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The skeletal system is of paramount importance in advanced stage prostate cancer (PCa) 
as it is the preferred site of metastasis. Complex mechanisms are employed sequentially 
by PCa cells to home to and colonize the bone. Bone-resident PCa cells then recruit 
osteoblasts (OBs), osteoclasts (OCs), and macrophages within the niche into entities 
that promote cancer cell growth and survival. Since PCa is heavily reliant on androgens 
for growth and survival, androgen-deprivation therapy (ADT) is the standard of care for 
advanced disease. Although it significantly improves survival rates, ADT detrimentally 
affects bone health and significantly increases the risk of fractures. Moreover, whereas 
the majority patients with advanced PCa respond favorably to androgen deprivation, 
most experience a relapse of the disease to a hormone-refractory form within 1–2 years 
of ADT. The tumor adapts to surviving under low testosterone conditions by selecting for 
mutations in the androgen receptor (AR) that constitutively activate it. Thus, AR signaling 
remains active in PCa cells and aids in its survival under low levels of circulating andro-
gens and additionally allows the cancer cells to manipulate the bone microenvironment 
to fuel its growth. Hence, AR and its downstream effectors are attractive targets for 
therapeutic interventions against PCa. Ca2+/calmodulin-dependent protein kinase kinase 
2 (CaMKK2), was recently identified as a key downstream target of AR in coordinating 
PCa cell growth, survival, and migration. Additionally, this multifunctional serine/thre-
onine protein kinase is a critical mediator of bone remodeling and macrophage function, 
thus emerging as an attractive therapeutic target downstream of AR in controlling met-
astatic PCa and preventing ADT-induced bone loss. Here, we discuss the role played 
by AR-CaMKK2 signaling axis in PCa survival, metabolism, cell growth, and migration 
as well as the cell-intrinsic roles of CaMKK2 in OBs, OCs, and macrophages within the 
bone microenvironment.

Keywords: castrate-resistant prostate cancer, androgen-deprivation therapy, CAMKK2, bone–tumor microenvironment, 
treatment induced bone loss

iNTRODUCTiON

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in American men and 
accounts for 15% of all cancers diagnosed in men worldwide (1, 2). The American Cancer Society 
estimates that in 2018 alone, 164,690 men will be newly diagnosed with PCa and 29,430 men will 
die from it in the United States. Routine testing of prostate serum antigen (PSA) levels has resulted 
in early diagnosis and treatment of PCa. Consequently, men with early-stage PCa have a high, near 
100%, 10-year rate of survival. Among patients with non-localized disease, however, about 40% 
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develop metastases to distant sites such as bone, lymph nodes, 
lung, and brain and their 5-year survival rate drops dramatically 
to 30% (3). PCa displays a preferential tropism toward bone which 
is the primary site of metastasis in 80% of patients with advanced 
disease (4). Metastatic PCa becomes lodged in the bone marrow 
(BM)-rich axial skeleton, which provides the perfect “soil” for the 
disease to develop to an advanced form often termed “castrate-
resistant PCa (CRPC)” as it is resistant to hormone-ablation.

Bone is an organ of utmost importance in PCa. Bone metas-
tasis is often a leading cause of patient mortality in PCa (4). 
Once they “home” and colonize the bone, PCa cells disrupt the 
homeostatic balance between bone-forming osteoblasts (OBs) 
and bone-resorbing osteoclasts (OCs). Similar to breast cancer, 
PCa stimulates osteolysis. However, a unique feature of bone-
lodged PCa cells is that they stimulate the OBs to produce weak 
woven bone instead of the strong lamellar bone that is normally 
synthesized. Such skeletal-related events (SREs) triggered by PCa 
in the bone culminate in pathological fractures, spinal cord com-
pression, and sclerosis, detrimentally affecting the overall quality 
of life and survival rate among patients (5–8).

Prostate cancer cells express the androgen receptor (AR) and 
are heavily reliant on androgens for growth and survival. Hence, 
most patients with locally advanced or metastatic PCa receive 
androgen-deprivation therapy (ADT) as a gold standard treat-
ment (9). Although it significantly improves survival rates, ADT 
detrimentally affects skeletal health, causing tremendous bone 
loss and rendering the patients at risk for fragility fractures (10). 
Therapies that inhibit bone resorption such as bisphosphonates 
prevent ADT-induced bone loss and may additionally delay bone 
colonization by the tumor by interfering with its ability to manip-
ulate the bone microenvironment (11). PCa patients initially 
respond positively to ADT, though most experience a relapse of 
the cancer to a hormone-refractory form called CRPC, which 
occur when cancer cells adapt to growth under low androgen 
conditions by constitutively upregulating AR (12). Consequently, 
AR and its downstream effectors are attractive therapeutic targets 
to combat tumor growth in androgen-resistant PCa. Indeed, clini-
cal studies indicate that AR inhibitors such as enzalutamide delay 
SREs and improve survival rates in patients (13–15). Still, novel 
therapies that preserve musculoskeletal heath while significantly 
inhibiting tumor growth are acutely needed in the clinic.

In this review, we will briefly discuss the steps involved in bone 
metastasis of PCa, the role of AR activation in the development of 
CRPC and skeletal complications associated with ADT. We will 
additionally discuss recent findings that identify Ca2+/calmo-
dulin (CaM)-dependent protein kinase kinase 2 (CaMKK2), an 
AR-regulated gene with additional roles in bone remodeling and 
inflammation, as a novel therapeutic target to inhibit PCa growth 
and prevention of ADT-associated bone loss.

BONe MeTASTASiS OF PCa

Prostate cancer cells show an almost exclusive tropism for bone. 
Although the exact mechanisms that drive bone metastasis are 
unknown, it has been proposed that the BM microenvironment may 
provide the ideal condition for the PCa cells to thrive. The “seed 
and soil” hypothesis proposed by Steven Paget in 1889, wherein 

the “seeds” or tumor cells develop a tropism and metastasize to 
the “soil” or target organ that is well suited or “fertile ground” for 
its growth (16) still remains a guiding principle in understanding 
the role BM microenvironment plays in bone metastasis of PCa.

Metastasis of PCa to bone involves several steps including 
decreased cell adhesion, epithelial to mesenchymal transition 
(EMT), local migration, invasion, intravasation into the circula-
tion, homing, and colonization of bone (17, 18). Cell–cell adhe-
sion in normal prostate epithelium is maintained by integrins 
and tight junctions composed of cell adhesion molecules, such as 
selectins and cadherins. There are two main types of cadherins, 
E-cadherin and N-cadherin, expressed by epithelial cells and 
mesenchymal cells, respectively. During early transformation, 
prostate epithelial cells exhibit alterations in cell adhesion factors, 
including a downregulation of E-cadherin and an upregulation 
of N-cadherin, a process termed cadherin switching and a main 
feature in EMT. Decreased expression of integrins and Wnt-target 
protein β-catenin also play important roles in EMT (17–19). The 
next step is migration and it involves an upregulation of focal 
adhesion. During normal cell migration, focal adhesions formed 
on the leading edges of the cells are used as anchors by the cells 
to pull themselves forward over the extracellular matrix (ECM). 
Disassembly of focal adhesions on the rear edge of the cell enables 
the cell to move forward (20). This process involves the binding 
of focal adhesion kinases (FAKs) to integrins and their subse-
quent activation by the Src family of kinases, initiating signaling 
events including those involving Rho that regulate focal adhesion 
turnover and migration. Expression of FAK and Src as well as Rho 
activities are elevated in bone metastases and CRPC, indicating 
increased focal adhesion turnover and cell mobility.

Once the transformed prostate epithelial cells gain the ability 
to migrate, they need to dissociate from the ECM, which is com-
posed of the basement membrane and connective tissue. Prostate 
epithelial cells that have undergone mesenchymal transition have 
the ability to secrete proteases such as matrix metalloproteases and 
serine proteinases, such as urokinase-type plasminogen activator 
and PSA, which partially degrade the ECM, allowing the cells to 
disseminate, invade the surrounding tissue and intravasate into 
blood vessels (17, 20, 21). Homing to the target organ is only pos-
sible if the PCa cells survive in the circulation, and they achieve 
this by attaching to the vascular endothelium. PCa cells have been 
shown to interact with BM endothelial cells (BMECs) with high 
affinity through a mechanism involving E-selectin receptor on 
PCa cells and E-selectin on BMECs and integrins such as αVβ3, 
αVβ1, and α3β1 (18). Additionally, CD44 on PCa cells binds to 
vascular cell adhesion molecule 1 on BMECs in a process that 
is enhanced by IL-17 and IGF1 in circulation. The subsequent 
homing of PCa cells to bone is facilitated by multiple chemokine-
mediated mechanisms. For instance, BM stromal cells and OBs 
in the bone secrete C–X–C motif chemokine ligand 12 (CXCL12) 
or stromal derived factor-1 (SDF1) whereas PCa cells express 
its receptor CXCR4. CXCL12/SDF–CXCR4 interaction allows 
PCa cells to home to the bone, adapting a similar mechanism as 
the one utilized by hematopoietic stem cells (22). Additionally, 
CXCL12/SDF1 from OBs activates the expression of the adhesion 
molecule αVβ3 integrin on PCa cells that further contribute to 
their homing to the BM. Further, the expression of yet another 
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TABle 1 | Growth factors involved in aiding skeletal metastasis of prostate 
cancer.

Factor Role Function Source cells

CXCL12/
SDF1

Homing Binding partner to CXCR4 Osteoblasts 
(OBs) (36)

CXCR4 Homing Binding partner to CXCL12 Tumor  
Cells (36)

E-selectin 
ligands

Colonizing Critical for initial tethering  
and rolling on E-selectin

Tumor  
Cells (37)

CXCR6 Progression Recruits and converts  
mesenchymal stem cells (MSCs)  
into Cancer-associated fibroblasts

MSCs (38)

BMP4 Progression Drives endothelial cell conversion 
into OBs

Tumor  
cells (33)

IGF1 Progression Stimulates proliferation of human 
prostate epithelial cells

Tumor  
cells (39)

Endothelin 1 Progression Suppresses Dickkoph 1, increases 
OB mitogensis and osteoclast 
apoptosis

Tumor  
cells (40)

B7-H ligand Progression Evading immune cell surveillance Tumor  
cells (41)

Androgens Proliferation Stimulate androgen receptor 
signaling mediated bone formation 
in OBs

Tumor  
cells (42)
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chemokine ligand CXCL16 allows PCa cells to recruit and 
convert CXCR6-expressing mesenchymal stem cells into cancer-
associated fibroblasts that also secrete high levels of CXCL12/
SDF1. Finally, recent reports provide evidence for microRNA 
(miR)-containing exosomes from PCa cells arriving early in the 
BM to enable the modification of the bone microenvironment to 
favor cancer cell homing to the bone (23–25).

Colonization of the bone by PCa is aided by their ability to (a) 
attach to the bone matrix and (b) manipulate the BM microen-
vironment into favoring their growth and survival. PCa express 
two key integrins αVβ3 and α2β1, which allow the cells to attach 
to the bone matrix and migrate along the surface to identify suit-
able “niches” for their outgrowth. PCa cells preferentially home 
to OB-rich niches within the bone, allowing physical contact 
between these two cell types, facilitated in part by adhesion mol-
ecules such as cadherin-11 expressed on both OBs and malignant 
PCa cells (26, 27). Interestingly, physical contact between PCa 
and OBs appear to disrupt the normal order of matters within the 
bone. Kimura et al. noted that in the presence of PCa cells, the 
bone-resident OBs which usually line neatly along the collagen 
matrix become disorganized and that this anisotropy requires  
cell–cell contact (28). Unlike other solid tumor malignancies 
which are mostly osteolytic, bone-metastatic PCa is primarily 
an osteoblastic disease driven in part by the ability of PCa cells 
to perform “osteomimicry” wherein they adopt the genetic and 
phenotypic characteristics of OBs (29). OB growth and differ-
entiation are governed by complex signaling pathways, such as 
Wnts, bone morphogenic proteins (BMPs), insulin growth factor 
(IGF), and transforming growth factor β (TGF-β) (30, 31). In 
contrast, OC differentiation is regulated by receptor activator of 
NF-κB ligand (RANKL), osteoprotegerin, parathyroid hormone, 
and TGF-β. Differentiated OBs secrete these factors, but many 
are also released from the bone matrix by OCs themselves during 
bone resorption. Interestingly, bone-lodged PCa cells produce 
many of the same factors that stimulate the proliferation and dif-
ferentiation of OBs and OCs (17, 30). In addition to producing 
factors that favor bone cell differentiation, PCa cells also induce 
other cell types to transdifferentiate into OBs (32). Recently, Lin 
et al. reported an endothelial cell-to-OB conversion as one of the 
mechanisms underlying osteoblastic bone disease in PCa (33). 
These authors showed that PCa induces the overexpression of 
BMP4 in BMECs driving their transdifferentiation to OBs (33). 
Recent studies from multiple myeloma highlight the importance 
of osteocytes, the most abundant bone cells, in tumor-bone 
interactions (34). Although studies have indicated a role for 
osteocytes in PCa (35), more research is needed to fully compre-
hend the contribution of these cells to bone metastasis by PCa. 
Taken together, these studies suggest that cancer cells disrupt the 
homeostatic mechanisms within the BM and hijack the normal 
paracrine and autocrine mechanisms regulating normal bone 
remodeling to create a “vicious cycle” that ultimately favors PCa 
colonization and growth within the bone (Table 1).

ANDROGeNS, AR, BONe, AND ADT

Since the original description by Charles Huggins in 1942 of 
the heavy dependence of PCa on androgens and the benefits of 

orchiectomy in PCa patients, androgens, and AR have remained 
the main therapeutic targets in PCa treatment (43–46). In men, 
Leydig cells of the testis produce about 90% of the circulating 
androgens or testosterone and the adrenal cortex produces the 
remaining 10% (47). Testosterone diffuses into the prostate 
epithelial cells where it is converted into dihydrotestosterone 
(DHT) by the enzyme 5α-reductase (47, 48). DHT binds to AR, a 
member of the nuclear hormone receptor family of transcription 
factors. Upon ligand binding, AR translocates to the nucleus, 
undergoes homodimerization and binds to androgen response 
elements (ARE) within the promoters of AR-target genes such as 
PSA. AR then recruits cofactors and initiates the transcription of 
target genes that regulate proliferation, metabolism, and survival 
of PCa cells (45, 49, 50).

The goal of ADT is to starve the tumor cells of androgens by 
drastically diminishing their circulating amount (<5% of nor-
mal range). This is achieved by blocking testosterone produc-
tion surgically via castration or chemically by treating patients 
with luteinizing hormone releasing hormone agonists or first 
generation antiandrogen drugs, such as flutamide, nilutamide, 
and bicalutamide, that competitively block DHT binding to AR 
(51). Testosterone is converted into estradiol, the primary male 
estrogen via aromatization and it binds to the estrogen recep-
tor α (ERα) present on both OBs and OCs. OBs express both 
AR and ERα, whereas OCs express only ERα. These receptors 
promote OB survival, numbers, and activity, while ERα inhibits 
OC differentiation. Moreover, the combined action of these two 
nuclear receptors stimulate periosteal apposition and lengthen-
ing of the epiphyseal growth plate in men while maintaining 
their cortical and trabecular bone. The continued periosteal 
growth during adult life in men partially offsets age-related 
increase in endosteal bone loss (7, 10). All these processes are 
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TABle 3 | Novel therapies against castrate-resistant prostate cancer (CRPC) currently in trials.

Drug Target Mechanism of action Trial Status Reference

Novel androgen receptor (AR) therapeutics currently in clinical trial

ARN-509 (apalutamide) Androgen receptor (AR) Competitively inhibits transcription Phase II (57, 63, 64)
EPI-506 AR Inhibits transcription Phase II (53)
AZD3514 AR Inhibition of AR nuclear translocation and AR-regulating gene 

transcription
Phase I (65)

Ketoconazole Cytochrome P450 c17 (CYP17) Inhibits adrenal testosterone synthesis Phase II (66)
MDV3100 AR Inhibits AR binding and nuclear translocation of the AR Phase I (35)

Other novel drug targets

Radium-223 (Xofigo) Bone mineral hydroxyapatite Induces double-strand DNA breaks FDA approved 
for CRPC, bone 
metastasis

(67)

LGK974 Porcupine [PORCN] (WNT-specific 
acyltransferase)

Inhibits Wnt signaling Phase I (68)

Cytarabine (Cytosine 
Arabinoside)

DNA polymerase Inhibits DNA synthesis Phase II (69)

Ipatasertib AKT (protein Kinase B) Inhibits three isoforms of AKT Phase II (55, 70)

TABle 2 | Androgen receptor (AR) targeted therapies—FDA-approved drugs in clinic.

Drug Target Mechanism of action Clinical use Reference

Abiraterone acetate Cytochrome P450 
c17 (CYP17)

Inhibits androgen biosynthesis Castration-resistant and high-risk castration 
sensitive prostate cancer (PCa)

(57)

Enzalutamide (Xtandi) AR Inhibits nuclear translocation of the AR Metastasized castrate-resistant prostate cancer (14)

Leuprolide acetate Luteinizing hormone 
releasing hormone

Inhibits secretion of luteinizing hormone, androgen, and 
estradiol

Approved for palliative treatment of advanced PCa (61)

R-Bicalutamide 
(CASODEX)

Cytosolic AR Inhibits androgen activity by binding cytosolic ARs and 
stimulating AR nuclear translocation

Approved for metastasized PCa (62)
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affected by ADT as it suppresses not only androgens but also 
estradiol, resulting in the abrogation of the stimulatory effect 
of androgens on OBs and the inhibitory effect of estradiol on 
OCs. This triggers increased bone turnover in patients on ADT, 
resulting in a significantly high rate of bone loss at 4.6% per 
year, which exceeds the annual bone loss in aging men and 
postmenopausal women (10). The maximum bone loss occurs 
during the first year of therapy, ranging from 1.5 to 4%, depend-
ing on the skeletal location examined (10). Thus, ADT renders 
these men, who are often older and possess lower bone mass 
to begin with, four times more likely to develop osteoporosis. 
This enhances their risk of fragility fractures and in turn, their 
mortality risk (7).

Nitrogen-containing bisphosphonates, such as alendronate, 
risedronate, and zoledronic acid, as well as denosumab, a 
monoclonal antibody to RANKL are all FDA-approved to treat 
osteoporosis in PCa patients on ADT. Selective ER modulators 
such as raloxifene and Toremifene have also been shown to pre-
serve bone in clinical trials with PCa patients undergoing ADT 
(7, 15, 52–56). Moreover, second-generation antiandrogens, 
such as abiraterone and enzalutamide, as well as radiotherapies 
such as Radium-223 have shown to suppress tumor growth 
and delay SREs (13, 14, 57–60). Teriparatide, though FDA-
approved, is not recommended for PCa patients at risk for bone 
metastasis. A list of current therapies and novel compounds 
in clinical trials in the treatment of bone-metastatic PCa are 
detailed in Tables 2 and 3.

AR ACTivATiON iN CRPC

Androgen-deprivation therapy results in diminished tumor bur-
den in about 90% of patients with advanced PCa. However, over 
time, the cancer cells adapt undergo selection to proliferate and 
survive under low levels of circulating androgens by upregulat-
ing AR and becoming unresponsive to ADT. The disease at this 
stage is termed CRPC (17, 71). AR is the main driver of CPRC 
development, while a minority of metastatic PCa are associated 
with the loss of p53, PTEN, or Rb (13, 72). The main mechanisms 
for AR reactivation in CRPC include amplification leading to 
overexpression, activating mutations, structural gene alterations, 
expression of constitutively active variants, mutations in the AR 
that confer broader ligand specificity to the receptor, upregulation 
of co-regulators, increased expression of steroidogenic enzymes, 
as well as upregulation of cross-talk signal transduction pathways 
such as interleukin 6, STAT3, Src, and IGF that can activate AR in 
a ligand-independent manner (71). These mechanisms have been 
extensively reviewed elsewhere (21, 72–74). Gain-of-function 
AR splicing variants (AR-Vs) often lack portions of the ligand-
binding domain (LBD) but possess constitutive transcriptional 
activity even in the absence of androgens. The most well-charac-
terized among these is AR-V7 whose expression has been shown 
to increase in response to ADT and has been shown to confer 
resistance to drugs, such as abiraterone and enzalutamide that 
either block androgen synthesis or antagonize AR (75). AR-V7 
was identified as the most frequently occurring variant in patients 
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with CRPC and its expression correlates with increased disease 
recurrence (76–78). AR-V7 expression is associated with the 
upregulation of some AR-target genes relevant for proliferation 
and survival, such as UBE2C, CCNA2, C-MYC, AKT1, EDN2, and 
ETS2 (71, 78).

Mechanisms that enable CRPCs to activate AR and continu-
ally acquire resistance to therapies underscore the importance of 
gaining a comprehensive understanding of the downstream effec-
tors of AR signaling that play crucial roles in cancer progression, 
as they could serve as druggable targets in the treatment of CRPC. 
Several studies have attempted to identify AR-regulated genes 
by focusing on genome-wide AR-binding sites on cell lines and 
clinical samples, or by examining temporal regulation of androgen 
stimulation in one or more PCa cell lines such as LNCaP (harbors 
an LBD mutation of AR), VCaP (contains AR gene amplifica-
tion) or C4-2B (a CRPC cell line) (66, 79–85). These studies have 
identified several AR-target genes with functions in gene tran-
scription (NKX3.1, FOX family), growth stimulation (IGF1R), 
cell cycle regulation (CDK6, UBE2C), signaling (MEK5, FKBP5), 
autophagy (ATG4B, ULK1, TFEB), non-coding RNA (miR-21, 
miR141), glycolysis (GLUT1), and central metabolism [MTOR, 
Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2)]. 
Among these, CaMKK2 has emerged as an attractive therapeutic 
candidate in PCa as it is a direct target of AR, containing AREs on 
its promoter and is consistently overexpressed in clinical CRPC 
samples as well as AR-positive PCa cell lines (86, 87).

CaMKK2: A MOleCUlAR HUB DiReCTeD 
BY AR iN PCa CellS

Intracellular Ca2+ is a universal second messenger that regulates 
diverse cellular processes. Transient variations in intracellular 
Ca2+ are immediately sensed by the ubiquitous high-affinity 
intracellular Ca2+ receptor, CaM. This initiates a cascade of Ca2+/
CaM-mediated signaling events that culminate in changes to 
key cellular events such as proliferation, differentiation, survival, 
and metabolism (88). In particular, Ca2+/CaM complexes bind 
to and activate CaM kinases (CaMKs), which are a family of 
multifunctional Ser/Thr protein kinases that includes CaMKK1, 
CaMKK2, CaMKI, CaMKII, and CaMKIV. The upstream kinases, 
CaMKKs 1 and 2, are activated through Ca2+/CaM binding and 
intramolecular phosphorylation. Binding of Ca2+/CaM allows the 
activation loop in CaMKs to unravel and expose a critical threo-
nine residue that becomes phosphorylated by the two upstream 
CaMKKs, resulting in their full activation, triggering the forma-
tion of a CaMK signaling cascade that is regulated by Ca2+/CaM 
at multiple levels (89–91). Interestingly, unlike CaMKK1, which 
is solely dependent on Ca2+/CaM for activity, CaMKK2 pos-
sesses considerable autonomous activity in the absence of Ca2+/
CaM. This autonomous activity is regulated by phosphorylation 
by Ca2+/CaM-independent kinases such as glycogen synthase 
kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5)  
(92, 93). As it is not dependent on rapid fluxes in intracellular 
Ca2+ for basal activity, CaMKK2 is capable of responding to other 
stimuli of longer duration and phosphorylating novel substrates 
outside of the CaMK cascade. Indeed, CaMKK2 (not CaMKK1) 

directly phosphorylates and activates adenosine monophosphate 
activated protein kinase (AMPK), a heterotrimeric kinase that 
co-ordinates cellular energy balance, autophagy, cell proliferation, 
and cytoskeletal organization (94, 95). The CaMKK2–AMPK 
pathway plays key roles in the regulation of hypothalamic feed-
ing behavior, hepatic gluconeogenesis, adipocyte differentiation, 
and macroautophagy (94, 96–98). Recent studies indicate roles 
for CaMKK2 in hepatic cancer, macrophage-mediated inflam-
mation, and bone remodeling through non-AMPK-mediated 
mechanisms (99–103).

CaMKK2 is increasingly being considered a hub of signaling 
mechanisms that regulate PCa cell metabolism, proliferation and 
migration downstream of AR (104). Frigo et  al. identified the 
presence of an AR-binding region located 2.3-kb upstream of the 
CaMKK2 transcriptional start site and reported the recruitment 
of AR to this region in an androgen-dependent manner (87). 
These authors also found that the knockdown of CaMKK2 or its 
pharmacological inhibition using a selective inhibitor STO-609 
or inhibition of the CaMKK2-target protein AMPK abrogates 
PCa cell migration and invasion (68, 87, 105). Overexpression 
of CaMKK2 alone was sufficient to induce AMPK phosphoryla-
tion and facilitate PCa cell migration, implying that androgens 
promote PCa cell migration through an AR-CaMKK2-AMPK 
signaling axis (87). Massie et  al. integrated genome-wide 
AR-binding transcript profiling with an analysis of androgen-
stimulated recruitment of the transcriptional machinery to a core  
set of AR-binding sites and identified CaMKK2 to be consistently 
enriched in PCa clinical cohorts, in a pattern similar to that of the 
established PCa marker AMACR (86). Similar to previous reports 
(87), these authors also observed AR recruitment to CaMKK2 
promoter in both androgen-dependent and CRPC cell lines and 
an early upregulation of the CaMKK2 transcripts and protein 
within 4 and 12 h of androgen stimulation, respectively, indicating 
direct AR regulation (86). Subsequent functional studies identi-
fied CaMKK2 as a key effector of AR in stimulating glycolysis 
through its activation of AMPK and phosphofructokinase (PFK), 
which in turn drives anabolism and PCa cell proliferation (86). 
Of note, the AR-CaMKK2–AMPK–PFK axis does not affect cel-
lular biosynthesis through mTOR in PCa, indicating its primary 
role in regulating glucose uptake and lactate production. In vivo 
inhibition of CaMKK2 using STO-609 resulted in a significant 
reduction in the growth of C4-2B xenografts in nude mice, and 
this treatment was additive with AR inhibition achieved via cas-
tration (86). It should be noted that CaMKK2 inhibition by itself 
did not affect the size of the normal prostate or its epithelium in 
nude mice, and the CaMKK2−/− mice do not possess any pros-
tate anomalies or fertility deficits (86, 87). Thus, the inhibition 
of CaMKK2, rather than AR itself, may offer greater selective 
advantage over PCa at all stages.

Karacosta et  al. examined PCa in clinical samples and 
found strong CaMKK2 immunoreactivity in the epithelium of 
malignant glands, compared to extremely low expression in the 
adjacent normal epithelium (106). Moreover, CaMKK2 staining 
intensity increased with the Gleason score of the tumors, and 
the staining pattern shifted from predominantly cytoplasmic to 
perinuclear and nuclear (106). CaMKK2 intensity increased with 
tumor progression in a transgenic adenocarcinoma of the mouse 
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prostate (TRAMP) mouse model of PCa, and its expression was 
higher in castration-resistant tumor xenografts than androgen-
responsive ones. These authors also observed upregulation of 
CaMKK2 as well as its nuclear translocation in LNCaP follow-
ing DHT treatment and a reversal with androgen withdrawal. 
Further, silencing of CaMKK2 using small interfering RNA 
elicited G1 arrest of LNCaP cells, reducing their proliferation, 
along with lowering the levels of PSA as well as AR-regulated 
cell cycle proteins such as cyclin D1 and hyperphosphorylated 
Rb (106). Karacosta et  al. proposed a novel positive feedback 
loop in the PCa in which CaMKK2 is induced by AR, and it 
in turn stabilizes AR to promote its transcriptional activity and 
cell cycle progression (106). In a recent follow-up study, these 
authors confirmed the higher nuclear expression of CaMKK2 in 
CRPC C4-2 cells, and showed that this occurs due to the associa-
tion of CaMKK2 with nuclear pore complexes through its direct 
interaction with nucleoporin 62 (NUP62) (107). These authors 
showed that silencing NUP62 reduces the growth and viability 
of C4-2 cells, and provided evidence for the recruitment of 
NUP62, CaMKK2, and AR complexes to the AR-binding regions 
in the promoters of target genes such as PSA, suggesting a novel 
CaMKK2-NUP62 mechanism of AR transcriptional regulation 
in advanced PCa (107).

Similar to the aforementioned studies, Shima et al. performed 
genome-wide analysis of a small set of clinical samples and found 
a sixfold higher CaMKK2 expression in PCa compared to normal 
prostate (108). However, in contrast to previous studies (82, 87, 
106, 107), these authors provide evidence for an inhibitory role for 
CaMKK2 to AR signaling and hypothesize that while CaMKK2 
supports growth of tumors in early PCa, it inhibits excessive 
proliferation in CRPC (108). Whereas additional studies are 
warranted to validate these intriguing findings and hypotheses, 
the consensus emerging from all of these studies is that CaMKK2 
is a key effector of AR signaling in PCa cells, regulating cell cycle 
by stabilizing AR, cell migration through AMPK signaling, and 
glycolysis by activating the AMPK–PFK pathway. AR is essential 
for PCa cell viability, proliferation, invasion, and bone metasta-
sis, and the tumor cells are under constant selective pressure to 
maintain AR signaling, especially under the conditions of low 
testosterone such as ADT (86). Therefore, targeting downstream 
effectors such as CaMKK2 would be an effective approach to 
abrogate AR signaling in metastatic PCa.

CaMKK2 iN BONe MiCROeNviRONMeNT

CaMKK2 and Bone Cells
Prostate cancer recruits OBs and OCs within the bone 
microenvironment and transforms them into entities that 
support tumor growth (30). Studies discussed above show that 
CaMKK2 is expressed in PCa cells where it acts as a molecu-
lar hub downstream of AR in regulating tumor cell growth. 
CaMKK2 is expressed by OBs and OCs and plays important 
cell-intrinsic roles in these cells (99). During homeostatic 
conditions, CaMKK2 stimulates OC differentiation by activat-
ing phosphorylated form of cyclic adenosine monophosphate 
(cAMP) response element binding protein (pCREB) and its 

transcriptional target, nuclear factor of activated T  cells c1 
in a CaMKIV-dependent manner. Hence, inhibition or dele-
tion of CaMKK2 inhibits OCs. On the other hand, CaMKK2 
inhibits OB differentiation by inhibiting cAMP-protein kinase 
A (PKA) signaling under normal conditions. Therefore, the 
inhibition or absence of CaMKK2 relieves this inhibition and 
results in the stimulation of OB differentiation (99). Mice null 
for CaMKK2 possess higher bone mass along with significantly 
more OBs and fewer multinuclear OCs. Inhibition of CaMKK2 
promotes bone fracture healing, and confers protection from 
ovariectomy and age-related osteoporosis (99, 100, 102). Taken 
together, these studies reveal profound roles for CaMKK2 in 
the two main bone cell types that interact with PCa in the bone 
microenvironment.

CaMKK2 and Macrophages
Immune cells, such as macrophages and lymphocytes, are also 
part of the bone–tumor microenvironment and play important 
roles in tumor growth and bone metastasis (109). For example, 
chronic inflammation sustained by macrophage activation plays 
a pivotal role in the regulation of tumor microenvironment in 
many solid tumors (104). Chronic inflammatory conditions 
existing within the tumor recruit myeloid cells and induce their 
differentiation into tumor-associated macrophages, the infiltra-
tion of which negatively correlates with prognosis in advanced 
PCa. Recently, Roca et al. reported that macrophage-driven effe-
rocytosis accelerates CXCL5-mediated inflammation and PCa 
growth within the bone (110). Among immune cells, CaMKK2 
is selectively expressed in macrophages and its ablation impairs 
their ability to spread, phagocytose, and produce inflammatory 
cytokines and chemokines in response to lipopolysaccharides 
(101). CaMKK2 regulates metabolic responses and cytokine 
release in response toll-like receptor/integrin stimulation in 
macrophages. Indeed, Camkk2−/− mice are resistant to irritants 
that lead to systemic inflammation (101). Thus, CaMKK2 plays 
roles in multiple cell types, including OBs, OCs, and mac-
rophages, that form the PCa microenvironment in the bone. AR 
is expressed in OBs and macrophages, and it plays an indirect 
role in OCs through ERα. However, whether CaMKK2 plays a 
role downstream of AR in OBs and macrophages is unknown. 
Nevertheless, we hypothesize that AR signaling in PCa cells uses 
CaMKK2 as a downstream hub regulating several molecular 
mechanisms in OBs, OCs, and macrophages to manipulate the 
BM niche to the benefit of the cancer cells (Figure 1).

PeRSPeCTiveS AND CONClUDiNG 
ReMARKS

Complex mechanisms employed by PCa cells allow it to home 
and thrive in bone, their preferred site of metastasis. Once lodged 
in the bone, the cancer cells recruit OBs, OCs, and macrophages 
within the skeletal niche to become entities that secrete growth 
factors and chemokines that allow the PCa cells to proliferate 
and survive even under low circulating testosterone conditions 
such as following ADT. AR signaling remains critical for PCa cell 
survival even under ADT and this creates selective pressure for 
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FiGURe 1 | CAMKK2 as a molecular hub downstream in the bone–prostate cancer (PCa) microenvironment. In PCa cells, the androgen receptor (AR) binds to 
androgen response element (ARE) on CaMKK2 promoter which is situated upstream of the transcriptional start site. Thus, CaMKK2 is a direct transcriptional target 
of AR and its expression is highly elevated in metastatic PCa. Once transcribed and translated, CaMKK2 binds to AR initiating a positive feedback loop to stimulate 
AR transcriptional activity in the activation of AR-dependent genes that regulate cell cycle progression such as cyclin D. Additionally, CaMKK2 through its activation 
of AMPK regulates PCa cell migration. CaMKK2-AMPK signaling pathway also regulates cellular glycolysis via the activation of phosphofructokinase (PFK). This 
drives PCa cell anabolism and in turn promotes cell proliferation and tumor growth. Furthermore, in CRPCs, CaMKK2 binds to nucleoporin 62 (NUP62) to enter the 
nucleus, where it along with AR and NUP62 are recruited to the ARE in the promoters of downstream targets such as prostate serum antigen (PSA). PCa cells that 
metastasize to the bone physically interacts with OBs to alter their organization and function. Although both AR and CaMKK2 are expressed in OBs, whether 
CaMKK2 operates downstream of AR in these cells is not known. In OBs, CaMKK2 signaling inhibits cyclic adenosine monophosphate (cAMP) production and 
protein kinase A (PKA) activation. PKA is an important regulator of OB differentiation. Thus, the inhibition of CaMKK2 would relieve this inhibition of PKA signaling 
and OB differentiation. In osteoclasts (OCs), CaMKK2 signaling through CaMKIV-pCREB activates nuclear factor of activated T cells c1 (NFATc1), which is the 
master regulator of OC differentiation. In macrophages, CaMKK2 regulates cytoskeletal rearrangement via its regulation of Pyk2. Moreover, CaMKK2-CaMK1 
signaling regulates cytokine/chemokine production by macrophages. Thus, CaMKK2 is a key component of AR signaling in PCa cells and additionally regulates 
multiple cell types that constitute the tumor microenvironment within the bone.
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the generation of AR gene mutations that facilitate the consti-
tutive activation of the AR signaling cascade. Thus, AR and its 
downstream effectors are attractive therapeutic targets against 
bone-metastatic PCa.

The CaMKK2-AMPK signaling pathway operates downstream 
of AR to mediate PCa cell cycle, metabolism, migration, and inva-
sion. CaMKK2 inhibition interferes with the growth and survival 
of bone-lodged PCa, and will presumably interfere with its ability 
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to secrete factors that modify OBs into cancer-promoting entities. 
Similar to PCa, AR signaling plays an active pro-survival role in 
OBs. However, whether it operates upstream of CaMKK2 in OBs 
is unclear. Various signaling pathways, including cAMP-PKA, 
CDK5, and GSK3, have been implicated as upstream regula-
tors of CaMKK2 in other cell types. In addition to AR-binding 
elements, CaMKK2 promoter also contains consensus-binding 
sites for several transcription factors including runt-related 
transcription factor 2 (RUNX2), the master regulator of OB dif-
ferentiation. In macrophages, CaMKK2 is activated by toll-like 
receptors, Gq-coupled receptors, and voltage-gated Ca2+ channels 
on the plasma membrane (101). Although monocytes express 
AR, its role in the regulation of CaMKK2 in these cells is unclear. 
Nevertheless, we can conclude from the studies discussed above 
that the AR-CaMKK2 signaling axis acts as a molecular hub pro-
moting PCa survival and in turn its ability to manipulate the bone 
microenvironment. Cell-intrinsic roles of CaMKK2 in OBs, OCs, 
and macrophages may aid in this process, ultimately enhancing 
the malignancy, SREs, and bone fragility.

In addition to the studies reviewed herein, CaMKK2 inhibi-
tion or genetic ablation has been shown to protect against 
diet-induced glucose intolerance, insulin resistance, diabetes, 
hepatocellular carcinoma, and non-alcoholic high fat liver dis-
ease [reviewed in Ref. (111)]. In case of PCa, CaMKK2 emerges as 
an attractive and druggable target downstream of AR that when 
inhibited, abrogates tumor growth, inhibits macrophage-mediated 
inflammation, and improves bone health. Future studies will 

provide a comprehensive understanding of the precise molecu-
lar mechanisms by which CaMKK2 regulates PCa cells as well 
as how AR-CaMKK2 signaling in these cells affects CaMKK2 
function in bone cells and macrophages that constitute the bone 
microenvironment. Nonetheless, highly selective small molecule 
inhibitors of CaMKK2 should be developed as potent “dual-hit” 
therapeutic interventions to abrogate bone-metastatic PCa 
growth while preventing ADT-associated bone loss. Together 
with improving bone mass and strength in PCa patients, who are 
often elderly, CaMKK2 inhibition would offer the best odds for 
long-term disease-free survival.
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