produced perfectly suitable and sharp trench geometry.  

It should be noted that the fabricated structures shown in figure 2.15 were fabricated 

for test purpose to optimize the profile of the thermally grown oxide layer. The thickness 

of the used APCVD spacer layer was different in this case as compared to the structure 
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shown in figure 2.14, which produced wider trenches (shown in figure 2.15). Similar 

fabricated structures were also used to test the profile of the SiOx layer deposited by 

LPCVD and APCVD and are shown in figure 2.17 and figure 2.18. 

 

	 	
Figure 2.15 XSEM image of HED-TIE structure with thermally grown SiO2 isolation layer: (a) zoomed 

in view of the trench opening and (b) complete view of fabricated HED-TIE structure. 

After the deep reactive etching of Si, the fabricated structures were found to produce 

“notches” at the trench opening as shown in the figure 2.16.  

 

Figure 2.16 XSEM image of the trench opening after deep etching of silicon is carried out, showing 

the notches at the trench opening. 

When SiO2 is grown thermally, the silicon substrate is partially consumed. The growth 

rate is different where there is a corner. As these areas with notches have different 

growth rate, compared to the surroundings, the notches were consumed and thus 

trenches with non-rounded corners were obtained. Though the trench geometry was 

found to be suitable using thermally grown oxide as isolation layer, techniques like 

APCVD and LPCVD were also tested as these techniques are low-cost techniques 

(b) (a) 
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compared to thermal growth of SiO2.  

Figure 2.17 shows the XSEM of HED-TIE structures with SiOx isolation layer deposited 

by LPCVD. As previously observed for trench refill approach (shown in figure 2.6), the 

LPCVD oxide showed non-uniform thickness and poor step-coverage. For lower 

dimension trenches, it would again produce cone shaped trench openings leading to 

almost closure of the trench openings. This method was not chosen for further 

processing of HED-TIE structures.  

	 	
Figure 2.17 XSEM image of HED-TIE structure with LPCVD SiOx isolation layer: (a) zoomed in view 

of the trench opening and (b) complete view of fabricated HED-TIE structure. 

Figure 2.18 shows the XSEM images of the fabricated structures with APCVD SiOx as 

isolation layer. APCVD SiOx has a very good step-coverage and produces layers with 

uniform thickness. 

	 	
Figure 2.18 XSEM image of HED-TIE structure with APCVD SiOx isolation layer: (a) zoomed in view 

of the trench opening and (b) complete view of fabricated HED-TIE structure. 

This technique was also used to produce the spacers for tuning hard mask geometry. 

(b) (a) 

(a) (b) 
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When this APCVD oxide was used as isolation layer, sharp trenches with well-defined 

geometry were obtained. Initially this APCVD oxide was chosen as the suitable 

isolation layer as it is a low-cost technique as compared to thermally grown oxide. 

When devices were fabricated with APCVD oxide as isolation layer, however, the 

device current was found to increase over time. The device current over time 

measurements showed an increase in device current even after 2 h and the current 

was not found to stabilize. It was suspected that the APCVD oxide leads to leakage 

current which causes the increase in current over time. To verify this, devices with 

thermally grown oxide layers were fabricated and electrically characterized. These 

devices did not show any increase in current over time and hence finally, thermally 

grown oxide layer was used for the samples discussed in this work, as suitable 

isolation layer between the electrodes. The electrical characterization of the fabricated 

devices will be discussed in the next chapter.  

 
2.3 Characterization techniques  
(a) Electrical characterization 
All electrical measurements described in this dissertation were conducted using a 

Keithley 2636A SYSTEM source meter unit in the auto-range mode. For the 

measurements carried out to investigate the electrical transport properties of the 

devices, measurements were conducted on a manual wafer-prober under a 

microscope for making electrical contacts precisely on all the devices in a chip.  

For the optical sensing and magnetic sensing experiments, the measurements were 

carried out on wire-bonded devices to make it suitable for the experimental set up.  

 
(b) Raman spectroscopy 
Raman spectroscopy is a vibrational spectroscopic technique that can be used for 

studying the chemical structure of a material56. The Raman effect was discovered by 

Sir C.V. Raman, who received the Nobel prize in Physics for this in 1930. The 

technique is very widely used as it is non-destructive, non-invasive method and can be 

performed in ambient conditions and even at room temperature. The Raman effect 

relies on how a light (typically laser beam) interacts with the matter. Upon irradiating 

the sample, two types of light scatterings occur. The Rayleigh scattering or the elastic 

scattering is the most intense one, which has the same energy as the excitation source. 

The weaker inelastic scattering is the Raman scattering. This scattering is a result of 
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the light interaction with the material in form of phonons or molecular vibrations. After 

a molecule or crystal is excited to a higher energy state, it relaxes either to a higher or 

lower vibrational state compared to the initial state resulting in gain or loss of energy 

and thus creating or annihilating phonons. These phenomena are known as Stokes or 

anti-Stokes scattering respectively.  

 
(c) Photoluminescence spectroscopy 
Photoluminescence (PL) spectroscopy is a non-contact, non-destructive method for 

probing the electronic structure of a material 56. In principle, light with higher energy 

than the bandgap of the material is directed onto a sample, to be absorbed by the 

material. As a result, photo-excitation of the carriers takes place. This causes the 

carriers to jump to a higher electronic state, and once it relaxes and returns back to a 

lower energy level, the energy is released by emitting photons. The emission of light, 

or luminescence through this process is known as photoluminescence. Typical 

applications of PL spectroscopy include determination of bandgap, investigation of 

material quality and understanding the carrier recombination mechanism.  
 
 
2.4 Summary and outlook 
Summarizing, HED-TIE technology was introduced as a wafer-level approach for the 

fabrication of planar organic–inorganic hybrid devices with trench isolated electrodes. 

Electrode gap dimensions were fabricated with dimensions in the range of ~100 nm, 

using conventional photolithography. Two different types of fabrication approaches 

were discussed: (a) trench-refill approach and (b) spacer approach. In trench refill 

approach, sub-micron trenches are patterned first and then partially refilled with a thick 

layer of LPCVD SiOx layer, to achieve the desired electrode gap dimension. In case of 

the spacer approach, an additional APCVD grown oxide layer was introduced to tune 

the hard-mask geometry and thus reducing the electrode gap dimension even before 

the deep etching of silicon is carried out. The spacer approach was found to produce 

HED-TIE structures with more controlled and reproducible geometry. Both APCVD 

oxide and thermally grown oxide isolation layers were found to produce HED-TIE 

structures with the desired device geometry but APCVD oxide was found to be 

unsuitable as electrical isolation layer. Thermally grown oxide was finally chosen as 

the desired isolation layer.   
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To demonstrate the compatibility of the fabrication technology, HED-TIEs with both 

solution processing of organic molecules as well as thermal evaporation of organic 

molecules in vacuum were fabricated.  For this, thermally evaporated metal free 

phthalocyanine (H2Pc) based HED-TIEs and solution processed 6,13–

bis(triisopropylsilylethynyl)pentacene or commonly known as TIPS-pentacene based 

HED-TIEs were fabricated. The thermally evaporated channels were found to form a 

“free-standing” membrane between the electrodes whereas the TIPS-pentacene 

solution was found to penetrate deep inside the trench and form the electrical transport 

channel. It should be mentioned that it is important to use a suitable solvent which has 

good wetting properties with the metal electrodes to make the channel formation 

successful.  

The key aspects of the proposed technology are as follows: (i) the TIE process flow is 

compatible with standard silicon technology and can be scaled up for high-volume 

manufacturing on 200 mm or 300 mm wafers for industrial applications; (ii) the device 

geometry is not limited to two-terminal architecture; gate electrode can easily be 

incorporated to form three-terminal transistor structures. The technology offers the 

flexibility of selecting various materials, including ferromagnetic metals or oxides can 

be used for the electrode layer; (iii) the HEDs fabrication is compatible with various 

deposition techniques of the active transport channel, such as solution processing 

techniques, stamping, or vacuum deposition by thermal evaporation; (iv) the HED-TIEs 

are not restricted to organic channels: other materials such as polymers oxides, or 

even 2D materials such as graphene, MoS2, WSe2 etc. can be implemented in the 

highly flexible fabrication flow. The HED-TIE technology offers full accessibility of the 

active transport channel to external stimuli such as light or gases and thus making it 

suitable for various sensing applications. Few of the possible applications will be 

demonstrated in the following chapters. In future, one possibility would be depositing 

two different electrode materials on the two different electrodes using the shadowing 

technique as proposed in ref.45, which would open up the possibility of fabricating 

devices where different electrode materials are needed.  
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Chapter 3  
	
Electrical characterization of HED-TIEs  
	

The basic electrical conduction mechanisms in organic-inorganic hybrid devices will 

be influenced by a multitude of parameters, including device geometry, intrinsic carrier 

mobility, crystalline structure of the channel material, coverage of the channel material, 

the deposition techniques used, metal-organic contact properties etc. Depending on 

whether the device is a two-terminal device or a three terminal device, different static 

electrical measurements such as output characteristics, transfer characteristics etc. 

with or without the gate voltage can be measured and analysed to understand the 

conduction properties. This chapter focuses on the current-voltage characteristics of 

HED-TIEs and in particular on the influence of the device geometry, on the electrical 

properties of the devices. To this purpose, two-terminal HED-TIEs with organic channel 

produced by either solution processing or thermal evaporation were used. Some of the 

results discussed here were published in ref.40. 

	

3.1 Theoretical background 
3.1.1   Space charge limited current (SCLC) conduction mechanism 
In low mobility materials such as organic materials or dielectrics, when electric field is 

applied, charges are likely to accumulate and the induced electric field due to the 

accumulated charges influences the current transport through the device. SCLC 

occurs when the injected carrier density is higher than the intrinsic free carrier density 

of the material. This creates a space charge limited region near the metal/organic 

contact where the charges are injected. The electrostatic potential of the space 

charges prevents injection of additional charges in the material and limits the device 

current57,58. The current through the device is then only dependent on the charge 

carrier mobility and not on the charge carrier density. The carrier mobility can thus be 

determined from current-voltage measurements. Provided the commonly low carrier 

mobility in organic semiconductors, the metal/organic-semiconductor/metal 

heterostructures usually exhibit SCLC conduction mechanism59,60.  

For the hole-conducting molecules used in this chapter as solution-processed channel 

material (TIPS-pentacene61) and thermally evaporated channel material (H2Pc50, 48), 

the SCLC was previously reported to be the main conduction mechanism for holes. 
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The basic considerations of this mechanism for a unipolar device are, therefore, 

addressed in the following section. 

In absence of any traps in the organic semiconductor, and assuming that the injecting 

contact is ohmic (the current through the device is not limited by the injection), the 

space charge limited current density in a unipolar material (only one type of carriers 

contribute to the current) can be described by the Mott-Gurney law62: 
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where J is the current density, µ is the free carrier mobility, ε0 and εr are electric 

permittivity of vacuum and the dielectric constant of the material respectively, V is the 

applied voltage and L is the distance between the two electrodes or the device channel 

length. Here, the current is assumed to be caused by only one type of carriers (either 

electrons or holes), the mobility is assumed to be independent of the electric field and, 

the effect of charge carrier diffusion is neglected. 

Considering the presence of traps in the material, which is a more realistic situation, 

the SCLC equation will have to be modified by taking into account the energetic 

distribution of traps. Very often in literature, the energetic trap distribution in organic 

semiconductors is assumed to have an exponential shape (and are termed, therefore, 

also tail states): 
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where 3< and =/ are the characteristic energy and total trap density, respectively. 

In such systems the SCLC can be expressed as62: 
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where J is the current density at an applied voltage V, µ denotes the free carrier 

mobility, Nv is the effective density of states, q is the electronic charge, L denotes the 

channel length of the device and L is a constant which has a value > 1. In absence of 

traps or at higher voltages, when the traps are completely filled, i.e. for L = 1 and 

Nv /Nt = 1, the equation (3.3) will reduce to the Mott-Gurney law expressed in the 

equation (3.1). 
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Figure 3.1 shows the trap-free space-charge-limited electron transport in amorphous 

tin(IV) phthalocyanine dichloride thin film for various film thicknesses as reported by 

Qiao et al. in ref.63. It can be observed that the J–V characteristics exhibit two regions 

for all thicknesses. In the lower voltage region, the current is linearly dependent on 

voltage, indicating an ohmic conduction. In the higher voltage region, the behaviour 

changes from linear to a curve with a slope of ~2, indicating a SCLC conduction. 

 

Figure 3.1 Dependence of the current density (J), on the applied voltage (V), for 

Al/SnCl2Pc/Al�devices at various thicknesses of SnCl2Pc. Figure taken from ref.63. 

Figure 3.2 illustrates the SCLC behaviour observed by El-Nahass et al.50  for thermally 

evaporated phthalocyanine films. Similar to what was observed for SnCl2Pc, as shown 

in figure 3.1, H2Pc was also found to exhibit two distinct regimes of current conduction.  

 

 

Figure 3.2 Dependence of the current density (J), on the applied voltage (V), for H2Pc samples of 

different thickness (a) 138, (b) 201, (c) 253 and (d) 312 nm. Figure taken from ref.50. 

The lower voltage region exhibits an ohmic conduction whereas at higher voltages the 

SCLC is observed, with an approximate slope of 3.9 (slope > 2), indicating an 

J. Phys. D: Appl. Phys. 43 (2010) 215402 X Qiao et al

Figure 3. (a) J–V characteristics of Al/SnCl2Pc(x)/Al
devices at various thicknesses of SnCl2Pc. (b) The data of
space-charge-limited region in the form of logarithm of J /E2 versus
square root of electrical field E1/2.

the bulk properties of organic films, it is necessary to realize
the Ohmic contact at the organic/metal electrode interface
[26–28]. We found that Al can well form an Ohmic contact
with SnCl2Pc films. Figure 2 displays the J–V characteristics
of the Al/SnCl2Pc/Al and Al/LiF/SnCl2Pc/LiF/Al devices
with forward and reverse bias. It can be seen that the
Al/SnCl2Pc/Al device shows approximately the same current
as the Al/LiF/SnCl2Pc/LiF/Al device, and the J–V curves of
the two devices are nearly symmetrical at forward and reverse
bias. This indicates that the electrons can be well injected into
the SnCl2Pc films from the Al electrode without any modified
layers and the depositing sequence of Al has a slight influence
on the interfacial properties.

To investigate the transport properties in the bulk SnCl2Pc
film, the J–V characteristics for the Al/SnCl2Pc(x)/Al devices
with SnCl2Pc thicknesses of 100, 150, 200 and 300 nm are
measured and displayed in figure 3(a) in the log–log scale. It
is clear that the J–V characteristics exhibit two regions for
all thicknesses. In the lower voltage region, the current is
linearly dependent on voltage, indicating an Ohmic behaviour.
In the higher voltage region, the slope is slightly higher than 2,

Figure 4. J–V characteristics of Al/SnCl2Pc/Al devices with
(a) 100 nm and (b) 300 nm SnCl2Pc at various temperatures. The
solid lines are fits to equation (1).

suggesting that the current transport is trap-free space-charge-
limited. In this case, the current is given by [29]

JSCLC = 9
8
εrε0µ0 exp(0.89β

√
V/d)

V 2

d3
, (1)

where ε0 is the permittivity of vacuum, εr is the relative
dielectric constant, assumed to be 3 here, µ0 is the zero-field
carrier mobility, β is the field-dependent parameter and d is
the organic film thickness. The plots of logarithm of J/E2

versus square root of electrical field are depicted in figure 3(b).
The straight lines strongly prove that the current in this region
obeys a field-dependent SCLC behaviour. The slope and the
intercept give β of (1.9 ± 0.1) × 10−3 (V/cm)−1/2 and µ0 of
(1.8 ± 0.3)×10−4 cm2 V−1 s−1, respectively. The value of µ0

is much higher than that of the other n-type organic amorphous
materials [30].

Figures 4(a) and (b) show the temperature-dependent
J–V characteristics of the Al/SnCl2Pc/Al devices with
100 nm and 300 nm SnCl2Pc, respectively. The solid lines
represent the predictions of the SCLC model including a
field-dependent mobility of the Poole–Frenkel type. Clearly,
the agreement between experiments and simulations is fairly

3
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approximately equal to 3.9. This value is in good agreement with that obtained 
by Amar et al. [24] for H2Pc samples. At low voltages below VT, the ohmic 
conduction is dominated and the dependence of J on V for a p-type material 
may be described by Ohm’s law [25], given by: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

J = po e µh V/d                                                           (6) 
 
where J is the current density, po is the concentration of thermally generated 
holes in the valence band, e is the electronic charge, µh is the hole mobility, V 
is the applied voltage and d is the film thickness. At higher voltages the space-
charge-limited conduction (SCLC) is dominated, with an approximate slope of 
3.9. The J-V dependence in the SCLC region is given by [26]: 

 

12
1
+
+

°
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

l
d

l
V

l

tTkePNeJ
B

Vh
εµ

                         (7) 

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-5

-4

-3

-2

-1

0

1

2

3

d

c
b

a

Lo
g 

J

Log V 
Fig. (6): Dependence of the current density, J, on the applied voltage, V, for 

samples of different thickness (a) 138, (b) 201, (c) 253 and (d) 312 nm. 
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exponential trap distribution in the films. The critical voltage at which the transition from 

ohmic conduction to SCLC occurs, is expected to depend on the volume generated 

conductivity of the film and hence is directly proportional to the film thickness57. This 

can clearly be observed in both figure 3.1 and figure 3.2. In SCLC, the carriers get 

accumulated at the metal/organic interface from where the charges are injected and 

the carrier density decreases as the distance from the interface increases, due to the 

space charge formation. At a distance away from the interface, less number of charge 

carriers is available for conduction, leading to a decrease in current with increasing 

thicknesses of the films. At lower applied voltages, the injected charge density is lower 

than the intrinsic free carrier density of the material and hence at lower voltages, in 

absence of the space charges, the ohmic conduction dominates. 

Figure 3.3 shows the typical characteristic shape of SCLC conduction behaviour as 

reported by Agarwal et al.64 for ITO/CuPc/Al devices. The inset of the figure shows the 

variation of the current density for various channel lengths for a fixed bias of 0.2 V.  

 

Figure 3.3 Characteristic shape of J-V plot of ITO/CuPc/Al devices exhibiting SCLC conduction. 

Figure taken from ref.64. 
 

3.2 Experimental details 
Firstly, devices fabricated using “trench-refill” approach as described in chapter 2 were 

used with both evaporated and solution processed channel materials. In the later stage 

of the work, a new mask design was developed introducing interdigitated electrode 

structures to increase the effective volume of the channel material and thus increasing 

the overall device current. Only TIPS-pentacene based devices were fabricated for the 

structures with interdigitated electrodes and the dependence of the current amplitude 

on the device geometry were studied. As these devices were fabricated at a later 

positively biased, and current is due to injection limited,
when Al is positively biased.

Figure 2 shows the thickness dependence of SCLC in
ITO/CuPc/Al. When J is proportional to Vn!n!2",16 conduc-
tion is due to SCLC and when n=2, J"V2 /L3,16 where L is
the thickness of the sample. In Fig. 2, we have plotted the
values of current at a fixed bias of 0.2 V for different thick-
nesses of CuPc. This bias is chosen from the small region of
J-V characteristics where the slope is 2. Beyond this region,
slope !!2" increases gradually with bias due to field-
dependent mobility. Experimental data were simulated
by solving following set of equations and Eq. !1"
simultaneously:

dF

dx
=

ep!x"
#

, J!x" = ep!x"$!F,T"F!x", V

= #
0

L

E!x"dx . !2"

As the carrier density p!x" is function of x, J-V characteris-

tics depend on the thickness of the device. The maximum
number of charge carriers is accumulated at the metal/
organic interface and carrier density decreases as the distance
from the interface increases. At a distance away from the
interface, less number of charge carriers is available for con-
duction, so the current decreases with thickness of the de-
vices. $!0,T" and %!T" were evaluated by fitting the J-V
characteristics of ITO/CuPc/Al structures for different thick-
nesses of CuPc. The most interesting results from this analy-
sis is that the same $!0,T" !1.4&10−8 cm2 /V s" is used to fit
the experimental J-V characteristics !Fig. 2" for three differ-
ent thicknesses. Thickness dependence of experimental J-V
characteristics of both SCLC and ILC are reproduced by the
electric field and temperature dependent charge carrier mo-
bility, without invoking charge density dependent mobility.

Figure 3 shows the temperature dependence of SCLC in
CuPc. The experimental data are reproduced excellently by
the theoretical simulation using Eqs. !1" and !2". $!0,T" and
%!T" were obtained at different temperatures. We compare
our experimental data with the CGDM using Eq. !1". ' has
been determined from the temperature dependence of
$!0,T", shown in Fig. 3. Values of ' and a evaluated for
different thicknesses of CuPc are given in Table I. It is to be
noted that ' decreases as with thickness increases due to
lower disorder in thicker layer of CuPc as evidenced by scan-
ning probe microscopic results !not shown".

Figure 4 shows the thickness dependence of ILC in ITO/
CuPC/Al. The charge carrier injection from metal electrode
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TABLE I. Comparison of thickness dependence of ', width of the GDOS,
and intersite distance a of CuPc determined from SCLC and ILC.

Thickness
!nm"

' !in meV"
!from SCLC"

!meV"

'
!from ILC"

!meV"

a
!from SCLC"

!nm"

a
!from ILC"

!nm"

400 60 55 0.7 0.6
200 85 80 0.6 0.7
100 100 100 0.6 0.8

073311-2 Agrawal et al. Appl. Phys. Lett. 93, 073311 !2008"
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stage, the “spacer” approach for fabrication was used for producing devices with more 

controlled and reproducible geometry. The schematic of the device layout is shown in 

figure 3.4. The “L” denotes the transport channel length and “w” denotes the width of 

the transport channel. The width of the isolation trench was kept as 5 µm.  

 
Figure 3.4 The schematic of the device layout of the HED-TIE devices. 

In the devices without interdigitated electrodes, the channel widths were kept either to 

30 µm or 40 µm. The channel lengths were varied as 120 nm, 170 nm, 210 nm, 250 

nm and 300 nm after the deposition of the metal layer as discussed in chapter 2. The 

electrode dimension was 200 µm x 200 µm. Figure 3.5 shows the schematic of the 

device layout with interdigitated electrodes. In the devices with interdigitated 

electrodes, the channel widths were varied by using structures from 1 finger to  100 

fingers of 50 µm each, resulting in channel widths of 50 µm (1 finger), 100 µm (2 

fingers), 500 µm (10 fingers), 1000 µm (20 fingers) and 5000 µm (100 fingers).  

 

 
Figure 3.5 The schematic of transport channels of the HED-TIE devices with interdigitated electrodes 

showing a device with single finger (left) and a device with multiple fingers (right). 
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The channel lengths achieved after the deposition of the metal layer were 100 nm, 

150 nm and 200 nm. The electrode dimensions were of 800 µm x 800 µm size. The 

sample preparations were done in the same way as described in chapter 2, section 

2.2.1.2. The electrical measurements were conducted as described in chapter 2, 

section 2.3 (a).  

 

3.3 Results and discussions 
The current-voltage (I-V) characteristics of the TIPS-pentacene based HED-TIEs are 
shown in figure 3.6 for the shortest (120 nm) and the longest channel (300 nm) devices. 
The I-V characteristics are symmetric around 0 V. In agreement to the equation 3.1 

and equation 3.3, the shorter channel HED-TIE indeed shows higher current compared 

to the longer channel HED-TIE. 
 

 

Figure 3.6 The current-voltage characteristics of solution processed TIPS-pentacene based HED-

TIEs for devices with 120 nm and 300 nm transport channels. The channel width for both devices is 

kept at 40 µm. 
In figure 3.6. it can also be observed that, at low voltages the current increases linearly 
with the voltage (i.e. ohmic behaviour) before it starts following the typical higher-power 
law of the SCLC mechanism. This becomes more evident in the log (J) vs. log (V) plot 

shown in figure 3.7. For any finite conductivity, there would be a range of voltages 

around zero for which the ohmic conduction would dominate. For voltages higher than 

a particular critical voltage, space-charge-limited current conduction would start to be 

dominant. For applied voltage higher than 0.5 V, the log (J) vs. log (V) plot for 120 nm 

channel device exhibits a slope of ~3.6 (slope> 2) (see figure 3.7), indicating a trap 

dominated SCLC conduction mechanism. For the 300 nm channel TIPS-pentacene 
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HED-TIE the log (J) vs. log (V) plot a clear transition voltage from ohmic to SCLC 

dominated transport is difficult to be identified in the measured voltage range, since 

also at higher voltages the slope is ~1.7 (slightly lower than 2). Perhaps the device is 

expected to reach a slope of ≥ 2 for an even higher measured voltage range. 
 

Figure 3.7 The log (J) vs log (V) plot of solution processed TIPS-pentacene based HED-TIEs 

indicating trap dominated SCLC conduction. 

Figure 3.8 shows the J vs 1/L3 plot for devices with different channel lengths. The 

dotted line shows the expected linear behaviour according to equation (3.1) for devices 

with trap-free SCLC conduction.  
 

Figure 3.8 The current density (J) vs. 1/L3 (where L = device channel length) plot for TIPS-pentacene 

based devices with channel width of 40 µm. The dotted line indicates the expected behaviour 

assuming space charge limited current conduction. 

For smaller (120 nm – 210 nm) channel devices, the current density (black dots) 

follows the expected trend, while for the larger channel (250 nm and 300 nm) devices, 

the current density values (red dots) are much higher than that of expected from SCLC 

equation. The error bars in figure 3.8 indicate the deviation in measurement values 
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when the same device is measured repeatedly. It was found to be ~10% of the current 

amplitude.  This apparent discrepancy between the shorter channel solution processed 

HED-TIEs and larger channel solution processed HED-TIEs can be explained by 

considering the degree of filling of the channels. When the trench opening is larger, 

more amount of channel material can go inside the trench. The higher volume of 

channel material yields in higher current values. The drift carrier mobility calculated for 

the HED-TIEs were in the range of 7×10-4 – 2×10-3 cm2 V-1s-1. Similar drift carrier mobility 

values were reported for TIPS-pentacene devices by Ostroverkhova et al.65 It should 

be noted that the mobility values determined for TIPS-pentacene in field effect 

transistors are higher (in the range of ~10-2 - 1 cm2 V-1s-1) due to filling of tail states at 

high carrier concentrations in the channel65. 

Figure 3.9 shows the I-V characteristics of the HED-TIEs with evaporated channel 

material (H2Pc) for different channel lengths and the same channel width of 30 µm. It 

can be seen that the current increases with decreasing the electrode gap dimensions.  

 
Figure 3.9 The current-voltage characteristics of HED-TIEs with thermally evaporated H2Pc transport 

channels. The channel length is varied as 120 nm, 170 nm, 210 nm, 250 nm and 300 nm whereas 

the channel width for all devices is kept at 30 µm. 

The curves exhibit an ohmic behaviour for the lower voltage regime (applied voltage 

< 0.5 V), as discussed earlier for TIPS-pentacene HED-TIEs, and have the 

characteristic shape64 for the space charge limited current conduction mechanism in 

the higher voltage regime. 

The devices with evaporated channel material exhibit slopes in the range of 2.7- 3 

(slope > 2) for the log (J) vs. log (V) plot for different channel lengths (as shown in 

figure 3.10) indicating the same kind of trap dominated SCLC transport mechanism as 

the solution processed devices. 
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Figure 3.10 The log(J) vs log(V) plot of HED-TIEs with thermally evaporated H2Pc as channel 

materials. The curves were found to exhibit a slope >2, indicating trap dominated SCLC conduction. 

As shown in figure 3.11, all devices with evaporated channel materials follow the 

predicted (according to eq. 3.1) linear behavior when the J vs 1/L3 plots is considered.  

 
 

Figure 3.11 The current density (J) vs. 1/L3 (where L = device channel length) plot for H2Pc based 

devices with channel width of 30 µm. The dotted line indicates the expected behaviour assuming 

space charge limited current conduction. 

In these devices, as discussed in chapter 2 and also in ref.48, we observed that the 

channel forms as a “free standing” membrane on top of the electrodes and hence the 

influence of the degree of trench filling (with H2Pc) on the current magnitude should be 

negligible. The carrier mobility for H2Pc based HED-TIEs calculated using SCLC 

equation was found to be in the range of ~10-4 cm2 V-1s-1, which is higher than what is 

reported for H2Pc two-terminal devices in ref.50. The hole mobility for the reported films 
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was found to be in the range of ~10-6 cm2 V-1s-1. The results discussed till now were 

based on the layout without interdigitated electrodes. 

In future, temperature dependent I-V measurements can be performed for both 

solution-processed and thermally evaporated channel HED-TIEs, to understand the 

SCLC conduction in sub-micrometer two-terminal planar devices in further detail and 

to investigate the transition of the trap dominated SCLC to the trap-free SCLC or SCLC 

with completely filled trap states for various device geometries. 

In the next section, the improvements in device current which was obtained by using 

the devices with interdigitated electrodes, due to the increase in the channel volume 

of the fabricated devices, will be discussed. For this purpose, only devices with solution 

processed TIPS-pentacene channels were fabricated and characterized.  

Figure 3.12 shows the I-V characteristics of the HED-TIEs with interdigitated 

electrodes with an effective channel width of 5000 µm. The device channel length was 

varied as 100 nm, 150 nm, and 200 nm. As expected, similarly to the case of “simple” 

devices discussed before (see figure 3.6 and corresponding discussion), the current 

magnitude in the interdigitated devices decreases with increasing channel length 

indicating SCLC conduction.  

 

Figure 3.12 Current-voltage characteristics of solution processed TIPS-pentacene based 

interdigitated HED-TIEs for devices with 100 nm, 150 nm and 200 nm transport channels. The large 

channel width of all devices (5000 µm) was realised by using interdigitated electrodes with 100 finger 

structures of 50 µm each. 

The influence of the device channel width, which was varied from 50 µm to 5000 µm, 

on the current-voltage characteristics was investigated by keeping the channel length 

constant at 100 nm (see figure 3.13). Since the increase in channel width would lead 

to a linear increase of the channel volume without modifying the cannel length and 
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thereby without yielding any change in the transport mechanism, it is expected that the 

current will scale linearly with the device channel width. At an applied voltage of 5 V, 

the device with 50 µm channel length gives a current of ~ 0.1 µA. When the channel 

width is increased to 500 µm and 5000 µm, the device currents are also increased to 

1 µA and 10 µA respectively. The linear increase of device current with the increasing 

channel width is shown in the inset of figure 3.13. This remarkable improvement in the 

device current magnitude, achieved by introducing the interdigitated electrodes, can in 

later studies be exploited to increase the device sensitivity when used for sensing 

applications.  
	 

Figure 3.13 Current-voltage characteristics of solution processed TIPS-pentacene based HED-TIEs 

for devices with 50 µm, 500 µm and 5000 µm channel widths. The channel length for all the devices 

is 100 nm. The current is found to scale linearly with the device channel widths as shown in the inset.   

It is worth mentioning here that the chips (1 cm x 1 cm) with “simple” two-terminal 

devices contained 88 devices per chip and the chips (1 cm x 1 cm) with interdigitated 

electrodes two-terminal devices contained 45 devices in each chips. The yield of 

working devices was found to be more than 97 % in both cases. 3 % or less of the 

devices in one chip were found to have shorted electrodes or isolation issues. This 

very good yield of working devices can open up the possibility for fabricating HED-TIEs 

at a wafer scale for industrial applications in future. 

For demonstrating the possible applications of HED-TIEs, only the solution processed 

TIPS-pentacene based HED-TIEs will be considered and the results will be discussed 

in the following chapters. 
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3.4 Summary and outlook 
To summarize, the current-voltage characteristics of two-terminal HED-TIEs were 

investigated for devices with both solution-processed and evaporated channel 

materials. The log(J) vs. log (V) plots exhibited slope >2 indicating trap dominated 

SCLC behaviour. The device currents were found to increase with decreasing the 

channel lengths of the devices. The J vs. 1/L3 plot followed the expected linear 

behaviour for the thermally evaporated channel devices, while a discrepancy was 

observed for the two largest channel length solution processed devices. This difference 

between the solution processed and thermally evaporated channels can be explained 

considering the filling of the trench channels with the organic material. In the case of 

solution processing, the amount of solution going inside the trench can vary with the 

channel length, thereby influencing the active channel (contact) area and hence the 

current density. In contrast, the thermally evaporated molecules form “free standing” 

channels and the active contact area is less affected by the channel length variation. 

It was also shown that the HED-TIE technology is flexible with respect to the device 

geometry and that by introducing interdigitated electrodes which allowed an increase 

of the channel width from 50 µm up to 5000 µm the device currents were found to 

increase proportionally with the effective channel width, i.e. in this case by 2 orders of 

magnitude. All chips had a yield of > 97 % working devices. In future, further studies 

on the basic electrical properties of HED-TIEs can be performed by performing, e.g. 

temperature dependent I-V measurements, which were not possible in the frame of 

this work due to time limitations. This will help in understanding the SCLC conduction 

in sub-micrometre scale two-terminal lateral devices in further detail and clarify still 

open questions, e.g. related to the transition of the trap dominated SCLC to the trap-
free SCLC or SCLC with completely filled trap states.  
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Chapter 4  
 
Application of HED-TIEs as optical sensors  
	

One key feature of the HED-TIEs developed in this work, is the full accessibility of the 

active transport channel from top to external stimuli such as light. This feature can be 

exploited for the fabrication of HED-TIEs as hybrid photodetectors by choosing a 

suitable channel material which is photosensitive. In the previous chapters, the 

successful transport channel formation in HED-TIEs using solution processed TIPS-

pentacene as the channel material was demonstrated and the electrical transport 

properties of the TIPS-pentacene based HED-TIEs were discussed. In the first part of 

this chapter the photosensing properties of the fabricated HED-TIEs under different 

single wavelength illumination will be investigated for HED-TIEs with different channel 

lengths below 1 µm. The results based on the photosensing properties of TIPS-

pentacene HED-TIEs were published in ref.40 The photosensing properties of the 

TIPS-pentacene HED-TIEs were further tuned by incorporating gold nanoparticles of 

two different sizes in the TIPS-pentacene matrix, and will be discussed in the second 

part of this chapter.  

 
4.1 Photosensing properties of TIPS-pentacene based HED-TIEs  
4.1.1 Theoretical background 
Over the recent years, significant progress has been made in the development of 
flexible electronic devices. This has mostly been driven by the demand for consumer 
electronic goods which are low-cost and flexible. To cater to this market, flexible 
optoelectronic devices are being extensively researched, covering a wide range of 
materials from 2D materials to organic semiconductors66,67,68. Organic semiconductors 
have been studied for various applications like photovoltaics19, light-emitting diodes69 
and photodetectors7. Significant improvement has been achieved in terms of materials 
and the processing techniques for fabrication of high performance, low-cost organic 
optoelectronic devices. 
TIPS-pentacene is known to be not only air stable6 as discussed before, but it is also 

a photosensitive7,70 material. In a previous report, TIPS-pentacene transistors with 

channel lengths in the range of 10 μm to 1000 μm were shown to have good 
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photosensing properties under ultraviolet (UV) and white light illuminations7,71. The 

authors investigated the photosensing properties of the TIPS-pentacene thin film 

transistors under dark, UV (wavelength, 365 nm) and white light illuminations and 

compared. The output characteristics of the TIPS-pentacene-transistors under UV and 

100 mW/cm2 white light illuminations are shown in Figure 4.1 and 4.2 respectively. It 

was shown that the photoresponse of the TIPS-pentacene in the off state is higher 

than that of on state of the transistors. The obtained results suggested that UV and 

white light could optically control device operation as an additional terminal rather than 

the conventional source, drain and gate electrodes of a transistor.  

 

  

Figure 4.1 The output characteristics of the TIPS-pentacene-OTFT transistor (a) under UV and (b) 

comparison of the dark and UV conditions at various gate voltages. Figure taken from ref.7. 
 

  
Figure 4.2 The output characteristics of the TIPS-pentacene-OTFT transistor (a) under 100 mW/cm2 

white light illumination and (b) comparison of the dark and white light illumination conditions at Vg = 

−6 V. Figure taken from ref.7.  
 
Moreover, increased conductivity of pentacene single crystals under illuminations were 

reported by Jurchescu et al.72. In this report the effect of dry air and ambient air on 
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Fig. 8. The output characteristics of the TIPS-pentacene-OTFT transistor (a) under
UV and (b) comparison of the dark and UV conditions at various gate voltages.

and in that case, the Fermi level of source/drain metal is far away
from the HOMO level and is close to the LUMO level of the TIPS-
pentacene. Then, electrons can be injected from the source/drain
metal to the LUMO of the TIPS-pentacene and positive charge car-
riers are said to be a p-type semiconductor [48].

The photodetecting sensitivity properties of the TIPS-pentacene
OTFT transistor were investigated under dark, UV (wavelength,
365 nm)  and white light illuminations. The output characteristics
of the TIPS-pentacene-OTFT transistor under UV and 100 mW/cm2

white light illuminations are shown in Figs. 8(a), (b) and 9(a), (b),
respectively. These measurements were performed under both
turn-on and turn-off states. In turn-on state, the drain current of
the TIPS-pentacene transistor increases with illumination and also,
in turn-off state, it increases with light illumination. As seen in
Ids − Vds plots of the transistor at various illumination intensities,
the illumination decreases the effect of contact resistance of the
TIPS-pentacene OTFT, because in Figs. 8(a), (b) and 9(a), (b),  the
illumination decreases the saturation region and the illumination
increases the flow of mobile carriers in the channel layer. As seen in
Figs. 8(a), (b) and 9(a), (b),  the drain–source current increases with
UV and white light illuminations. This suggests that the free charge
carriers are formed by the photoexcitation at 365 nm and white
light. The photoresponse of the TIPS-pentacene in the off state is
higher than that of on state of transistor, i.e., the photoresponse
is larger in the OFF state. This suggests that in the off-state of the
transistor, the photogenerated charge carriers are the major con-
tribution to the free carrier density in the channel, and are strongly
dependent on the incident irradiance. When UV and white light
photon energies higher than the band-gap energy of pentacene are

Fig. 9. The output characteristics of the TIPS-pentacene-OTFT transistor (a) under
100 mW/cm2 white light illumination and (b) comparison of the dark and white
light illumination conditions at Vg = −6 V.

absorbed, the more number of charge carriers are generated and
in turn, the drain current increases, because the photon energy of
UV illumination at 365 nm is higher than the optical gap of TIPS-
pentacene having 1.6 eV [42], 1.7 eV [20] as well as white light.
Accordingly as seen in Fig. 9(a) and (b), the TIPS-pentacene OTFT
is thus sensitive to illumination intensity in the white light range.
This suggests that the TIPS-pentacene transistor exhibits a photo-
transistor characteristic.

The ratio of the drain current under illumination to drain current
in the dark is called as the photosensitivity. The photosensitivity
(Iph/Idark) values of the transistor in the OFF state were found to
be 1.156 and 2.12 under UV 365 nm (for Vg = −10 V) and white
light illuminations (for Vg = −10 V and P = 100 mW/cm2), respec-
tively. This indicates that UV and white light optically control
device operation as an additional terminal rather than conven-
tional source, drain and gate electrodes and the TIPS-pentacene
transistor could find use in two-terminal photodetector applica-
tions [51]. The photosensitivity values of the transistor indicate
that the photocurrent significantly becomes higher with illumina-
tion intensity in the depletion regime (off-state) with comparison
of the accumulation regime (on-state). This suggests that the pho-
togeneration is maximum at zero gate bias, in off-state of the
transistor; the carrier injection and thermal generation have the
smallest contribution to photogeneration and in turn, the pho-
togenerated current has the highest contribution. The obtained
photoresponse results show that the photoresponse properties of
TIPS-pentacene transistor are modulated by gate bias. The pho-
tosensitivity properties of the TIPS-pentacene transistor indicate
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in turn, the drain current increases, because the photon energy of
UV illumination at 365 nm is higher than the optical gap of TIPS-
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Accordingly as seen in Fig. 9(a) and (b), the TIPS-pentacene OTFT
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tively. This indicates that UV and white light optically control
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togeneration is maximum at zero gate bias, in off-state of the
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pentacene single crystals were studied in dark and under illumination. All these results 

also open up the possibility of using TIPS-pentacene as the active channel material in 

two-terminal photodetectors. 

 
4.1.2 Experimental details 
The HED-TIEs were prepared using the “trench-refill approach” as described in 

chapter 2. 800 nm of LPCVD silicon oxide layer was used as the trench-refill layer and 

50 nm Au was deposited as the electrode layer with a 10 nm Cr layer as the adhesion 

layer. Devices with a channel width of 40 µm with two different channel lengths were 

chosen for the photosensing experiments: (i) 120 nm and (ii) 300 nm. 

To investigate the photosensing properties, three different laser lines: 632.8 nm (1.96 

eV, red), 514.7 nm (2.41 eV, green), and 325 nm (3.81 eV, ultraviolet) were used for 

illumination of the active area of the devices from the top. The electrical data were 

recorded as described in chapter 2, section 2.3 (a).  

According to Davis et al.54, TIPS-pentacene has higher absorbance in the ultraviolet 

spectral region compared to the visible region, as verified also for our TIPS-pentacene 

films drop-coated on quartz substrates. Figure 4.3 shows the UV-Vis spectra of a TIPS-

pentacene film drop-coated on a quartz substrate. The three laser lines used in the 

photosensing experiments are indicated in the absorption spectra by dotted lines. 

 

Figure 4.3 UV-Vis spectra of a TIPS-pentacene film drop-coated on quartz substrate. 

The schematic diagram of the photosensing experiments is shown in Figure 4.4. The 

diameter of the circular illuminated area is ca. 40 µm for the red and green laser lines 

and ca. 200 µm for UV laser line respectively, due to the usage of objectives with 

different magnification. During the photosensing experiments, great care was taken 

that the Raman spectrum of the illuminated area did not change in time, as a proof that 

the TIPS-pentacene in the channel does not degrade under bias stress and light 

stimulus.  
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Figure 4.4 Schematic diagram of the photosensing experiments. The active channel of the fabricated 

HED-TIE is illuminated from top. Figure taken from ref.40. 

 
4.1.3 Results and discussions 
The TIPS-pentacene HED-TIEs are found to generate photocurrents for all three 

illumination wavelengths. The observed photocurrent in a device can be a photovoltaic 

effect, a photoconductive effect or a combination of both. In case of the HED-TIEs, it 

was concluded that the observed photocurrent is purely due to the photoconductive 

nature of the devices. The possibility of the devices to exhibit photovoltaic effect was 

eliminated as: (i) the photocurrent vs voltage characteristics were found to be 

symmetric around 0 V and (ii) the devices did not show any current while illuminated 

at 0 V. Moreover, it was previously reported in literature that for TIPS-pentacene 

OFETs, the photoconductive effect dominates when no gate voltage is applied and the 

photovoltaic effect starts to dominate under an application of gate voltage7. An OFET 

can be considered as a two-terminal device when the gate terminal is at zero potential 

and hence similarly, the fabricated HED-TIEs are expected to exhibit photoconductive 

effect, not photovoltaic effect. The photocurrent density (Jph), defined as the difference 

between the current density under illumination and in the dark, as described in 

equation (4.1), is plotted over the applied voltage range in figure 4.5 (a).   

!1M = 	 !NOOPENQ0/NRQ	 − 	!T0)U                                                     (4.1) 

Similar to the current-voltage characteristics recorded in the dark (as discussed in 

chapter 3), the photocurrent density is higher in the case of the shorter channels for 

voltages above 1 V. For lower voltages, the longer channels generate more carriers 

and hence higher currents for the case without illumination or when illuminating in the 

absorption bands of the TIPS-pentacene (i.e. with red and UV light). The light on / light 
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off photo-switching of the TIPS-pentacene HED-TIEs was investigated by measuring 

the device currents over time, while the laser illumination is switched on and off at 

regular intervals of 30 s and the results are shown in Figures 4.5 (b) – 4.5 (d). The 

measurements were performed at a constant applied voltage of 0.5 V, in order to keep 

the applied bias stress on the organic channel as low as possible. The laser power 

densities used for the wavelengths 632.8 nm, 514.7 nm, and 325 nm are 

7×103 mWcm-2, 8.3×103 mWcm-2, and 5.7×102 mWcm-2, respectively. 

  

  

Figure 4.5 (a) Photocurrent density (Jph) plotted over the applied voltage for three different laser lines. 

(b)-(d) Jph over time at a constant bias voltage of 0.5 V, while the illumination was switched on and off 

every 30 s. Illumination wavelengths used are (b) 632.8 nm, (c) 514.7 nm, and (d) 325 nm. Figure taken 

from ref.40. 

After an initial fast rise, a slower increase in photocurrent is observed for the whole 

time interval when the illumination is kept on. This additional increase in photocurrent 

is almost negligible for red excitation but the effect becomes more pronounced with 

increasing the excitation energy. When the light is switched off, the photocurrent 

decreases within 30 s to nearly the value before switching the light on, whereby a first 

fast decrease occurs nearly instantaneously and is followed by a slower decay. The 
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photocurrent decay was fitted with a bi-exponential function, similar to the report by Li 

et al.73 for the dynamic response of CdSe nano-dots in poly(3-hexylthiophene) (P3HT) 

matrix. Li et al.73 suggested that the initial decay can be attributed to the imbalance in 

electron-hole mobilities resulting in a faster dynamic response related to the faster 

carriers followed by a slower response of the slower carriers in the channel material. 

The short time constants (t1) in the device with 120 nm/ 300 nm channel were found 

to be roughly ~0.15 s/~0.2 s, ~0.45 s/ ~ 0.7s, and ~1.5 s/~0.45 s for 632.8 nm, 514.7 

nm, and 325 nm respectively. Similar time constants are reported in literature for 

“instantaneous” switching response of photoactive materials under illumination74,75. 

From the mobility of the carriers calculated for our devices, we expect, however, the 

carrier transit time in the channel to be in the range of nanoseconds. The time 

resolution in our experiment is, however, limited to ~0.1 s.  

The slower photocurrent decay for the device with channel length of 120 nm/ 300 nm 

are characterized by the following time constants (t2): ~40 s /~35 s, ~50 s/~45 s, and 

~50 s/ ~50 s for 632.8 nm, 514.7 nm, and 325 nm respectively. This can be related to 

a process dominated by trapping and de-trapping of the charge carriers created during 

illumination. Figure 4.6 shows how the time constant of the photo-switching varies with 

the excitation wavelength. The error bars are calculated based on the error values 

generated by the fitting parameters. 

  
Figure 4.6 The variation of the time constant with the excitation wavelength. (a) t1 (the time constant 

responsible for the instantaneous device response) vs wavelength and (b) t2 (the time constant 

representing the slower photocurrent decay due to trapping and de-trapping of the carriers vs 

wavelength. 
 

One possible reason for the rather long time-scale of this process might be photo-

assisted oxygen diffusion into the film, as all our electrical and photosensing 

measurements were carried out in ambient atmosphere. Similar time constants were 
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reported by Grollman et al.76 for the fluorescence decay in air for fluorinated and non-
fluorinated TIPS-pentacene embedded in a polymer matrix under a 633 nm excitation. 

In ref.76 the fluorescence quenching was nearly completely suppressed when the 

experiments were performed in vacuum. Jurchescu et al.72 showed, by measuring the 

transient current in pentacene crystals, that the oxygen diffusion in pentacene is 

associated with the creation of holes, and thus with the doping of the material. When 

pentacene is exposed to ambient air, water molecules can also diffuse into the 

pentacene layer creating traps. Ref.72 suggests that the balance between the holes 

and the traps created by ambient air can be influenced by illumination, as the efficiency 

of the oxygen exposure induced doping is increased by exposure to ambient 

fluorescent light. In ref.77 it was shown that the diffusion of molecular oxygen and water 

from the ambient into pentacene is reversible when the air exposure takes place in the 

dark or under visible light. On the other hand, it was suggested, that the exposure to 

ambient under UV illumination (from a low pressure Hg lamp) leads to a reaction, most 

probably with singlet oxygen and/or ozone with the deterioration of the material within 

a time interval of 15 minutes.  

Therefore, it was concluded that the different line-shape of the photocurrent time 

transient observed in the described photosensing experiments in case of UV as 

compared to green and red illuminations is most probably due to a more pronounced 
diffusion of the oxygen into the TIPS-pentacene channel. In order to cross-check the 

photo-oxidation of TIPS-pentacene by illumination with the 325 laser line, we employed 

an optical method: photoluminescence (PL) spectroscopy, since the PL intensity is 

highly sensitive to the molecular structure and environment. The PL spectra of the 

channel material is shown in figure 4.7.  

The spectra were recorded at first in nitrogen ambient, then the sample space was 

purged with air and finally again by nitrogen. The area under the PL emission band of 

TIPS-pentacene is shown in figure 4.8 as a function of time. The time scale of PL and 

of the photo-switching measurements is different due to experimental constraints of 

the time required to purge the measurement stage with nitrogen or air. A waiting time 

of 10 min was maintained in each case to ensure that the experimental set up was 

properly purged with nitrogen or air. 

The PL area remained almost constant as long as the measurement was performed in 

nitrogen ambient, while a rapid PL decrease occurred when the measurement was 

carried out in air. Once the stage was purged again with nitrogen, the PL intensity 
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slowly recovered to nearly the initial value. This kind of behaviour is consistent with a 

photo-oxidation the TIPS-pentacene UV exposure, which is, contrary to the report from 

ref.77, reversible once the sample is purged again with nitrogen. We expect that the 

irreversibility of the photo-oxidation reported in ref.77 is due to the broader UV spectrum 

and higher power of the Hg lamp.  

 

 

Figure 4.7 The photoluminescence spectra of the TIPS-pentacene channel. Excitation wavelength is 

325 nm. A laser beam with the power of 180 µW was focused on the HED-TIE channel using a 10x 

objective. Initial PL measurements were carried out in N2 ambient followed by air and N2 ambient 

again. Figure taken from ref.40. 
 

 

Figure 4.8 The area under PL spectra plotted over time to show the decay in PL intensity while the 

channel material is exposed to air. Figure taken from ref.40. 

The photo-oxidation of the TIPS-pentacene under UV exposure underlines another 

aspect where the full accessibility of the active transport channel in HED-TIEs to 
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external stimuli can play an important role: namely for gas sensing applications.  TIPS-

pentacene based devices were already demonstrated as ammonia gas sensors by Yu 

et al.23 

 

4.1.4 Summary and outlook 
One key feature of the proposed HED-TIE technology is the full accessibility of the 

active area of the devices to external stimuli (e.g. light) which can be useful for various 

sensing applications. In this part of the chapter, photosensing properties of TIPS-

pentacene HED-TIEs have been demonstrated. In principle, HED-TIEs with any 

photosensitive material as the active channel material can have applications as hybrid 

photodetectors. Three different illuminations were used to investigate the 

photosensing properties. The laser lines used for illumination were 632.8 nm (1.96 eV, 

red), 514.7 nm (2.41 eV, green), and 325 nm (3.81 eV, ultraviolet). HED-TIEs were 

found to generate photocurrent for all three illuminations.  

The red illumination was found to generate highest intensity of photocurrent and also 

the switching was the fastest for red illumination. After an initial fast rise, a slower 

increase in photocurrent was observed for the whole time interval when the illumination 

is kept on. This additional increase in photocurrent was almost negligible for red 

excitation but the effect became more prominent with increasing the excitation energy. 

This was attributed to the photo-oxidation of TIPS-pentacene as all the measurements 

were carried out in air. Photoluminescence spectroscopy showed this photo-oxidation 

to be a reversible phenomenon when purged with nitrogen.  

The results discussed above suggests that fabricated TIPS-pentacene HED-TIEs can 

be used as hybrid photodetectors to be used in the red wavelength regime. Higher 

excitation energies can lead to a prominent photo-oxidation effect, affecting the 

switching properties of the devices and thus reducing the suitability of the fabricated 

HED-TIEs to be used as hybrid photodetectors.  

The results discussed above are summarized in the table below. The table represents 

the photocurrent density at a constant applied bias and the switching time constant of 

devices (when the illumination is switched off) with two different channel lengths and 

under three different single wavelength illuminations. 
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 Illumination wavelength 

Device channel 
length  

325 nm 514.7 nm 632.8 nm 

120 nm Jph = 6 mAcm-2  

t1 = 1.5 s  

Jph = 5 mAcm-2 

 t1 = 0.45 s 

Jph = 6 mAcm-2 

t1 = 0.15 s 

300 nm Jph = 7 mAcm-2 

t1 = 0.45 s 

Jph = 2 mAcm-2 

 t1 = 0.7 s 

Jph = 9 mAcm-2 

t1 = 0.2 s 

 

Table 4.1 Summary of the photosensing properties of the TIPS-pentacene HED-TIEs of two different 

channel lengths and under three different single wavelength illumination. All the Jph mentioned are 

measured at a fixed bias of 0.5 V. 
 
 
4.2 Photosensing properties of TIPS-pentacene based HED-TIEs with Au 
nanoparticles in the channel matrix 
4.2.1 Theoretical background  
With the advancement of organic electronics in last few decades, hybrid 

inorganic/organic nanocomposites have emerged as promising candidates for various 

applications in next-generation electronic, optoelectronic or memory devices78,79. The 

organic matrix can be based on small molecules or polymers whereas nanoparticles 

can be metal nanoparticles or some other materials based on the proposed application. 

Metal nanoparticles are attractive for optical detection applications and they can easily 

be processed from colloidal dispersions. Colloidal particles offer a route to the simple 

assembly of complex structures and can be used to create a variety of electronic and 

sensor components. Many colloidal nanoparticle syntheses have been known for a 

considerable amount of time80,81 but, more recently, dedicated works have been 

carried out for nanoparticle syntheses specifically for device applications. These 

particles may consist of a particular material, be of a particular size, or have specialized 

surface functionality79. It has even become possible to have some degree of control 

over the shape of the nanoparticles82. Nanoparticles tend to be fairly unstable in 

solution and tend to agglomerate. Special precautions have to be taken to avoid the 

aggregation or precipitation of these synthesized nanoparticles. Nanoparticle 

syntheses also involves the use of a stabilizing agent, which associates with the 

surface of the particle, provides charge or solubility properties to keep the 

nanoparticles suspended, and thereby prevents the agglomeration of the 
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nanoparticles. Once the nanoparticles are synthesized, it is extremely important to 

investigate the stability and degradation of the synthesized nanoparticles over time for 

successful device operations. 

The devices with hybrid metal nanocomposite films exhibit phenomena such as 

absorption of ultraviolet light, plasmonic enhancement of absorption, size-based 

spectral tuning etc. and the charge storage properties of these nanoparticles at the 

surface or the interface, can also play an important role in fabrication nanocomposite 

based memory devices. After demonstrating the possible application of the solution 

processed TIPS-pentacene based HED-TIEs as hybrid photodetectors, it was worth 

investigating whether the photosensing properties of these devices can be further 

tuned by incorporating metal nanoparticles in the TIPS-pentacene matrix. 
 
4.2.2 Experimental details 
The fabricated HED-TIEs used in this experiments were prepared using the “spacer 

approach” as described in chapter 2. Thermally grown SiO2 with a thickness of 130 nm 

was used as the isolation layer and 30 nm Au was deposited as the electrode layer 

with a 10 nm Cr as the adhesion layer. The TIPS-pentacene solution was prepared as 

described section 2.2.1.1 in chapter 2.  

Colloidal gold nanoparticles in ethanol dispersion, provided by Alexandra Raevskaya 

from University of Kiev, Ukraine, was then mixed with the prepared TIPS-pentacene 

solution in 1:1 ratio. The gold nanoparticles with a concentration of 200 mg/l were 

stabilized with polyethyleneamine and ascorbic acid and dispersed in ethanol. The 

concentration of ascorbic acid was kept constant at 200 mg/l. The concentration of 

polyethyleneamine was varied for two different nanoparticle sizes as 200 mg/ l (Au 

NP_1) and 170 mg/ l (Au NP_2) respectively. For simplicity, these two types of gold 

nanoparticles will be referenced as Au NP_1 and Au NP_2 in the rest of the chapter. 

The dynamic light scattering measurement performed by the cooperation partners 

indicated the average diameter of the nanoparticles to be ~30 nm and ~60 nm for Au 

NP_1 and Au NP_2, respectively.  

Prior to drop-coating, the fabricated structures with gold electrodes were cleaned using 

acetone, ethanol, and deionized water respectively. 3 µl of solution mixture with 1.5 µl 

of TIPS-pentacene solution and 1.5 µl of gold nanoparticle dispersion was used to 

drop-coat the HED-TIEs for a 1 cm x 1 cm area for both samples. The drop-coating of 

the substrates was performed at 65 °C on a hot plate and the samples were kept at 
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65 °C for 30 min after drop-coating, similarly to the procedure used for pure TIPS-

pentacene channels, in order to initiate crystallization of the TIPS-pentacene matrix 

and to ensure evaporation of the solvents from the film. Additionally, a reference 

sample was prepared with TIPS-pentacene solution diluted in ethanol (1:1 ratio) to 

compare the observed photosensing properties of the TIPS-pentacene HED-TIEs with 

and without gold nanoparticles in the channel.  
For all the devices, the channel length was maintained constant at ~140 nm and the 

channel width was 100 µm. To investigate the photosensing properties, two different 

laser lines: 632.8 nm (1.96 eV, red), and 514.7 nm (2.41 eV, green) were used for 

illumination of the active area of the devices from the top. These two wavelengths were 

chosen to meet the absorption of the metal nanoparticles along with that of TIPS-

pentacene (see next section). The electrical measurements were conducted in the 

same way as described in chapter 2, section 2.3 (a).  

 
4.2.3 Results and discussions 
Figure 4.9 shows the size distribution of the synthesized gold nanoparticles based on 

the dynamic light scattering technique. The average size of the gold nanoparticles were 

~30 nm diameter size for Au NP_1 and ~60 nm diameter size for Au NP_2.  

 

Figure 4.9 Size distribution of the synthesized gold nanoparticles. 

The absorption spectra of the gold nanoparticles and the TIPS-pentacene solution are 

shown in figure 4.10. The two laser lines used in the photosensing experiments are 

indicated by the dotted vertical lines in the spectra. 

Firstly, the current-voltage characteristics of all the fabricated devices were measured 

in dark and figure 4.11 shows the current-voltage characteristics of the HED-TIEs with 

and without gold nanoparticles in the TIPS-pentacene matrix. 
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Figure 4.10 Absorption spectra of: (a) gold nanoparticles and (b) TIPS-pentacene. The green and 

red lines indicate the laser lines used for the photosensing experiments.  

It also shows how the device characteristics change when TIPS-pentacene solution is 

diluted in ethanol. It can clearly be seen that the line-shape of the measured 

characteristics is different in the presence of the nanoparticles, indicating a different 

conduction mechanism. These line-shapes were not always reproducible when the 

same device was measured repeatedly. One possible reason for the change of I-V 

characteristics with time might be the movement of the gold nanoparticles in the 

channel matrix under applied bias, influencing the overall device current and hence 

the line-shape. The asymmetric behaviour of current-voltage characteristics of the 

sample with TIPS-pentacene solution diluted in ethanol (i.e. without gold 

nanoparticles) was reproducible, as it will be discussed in the following section. 

However, the electrical conductivity was found to increase when the TIPS-pentacene 

was diluted in ethanol. 

 

Figure 4.11 Exemplary current-voltage characteristics of TIPS-pentacene based HED-TIEs with and 

without gold nanoparticles in the channel. 

To verify whether the observed asymmetry in the HED-TIE with TIPS-pentacene 

diluted in ethanol is a device property or a measurement artefact, the positive and 
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negative terminal of the device were swapped with each other and re-measured. The 

results are shown in Figure 4.12.    
 
 

Figure 4.12 Current-voltage characteristics of TIPS-pentacene based HED-TIEs diluted in ethanol 

for two different configurations of the voltage terminals.  

The observed asymmetry was found to change the direction indicating it to be indeed 

a device property, not a measurement artefact. This effect was reproducible for 

multiple samples prepared with different TIPS-pentacene solutions diluted in ethanol. 

That clearly indicates the observed asymmetry is due to a change in the transport 

properties of TIPS-pentacene when mixed with ethanol. It should also be mentioned 

here that the observed asymmetry in the sample with TIPS-pentacene diluted in 

ethanol was not due to a “diode like” behaviour of the devices as there was no shift 

observed around 0 V when the device active area was illuminated. It needs further 

investigation for a conclusive explanation behind the observed asymmetry in current-

voltage characteristics when TIPS-pentacene is diluted in ethanol. One possible 

explanation would be that eventually remaining ethanol molecules in the channel act 

as traps for the carriers and this might lead to a change in the transport mechanism 

from unipolar to bipolar for a particular voltage regime, resulting in increase in device 

current due to contribution from both type of carriers. The fact that the overall 

conductivity of the devices increase when diluted in ethanol also supports the fact of 

formation of traps in the channel matrix. 

Figure 4.13 shows how the electrical characteristics vary in dark and under illumination 

for all the samples. The TIPS-pentacene based HED-TIEs and the HED-TIEs with gold 

nanoparticles in the channel matrix were found to generate photocurrent under both 

green and red illuminations. When TIPS-pentacene was diluted in ethanol, the amount 

of generated photocurrent was negligible.  
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Figure 4.13 Current-voltage characteristics in dark and under red and green illumination: (a) TIPS-

pentacene based HED-TIE, (b) TIPS-pentacene based HED-TIE with Au NP_1, (c) TIPS-pentacene 

based HED-TIE with Au NP_2 and (d) HED-TIE with TIPS-pentacene solution diluted in ethanol. 

The light on / light off photo-switching of the all the fabricated HED-TIEs was 

investigated by measuring the device currents over time, while the laser illumination is 

switched on and off at regular intervals of 30 s and the results are shown in figures 

4.14 – 4.17. The measurements were performed at a constant applied voltage of 1 V, 

in order to keep the applied bias stress on the organic channel as low as possible. The 

laser power densities used for 632.8 nm and 514.7 nm are 7×103 mWcm-2 and 8.3×103 

mWcm-2, respectively. 

The TIPS-pentacene based HED-TIE without gold nanoparticles in the channel matrix 

showed better photo-switching properties under green illumination, unlike the HED-

TIEs as discussed in section 4.1.3. As shown in figure 4.14, the photocurrent density 

was higher for green illumination and the change with the switching on and off of the 

voltage was found to be much stronger compared to the photo-switching under red 

illumination. This difference can be due to the difference in the device geometry, 

leading to different type of trench-filling with the solution resulting in difference in the 
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absorption of the light or the photosensing properties.  

 

	 	
Figure 4.14 Jph over time for TIPS-pentacene based HED-TIE at a constant bias voltage of 1 V, while 

the illumination was switched on and off every 30 s. Illumination wavelengths used are (a) 632.8 nm 

and (b) 514.7 nm.	

When the HED-TIEs are fabricated with TIPS-pentacene solution diluted in ethanol, 

the photosensing properties deteriorate drastically. In this case, as shown in figure 

4.15 (a), the device does not show any photo-switching under red illumination. When 

the device is illuminated with a green laser, there is a photo-switching observed but 

the intensity of the photocurrent density reduces by a factor of 4, compared to the HED-

TIEs prepared with TIPS-pentacene without ethanol in the solution. This fact supports 

the hypothesis of the traps contributing to the electrical transport and thereby changing 

the transport mechanism. The photosensing properties of the samples prepared with 

ethanol in the solution is perhaps deteriorated because of the presence of more 

number of traps in the film. It is important to investigate the photo-switching properties 

of the devices prepared with ethanol in the solution mixture, as it will help us to 

compare the device properties with the gold nanoparticles in the channel matrix. The 

gold nanoparticles are dispersed in ethanol and hence by comparing the device 

characteristics with the gold nanoparticles in the channel matrix and the device 

prepared with solution diluted in ethanol, it can be concluded whether the photo-

sensing properties are indeed dominated by the absorption of the gold nanoparticles, 

rather than by the absorption of the TIPS-pentacene matrix. It is also believed that 

conductivity of a device with gold nanoparticles in the channel matrix is not influenced 

by the conductivity of the gold nanoparticles itself because of the presence of the 

surfactants around the nanoparticles. 
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Figure 4.15 Jph over time for TIPS-pentacene based HED-TIE, with TIPS-pentacene diluted in 

ethanol, at a constant bias voltage of 1 V, while the illumination was switched on and off every 30 s. 

Illumination wavelengths used are (a) 632.8 nm and (b) 514.7 nm.	

When Au NP_1 (diameter of ~30 nm) is added in the channel matrix, the devices show 

better photo-switching properties for red illumination compared to green illumination 

and the measurement data is shown in figure 4.16. Though the intensity of 

photocurrent was higher for green illumination, the line-shape was found to be noisier 

and less steep compared to the switching line-shape obtained for red illumination. The 

drastic improvement in the photo-switching properties under red illumination compared 

to the HED-TIE prepared with TIPS-pentacene solution diluted in ethanol (as shown in 

figure 4.15 (a)) indicates that the photo-switching properties can be tuned by adding 

nanoparticles in the channel matrix.	

	 	
Figure 4.16 Jph over time for TIPS-pentacene based HED-TIE with Au NP_1 in the channel matrix, 

at a constant bias voltage of 1 V, while the illumination was switched on and off every 30 s. Illumination 

wavelengths used are (a) 632.8 nm and (b) 514.7 nm.	

When Au NP_2 (diameter of ~60 nm) is added in the channel matrix, the devices 

exhibit a higher photocurrent compared to devices with Au NP_1. The obtained data 

is shown in figure 4.17. The line-shape of the switching improves in this case for green 
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illumination, whereas the line-shape deteriorates under red illumination compared to 

Au NP_1 in the channel matrix. 	

	 	
Figure 4.17 Jph over time for TIPS-pentacene based HED-TIE with Au NP_2 in the channel matrix, 

at a constant bias voltage of 1 V, while the illumination was switched on and off every 30 s. Illumination 

wavelengths used are (a) 632.8 nm and (b) 514.7 nm.	

The photocurrent density is higher for green illumination for both type of nanoparticles 

perhaps because of higher absorption in green wavelength regime for both 

nanoparticles (please see figure 4.10 (a)). It should also be noted that the number of 

nanoparticles can vary from sample to sample as the samples are prepared from 

nanoparticle dispersions, leading to variations in the photosensing properties. 

However, the devices with gold nanoparticles were found to degrade after 

approximately two months of sample preparation. The devices did not exhibit any 

photo-switching properties in that case, whereas the devices without gold 

nanoparticles in the channel matrix were still functional. This implies, the nanoparticles 

with the surfactants are perhaps not stable, which affects the device performance. To 

make devices with tuneable photosensing properties by adding metal nanoparticles in 

the channel matrix, the stability of the nanoparticles has to be taken care of for 

successful device operation. 

The above discussed results suggest that photosensing properties of fabricated HED-

TIEs can be tuned further by incorporating metal nanoparticles in the channel matrix. 

The photosensing properties would of course depend on the size of the nanoparticles 

and hence the absorption properties of the nanoparticles and also on the dispersion 

and the surfactants used. 
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4.2.4 Summary and outlook 
In this part of the chapter, gold nanoparticles were added in the TIPS-pentacene 

channels of the fabricated HED-TIEs and investigations were carried out to understand 

how the photosensing properties evolve when the gold nanoparticles are added in the 

channel matrix. Two different sizes (30 nm and 60 nm diameter sizes) of nanoparticles 

were used for this experiment and the photosensing properties were investigated by 

632.8 nm (1.96 eV, red) and 514.7 nm (2.41 eV, green) laser lines. The nanoparticles 

were added in the TIPS-pentacene solution from an ethanol dispersion and drop-

coated on the pre-structured HED-TIE substrates. It was found the photosensing 

properties can be further tuned by adding these metal nanoparticles in the channel 

matrix. The photo-switching line-shape and the photocurrent density depend on sizes 

of the nanoparticles used. The variations in the number of nanoparticles in device 

channels (due to solution processing) can also affect the photosensing properties of 

the devices. However, the nanoparticles were found to be degrading over time 

resulting in disappearance of the photosensing properties of the fabricated HED-TIEs. 

The stability of the nanoparticles in the dispersion has to be taken care of for successful 

fabrication of functional HED-TIEs with tuneable photosensing properties. As an 

alternative, the nanoparticles can be dispersed in different solvent other than ethanol 

and studied to check whether the stability of the devices improves.  

As an outlook to further research work, HED-TIEs with different photosensitive channel 

materials can be studied under different illuminations to fabricate hybrid 

photodetectors working in different wavelength regimes.  

Another possible application of the TIPS-pentacene based HED-TIEs with gold 

nanoparticles in the channel matrix would be fabrication of memory devices. In ref.83, 

Park et al. demonstrated high-performance organic charge trap flash memory devices 

based on ink-jet printed TIPS-pentacene transistors by embedding gold nanoparticles 

in the devices. Similar devices can be fabricated using the HED-TIE structures and 

possibly by using the substrate as a gate electrode. The photocurrent density for all 

the samples discussed above, in terms of photocurrent densities, is summarized in the 

table below.  
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 Illumination wavelength 

Device channel material 632.8 nm 514.7 nm 

TIPS-pentacene Jph = 1.25 mAcm-2 Jph = 2 mAcm-2 

TIPS-pentacene diluted in ethanol No photoswitching Jph = 0.5 mAcm-2 

TIPS-pentacene + Au NP_1 Jph = 0.125 mAcm-2 Jph = 0.5 mAcm-2 

TIPS-pentacene + Au NP_2 Jph = 1.25 mAcm-2 Jph = 2.5 mAcm-2 

 

Table 4.2 Summary of the photosensing properties of the TIPS-pentacene HED-TIEs with and without 

gold nanoparticles in the channel matrix and under two different single wavelength illumination. All the 

Jph mentioned are measured at a fixed bias of 1 V. 
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Chapter 5  
	
Application of HED-TIEs as magnetoresistive sensors 
	

In this chapter, the magnetoresistive properties of solution-processed TIPS-pentacene 

HED-TIEs are investigated. It is shown, that this material can exhibit light induced 

organic magnetoresistance at room temperature and under ambient conditions even if 

the film is not encapsulated. Organic magnetoresistance is also shown in solution-

processed TIPS-pentacene based commercial bottom contact OFETs and the 

advantages of the shorter transport channel in HED-TIEs compared to OFETs are 

discussed. The results discussed in this chapter was published in ref.84. 

	
5.1 Theoretical background 
5.1.1. Organic spintronics 
The field of organic spintronics has received lot of research interest in the last years 

due to the possibility of designing nano-scalable molecule-based multi-functional 

devices1,85.  Spintronics deals with controlling and applying the electron spin degree of 

freedom through a variety of spin-dependent phenomena and has several applications 

in the area of magnetic sensors, magnetic data storage devices86,87 etc. In molecular 

spintronics, spin-polarized currents are carried through organic molecules. The most 

attractive feature of molecular spintronics is the weak spin scattering mechanism which 

implies the spin polarization of the carriers can be maintained for a longer time (~in the 

range of μs)1  compared to the inorganic semiconductors (~in the range ns to ps)88,89. 

The fact that carbon is a light element, and hence it has a weak spin–orbit interaction, 

leads to longer spin lifetimes. This is because, the strength of spin orbit interaction is 

proportional to Z4 (Z: atomic number) and carbon is an element with a low atomic 

number1. Spin relaxation time in organic devices was found to be improved by orders 

of magnitude compared to spin devices using inorganic materials. Most importantly, 

these molecules can be functionalized according to the requirements, which allows us 

to modify their electronic and magnetic properties.  

The most common type of spintronic device is a spin-valve structure where a non-

magnetic spacer layer is sandwiched between two ferromagnetic electrodes90. The 

role of the spacer layer is to decouple the ferromagnetic electrodes, allowing spin 

transport from one contact to the other. The two ferromagnetic electrodes can be 
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chosen with two distinct switching fields, so that under an applied magnetic field, the 

device can be switched between a parallel and antiparallel magnetization 

configuration. These parallel and anti-parallel magnetization configurations lead to a 

significant difference in the device resistance which is known as the giant 

magnetoresistance (GMR)91,92. Fert93 and Grünberg94 demonstrated the existence of 

GMR and were awarded the Nobel prize in 2007 for their pioneering work. In case of 

an organic spin-valve device, this spacer layer is an organic material which is 

sandwiched between two ferromagnetic electrodes. GMR in organic spintronic devices 

(OSPD) was successfully demonstrated for devices with different organic materials1. 

The first report on experimental injection in OSPDs was published in 2002 on a planar 

device95 that had ferromagnetic electrodes and an organic semiconductor 

(Sexithiophene or 6T) as the channel material with channel length ranges between 100 

nm - 500 nm. La0.7 Sr0.3 MnO3, or LSMO, a well-known material for its spin-injection 

properties was used as the ferromagnetic electrode in this report. A strong 

magnetoresistance was observed up to room temperature in the devices with channel 

length of 100 nm – 200 nm. It was demonstrated that, to have successful spin transport 

between electrodes, it is necessary to have devices with channel length of less than 

~300 nm. Electron beam lithography (EBL) was used in this case for fabrication of 

electrode gaps of 100 nm - 500 nm. Figure 5.1 shows the LSMO/6T/LSMO planar 

device structure and the channel length dependence of the magnetoresistance of such 

devices. 

  
Figure 5.1 (a) LSMO/6T/LSMO planar spintronic device as published by Dediu et al. in ref.95. Electron 

beam lithography was used for patterning electrode gap dimensions of 100 nm – 500 nm. (b) 

Magnetoresistance as a function of device channel length at applied magnetic field of 0.3 T. Figures 

taken from ref.95. 

Following this, fabrication of a vertical spin-valve structure was reported where 

aluminium-tris-(8-hydroxyquinoline) or Alq3 layer (100 nm - 200 nm) was used as the 
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intermolecular interactions, which considerably limit the carrier 
mobility. The injection of carriers into OSCs is best described14 in 
terms of thermal and field-assisted charge tunnelling across the inor-
ganic/organic interface, followed by carrier diffusion into the bulk of 
the OSC. Furthermore, the carriers propagate by random site-to-site 
hopping between pseudo-localized states that are distributed within 
an energy interval of approximately 0.1 eV. Two conducting chan-
nels are usually considered active: the lowest un occupied molecular 
level (LUMO) for n-type and the highest occupied molecular level 
(HOMO) for p-type carriers; however, defects and interface states 
may also have to be considered depending on the material and its 
structural quality. Another important issue is the strong electron–
phonon interaction leading to the carriers having a polaronic char-
acter (for more extensive reading we suggest a recent review15).

In principle, any discussion of spintronics effects requires an 
accurate definition of the spin polarization of the carriers. For 
in organic surfaces or interfaces featuring band-like behaviour, 
it has been shown16 that the spin polarization may be defined in 
different ways, depending on the specific experimental or theoreti-
cal approach adopted. The simplest definition, which considers just 
the density of states (N) at the Fermi level (EF), is that spin polari-
zation is equal to (N  − N )/(N  + N ), and it is mostly valid for 
static cases such as, for example, spectroscopic characterization. The 
symbol ( ) indicates majority (minority) spin orientation in a fer-
romagnetic material with respect to the direction of magnetization. 
In experiments that involve current across interfaces, the definition 
of spin polarization may require the substitution of N by Nv (bal-
listic regime) or by Nv2 (diffusive regime), depending on the specific 
interface and transport mechanism considered16. Here, v is the Fermi 
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velocity in the spin-polarized material, and Nv and Nv2 are defined 
by inte gration over the Brillouin zone. It has not yet been possible to 
establish which particular definition is applicable for ferromagnetic/
organic interfaces. The injection of charge/spins across such inter-
faces corresponds to a transition from extended (band character) 
states into almost fully localized ones, which accounts for a dra-
matic symmetry breaking and leads to the failure of the common 
models used for purely inorganic interfaces17. Similarly, the exten-
sion of the band-symmetry model developed for TMR (inorganic) 
devices should be treated with caution when applied to inorganic 
spintronics18,19: the symmetry breaking mentioned above consti-
tutes a serious barrier and requires a considerable modification of 
these models.

The first report on experimental injection in OSPDs was 
published as recently as 2002 (ref. 20). The authors designed a lateral 
device that combined ferromagnetic electrodes and OSC conducting 
channels 100–500 nm in length (Fig. 1a). The selected ferro magnetic 
material was a highly polarized manganite (La0.7Sr0.3MnO3, or 
LSMO). This material was already well known for its spin-injection 
properties and has proved to be highly successful in diverse inor-
ganic spintronic devices, such as tunnel junctions19 and artificial 
grain-boundary devices21. Sexithiophene (6T), a rigid conjugated-
oligomer rod, and a pioneer in organic thin-film transistors22, was 
chosen for the spin-transport channel. A strong magnetoresistive 
response was recorded up to room temperature in 100-nm and 
200-nm channels (Fig. 1b), and was explained as a result of the 
conservation of the spin polarization of the injected carriers. Using 
the time-of-flight approach, a spin-relaxation time of the order of 
1 μs was found. This work designated organic materials as extremely 

Figure 1 | Organic spintronic devices. a, Lateral spin device as published by Dediu et al.20. In this device, two ferromagnetic LSMO electrodes patterned by 
electron-beam lithography were separated by 70–500 nm and bridged by a 6T channel. b, Magnetoresistance (H = 0.3 T, where H is the magnetic field) 
of the lateral spin device depicted in a as a function of the channel length. The error bars indicate the possible local deviations from the nominal channel 
length. c, Magnetoresistance loop of a LSMO (100 nm)/Alq3 (130 nm)/Co (3.5 nm) spin-valve device measured at 11 K (ref. 23). As indicated in the figure, 
an antiparallel (AP) configuration of the magnetization of the electrodes corresponds to a low-resistance state. d, Schematic of a typical vertical inorganic–
organic spin valve. In this case, LSMO is the bottom electrode and Co is the top one. A typical MR measurement is performed by applying a bias voltage to 
the metallic ferromagnetic electrodes and the current is measured as a function of the in-plane external magnetic field. e, Magnetoresistance loop of a LSMO 
(20 nm)/6T (100 nm)/Al2O3 (2 nm)/Co (20 nm) vertical spin-valve device measured at 40 K. Figure reproduced with permission: c, © 2004 NPG. 
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intermolecular interactions, which considerably limit the carrier 
mobility. The injection of carriers into OSCs is best described14 in 
terms of thermal and field-assisted charge tunnelling across the inor-
ganic/organic interface, followed by carrier diffusion into the bulk of 
the OSC. Furthermore, the carriers propagate by random site-to-site 
hopping between pseudo-localized states that are distributed within 
an energy interval of approximately 0.1 eV. Two conducting chan-
nels are usually considered active: the lowest un occupied molecular 
level (LUMO) for n-type and the highest occupied molecular level 
(HOMO) for p-type carriers; however, defects and interface states 
may also have to be considered depending on the material and its 
structural quality. Another important issue is the strong electron–
phonon interaction leading to the carriers having a polaronic char-
acter (for more extensive reading we suggest a recent review15).

In principle, any discussion of spintronics effects requires an 
accurate definition of the spin polarization of the carriers. For 
in organic surfaces or interfaces featuring band-like behaviour, 
it has been shown16 that the spin polarization may be defined in 
different ways, depending on the specific experimental or theoreti-
cal approach adopted. The simplest definition, which considers just 
the density of states (N) at the Fermi level (EF), is that spin polari-
zation is equal to (N  − N )/(N  + N ), and it is mostly valid for 
static cases such as, for example, spectroscopic characterization. The 
symbol ( ) indicates majority (minority) spin orientation in a fer-
romagnetic material with respect to the direction of magnetization. 
In experiments that involve current across interfaces, the definition 
of spin polarization may require the substitution of N by Nv (bal-
listic regime) or by Nv2 (diffusive regime), depending on the specific 
interface and transport mechanism considered16. Here, v is the Fermi 
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velocity in the spin-polarized material, and Nv and Nv2 are defined 
by inte gration over the Brillouin zone. It has not yet been possible to 
establish which particular definition is applicable for ferromagnetic/
organic interfaces. The injection of charge/spins across such inter-
faces corresponds to a transition from extended (band character) 
states into almost fully localized ones, which accounts for a dra-
matic symmetry breaking and leads to the failure of the common 
models used for purely inorganic interfaces17. Similarly, the exten-
sion of the band-symmetry model developed for TMR (inorganic) 
devices should be treated with caution when applied to inorganic 
spintronics18,19: the symmetry breaking mentioned above consti-
tutes a serious barrier and requires a considerable modification of 
these models.

The first report on experimental injection in OSPDs was 
published as recently as 2002 (ref. 20). The authors designed a lateral 
device that combined ferromagnetic electrodes and OSC conducting 
channels 100–500 nm in length (Fig. 1a). The selected ferro magnetic 
material was a highly polarized manganite (La0.7Sr0.3MnO3, or 
LSMO). This material was already well known for its spin-injection 
properties and has proved to be highly successful in diverse inor-
ganic spintronic devices, such as tunnel junctions19 and artificial 
grain-boundary devices21. Sexithiophene (6T), a rigid conjugated-
oligomer rod, and a pioneer in organic thin-film transistors22, was 
chosen for the spin-transport channel. A strong magnetoresistive 
response was recorded up to room temperature in 100-nm and 
200-nm channels (Fig. 1b), and was explained as a result of the 
conservation of the spin polarization of the injected carriers. Using 
the time-of-flight approach, a spin-relaxation time of the order of 
1 μs was found. This work designated organic materials as extremely 

Figure 1 | Organic spintronic devices. a, Lateral spin device as published by Dediu et al.20. In this device, two ferromagnetic LSMO electrodes patterned by 
electron-beam lithography were separated by 70–500 nm and bridged by a 6T channel. b, Magnetoresistance (H = 0.3 T, where H is the magnetic field) 
of the lateral spin device depicted in a as a function of the channel length. The error bars indicate the possible local deviations from the nominal channel 
length. c, Magnetoresistance loop of a LSMO (100 nm)/Alq3 (130 nm)/Co (3.5 nm) spin-valve device measured at 11 K (ref. 23). As indicated in the figure, 
an antiparallel (AP) configuration of the magnetization of the electrodes corresponds to a low-resistance state. d, Schematic of a typical vertical inorganic–
organic spin valve. In this case, LSMO is the bottom electrode and Co is the top one. A typical MR measurement is performed by applying a bias voltage to 
the metallic ferromagnetic electrodes and the current is measured as a function of the in-plane external magnetic field. e, Magnetoresistance loop of a LSMO 
(20 nm)/6T (100 nm)/Al2O3 (2 nm)/Co (20 nm) vertical spin-valve device measured at 40 K. Figure reproduced with permission: c, © 2004 NPG. 
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channel material, sandwiched between LSMO and cobalt electrodes96. Tunnelling 

magnetoresistance (TMR) was also demonstrated in OSPDs for various systems 

consisting of different electrodes and/or organic channel materials97,98. These 

discoveries opened up possibilities to explore the spin transport in the molecular level 

for coming up with novel hybrid device concepts. There are controversies regarding 

whether the observed magnetoresistance in organic spin-valves are due to successful 

spin transport through the layer or it is sort of a tunnelling through thin regions99,100. 

The main disadvantages of molecular spintronic devices are, most of the 

magnetoresistance effects are observed below room temperature (down to ~4K) and 

have to be measured in controlled environments to avoid the influence of the ambient 

atmosphere on the organic channel material and hence these devices are not suitable 

for practical applications. Among the various reports on spin transport and/or 

magnetoresistive measurements in molecule based devices, the reports regarding the 

organic magnetoresistance (OMAR) are particularly interesting, because this effect 

can be observed at room temperature and in low magnetic fields of several mT101,33.  

Most of the studies on OMAR have been carried out mainly on vertical devices102,103,104 

where the active organic layer is sandwiched between two electrodes. Saragi et al. 

carried out studies on the magnetic field effect on three terminal bottom contact organic 

field effect transistors (OFET) and showed the existence of light induced 

magnetoresistance effect in pentacene105 and one of its derivative 6,13 – 

bis(triisopropylsilylethynyl) or commonly known as TIPS-pentacene106. In both cases, 

the molecules were deposited using thermal evaporation in vacuum with a base 

pressure of ~10-7 Torr and a film thickness of ~75 ± 3 nm. The devices were illuminated 

by a Tungsten - Halogen lamp with emission at 671 ±  7 nm wavelength. Systematic 

investigations were carried out to study the influence of applied gate voltage on the 

magnetoresistance of the device in these two reports. Figure 5.2 shows the results 

reported in ref.106 as demonstration of light induced magnetoresistance in TIPS-

pentacene OFETs.  It also clearly shows the absence of the magnetoresistive effects 

in such devices when measured in dark. Possible mechanism behind this observed 

MR effect was also discussed in this report. It was concluded that the observed effect 

is due to presence of electron-hole pairs under illumination.  

Even though OMAR has been a widely investigated topic in the last few years, most of 

the studies on OMAR in small molecules reported so far dealt with thermally 

evaporated molecules and were carried out under controlled atmosphere like nitrogen 
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purged glove box or a cryostat to prevent the degradation of the devices in ambient 

atmosphere (see, for example ref.102,105,106). In this chapter, light induced 

magnetoresistance in solution processed planar hybrid devices is demonstrated which 

is measured at room temperature and most importantly, under ambient atmosphere. 

TIPS-pentacene is an ideal candidate for this proof of concept, as it is a solution 

processable molecule, which exhibits high carrier mobility and air-stability5,6. Moreover, 

the existence of light induced magnetoresistance in TIPS-pentacene was already 

shown for thermally evaporated films by Saragi et al.106 as discussed above.   

 
Figure 5.2 (a) Magnetoconductance in TIPS-Pentacene OFET recorded at VDS = -2 V and VG = 0 V, 

measured under illumination and external magnetic field (60 mT). (b) Zoomed in view of part 1 

showing the dark current measured under influence of magnetic field. (c) Zoomed in view of part 2 

showing the photocurrent measured under influence of magnetic field. (d) The corresponding 

photocurrent change when the light is kept on. Figures taken from ref.106. 

In order to investigate the influence of the distance between two electrodes on the 

OMAR magnitude and on the timeline of the OMAR response to the switching of 

magnetic field, we used two planar lateral device geometries: i) commercially available 

micro-structured bottom contact OFET substrates as used in ref.106  to compare the 

results obtained from solution processed devices with the previously reported results 

for evaporated TIPS-pentacene and ii) HED-TIE devices as developed in this work and 

discussed in the previous chapters.  

Negative magnetoresistance (positive magnetoconductance) was observed for both 

types of devices similar to the observations in ref.106. The magnetoresistance effect, 

however, was found to degrade with the time, significantly faster than the photocurrent. 

all measured irradiation intensities. For lesser irradiation
intensities, the photoresponse and the associated MR val-
ues decrease in a nonlinear way. Therefore, the maximum
MR value of !0.57% is observed at the maximum irradia-
tion intensity of 296 lW (at a magnetic field of 60 mT).
We also measured and calculated MR at different magnetic
fields and the data was fitted by using empirical laws Non-
Lorentzian, MR (%) = DR/R (%) / B2/(B + B0)2, and Lorentz-
ian line shapes, MR (%) = DR/R (%) / B2/(B2 + B2

0), as dis-
played in Fig. 6. The resulting fitting parameters are
B0 = (22 ± 3) mT for Non-Lorentzian and B0 = (32 ± 13) mT
for Lorentzian line shapes, respectively. Moreover, Non-
Lorentzian line shape fitted our data a little bit better than
Lorentzian line shape, which is similar as observed for irra-
diated FETs based on pentacene [14]. Our result is similar
as reported for irradiated organic diodes ITO/N,N0-di(naph-
thalene)-N,N0-diphenyl-benzidine (NPB)/Al [18]. In this
case, no magnetic field effect was observed when device
was measured in darkness. In contrast, significant MR
was measured as the device was irradiated. The magneto
photocurrent at a bias smaller than the turn-on voltage
can be well fitted by using Non-Lorentzian line shape, giv-
ing a high field component B0 of "140 mT. However, at ap-
plied bias larger than the turn-on voltage a new low field
component B0 of "8 mT appears while the high field com-
ponent remains. This low field component is well fitted by
using Lorentzian line shape. Therefore, MR was observed in
both irradiated organic diodes and organic FETs, but the

field component B0 is different due to different materials.
In irradiated organic FET we do not observe high or low
field component and the MR can be observed at gate volt-
age near or lower than the turn-on voltage. Furthermore, in
organic diode the origin of Lorentzian line shape can be
understood from the Hamiltonians for both hyperfine and
spin–orbit interactions [19,20]. However, the Non-Lorentz-
ian line shape behavior cannot be deduced from the hyper-
fine Hamiltonian. We obtained that both line shapes can fit
our data, but the Non-Lorentzian line shape fitted the data
slightly better than the Lorentzian one. However, the dif-
ference between both line shapes is too small to work
out reliable physical conclusions.

All OMAR models are based on the magnetic field
dependent spin-correlation between quasiparticles that
contribute to the current of the device. In the following
we will summarize several explanations for negative MR
obtained in organic diodes.

(i) Due to their long lifetime triplet excitons have a high
probability of transferring their excitation-energy to
a charge carrier (polaron) by recombining to the
ground state via so called exciton–charge interaction
[21]. In exciton–charge-interaction model a reduc-
tion of the mobility of the polarons by scattering on
triplet excitons is considered [22,23]. Under the
assumption of a magnetic field dependent intersys-
tem crossing rate, an external magnetic field can

Fig. 3. (a) Time dependence of photocurrents in TIPS-Pentacene FET recorded at VDS = !2 V and VG = 0 V, measured under influence of irradiation (296 lW)
and external magnetic field (60 mT). (b) Zoom-view of part 1 and it belongs to the dark current measured under influence of magnetic field. (c) Zoom-view
of part 2 and it belongs to the photocurrent measured under influence of magnetic field. The dotted line was used as baseline for calculation of photocurrent
change due to applied magnetic field. (d) The corresponding photocurrent change of part 2.

380 T. Reichert, T.P.I. Saragi / Organic Electronics 13 (2012) 377–383
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We suggest that this degradation is due to incorporation of water molecules from the 

ambient atmosphere into the TIPS-pentacene, details of which will be discussed in a 

section later in this chapter.  
 
5.1.2 Mechanisms of organic magnetoresistance (OMAR) 
Organic magnetoresistance (OMAR) is defined as the change in resistance of an 

organic semiconductor device under an applied magnetic field without any spin 

injection from ferromagnetic electrodes. This effect can be observed at room 

temperature and with applied magnetic fields of several mT33,103. The observed relative 

change in device current under applied magnetic field is termed as 

magnetoconductance (MC). The MC can be quantified as, 

VW =	 X7;	XB
XB

 ,                                                                   (5.1)         

where I0 is the current without an applied magnetic field and IB is the current at an 

applied magnetic field of B.  MC values can be both positive or negative107. Sign 

changes of MC has also been observed as a function of temperature or applied bias. 

Several organic semiconductors consisting of small molecules such as Alq3
33, 

pentacene105, a-sexithiophene108 or even conjugated polymers like poly(N-vinyl 

carbazole), poly (p-phenylene vinylene) (PPV)108 derivatives have been found to 

exhibit OMAR effect as an intrinsic material property. It was confirmed that OMAR is 

originated from intrinsic material property, not from spin injection by measuring the 

same type of devices with different film thicknesses102 and thereby decreasing the 

possibility of spin injection. It was found that the MC increased approximately linearly 

with thickness, thus ruling out the possibility of originating from magnetic field 

dependent injection. It has also been shown that OMAR does not depend on the 

orientation of applied magnetic field with respect to the sample surface102. The 

magnitude of the MC can be increased by applying a relatively large current density 

for some time which is termed as conditioning. Niedermeier et al.109 showed increase 

of MC from 1 to 15% for PPV based devices by applying 1.25x103 A.m-2 for a duration 

of 1 h. This increase in MC is believed to result from the formation of traps110. However, 

the actual mechanism behind observed OMAR effect is still debated. Various models 

have been proposed to describe the observed effect99. In the following section, some 

of these models will be discussed. 
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It is proposed that hyperfine fields, which is the interaction between a nucleus and its 

surrounding environment, is the main source of spin relaxation in organic materials111. 

In organic compounds, hyperfine coupling is dominant due to presence of the hydrogen 

atoms. The spin of the p-electrons couples indirectly to these nuclear spins through 

the interaction with the s-electrons of hydrogen. A dipole–dipole coupling between the 

spin of the p-electron and the nucleus is also present. As the electron spin interacts 

with the neighbouring nuclei, the total effect can be described by a classical hyperfine 

field in the range of few mT. Once spin is injected into the organic layer, it precess 

around the local hyperfine field. As this hyperfine field is random at every site, the 

precession will change in a random direction causing a loss of spin polarization. This 

loss can be compensated with an external magnetic field, resulting in a magnetic-field 

dependent spin	diffusion length affecting the shape of observed MR curve112. 

 

 
Figure 5.3 The spin of a polaron on a pentacene molecule interacting with the hyperfine fields from 

the hydrogen nuclei (illustrated by arrows). The polaron spin precesses around the sum of hyperfine 

fields from surrounding hydrogen nuclei and the external magnetic field. Figure taken from ref.99. 

Experiments by Nguyen et al. confirmed the role of hyperfine fields in obtaining OMAR. 

The authors used a PPV113 derivative and replaced all the relevant hydrogen with 

deuterium. Deuterium has less hyperfine constant by a factor of six and hence a larger 

spin-diffusion length was expected if hyperfine field is indeed the main cause of loss 

of spin polarization. When spin valves using the hydrogenated and deuterated polymer 

were compared, the deuterated ones showed a much larger MR and a spin-diffusion 

length. In another experiment, the most common isotope of carbon, carbon-60 (C60) 

was used for determining the role of hyperfine coupling. As C60 does not contain any 

the low spin–orbit coupling and different symmetries [1].
The manipulation of spins during transport with a perpendi-
cularly applied magnetic field – which is called a Hanle
experiment – has not been reported yet for organic
semiconductors. We believe that this is the crucial
experiment that has to be performed on organic spin valves.
Via spin transport simulations we have shown that such an
experiment should be feasible [26]. Recently, the profile of
the spin distribution inside an organic layer was measured
via two new approaches: two-photon photoemission spec-
troscopy and a muon spin-rotation technique [27–29]. Both
these experiments involve rather complicated schemes to
interpret the data.

One of the main questions regarding spin transport is
about the origin of the spin-flip processes that determine the
spin-diffusion length. Are they caused by the small, but
finite, spin–orbit interactions, or do other processes dominate
in organic materials? Inspired by the interpretation of
OMAR (Section 4), we suggested that hyperfine fields could
be the main source of spin relaxation [14]. The hyperfine
field that is sensed by the spin of a carrier originates from the
surrounding hydrogen nuclei [Fig. 2]. The spin of the p-
electrons couples indirectly to these nuclear spins through
the interaction with the hydrogen s-electrons [30]. In
addition, a dipole–dipole coupling between the spin of the
p-electron and the nucleus is present. As the electron spin
interacts with many neighboring nuclei, the total effect can
be described by a classical hyperfine field on the order of a
few millitesla [31]. After a spin is injected into the organic
layer, it will precess around the local hyperfine field. Because
the hyperfine field is random at every site, this precession
will change in a random direction between hops, causing a
loss of spin polarization. The loss can be reduced with an
external field, resulting in a magnetic-field dependent spin-

diffusion length that affects the shape of the measured MR
curves [14].

Recent experiments by Nguyen et al. confirmed the
dominant role of hyperfine fields in determining the spin-
diffusion length [32, 33]. The authors used a polyphenylene
vinylene (PPV) derivative and replaced all relevant hydro-
gen with deuterium. Deuterium has more than a factor of six
smaller hyperfine constant, so a larger spin-diffusion length
is expected if hyperfine interactions are the main source of
loss of spin polarization. Indeed, when comparing spin
valves using the hydrogenated and deuterated polymer, the
latter showed a much larger MR and a spin-diffusion length
of 49 nm (versus 16 nm). Moreover, the authors showed that
MR(B) curves can be successfully fitted with the model we
obtained based on hyperfine-field-induced spin relaxation
[14]. In the same paper, the authors also experimentally
confirmed the key role of the hyperfine fields for OMAR, as
will be discussed in Section 4.

A remaining question is the role of the conductivity
mismatch in organic spin valves [20, 34]. Because the
resistance of the organic layer is large compared to the
electrode resistance, a significant reduction of MR could be
expected. Experimentally, however, considerable MR has
been observed. This suggests that the observed effects are
either from tunneling through thin regions, or the analysis of
conductivity mismatch is not directly applicable to organic
semiconductors. It is indeed suggested [35] that this issue is
not relevant for these materials, as an interfacial tunnel
barrier – which is the standard solution to overcome
conductivity mismatch – is naturally present due to hopping
injection [36].

A different approach to organic spin valves is using a
very thin organic layer as a tunnel barrier, aiming for
tunneling magnetoresistance (TMR). First results were,
however, questionable, see the discussion in Ref. [3]. A
related approach that can also give information about spin
transport is the use of a hybrid barrier: the combination of an
inorganic tunnel barrier with a thin organic layer [37–41].
We used this approach to investigate the combination of an
Al2O3 tunnel barrier of constant thickness with a thin Alq3
layer of variable thickness [39]. At very small Alq3
thickness, the charges tunnel through the combination of
the two layers, while for thicker layers, they first hop to an
intermediate site inside the Alq3. At this onset of multi-step
tunneling, we observed a change in the MR(B) curves that
agreed well with a model where the spin of the carrier
precesses in the randomhyperfine fieldwhile at the site in the
Alq3 [39].

In conclusion, first steps have beenmade in using organic
materials in spin valves. However, it is still debated wether
the observed MR is from transport or tunneling. This could
be resolved by performing experiments in which manipula-
tion of spins during transport is demonstrated.

3 Organic magnetoresistance effect Magnetic
field effects on the kinetics of chemical reactions and on
the photoconductance and luminescence in organic solids

Phys. Status Solidi B 248, No. 5 (2011) 1031

Feature

Article

Figure 2 (onlinecolourat:www.pss-b.com)ThespinSofapolaron
on a pentacene molecule interacts with the hyperfine fields from the
hydrogen nuclei (gray arrows). The polaron spin precesses around
thesumofhyperfinefields fromsurroundinghydrogennuclei and the
external magnetic field.

www.pss-b.com ! 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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hydrogen atoms, the hyperfine coupling can be effectively eliminated in this 

semiconductor. Absence of any OMAR effect was reported for ITO/C60/Ca/Al and 

Au/C60/Ca/Al devices114. In the next step, hyperfine coupling was intentionally 

introduced by replacing C60 with a substituted fullerene derivative (PCBM) exhibiting a 

hydrocarbon side-group. These devices showed clear OMAR signal.  

Several models have been suggested for OMAR to explain the observed change in 

the current, electroluminescence, photocurrent or fluorescence under an applied 

magnetic field. In this section, some of the main models explaining the mechanism 

behind observed OMAR effect will be discussed. The models can be categorized 

based on the pairs of particles that is considered in the model for the spin-dependent 

interactions. These different particle pairs can be e–e pairs or h–h (where e and h 

denote electron and hole, respectively) pairs as considered in the bipolaron model, e–

h pairs as considered in the e–h pair models, and excitons and free or trapped charges 

as considered in the triplet–charge interaction model. Figure 5.4 illustrates the particles 

considered in various models explaining OMAR mechanism. However, it should be 

noted that these spin-dependent interactions do not depend on the net spin 

polarization but on the relative orientation of the spins.  

 

 

Figure 5.4 Illustration of the particle interactions that are considered in the different OMAR models. 
Figure taken from ref.99. 

It can be difficult to compare between various reports on OMAR as even with (almost) 

the same device structure and materials, different magnitudes of OMAR have been 

reported. In such devices, changing only one parameter (e.g. applied voltage, 

temperature or film thickness) might not give a very conclusive results on factors which 

determines the magnitude of OMAR effect. This can be explained as effects like 

conditioning and trapping play an important role on OMAR. Factors like fabrication 

process, material purity, ambient or even sequence of recording the experimental data 

can affect the results on OMAR.  

 

the sample [44, 46, 51, 77]. However, in recent workwe have
shown that a small change can be observed on changing the
orientation [26, 78]. Actually, a systematic and reproducible
angle dependence turns out to be a result of interactions
between the spins, like dipole–dipole coupling. So far, in the
models for OMAR, only the relative orientation of spins has
been included, neglecting these spin interactions.We believe
that such angle dependent measurements could provide an
important clue in discriminating between proposed models.

By applying a relatively large current density for some
time, called conditioning, the magnitude of the MC can be
increased. Niedermeier et al. showed that, for PPV-based
devices, the maximum MC increased from 1 to 15% on
applying 1.25! 103Am"2 for 1 h [49]. Smaller current
densities also resulted in significant, but smaller, changes.
Optical depletion of traps by illuminating the sample, or
waiting several days, partly reversed the increase [74]. The
increase is believed to result from the formation of traps [74].
This result is linked to the general observation that OMAR is
larger in devices made with materials that show a large
disorder.

In some cases, deviations from the ‘‘standard’’ OMAR
curves were reported at high magnetic fields [50, 52, 79–82].
Instead of a saturation of the MC at large fields, these high-
field effects (HFEs) either show a continuous increase or
decrease. Figure 5 shows an example of the MC in the

photocurrent as a function of magnetic field for two different
voltages. At large positive bias an increasing slope is present
and at large reverse bias a negative slope. Wang et al. found
HFEs in the current to be absent in the electroluminescence
and attributed the effect to a difference in g-factors of the
electron and hole [50]. We believe the differences in g-
factors needed to explain these effects are unrealistically
large. Alternatively, we showed that these HFEs might be
better explained by interactions of triplet excitons with
charges [83].

Experiments have been performed on single-carrier
devices and almost-single-carrier devices [50, 58]. For these,
a (negative)MC is found which is small compared to theMC
in double-carrier devices using the samematerial. For single-
carrier devices, theMC is also largest for theminority carrier
[50, 58]. In Section 5,wewill compare these and other results
to the models presented next, in Section 4.

4 Models for organic magnetoresistance In this
section, we introduce the main models that have been
suggested in order to explain OMAR. In the next section,
these will be compared to available results. Commonmodels
forMR, like Lorentz force deflection, hoppingMR or effects
like weak localization cannot explain the effect [45, 84].
Alternative models are therefore needed. In all the models
that have been proposed for OMAR, the correlation of the
spins of interacting carriers and its dependence on the
magnetic field play an essential role.

Many different models have been suggested for OMAR
to explain the observed magnetic field effects in the current,
electroluminescence, photocurrent, and fluorescence. Some
of them show similarities. In this section, we will summarize
the main groups of models to illustrate the different
mechanisms that are believed to play a role. The models
can be classified based on the pairs of particles that they
consider for spin-dependent interactions. As illustrated in
Fig. 6, these different particle pairs can be e–e pairs or h–h
pairs as considered in the bipolaron model, e–h pairs as
considered in the e–h pair models, and excitons and free or
trapped charges as considered in the triplet–charge inter-
action model.

It is important to note that these spin-dependent
interactions depend on the relative orientation of the spins
and not on a net spin polarization. It is thus a dynamic process
of spins that are in an out-of-thermal-equilibrium situation.
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Figure 5 (online colour at: www.pss-b.com) Measurement of the
HFE in the photocurrent of an Alq3 device. The data are fitted using
the sumof twonon-Lorentzianswithdifferentwidths andmagnitude
(black lines).TheHFEand low-fieldeffect (LFE)contributions from
the fits are also plotted separately (gray lines). (a) Large reverse bias
results in B0,LEF# 3mT and B0,HEF# 60mT. (b) Forward bias
results in B0,LEF# 3mT and B0,HEF# 117mT [83].

Figure 6 (online colour at: www.pss-b.com) Illustration of the
particle interactions that are considered in the different OMAR
models. Figure adapted from Ref. [85].
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(a) Bipolaron model 
One of the main models explaining the mechanism behind observed OMAR effect is 

the bipolaron model99,115,116. Due to energetic and positional disorder, charge transport 

occurs only via a limited number of percolation paths. On such a path, one carrier might 

be blocking the passage of another carrier. Depending on the spins of the two identical 

particles, a bipolaron can be formed as an intermediate state, which allows the carrier 

to pass afterwards. This is possible only when the spins of the two carriers are in a 

singlet configuration, as shown in figure 5.5(a).  If the carriers are in triplet 

configuration, that leads to spin blocking as shown in figure 5.5(b). Even in absence of 

an external magnetic field, the carriers experience the hyperfine field.  

 
Figure 5.5 (a, b) Illustration of spin-blocking in bipolaron. Two particles with parallel spins cannot 

form an intermediate bipolaron. (c, d) Illustration of spin precession of two neighbouring spins in (c) 

only the local hyperfine fields B
hf and (d) in the total field B

tot
, the sum of the local hyperfine field and 

the external field B. (e, f) Corresponding energy diagrams. (e) Without an external field, the hyperfine 

field mixes the singlet S and all three triples, T+, T0, and T-. (f) An external field Zeeman splits the 

triplets. Mixing occurs only between S and T0. Figure taken from ref. 99. 

As showed in figure 5.3, the total hyperfine field one carrier experiences, is the sum of 

many random hyperfine fields. As a result, individual carriers experience individual total 

hyperfine field. The precession of spins in presence of a magnetic field changes the 

spin configuration of a pair of carriers because each of these carriers experience a 

different hyperfine field.  

If we consider two spins initially in a triplet configuration as shown in figure 5.5(c), due 

to different precession of the spins, a singlet will mix in, creating a chance to form a 

The energy difference between the spin-up and spin-down
states is negligible compared to the thermal energy.

4.1 Bipolaron model First, we consider the bipo-
laron model [86, 87]. Due to energetic and positional
disorder, charge transport occurs via a limited number of
percolation paths. On such paths, one carrier may be
blocking the passage of another carrier. Depending on
the spins of the two (identical) particles, a bipolaron can be
formed as an intermediate state, subsequently allowing the
carrier to pass. This is only possible if the spins of the two
carriers are in a singlet configuration, as illustrated in
Fig. 7(a). If they are in a triplet configuration, we speak of
spin blocking, see Fig. 7(b). This can be lifted in the
following way.

Even without an external magnetic field, the carriers still
experiencemagnetic fields from the nearby hydrogen nuclei,
the hyperfine fields. The total hyperfine field one carrier
experiences is the sum of many random hyperfine fields
(Fig. 2). As a result, two carriers will each experience a
different total hyperfine field. In a magnetic field, spins will
perform a precession. This precession changes the spin
configuration of a pair because each carrier experiences a
different hyperfine field. Let us consider two spins initially in
a triplet configuration, see Fig. 7(c). Due to different
precession of the spins, a singlet character will mix in,
creating a finite chance to form a bipolaron, thus lifting the
blocking.

On applying a large external magnetic field, the spins
will precess around the sum of this field and the local
hyperfine field, see Fig. 7(d). Because the hyperfine field is
almost negligible, the spins experience approximately the
same field. As a result, two parallel spins will remain parallel
and no mixing occurs. This can also be understood from
considering the diagram of the energy levels of the total spin
state of the two carriers, see Figs. 7(e,f). This consists of one

singlet (S) and three triplet (T) states. At zero external field
[Fig. 7(e)], S and all three triplets are degenerate in energy
and are all mixed by the random hyperfine fields, allowing a
large current to flow. However, on applying a large magnetic
field the triplets split in energy [Fig. 7(f)]. As a consequence,
no mixing is possible between S and Tþ and T", due to the
Zeeman energy being larger than the hyperfine energy,
resulting in a reduced current, so a negative MC.

According to the above reasoning, a decrease in
bipolaron formation by applying a magnetic field results in
a decrease in current and thus a negativeMC. A positive MC
is also possible as we will discuss below. Bobbert et al.
investigated the bipolaron model using Monte Carlo
simulations [86]. They looked at the current of charges on
a grid of many sites with and without a magnetic field,
explicitly including the possibility of bipolaron formation.
With realistic parameters, indeed a significantMC of several
tens of percents was found. The MC is generally negative,
but a positive sign can be obtained when also including long
range Coulomb repulsion. The long range Coulomb
repulsion is believed to enhance bipolaron formation [86].
Whenmore bipolarons are formed, there are less free carriers
to carry a current. By applying a magnetic field, the number
of bipolarons is decreased which gives a positive MC.

When a charge is blocked, it also has the possibility to
take an alternative route, around the blocking site. How
strongly it is forced to go through the blocking site is
described by the branching ratio b, which is defined as the
ratio of the rate for hopping to the blocking site and the rate
for hopping to the environment. In both Monte Carlo
simulations [86] and analytical calculations [87], it was
found that a small b gives a narrow MC(B) curve,
corresponding to a Lorentzian [Eq. (2)]. For large b, the
curve broadens and converges to a non-Lorentzian [Eq. (3)].
Both line shapes experimentally found can thus be
reproduced by the bipolaron model. One important
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Figure 7 (online colour at: www.pss-b.com) (a,b) Illustration of
spin-blocking in bipolaron formation. Two particles with parallel
spins cannot form an intermediate bipolaron. (c,d) Illustration of
spin precession of two neighboring spins in (c) only the local
hyperfine fields Bhf or (d) in the total field Btot that is the sum of
the localhyperfinefieldand theexternalfieldB. (e,f)Corresponding
energy diagrams. (e) Without an external field, the hyperfine field
mixes the singlet S and all three triples, Tþ, T0, and T". (f) An
external field Zeeman splits the triplets. Mixing occurs only
between S and T0.
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bipolaron, thus lifting the blocking. When a large external magnetic field is applied, the 

spins precess around the sum of this field and the local hyperfine field as shown in 

figure 5.5(d). As the hyperfine field is almost negligible, the spins eventually experience 

approximately the same amount of magnetic field resulting in two parallel spins 

remaining parallel with no intermixing. This can also be understood from the energy 

level diagrams of the total spin state of two carriers, as shown in figure 5.5(e,f). This 

involves one singlet (S) and three triplet (T) states. At zero external field [figure 5.5(e)], 

S and all three triplets are degenerate in energy and are mixed by the random hyperfine 

fields, allowing a large current to flow. However, when a large magnetic field is applied 

the triplets split in energy [figure 5.5(f)]. As a result, no mixing is possible between the 

singlet state S and the triplet states T+ and T-, as the Zeeman energy is larger than 

the hyperfine energy, resulting in a reduced current flow, and hence a positive 

magnetoresistance or a negative magnetoconductance. Thus a decrease in bipolaron 

formation by applying an external magnetic field can result in a decrease in device 

current. Though MC is usually negative, a positive sign can also be obtained when 

long range Coulomb repulsion is included. The long range Coulomb repulsion 

enhances the bipolaron formation. When more bipolarons are formed, there are less 

free carriers responsible for the current flow. The number of bipolarons can be reduced 

by applying an external magnetic field which gives rise to a positive 

magnetoconductance or a negative magnetoresistance.  

 
(b) Electron-hole (e-h) pair model 
The figure 5.6 shows different paths via which pairs of free polarons can recombine to 

the ground state99. Free polarons are first bound as singlet and triplet e–h pairs, with 

a ratio 1:3, by coulombic force. These can convert into excitons (with rates kS and kT) 

or dissociate to free polarons (with rates qS and qT). Singlet and triplet e–h pairs can 

also be mixed by the hyperfine fields, resulting in an intersystem crossing with a rate 

mISC. The singlet and triplet excitons have different energies due to the exchange 

interaction. Recombination of free polarons reduces the current as this reduces the 

number of free carriers available for current flow. In the e–h pair model, the 

recombination and/or dissociation of e–h pairs are assumed to be different for singlet 

and triplets. Therefore, a change in the mixing of these pairs by an external magnetic 

field results in a change in the current. The way the magnetic field reduces the mixing 

by the hyperfine fields is similar to the reduction of mixing in the bipolaron model. The 
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total spin state of e–h pair is mixed in this model, instead of mixing the total spin state 

of two equally charged polarons (e–e or h–h). Prigodin et al. derived a magnetic field 

dependent recombination rate, linking it to the recombination mobility by balancing the 

recombination and dissociation rates117,118. The authors assumed that singlets have a 

larger recombination rate than triplets (kS > kT) and the triplets mostly contribute to 

dissociation. Hence with less mixing in presence of an applied magnetic field, there is 

less recombination. This reduction gives rise to more current and thus a positive 

magnetoconductance or a negative magnetoresistance. The authors also tried to 

explain negative magnetoconductance by introducing a regime where the current 

responds oppositely to a change in recombination.  

 

 

Figure 5. 6 Diagram of possible routes for recombination of free electrons and holes to the ground 
state, by first forming an e–h pair which turns into an exciton. The different transitions are explained 
in the text. Figure adapted from ref.99.  

(c) Exciton–charge interaction model  
Desai et al. considered the excitons33,119 in the OMAR model instead of considering 

the e–h pairs. An exciton can transfer its energy to a charge carrier upon recombining 

to the ground state which is known as the exciton–charge interaction120. Desai et al. 

also considered a reduction in the mobility of the free carriers by scattering on the 

exciton in an intermediate state of the exciton–charge interaction. It was suggested 

that a magnetic field plays a role on the intersystem crossing of singlet and triplet 

excitons, reducing the number of triplets in an applied magnetic field. This leads to 

reduced scattering of free charges on the triplets, thus a positive magnetoconductance 

or negative magnetoresistance. A negative magnetoconductance could also result 

from dissociation of the excitons into free carriers by the charge interaction. However, 

requirement is that the spin precession occurs faster than the
hopping of carriers, which we call ‘‘slow hopping.’’ It was
shown that this requirement is fulfilled in typical organic
materials [86].

Whether it is energetically favorable to form a bipolaron
depends on the energy gain from sharing the polaronic
distortion and the energy loss from the Coulomb repulsion,
the difference of which isU. In theMonte Carlo simulations,
it was found that maximum MC is obtained when U is
comparable to the disorder strength s [86], which is
reasonable according to experiments [88]. If the Coulomb
repulsion is large compared to the gain from sharing the
polaronic distortion, sites in the tail of the density of states or
deeply trapped charges might play an important role. This
could explain the larger MC observed in minority single-
carrier devices [50], and the increase when inducing traps by
conditioning [49]. It could also explain why OMAR is
generally larger inmaterialswith a larger disorder, as in these
materials there are relatively more sites with a site energy
favorable for bipolaron formation.

Finally, we note that similar models were used to explain
magnetic field effects found in entirely different systems,
such as double quantum dots in 13C carbon nanotubes [89],
colloidal CdSe quantum dot films [90], doped manganites
[91], and amorphous semiconductors [92].

4.2 e–h pair model For the other models, which are
based on e–h pairs and excitons, it is useful to first discuss the
diagram in Fig. 8. The diagram shows the different paths via
which pairs of free polarons can recombine to the ground
state. Free polarons (top) are first Coulombically bound as
singlet and triplet e–h pairs with a ratio 1:3. These can turn
into excitons (with rates kS and kT) or dissociate back to free
polarons (with rates qS and qT). Singlet and triplet e–h pairs
can bemixed by the hyperfine fields, resulting in intersystem
crossing with a rate mISC. The singlet and triplet excitons
have a different energy due to the exchange interaction.

Several variations of the e–h model have been suggested
[51, 53, 55–57, 60, 64, 93–96]. Recombination of free
polarons leads to a reduction of the current because this
reduces the number of free carriers. In the e–h model the
recombination (k) and/or dissociation (q) of e–h pairs are
assumed different for singlet and triplets. Therefore, a
change in themixing of these pairs by amagnetic field results
in a change in the current. Theway themagnetic field reduces
the mixing by the hyperfine fields is equivalent to the
reduction of mixing in the bipolaron model. Instead of
mixing the total spin state of two equally charged polarons
(e–e or h–h, see Fig. 7), the total spin state of an e–h pair is
mixed.

By balancing the recombination and dissociation rates,
Prigodin et al. derived a magnetic field dependent recombi-
nation rate, which was then linked to the recombination
mobility [51, 93]. The authors assumed that singlets have a
larger recombination rate than triplets (kS> kT). The triplets
then mostly contribute to dissociation. So, with less mixing
due to B, there is less recombination. This reduction leads to
more current and thus a positive MC. In addition, an attempt
was made by the authors to explain a negative MC by
introducing a regime where the current responds oppositely
to a change in recombination.

Recently, Bagnich et al. [94] extended an early model
explainingmagnetic field effects on photocurrents, proposed
in 1992 by Frankevich et al. [60]. Bagnich et al. [94]
explained the effects on injected charges by analyzing the
magnetic-field dependence of the lifetimes of e–h pairs and
their steady-state concentration. Similar arguments as made
by Prigodin et al. were used; however, the formation of
secondary charges from e–h dissociation was studied instead
of the recombination rate. Bagnich et al. introduced one
important requirement: the lifetime of the e–h pair should be
larger than the time of spin evolution to allow for mixing
[94]. This lifetime is expected to be reduced in a large electric
field. The typical shape of MC(V), like in Fig. 4, was then
explained as follows (except for the sign change). At low V,
the effect of the electric field on the lifetime is negligible and
only the increase of the number of e–h pairswith increasingV
is relevant, leading to an increase inMC.At a certain voltage,
the lifetime of e–h pairs becomes comparable to the time of
spin evolution, resulting in a decrease inMC. The ratio of the
singlet and triplet lifetimes, and the ratio of the singlet and
triplet dissociation rates are both important model
parameters. Depending on their values both positive and
negative MCs are predicted. However, a voltage-dependent
sign changewould require a voltage dependence of one of the
two ratios, which was not yet included.

For the e–h models, there are several requirements to
make an effect possible. First, there needs to be a significant
dissociation of e–h pairs to see an effect on the free carriers.
In e–h pairs, Coulomb attraction rapidly increases for
decreasing separation. This suggests that only distant e–h
pairs can play a role, because for more strongly bound e–h
pairs recombination into an exciton seems inevitable.
Second, an essential assumption is that either the
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Figure 8 (online colour at: www.pss-b.com) Diagram of possible
routes for recombination of free electrons and holes to the ground
state, by first forming an e–h pair which turns into an exciton. The
different transitions are explained in the text. Figure adapted from
Ref. [85].
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it should be noted that the suggested magnetic-field dependence of the intersystem 

crossing between singlet and triplet excitons is highly improbable as the energy 

splitting is very large compared to the Zeeman splitting by a typical hyperfine field.  

Therefore, mixing of singlet and triplet excitons can be considered as not to be 

applicable. The exciton–charge interactions could play a role via another route. The 

reaction is spin dependent as the total spin is conserved in the reaction. Hence, 

application of a magnetic field reduces the average triplet–charge interaction rate by 

Zeeman-splitting the energies of the particles. The exciton–charge interaction can lead 

to de-trapping of the charges, thus increasing the current, resulting in a negative 

magnetoconductance. However, in the reaction the triplet exciton is lost, and hence it 

cannot contribute to the current via dissociation anymore, resulting in a positive 

magnetoconductance.  

Other than exciton–charge interactions, exciton–exciton interactions can also be 

responsible for OMAR. Two triplets can interact to form a ground state singlet and an 

excited singlet, which quickly decays on emitting a photon, giving rise to delayed 

fluorescence. This triplet-triplet annihilation is a spin dependent phenomena and can 

be influenced by external magnetic field121.  

 

5.2. OMAR measurements on TIPS-pentacene OFETs and HED-TIEs 
5.2.1 Experimental details  
The OFET substrates were purchased from Fraunhofer IPMS (Dresden, Germany) 

with channel lengths varying between 2.5 µm and 20 µm and a channel width of 

10 mm. The gate oxide SiO2 is 270 ± 10 nm thick and the source and drain electrodes 

are made of 30 nm Au with a 10 nm ITO adhesion layer. The gate electrode was kept 

at ground voltage for the magnetoresistance measurements and the devices were 

used as two terminal devices for making the results comparable with the HED-TIEs. 

For the HED-TIEs, the samples were prepared using the “spacer-approach” 

technology for fabricating HED-TIEs as discussed in chapter 2. A 130 nm of thermally 

grown SiO2 layer was used as the isolation layer and 30 nm Au was deposited as the 

electrode layer with a 10 nm Cr as the adhesion layer. The TIPS-pentacene was drop-

coated from solution following the procedure described in section 2.2.1.1. Because the 

TIPS-pentacene solution coats the gold surface (HED-TIEs) in much better way 

compared to the SiO2 surface (OFETs) different amounts of solution, 5 µl and 3 µl, 

were used for OFET (chip area of 0.8 cm x 0.8 cm) and HED-TIEs (chip are of 1 cm x 
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1 cm), respectively, in order to ensure similar coverage. The electrical measurements 

were done as described in chapter 2, section 2.3 (a). The electrical characterisation 

including the photo-switching, current-voltage characteristics, and magnetoresistance 

measurements was performed immediately after the sample preparation.  The total 

measurement time was about 1 h for each sample.  

 

 

Figure 5.7 Schematic diagram of the experimental setup: (a) Commercial bottom contact OFET 

substrates (b) Planar device structure with trench isolated electrodes (HED-TIE). Figure taken from 

ref.84. 

The schematic diagram of the experimental set up is shown in figure 5.7. The entire 

sample surface was illuminated with a white light emitting diode (LED), with an 

emission ranging from 400 nm to 700 nm for the measurements of the photocurrent 

and of the magnetoresistance. The measurements were performed at room 

temperature (~25 °C) and the ambient humidity was maintained at ~(20 ± 5) %. The 

magnetic field was applied perpendicular to the electrical transport channel and to the 

substrate plane, using an electromagnet, though previous reports showed OMAR is 

independent of the sign and direction of the applied magnetic field102. It should be 

noted here that the experiments with OFETs have been carried out in a joint work and 

would partially be discussed in another dissertation122. The purpose of including the 

results with OFETs in this dissertation was just to demonstrate the improvement in the 

device performance in HED-TIEs compared to the standard planar hybrid devices, both 

fabricated using conventional photolithography. 
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5.3 Results and discussions 
Figure 5.8(a) and figure 5.8(b) show the percentage of photocurrent with respect to the 

dark current, when the white light LED was switched on and off for OFET and HED-

TIEs respectively. The percentage of the change in current was found to be more 

representative when comparing two device architectures with significantly different 

volume of the active organic channel. The photocurrent of the HED-TIEs is a factor of 

two higher and the photo-switching occurs to be faster in the HED-TIE devices, due to 

the smaller electrode gap.  

 

Figure 5.8 Light switching behaviour of TIPS-pentacene based (a) organic field effect transistor 

(OFET) and (b) hybrid electronic device with trench isolated electrodes (HED-TIE). Light induced 

magnetoresistance in TIPS-pentacene obtained from both types of planar devices: (c) OFET and (d) 

HED-TIE device. Figure taken from ref.84. 

Figure 5.8(c) and figure 5.8(d) show the magnetoconductance response of the same 

devices. Here, the device current over time was measured by switching on and off a 

constant applied magnetic field while the illumination was kept on throughout the 

measurements. Both OFETs and the HED-TIEs were found to exhibit positive 

magnetoconductance (negative magnetoresistance) as previously reported for 

evaporated TIPS-pentacene in ref.106. The magnitude of OMAR is independent of the 

sign of the applied magnetic field which is expected for OMAR. For both light and 
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magnetic field switching, the HED-TIE devices were found to respond faster whereas 

the OFETs exhibit a slower carrier relaxation. This can be attributed to higher electric 

fields and shorter charge carrier transit times in the shorter channels of the HED-TIEs 

(~100 nm) compared to that of OFETs (20 µm). Also the magnitude of switching in 

HED-TIE for magnetic field was found to be twice as much as OFET, similar to the 

observed photocurrent.  

It is worth mentioning that the TIPS-pentacene OFETs fabricated by thermal 

evaporation in ref.106 showed a fast switching response, similar to the HED-TIEs, most 

probably due to the significantly less volume of the OFET channel (78 nm film 

thickness in ref.106, compared to ca. 500 nm film thickness in the drop coated OFETs 

at the same channel length). The mobility values determined for our solution processed 

OFETs are in the range of 10-2 - 1 cm2 V-1s-1, i.e. higher compared to the mobilities 

reported for the thermally evaporated TIPS-pentacene (6·10-3 - 1 cm2 V-1s-1)106. 

No magnetoresistance was observed in the absence of illumination and hence of a 

photocurrent. It can be concluded that the observed effect in the solution-deposited 

TIPS-pentacene OFETs and HED-TIEs is supposed to be based on the presence of 

spin carrying polarons related to electrons and holes created by photoexcitation. As 

discussed in section 5.1.2 (b), these weakly interacting polarons are labelled as 

“electron-hole (e-h) pairs” and are considered to contribute to OMAR because of their 

flexible spin configuration (singlet or triplet).  The same mechanism was proposed to 

be responsible for the OMAR observed in thermally evaporated TIPS-pentacene 

OFETs in ref.106, which indicates that the processing methods of the TIPS-pentacene 

does not influence the intrinsic mechanism of the OMAR in this organic semiconducting 

material. In the e–h model, the recombination into electrically neutral excitons and the 

dissociation of the weakly bound e–h pairs into charge carriers available for the 

electrical transport is influenced by an applied magnetic field, in the favour of the latter 

effect (see ref.99,106 and references therein).  An applied magnetic field will thus trigger 

an increase in the conductance of the device99,106. It should be noted that although the 

applied constant magnetic field was different for the OFETs and HED-TIEs, this should 

not have an influence on the magnitude of the OMAR effect. It was shown in ref.105 for 

pentacene that the magnitude of OMAR almost reaches a saturation at ~80 mT and a 

similar saturation field was also reported for other materials such as Alq3
101. 

The observed magnetoresistive effect was found to diminish approximately after two 

days of sample preparation in case of the HED-TIEs kept under ambient conditions, 
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while the photocurrent decreased from 120 % to only 65 %. The photo-switching time, 

however, increased compared to the freshly prepared sample. The magnetoresistive 

effect and the photocurrent in the OFETs were also found to decrease in magnitude, 

but the magnetoresistance did not disappear completely in the same time interval 

considered for the HED-TIEs. This could be due to the TIPS-pentacene layer being 

thicker for the OFETs, which confers longer time stability in ambient. The degradation 

of the devices in ambient atmosphere can be attributed to the penetration of oxygen 

and/or water molecules in the TIPS-pentacene film, additionally accelerated by white 

light illumination. Vollmer et al. showed77, by investigating the occupied electronic 

states using ultraviolet photoemission spectroscopy, that the diffusion of molecular 

oxygen and water from the ambient into pentacene layers is reversible when the air 

exposure takes place in the dark or under visible light. The exposure to ambient under 

UV illumination leads to a reaction, most probably with singlet oxygen and/ or ozone77. 

As the magnetoresistance measurements are performed in presence of white light with 

a spectrum ranging from 400 nm to 700 nm, it is believed that different parts of the 

wavelength spectra can have different contributions to the device degradation. It was 

also shown by Jurchescu et al.72 that pentacene single crystals behave differently 

when the electrical conductivity is measured in ambient or dry air, with and without 

illumination. As discussed in chapter 4, a decrease in photoluminescence was 

observed caused by the diffusion of oxygen/water in TIPS-pentacene films in the HED-

TIEs which was reversible40 and the recovery of the photoluminescence was found to 

be much faster under nitrogen purging and for a single wavelength illumination.  

Figure 5.9 illustrates the role of water molecules in the disappearance of observed 

magnetoresistance.	 To verify the role of water molecules diffusion into the TIPS-

pentacene film in the deterioration of the magnetoresistance, an OFET was prepared 

by drop-coating a substrate with the same TIPS-pentacene solution as used for the 

preparation of the devices discussed before but now diluted (1:1) in deionized water.	

As shown in figure 5.9 (a), the magnitude of the photocurrent of the freshly prepared 

device was found to be only 6 % (compared to 60 % for the device prepared with non-

diluted solution, shown in 5.8 (a) whereas the magnetoresistance disappeared 

completely in this case. The output characteristics of such a device showed a drastic 

change in the line shape compared to the TIPS-pentacene transistor prepared from 

water-free solution. 
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Figure 5.9 (a) Light switching of OFET prepared by drop-coating of TIPS-pentacene diluted in water. 

The inset shows absence of the magnetoresistance in such an OFET. (b) Degraded light switching 

behaviour of a TIPS-pentacene HED-TIE after two days of exposure to the ambient atmosphere. The 

inset shows the response to applied magnetic field. Figure taken from ref.84. 

Figure 5.10(a) shows the output characteristics of TIPS-pentacene OFET. P-type 

conduction behaviour is observed, as expected for TIPS-pentacene. On the other 

hand, when the OFET is prepared with TIPS-pentacene solution diluted in water, the 

OFET characteristics (shown in figure 5.10(b)) can be observed to degrade drastically. 

The current amplitude increases approximately four times in the OFETs prepared with 

TIPS-pentacene solution diluted in water.  

 

 
Figure 5.10 (a) Output characteristics of TIPS-pentacene OFET. (b) Output characteristics of an 

OFET prepared from same TIPS-pentacene solution, diluted in water (1:1). Figure taken from ref.84. 

The current-voltage characteristics of a HED-TIE is shown in figure 5. 11. The same 

device was measured freshly after sample preparation and after approximately two 

days of sample preparation (after OMAR disappeared) and compared. The current 

amplitude in HED-TIE was found to increase when it is exposed to ambient in similar 

scale as the OFETs with and without water in solution.     
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Figure 5.11 Output characteristics of the TIPS-pentacene based HED-TIE device, measured for 

freshly prepared sample and after two days of sample preparation. Figure taken from ref.84. 

This experiment shows that TIPS-pentacene exhibits a degradation in electrical 

properties upon water incorporation in the films. We assume that the water molecules 

in the film shift the energy level of the singlet and triplet states of the e-h pairs and 

thereby change the probability of intermixing between these two states. In the changed 

energy landscape of the excited electronic states, the effect of the magnetic field on 

the singlet/triplet intermixing could become negligible, resulting in the drastic reduction 

in magnetoresistance.  

When two HED-TIEs with different channel dimensions were compared, the device 

with larger channel volume was found to exhibit better OMAR magnitude, faster 

switching, as well as slower degradation of the OMAR. Figure 5.12 shows the OMAR 

response of two different devices with channel width of 40 µm and channel lengths of 

200 nm and 300 nm respectively. These two devices were fabricated using the “trench-

refill approach” as described in chapter 2. The magnitude of the observed OMAR was 

much higher in this case; ~6% for the device with 200 nm channel length and ~12% 

for the device with 300 nm channel length. The reason behind obtaining higher OMAR 

in case of 300 nm channel length device might be related to the amount of material 

inside the trench. If the trench opening is larger, more amount of material will go inside 

the trench leading to more number of photo-generated carriers under illumination and 

hence a higher OMAR. As the overall volume of the organic channel material was 

much less in this case compared to the devices as shown in figure 5.8 (channel width 

of 40 µm instead of 500 µm ), the OMAR in these devices were found to disappear 

within a day after sample preparation. This also supports the hypothesis for the faster 

degradation of OMAR in HED-TIEs compared to the OFETs. It should be noted that 
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only for the devices from this particular sample, positive magnetoresistance or negative 

magnetoconductance was observed. There are couple of possibilities which can 

explain this phenomenon: i) due to minor variation in the sample preparation, the 

crystalline structure of the TIPS-pentacene film might have been different which might 

have led to the sign change in OMAR, as reported earlier for Alq3 films upon 

annealing123,  ii) as discussed earlier, in e-h pair model behind OMAR mechanism, the 

conduction might be in a regime where the current responds oppositely to a change in 

recombination99 or iii) it can be a superposition of two different OMAR models, one 

dominating the other in particular case99.  

 

  
Figure 5.12 Comparison of OMAR magnitude in TIPS-pentacene based HED-TIE devices with two 

different channel lengths. The sample surface was illuminated with white light LED.  Both devices 

have channel width of 40 µm and channel lengths of  (a) 200 nm and (b) 300 nm. 

The other model that could explain the sign change is the bipolaron model. This model 

is based on unipolar transport and electron and hole mobilities can be separately 

influenced by the applied magnetic field99. The current is mostly unipolar and the 

majority carriers cause the OMAR. Above the transition voltage minority charge 

electron injection sets in and the minority charge carriers dominate the 

magnetoconductance. It is possible for the minority charges to dominate the 

magnetoconductance due to the compensation of space charge when the device 

becomes bipolar since the sum of the relative mobility changes in electrons and holes 

determines the sign of magnetoconductance. However, it needs further experiments 

and/or modelling to identify the actual reason behind the observed sign change in 

OMAR.  
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5.4 Summary and outlook 
 

To summarize, light induced negative magnetoresistance was demonstrated in freshly 

prepared solution processed TIPS-pentacene planar devices of two different 

architectures, measured under ambient atmosphere. Organic magnetoresistance was 

demonstrated for the first time in solution processed devices and under ambient 

atmosphere. The HED-TIEs with smaller electrode gap yielded in twice as much 

photocurrent and magnetoresistance compared to commercial OFETs, and also 

showed faster switching response time. Although TIPS-pentacene is supposed to be 

air stable, the influence of ambient atmosphere was found to cause diminishing of the 

magnetoresistance and the photocurrent of the fabricated devices within a period of 

two days after sample preparation. The overall current amplitude of the device output 

current was found to increase by approximately a factor of 4. Previously it was 

observed that there is a decrease in photoluminescence caused by the diffusion of 

oxygen/water in TIPS-pentacene films in the HED-TIEs.  This was found to be 

reversible and the photoluminescence could be recovered much faster under nitrogen 

purging and for single wavelength illumination40. We assume the degradation in 

magnetoresistance and photocurrent of the TIPS-pentacene based devices is due to 

incorporation of water molecules in the TIPS-pentacene film when it is exposed to 

ambient. To support this hypothesis, an OFET with the very same TIPS-pentacene 

solution but diluted in deionized water was prepared and characterized. The absence 

of magnetoresistance in this OFET was shown along with a reduction, but not complete 

disappearance of the photocurrent of the device. It is suggested that usage of a 

suitable capping layer for protecting the organic layer could increase the lifetime of 

such devices, when used as magnetoresistive sensors working under ambient 

atmosphere.  

As an outlook to further research work, different organic materials can be tried for 

obtaining OMAR from such a fabricated device. Ferromagnetic electrodes along with 

suitable channel materials can also be used instead of gold electrodes for obtaining 

magnetoresistance from spin injection from the electrodes to the channel material, not 

as intrinsic material property which is observed in OMAR. Devices as shown in ref.95 

could be fabricated using the HED-TIE technology by conventional UV-lithography, 

instead of the electron beam lithography used in this report. GMR devices could also 

be fabricated by using the shadowing technique as used in ref.45 for deposition of two 
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different metals with distinct switching fields on two different electrodes. It is also 

possible to combine the light-sensing and magnetic-sensing properties of HED-TIEs, 

by using different illumination of different wavelength regime and studying the 

corresponding light-induced magnetoresistance when an external magnetic field is 

applied. For this purpose, it is extremely important to control the stability issue of the 

channel material under ambient atmosphere to make the results comparable with each 

other and thus more conclusive. It is also important to study the material degradation 

and the corresponding electrical conduction behaviour of the channel material in 

ambient and/or in dry air under different wavelength illumination as it was previously 

discussed that different wavelengths affect the material properties in different ways. 
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Chapter 6 
	
Summary and outlook  
 
In this dissertation, a new fabrication technology was proposed for fabrication of planar 

hybrid electronic devices with trench isolated electrodes (HED-TIE). The technology 

used conventional photolithography (365 nm) and was demonstrated to be capable of 

fabricating electrode gap dimensions in the range of ~100 nm.  

For fabrication of patterns in the range of ~100 nm, usually electron beam lithography 

is used which is an expensive and time consuming technique. This makes it unsuitable 

for wafer-scale production for industrial applications. The other alternatives which are 

used in general are nano-stencil lithography or nanoimprint lithography. Both of these 

techniques can indeed be applicable on wafer level but the fabrication of stencil or the 

stamp itself uses expensive techniques like electron beam lithography or ion beam 

lithography through a very complex process flow. Thus the proposed HED-TIE 

technology can have lot of potential in cost-effective and wafer level fabrication of 

planar hybrid devices using conventional photolithography and other standard 

techniques used for silicon microtechnology. It can be scaled up for high volume 

manufacturing on 200 mm or 300 mm wafers. The technology is a one-mask process 

and offers lot of flexibilities in tuning the device architecture, device dimensions, the 

electrode or channel materials used, depending on the application of the HED-TIEs. 

The HED-TIE technology is compatible with various deposition techniques of the active 

transport channel, such as solution processing techniques (inkjet printing, spin-

coating, drop-coating, or the ‘doctor blade’ method), stamping or vacuum deposition 

by thermal evaporation. The channel material option is not restricted to organic 

channels. Other materials such as polymers, oxides, or even 2D materials (graphene, 

MoS2, WSe2 etc.) can be implemented in the highly flexible fabrication process flow. 

The HED-TIE technology offers full accessibility of the active transport channel to 

external stimuli such as light or gases. This type of device structures can find a wide 

range of applications in spintronic devices, waveguides, photodetectors, or gas 

sensors, depending on the channel material and/or combination with the electrode 

material used for fabricating the devices. 

The fabrication technology of the HED-TIEs was demonstrated using two different 

fabrication approaches: (a) trench refill approach and (b) spacer approach. Firstly, sub-
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micron trenches with dimensions in the range of 850 nm to 1050 nm were patterned 

on silicon substrates. In the trench refill approach, a thick layer of LPCVD SiOx layer 

was deposited to partially refill the trenches and thus achieving the desired electrode 

gap dimensions in the range of ~100 nm to 300 nm. This LPCVD SiOx layer was also 

used as the isolation layer between the electrodes. Deposition of such a thick (~800 

nm) LPCVD SiOx on structures with different aspect ratios led to process parameter 

variations. The thickness of the LPCVD layer on the electrode areas was found to be 

higher than the trench area resulting in cone shaped trench openings. Therefore, it 

was necessary to modify the technology to have a better control on the process 

parameter variations and the trench geometry. Spacer approach was then proposed 

for overcoming the issues with process parameter variations and was successfully 

demonstrated for obtaining better control over the fabricated trench geometry. In 

spacer approach, an additional APCVD SiOx layer was introduced in the process flow 

to alter the hard mask geometry even before the deep reactive etching of Si was carried 

out for fabricating the trenches. Introduction of the spacer layer in the fabrication 

process flow, reduced the thickness of the isolation layer from ~800 nm to ~130 nm. 

Both thermally grown oxide and APCVD oxides were tried out as the isolation layer as 

both were found to be suitable for producing the desired trench geometry. Finally, 

thermally grown oxide was chosen over APCVD oxide because of its better isolation 

properties and better electrical response of the fabricated devices. The electrical 

isolation of the fabricated structures was tested prior to the deposition of the organic 

materials to ensure that the measured device current is obtained indeed from the 

channel material and not from any contribution from leakage currents. Typically, > 97% 

of fabricated devices were found to have proper isolation between the electrodes. 

To demonstrate the compatibility of the HED-TIE technology with both thermally 

evaporated and solution processed organic channel materials, thermally evaporated 

metal free phthalocyanine (H2Pc) HED-TIEs and solution processed 6,13-

bis(triisopropylsilylethynyl) pentacene or commonly known as TIPS-pentacene based 

HED-TIEs were fabricated and characterized. The thermally evaporated H2Pc formed 

a “free-standing” membrane between the electrodes whereas the TIPS-pentacene 

solution went deep inside the trench and thus forming the transport channel between 

the electrodes. The basic electrical properties of fabricated HED-TIEs were discussed 

for devices with both solution-processed and evaporated channel materials. The 

device currents were found to increase with decreasing the electrode gaps of the 
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devices. The log(J) vs log (V) plots exhibited slope >2 indicating a trap dominated 

SCLC behaviour (where J is the current density and V is the applied voltage). The J vs 

1/L3 plot followed the estimated linear behaviour for the thermally evaporated channel 

devices whereas an inconsistency was observed for solution processed devices with 

larger channel lengths.  This difference between the solution processed and thermally 

evaporated channels was attributed to degree of filling of the trenches with the channel 

material. In case of solution processing, the amount of solution going inside the trench 

for devices with different channel length can vary, influencing the active channel area 

and hence the device current density. The device currents were found to increase 

drastically when the effective channel volume of the devices were increased by 

introducing interdigitated electrodes and thus by increasing the channel width from 50 

µm up to 5000 µm.  

TIPS-pentacene being a well-known photosensitive material, TIPS-pentacene based 

HED-TIEs were first demonstrated to have possible application as hybrid 

photodetectors. Photosensing properties of fabricated HED-TIEs were systematically 

studied with HED-TIEs of two different channel lengths and under different 

illuminations of different wavelength regime. To investigate the photosensing 

properties, three laser lines: 632.8 nm (1.96 eV, red), 514.7 nm (2.41 eV, green), and 

325 nm (3.81 eV, ultraviolet) were used for illumination of the active area of the devices 

from the top. The HED-TIEs were found to generate photocurrents under all 

illumination wavelengths but the switching time constant and the switching line-shape 

varied depending on the illumination wavelengths. The HED-TIEs were found to be 

suitable to be used as hybrid photodetectors working in red wavelength regime. The 

TIPS-pentacene was found to be photo-oxidized in air. The effect was more prominent 

under UV-illumination. Photoluminescence studies showed this effect to be reversible 

when purged with nitrogen. 

To tune the photosensing properties of the fabricated devices further, gold 

nanoparticles were added in the TIPS-pentacene matrix and photosensing properties 

were investigated using 632.8 nm (1.96 eV, red) and 514.7 nm (2.41 eV, green) laser 

lines. The photosensing properties were found to be tuned depending on the size of 

the nanoparticles in TIPS-pentacene matrix. However, the nanoparticles in TIPS-

pentacene matrix were not stable after two months and the photo-switching properties 

were found to degrade drastically. The nanoparticle dispersion in ethanol itself 
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degraded within a year. The stability of the synthesised nanoparticles needs to be 

improved to fabricate HED-TIEs with tuneable photosensing properties.  

TIPS-pentacene based HED-TIEs were also demonstrated to be possible to use as 

magnetoresistive sensors. For the first time, light induced organic magnetoresistance 

was obtained in solution processed planar hybrid devices, measured under ambient 

air and at room temperature. Two types of device architectures were used for this 

purpose: (a) commercial OFETs and (b) HED-TIEs fabricated in this work. The device 

channel area was illuminated using a white light LED. The photo-switching properties 

and the magnetoresistance of the devices were thoroughly investigated and the device 

performance of commercial OFETs and HED-TIEs were compared. For both light and 

magnetic field switching, the HED-TIE devices were found to respond faster whereas 

the OFETs exhibited a slower carrier relaxation. This was attributed to higher electric 

fields and shorter charge carrier transit times in the shorter channels of the HED-TIEs 

(~100 nm) compared to that of OFETs (20 µm). Moreover, the magnitude of switching 

in HED-TIE devices for both light and magnetic field was found to be twice as much as 

OFETs. The observed magnetoresistance was attributed to the presence of electron-

hole pairs under illumination as the magnetoresistive effect was found to be scaled 

with the photocurrent. However, the observed magnetoresistance was found to 

disappear after two days of sample preparation in the HED-TIEs. The magnitude of 

photocurrent was also found to reduce by ~50% after two days.  In the OFETs, the 

magnetoresistance did not disappear completely but the magnitude of the magnetic 

field switching was drastically degraded along with degradation in the photocurrent 

magnitude. This degradation in the device performance was attributed to incorporation 

of water moles in the TIPS-pentacene film under ambient atmosphere. This hypothesis 

was further proved by fabricating an OFET with the same TIPS-pentacene solution but 

diluted in water. This showed absence of magnetoresistance and a reduced magnitude 

of photocurrent. Protecting the active area of the devices with a suitable capping layer 

can make these solution- processed devices suitable for being used as magnetic 

sensors working in ambient atmosphere.  

In future, HED-TIE devices can be fabricated using different channel materials like 

polyoxymethylyne (POM), 2D materials or other organic materials and different 

application areas can be explored. Initial trial on direct stamping of 2D materials on the 

channel area of HED-TIEs led to reproducibility issues. The stamped flakes were not 

found to have proper wetting with the gold electrodes and thus resulted in inconsistent 
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electrical response. The experiments for using 2D flakes as the channel material were 

carried out in collaboration with the group of Prof. Eugenio Coronado in Valencia.  

As the HED-TIEs were demonstrated to exhibit OMAR, in the next step, spintronic 

devices involving spin injection from ferromagnetic electrodes can be fabricated. A 

possibility of fabricating GMR devices based on HED-TIEs can also be explored by 

combining the HED-TIE technology and the shadowing technique used in ref.45 for 

deposition of two different metal layers on electrodes of planar devices. Last but not 

the least, the HED-TIE technology can be implemented on wafer-scale by using 

techniques like inkjet-printing or spin-coating for the deposition of organic channel 

materials.  
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Figure 1.1 (a) Representation of the structure for band transport. If the overlap 

between molecules is strong enough, the overlap of bonding and anti-bonding π 

orbitals leads to the formation of energy bands formed by a quasi-continuum of states. 

(b) Representation of the structure for hopping transport. In an amorphous material 

disorder leads to a dispersion of localized states. Transport occurs by hopping and it 

is assisted by phonons. Figure adapted from ref.31. 
Figure 1.2 Schematic diagram of vertical and planar type hybrid electronic device 

structures. 

Figure 2.1 Schematic of the fabrication process flow for fabricating nanostencils and 

how the nanostencil is used for fabricating nanostructured patterns on substrates. 

Figure adapted from ref.2. 

Figure 2.2 Schematic of thermal nanoimprint lithography process. Tg denotes the glass 

transition temperature of the thermoplastic polymer. 

Figure 2.3 Schematic representation of the device architectures of conventional planar 

device (left) and HED-TIE (right). 

Figure 2.4 Schematic representation of the fabrication process flow of the HED-TIEs 

using “trench refill approach”. Figure taken from ref.40. 

Figure 2.5 XSEM image of fabricated HED-TIEs with (a) solution processed TIPS-

pentacene channel and (b) thermally evaporated H2Pc channel. Figure taken from 

ref.40. 

Figure 2.6 XSEM image of fabricated structures with two types of trench refill oxide 

layer:  

(a) thermally grown SiO2 layer and (b) LPCVD SiOx layer. 

Figure 2.7 Molecular structure of metal free phthalocyanine molecule. Figure adapted 

from ref.52 

Figure 2.8 Photograph of an array of HED-TIE structures with gold electrodes. The 

inset shows scanning electron microscopic top-view of a HED-TIE with W = 30 μm and 

channel length L= 210 nm, after the evaporation of a nominal 300 nm phthalocyanine 

film thickness. Figure taken from ref.40. 

Figure 2.9 Molecular structure of TIPS-pentacene. 

Figure 2.10 Comparison of the Raman spectra of the TIPS-pentacene powder and the 

drop-coated film (excitation wavelength used: 514.7 nm). Figure taken from ref.40. 
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Figure 2.11 Photograph of a silicon chip with an array of gold TIE structures prior to 

deposition of the organic film. The inset shows an optical microscopic image of a 

fabricated device with channel width W = 40 μm and channel length L= 210 nm after 

drop-coating with TIPS-pentacene solution. Figure taken from ref.40. 

Figure 2.12 Schematic illustration of “trench-refill approach” (left) and “spacer 

approach” (right) for fabricating HED-TIEs. In “trench refill approach”, the electrode 

gap is determined by the thickness of the trench refill layer. In “spacer approach”, an 

APCVD oxide layer is used to alter the hard mask geometry for reducing the electrode 

gaps even before the trenches are etched. 

Figure 2.13 Schematic representation of the fabrication process flow of the HED-TIEs 

using “spacer approach”. 

Figure 2.14 XSEM image of fabricated HED-TIE structure using spacer approach, 

prior to deposition of the organic channel. 

Figure 2.15 XSEM image of HED-TIE structure with thermally grown SiO2 isolation 

layer: (a) zoomed in view of the trench opening and (b) complete view of fabricated 

HED-TIE structure. 

Figure 2.16 XSEM image of the trench opening after deep etching of silicon is carried 

out, showing the notches at the trench opening. 

Figure 2.17 XSEM image of HED-TIE structure with LPCVD SiOx isolation layer: (a) 

zoomed in view of the trench opening and (b) complete view of fabricated HED-TIE 

structure. 

Figure 2.18 XSEM image of HED-TIE structure with APCVD SiOx isolation layer: (a) 

zoomed in view of the trench opening and (b) complete view of fabricated HED-TIE 

structure. 

Figure 3.1 Dependence of the current density (J), on the applied voltage (V), for 

Al/SnCl2Pc/Al�devices at various thicknesses of SnCl2Pc. Figure taken from ref.63. 

Figure 3.2 Dependence of the current density (J), on the applied voltage (V), for H2Pc 

samples of different thickness (a) 138, (b) 201, (c) 253 and (d) 312 nm. Figure taken 

from ref.50. 

Figure 3.3 Characteristic shape of J-V plot of ITO/CuPc/Al devices exhibiting SCLC 

conduction. Figure taken from ref.64. 

Figure 3.4 The schematic of the device layout of the HED-TIE devices. 
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Figure 3.5 The schematic of transport channels of the HED-TIE devices with 

interdigitated electrodes showing a device with single finger (left) and a device with 

multiple fingers (right). 

Figure 3.6 The current-voltage characteristics of solution processed TIPS-pentacene 

based HED-TIEs for devices with 120 nm and 300 nm transport channels. The channel 

width for both devices is kept at 40 µm. 

Figure 3.7 The log (J) vs log (V) plot of solution processed TIPS-pentacene based 

HED-TIEs indicating trap dominated SCLC conduction. 

Figure 3.8 The current density (J) vs. 1/L3 (where L = device channel length) plot for 

TIPS-pentacene based devices with channel width of 40 µm. The dotted line indicates 

the expected behaviour assuming space charge limited current conduction. 

Figure 3.9 The current-voltage characteristics of HED-TIEs with thermally evaporated 

H2Pc transport channels. The channel length is varied as 120 nm, 170 nm, 210 nm, 

250 nm and 300 nm whereas the channel width for all devices is kept at 30 µm. 

Figure 3.10 The log(J) vs log(V) plot of HED-TIEs with thermally evaporated H2Pc as 

channel materials. The curves were found to exhibit a slope >2, indicating trap 

dominated SCLC conduction. 

Figure 3.11 The current density (J) vs. 1/L3 (where L = device channel length) plot for 

H2Pc based devices with channel width of 30 µm. The dotted line indicates the 

expected behaviour assuming space charge limited current conduction. 

Figure 3.12 Current-voltage characteristics of solution processed TIPS-pentacene 

based interdigitated HED-TIEs for devices with 100 nm, 150 nm and 200 nm transport 

channels. The large channel width of all devices (5000 µm) was realised by using 

interdigitated electrodes with 100 finger structures of 50 µm each. 

Figure 3.13 Current-voltage characteristics of solution processed TIPS-pentacene 

based HED-TIEs for devices with 50 µm, 500 µm and 5000 µm channel widths. The 

channel length for all the devices is 100 nm. The current is found to scale linearly with 

the device channel widths as shown in the inset.   
Figure 4.1 The output characteristics of the TIPS-pentacene-OTFT transistor (a) under 

UV and (b) comparison of the dark and UV conditions at various gate voltages. Figure 

taken from ref.7. 

Figure 4.2 The output characteristics of the TIPS-pentacene-OTFT transistor (a) under 

100 mW/cm2 white light illumination and (b) comparison of the dark and white light 

illumination conditions at Vg = −6 V. Figure taken from ref.7.  
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Figure 4.3 UV-Vis spectra of a TIPS-pentacene film drop-coated on quartz substrate. 

Figure 4.4 Schematic diagram of the photosensing experiments. The active channel 

of the fabricated HED-TIE is illuminated from top. Figure taken from ref.40. 

Figure 4.5 (a) Photocurrent density (Jph) plotted over the applied voltage for three 

different laser lines. (b)-(d) Jph over time at a constant bias voltage of 0.5 V, while the 

illumination was switched on and off every 30 s. Illumination wavelengths used are (b) 

632.8 nm, (c) 514.7 nm, and (d) 325 nm. Figure taken from ref.40. 

Figure 4.6 The variation of the time constant with the excitation wavelength. (a) t1 (the 

time constant responsible for the instantaneous device response) vs wavelength and 

(b) t2 (the time constant representing the slower photocurrent decay due to trapping 

and de-trapping of the carriers vs wavelength. 

Figure 4.7 The photoluminescence spectra of the TIPS-pentacene channel. Excitation 

wavelength is 325 nm. A laser beam with the power of 180 µW was focused on the 

HED-TIE channel using a 10x objective. Initial PL measurements were carried out in 

N2 ambient followed by air and N2 ambient again. Figure taken from ref.40. 

Figure 4.8 The area under PL spectra plotted over time to show the decay in PL 

intensity while the channel material is exposed to air. Figure taken from ref.40. 

Figure 4.9 Size distribution of the synthesized gold nanoparticles. 

Figure 4.10 Absorption spectra of: (a) gold nanoparticles and (b) TIPS-pentacene. The 

green and red lines indicate the laser lines used for the photosensing experiments. 

Figure 4.11 Exemplary current-voltage characteristics of TIPS-pentacene based HED-

TIEs with and without gold nanoparticles in the channel. 

Figure 4.12 Current-voltage characteristics of TIPS-pentacene based HED-TIEs 

diluted in ethanol for two different configurations of the voltage terminals. 

Figure 4.13 Current-voltage characteristics in dark and under red and green 

illumination: (a) TIPS-pentacene based HED-TIE, (b) TIPS-pentacene based HED-TIE 

with Au NP_1, (c) TIPS-pentacene based HED-TIE with Au NP_2 and (d) HED-TIE 

with TIPS-pentacene solution diluted in ethanol. 

Figure 4.14 Jph over time for TIPS-pentacene based HED-TIE at a constant bias 

voltage of 1 V, while the illumination was switched on and off every 30 s. Illumination 

wavelengths used are (a) 632.8 nm and (b) 514.7 nm. 

Figure 4.15 Jph over time for TIPS-pentacene based HED-TIE, with TIPS-pentacene 

diluted in ethanol, at a constant bias voltage of 1 V, while the illumination was switched 
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on and off every 30 s. Illumination wavelengths used are (a) 632.8 nm and (b) 514.7 

nm. 

Figure 4.16 Jph over time for TIPS-pentacene based HED-TIE with Au NP_1 in the 

channel matrix, at a constant bias voltage of 1 V, while the illumination was switched 

on and off every 30 s. Illumination wavelengths used are (a) 632.8 nm and (b) 514.7 

nm. 

Figure 4.17 Jph over time for TIPS-pentacene based HED-TIE with Au NP_2 in the 

channel matrix, at a constant bias voltage of 1 V, while the illumination was switched 

on and off every 30 s. Illumination wavelengths used are (a) 632.8 nm and (b) 514.7 

nm. 

Figure 5.1 (a) LSMO/6T/LSMO planar spintronic device as published by Dediu et al. 

in ref. [12]. Electron beam lithography was used for patterning electrode gap 

dimensions of 100 – 500 nm. (b) Magnetoresistance as a function of device channel 

length at applied magnetic field of 0.3 T. Figures taken from ref.95. 

Figure 5.2 (a) Magnetoconductance in TIPS-Pentacene OFET recorded at VDS = -2 

V and VG = 0 V, measured under illumination and external magnetic field (60 mT). (b) 

Zoomed in view of part 1 showing the dark current measured under influence of 

magnetic field. (c) Zoomed in view of part 2 showing the photocurrent measured under 

influence of magnetic field. (d) The corresponding photocurrent change when the light 

is kept on. Figures taken from ref.106. 

Figure 5.3 The spin of a polaron on a pentacene molecule interacting with the 

hyperfine fields from the hydrogen nuclei (illustrated by arrows). The polaron spin 

precesses around the sum of hyperfine fields from surrounding hydrogen nuclei and 

the external magnetic field. Figure adapted from ref.99. 

Figure 5.4 Illustration of the particle interactions that are considered in the different 

OMAR models. Figure taken from ref.99. 

Figure 5.5 (a, b) Illustration of spin-blocking in bipolaron. Two particles with parallel 

spins cannot form an intermediate bipolaron. (c, d) Illustration of spin precession of two 

neighbouring spins in (c) only the local hyperfine fields Bhf and (d) in the total field Btot, 

the sum of the local hyperfine field and the external field B. (e, f) Corresponding energy 

diagrams. (e) Without an external field, the hyperfine field mixes the singlet S and all 

three triples, T+, T0, and T-. (f) An external field Zeeman splits the triplets. Mixing occurs 

only between S and T0. Figure taken from ref. 99. 
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Figure 5. 6 Diagram of possible routes for recombination of free electrons and holes 

to the ground state, by first forming an e–h pair which turns into an exciton. The 

different transitions are explained in the text. Figure adapted from ref.99. 

Figure 5.7 Schematic diagram of the experimental setup: (a) Commercial bottom 

contact OFET substrates (b) Planar device structure with trench isolated electrodes 

(HED-TIE). Figure taken from ref.84. 

Figure 5.8 Light switching behaviour of TIPS-pentacene based (a) organic field effect 

transistor (OFET) and (b) hybrid electronic device with trench isolated electrodes 

(HED-TIE). Light induced magnetoresistance in TIPS-pentacene obtained from both 

types of planar devices: (c) OFET and (d) HED-TIE device. Figure taken from ref.84. 
Figure 5.9 (a) Light switching of OFET prepared by drop-coating of TIPS-pentacene 

diluted in water. The inset shows absence of the magnetoresistance in such an OFET. 

(b) Degraded light switching behaviour of a TIPS-pentacene HED-TIE after two days 

of exposure to the ambient atmosphere. The inset shows the response to applied 

magnetic field. Figure taken from ref.84. 

Figure 5.10 (a) Output characteristics of TIPS-pentacene OFET. (b) Output 

characteristics of an OFET prepared from same TIPS-pentacene solution, diluted in 

water (1:1). Figure taken from ref.84. 

Figure 5.11 Output characteristics of the TIPS-pentacene based HED-TIE device, 

measured for freshly prepared sample and after two days of sample preparation. 

Figure taken from ref.84. 
Figure 5.12 Comparison of OMAR magnitude in TIPS-pentacene based HED-TIE 

devices with two different channel lengths. The sample surface was illuminated with 

white light LED.  Both devices have channel width of 40 µm and channel lengths of  (a) 

200 nm and (b) 300 nm. 

 

 

 

 

 

	
	
	
	
	



List of tables 
 

	 103	

List of tables 
 
Table 4.1 Summary of the photosensing properties of the TIPS-pentacene HED-TIEs 

of two different channel lengths and under three different single wavelength 

illumination. All the Jph mentioned are measured at a fixed bias of 0.5 V. 
Table 4.2 Summary of the photosensing properties of the TIPS-pentacene HED-TIEs 

with and without gold nanoparticles in the channel matrix and under two different single 

wavelength illumination. All the Jph mentioned are measured at a fixed bias of 1 V. 
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List of abbreviations  
 
UV   Ultraviolet 

HED   Hybrid electronic devices 
TIE   Trench isolated electrodes 
HED-TIE  Hybrid electronic devices with trench isolated electrodes 
H2Pc   Metal free phthalocyanine 
TIPS-pentacene 6,13-bis(triisopropylsilylethynyl) pentacene 
Si   Silicon 
GaAs   Gallium Arsenide 
OLED   Organic light emitting diodes 
OFET   Organic field effect transistors 
OPV   Organic photovoltaics 
OSC   Organic semiconductors 
HOMO  Highest unoccupied molecular orbital 
LUMO   Lowest unoccupied molecular orbital 
OTFT   Organic thin film transistor 
EBL   Electron beam lithography 
NSL   Nanostencil lithography 
NIL   Nanoimprint lithography 
LPCVD  Low pressure chemical vapour deposition 
PECVD  Plasma enhanced chemical vapour deposition 
APCVD  Atmospheric pressure chemical vapour deposition 
MEMS  Microelectromechanical systems 
2D   Two dimensional 
SiN   Silicon nitride 
KOH   Potassium hydroxide 
SiO2   Silicon dioxide 
SiOx   Silicon oxide 
SF6   Sulphur hexafluoride 
C4F8   Octafluorocyclobutane 
CF4   Tetrafluoromethane 
HF   Hydrofluoric acid 
STS   Surface Technology Systems 
Cr   Chromium 
SEM   Scanning electron microscopy 
XSEM   Cross-sectional scanning electron microscopy 
AFM   Atomic force microscopy 
SCLC   Space charge limited current 
SnCl2Pc  Tin (IV) phthalocyanine dichloride 
ITO   Indium tin oxide 
CuPc   Copper phthalocyanine 
Al   Aluminium 
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Au   Gold 
Ca   Calcium 
I-V   Current-voltage 
J-V    Current density-voltage 
CdSe   Cadmium selenide 
P3HT   Poly(3-hexylthiophene) 
PL   Photoluminescence 
N2 ambient  Nitrogen ambient 
UV-Vis  Ultraviolet-visible 
Au NP  Gold nanoparticles 
TP   TIPS-pentacene 
MR   Magnetoresistance 
GMR   Giant magnetoresistance 
TMR   Tunnelling magnetoresistance 
OMAR  Organic magnetoresistance 
OSPD   Organic spintronic device 
6T   Sexithiophene  
LSMO   Lanthanum strontium manganite 
Alq3   Tris (8-hydroxyquinolinato) aluminium 
PPV   Poly (p-phenylene vinylene) 
C60   Carbon-60 
MC   Magnetoconductance 
LED   Light emitting diodes 
MoS2   Molybdenum disulphide 
WSe2   Tungsten diselenide 
POM   Polyoxymethylyne 
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