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Abstract: The study aims to clarify the relationship between soil organic carbon (SOC) and human
activity under arid conditions, in the east area of the Nile Delta, Egypt. SOC is one of the critical
factors in food production and plays an important role in the climate change because it affects
the physio-chemical soil characteristics, plant growth, and contributes to sustainable development
on global levels. For the purpose of our investigations, 120 soil samples (0–30 cm) were collected
throughout different land uses and soil types of the study area. Multiple linear regressions (MLR) were
used to investigate the spatiotemporal relationship of SOC, soil characteristics, and environmental
factors. Remote sensing data acquired from Landsat 5 TM in July 1995 and operational land imager
(OLI) in July 2018 were used to model SOC pool. The results revealed significant variations of
soil organic carbon pool (SOCP) among different soil textures and land-uses. Soil with high clay
content revealed an increase in the percentage of soil organic carbon, and had mean SOCP of
6.08 ± 1.91 Mg C ha−1, followed by clay loams and loamy soils. The higher values of SOCP were
observed in the northern regions of the study area. The phenomenon is associated with the expansion
of the human activity of initiating fish ponds that reflected higher values of SOC that were related to
the organic additions used as nutrients for fish. Nevertheless, the SOC values decreased in southeast
of the study area with the decrease of soil moisture contents and the increase in the heavy texture
profiles. As a whole, our findings pointed out that the human factor has had a significant impact on
the variation of soil organic carbon values in the Eastern Nile Delta from 1995 to 2018. As land use
changes from agricultural activity to fish ponds, the SOCP significantly increased. The agriculture
land-use revealed higher SOCP with 60.77 Mg C ha−1 in clay soils followed by fish ponds with
53.43 Mg C ha−1. The results also showed a decrease in SOCP values due to an increasing in land
surface temperature (LST) thus highlighting that influence of temperature and ambient soil conditions
linked to land-use changes have a marked impact on surface SOCP and C sequestration.

Keywords: Spatiotemporal Evaluation; Remote sensing indices; land use/land cover; GIS

1. Introduction

Soil contains the largest stock of organic carbon compared to vegetation and the atmosphere. It is
considered a main factor among environment elements that affects C reservoir of carbon stock totaling
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2500 Gt (1 Gt 1
4 109 t), of which about 20% are stored in the top soil layers [1]. Soil organic carbon

contents and storage are a global issue and are significantly linked to global warming. About 10%
of the Earth’s land surface is characterized by the presence of agro-ecosystems, and, consequently,
top soil organic carbon storage is directly influenced by human action [2].

Soil organic carbon is associated to soil characteristics, climate, topographic factors, and crop
management. The emission of CO2 is not only originated from combustion, but also from soil
organic carbon release due to a decreasing in soil organic sequestration equal to 1047.5 Gg CO2 [3].
The development of soils as an organic carbon reservoir is controlled by different soil characteristics,
such as, clay content, moisture level, aeration, soil depth, slope degree, and local aspects [4–6].
These factors affect the soil biological activities and, in turn, the transformation of organic matter.
The soil organic carbon pool (SOCP) varies among different soils: Clay soils in general contain relatively
high mean SOCP with 4.08 ± 1.41 kg C m2, while highest SOCP with 7.07 kg C m2 was observed in
a clay loam soil associated with soil type and soil water retention [7]. The lowest SOCP of 2.57 kg C m2

was observed in sandy clay loam soil that was associated with bare soil.
In arid and semi-arid regions, low precipitation with strong seasonality is one of the most

important controlling factors of the decay and transformation of soil organic matter. In these arid
conditions, to increase agricultural production (according to the economic and social situations of the
settlers), irrigation and mineral additive practices are commonly used, producing as a consequence
a reduction of carbon stocks in the soil layers [8]. Therefore, in arid to semi-arid areas, agriculture has
a significant influence on the stock of soil organic carbon at the local level. However, the annual rate of
loss of organic matter can vary greatly, depending on the specific cultivation practices and the type of
plant/crop cover, whereupon special focus has to be put on soil melioration measures such as irrigation
and drainage [9]. To better understand the impacts of land use and climate change on the carbon cycle
processes at a local scale [10,11], investigations on the spatiotemporal distributions of SOC pools and
their changing dynamics are required.

The estimation of the impact of human activity on the environment is a critical issue as clearly
highlighted in the 2030 Agenda on Sustainable Development ratified by the UN General Assembly in
September 2015. Indeed, the international community is facing critical challenges in addressing the
promotion of prosperity and people’s well-being while protecting the environment. It is expected that
the 2030 agenda will drive the global sustainable development until 2030 and beyond, monitoring
the process on the basis of 17 Sustainable Development Goals (SDGs), 169 targets translated into
232 indicators that intend to provide a management tool for countries to implement development
strategies. The 2030 Agenda for Sustainable Development clearly suggested the use of Geospatial
Information and Earth Observations (EO) to monitor progress and achieve the SDG targets. Our effort
is a contribution in the definition of the best practices and experiences regarding the production of
critical information necessary for the preservation of natural resources and environment. Our approach
is based on the joint use of (i) historical and updated data available from satellite technologies at
a global scale free of charge, and (ii) data processing to extract useful information from the investigated
dataset. In other words, the use of diverse satellite based proxy indicators are herein proposed as tools
to detect, compare, and capture the impacts of human activity over time in a quantitative, objective,
and reliable manner. Updated maps and related information are important for decision makers to
support and design sustainable development plans following the Agenda 2030 recommendations.
In particular, the use of satellite technologies today can suitably support the decision makers and the
development plan processes providing suitable free of charge tools useful for multi-temporal analysis
based on the past and the current conditions capturing changes at diverse temporal and spatial scales
from a global down to a local level.

The estimation and modelling of SOC contents using remote sensing technologies and geographical
information systems has increasingly gained importance as reliable tools useful to outline the
spatial variability of various soil phenomena, including soil organic carbon [12–14]. In particular,
satellite technologies can provide useful information to estimate SOC, allowing quantitative assessments
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of SOC contents using proxy indicators, such as spectral indices like the Normalized Difference
Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI), and Enhanced Vegetation
Index (EVI). According to several studies [15–24], the reliability of a quantitative assessment of SOC
contents depends on statistical prediction models such step-wise linear regression, principal component
regression, and partial least squares regression support vector regression (SVR), artificial neural
networks (ANN), and random forest (RF) used to infer the volume-dependent SOC content of the
soil body [15–25]. Remote sensing technologies and statistical analysis can enable us to overcome
the limitation of methods only based on field surveys and laboratory measurements, which provide
information limited to the sites where the measurement was done.

In this study we focused on the use of satellite data, statistical analysis and geographical
information systems in order to assess: (i) the spatiotemporal changes of SOC in selected areas (located
in the eastern Nile Delta), and (ii) the effects on the spatiotemporal changes of SOC.

2. Materials and Methods

2.1. Experimental Site

The study area is located in the eastern Nile Delta (31◦, 55 to 32◦, 26 E and 30◦, 22 to 31◦, 05 N;
Figure 1a,b). The elevation of the study area decreases from 45 m in the south to sea level in the
north. The area is characterized by Mediterranean climate with strong seasonal changes, and annual
rainfall averages of around 35 mm year−1 [26], annual temperature average of around 21.7 ◦C, and the
maximum temperatures in July reach 45 ◦C.
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The study area is quite homogeneous and characterized by two major landscapes: Fluvio-marine
flats shaped by fluvial and deltaic processes and river terraces shaped exclusively by alluviation
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processes [27]. Considering different land use types and soil types, 120 samples from top soils (0–30 cm)
were collected from the study area during the summer of 2018 year. In order to assess the changes in
the SOC pool since 1995, the soil sampling points correspond to the sampling locations as introduced
in the study by [28] (Figure 1). Field survey included the recording of natural landscape characters
as well as farming practices registering farm management, different agricultural operations, tillage,
organic additions, irrigation methods, etc. During field survey, each sampling point land-use was
coded and allocated to soil type; an attribute table was created including map unit ID, current land use,
soil type crop types, agricultural practices, tillage conditions, and soil erosion evidences. The analysis
of physical and chemical soil characteristics was achieved based on [29]. Landsat 5 TM images acquired
in July 1995 and Operational Land Imager (OLI) with spatial resolution of 30 m acquired in July 2018
were used to distinguish the changes of land use and land cover (LULC) between 1995 and 2018.
The support vector machine (SVM) has been applied to discriminate the spatial variation of LULC,
where utilized on the images acquired in 1995 and 2018 according to [30].

As the vegetation cover is always indicative of soil fertility and simultaneously indicates
the availability of SOC and soil nutrients, the NDVI was used. NDVI maps were generated
from the Operational Land Imager (OLI). The spatial heterogeneity in soil organic carbon
contents reflects the differentiation of soil properties of both physical and chemical characteristics.
Therefore, geomorphological characteristics and surface features were described based on remote
sensing and topographic 1: 10,000 map.

2.2. Soil Organic Carbon Pool Calculation

The evaluation of SOC has been relied upon the estimation of SOCP using (Mg C ha−1) according
to [31]. The current study focusses on the estimation of SOC changes from 1995 to 2018 with
implementing different soil characteristics (soil texture, bulk density, pH, and OM) as well as
climate data.

Soil organic matter (SOM) percentage was transformed to SOC percentage referring to [32].
Soil organic carbon pool was calculated for each region, depending on the analysis of the surface soil
samples at depth 0–30 cm (kg C m−2) using the equation suggested by [33] (see Equation (1));

SOCP =
[
L ∗ SOC ∗ B.D ∗

(
1−

F
100

)]
/10 (1)

where SOCP in 0–30 cm depth (kg m−2), SOC (wt. %), L thickness of the soil layer in cm, B.D soil bulk
density, usually at 33 kPa suction (Mg m−3), and F (fine soil fraction) < 2 mm coarse fragment (wt. %).

2.3. Land Surface Temperature Estimation

Land surface temperature was estimated based on thermal remote sensing data (Thermal band
10 of OLI) according to [34] as follows (see Equation (2);

Ts = γ (ε10 − 1(ψ1∗ L 10 sensor + ψ2) + ψ3) + δ

Ts = γ(ε10(ψ1 ∗ L10 sensor +ψ2) +ψ3) + δ
(2)

γ ≈ T210 sens(bγ ∗ L10 sens
δ ≈ T10 sens− (T2 10/bγ
Ts is land surface temperature (LST) in (Kelvin); ε10 is emissivity of Band 10 (unitless). L10sens is Band
10 radiance (ψ1, ψ2,ψ3)A = πr2 in (W. m−2. sr−1. µm−1); T10sens is Band 10 at-sensor brightness,
temperature in (K). λ 10 Band 10 effective wavelength in µm = 10.9000 µm; bγ = c2/λ = (1324K) for
TIRS−1, Band 10; (ψ1, ψ2, ψ3) are three atmospheric functions, w is the atmospheric water vapor content
in 4.11 g /cm2.
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2.4. Spatial Distribution Mapping and Validation

Thematic maps have been produced applying the Inverse Distance Weighting (IDW). This method
depends on the mean values of a phenomenon by the information of the nearby known points where
the neighboring points have more weights than distant points and vice versa [35] (see Equation (3));

Z(x0) =
n∑

i=1

wiZ(xi)wi =
1/d2

i∑n
i=1 1/d2

i

(3)

where Z (x0) is the value of SOC at the un sampled location x0, Z (xi) is the measured values of SOC
at the sampled location xi, n is the number of sample points, wi is the weight assigned to each Z (xi),
and di is the distance among observed and the estimated point.

The maps’ accuracy was achieved by comparison of the actual values and the predicted values.
As Root Mean Square Error (RMSE) was used where one-third of the total soil samples were selected
to verify the model accuracy based on the agreement between the observed and predicted [36].

IDW was chosen according to the recommendation of the study conducted by [37] for mapping
soil and sediment parameters. This study suggested that IDW is suitable and reliable and easier
to implement compared to kriging, which more time consuming and cumbersome. Even if kriging
provides a more accurate description of the data spatial structure and produces valuable information
about estimation error distributions, IDW is regarded as a good compromise between the reliability
and the complexity of implementation and this is a key issue for the generalization of this type of
investigation. The interpolation techniques commonly used in agriculture include inverse distance
weighting and kriging [38,39]. Several other studies, however, found inverse distance weighing to be
more accurate than kriging. Some studies found that squared inverse distance weighing produced
better interpolation results than any other method, including kriging [40].

Evaluating the effects of the human activities on the SOCP using Satellite imagery and GIS
techniques is presented by the frame work of the followed methodology, as shown in Figure 2.
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3. Results and Discussion

3.1. Land Use Changes and Anthopogenic Activities

Figure 3a,b illustrates the magnitude of the land use and land cover (LULC) changes from 1995 to
2018 along with the extension of the new reclamation areas in the eastern Nile Delta. The cultivated
area increased around 219,283 hectares from 1995 to 2018. This increment was linked to the necessity
to cope with the increased population growth in the same period [41,42].

The results of the change detection from 1995 to 2018, with overall accuracy 93.7% and Kappa
Coefficient 0.87, show that along with an increasing agricultural activities in the study area, there also
was observed an increasing in urban areas of around 18,585 hectares during the 23 years between
1995 and 2018 (Table 1). In addition, the results of the change detection pointed out that this urban
sprawl significantly affected the green surface areas and, thus, increased the emission of carbon
dioxide to the surrounded atmosphere [42]. The results of the change detection from 1995 to 2018
show that with increasing agricultural activities in the study area, the urban areas increased by
18,585 hectares during the 23 years between 1995 and 2018 (Table 1). Nevertheless, significant increase
in agricultural expansion into the desert areas (on the east of the Suez Canal) reflects an increase in
human activity. Additionally, the vegetation cover increased around 37,407.7 hectares between 1995
and 2008, mostly due to the spread of orchard areas for the cultivation of olive and mango trees [43].
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Table 1. Land-use change detection from 1995 to 2018 of the study area by hectare.

Class 1995 2018 Changes

(ha) (ha) (± ha)

Agriculture 221,696 240,890 19,194
Urban 15,929 34,514 18,585
Sabkha 14,574 18,993 4419

Bare area 165,791 16,326 −149,465
Fish farms 25,717 103,554 77,837
Orchards 17,331 45,901 28,570

Water bodies 11,553 12,413 860

3.2. NDVI Changes and Human Activity

NDVI is considered an efficient index to describe the vegetation density and photosynthetic
activity status [44]. The spatial changes of the vegetation cover between 1995 and 2018 are linked to
the agricultural development in the southern parts of the investigated area. This portion of farms
mainly depends on modern irrigations systems. The results of the NDVI distribution in 1995 and
2018 (Figure 4) illustrate that in 1995 the highest values of NDVI appeared in the western part of the
study area ranging between 0.4 and 0.69. Moreover, since 1995, the complete area is characterized
by moderate NDVI values of less than 0.5, corresponding to a mixture of bare soils and areas
covered by photosynthetic active vegetation [45,46]. Nevertheless, the spatial distribution of NDVI
values in 2018 reveal a distinct increase of the NDVI values in several locations of the study area
as a result of human activities during the previous 23 years. The results showed an increase in the
agricultural activity in the study area, especially in the new reclamation sites located east and west of
the Suez Canal [47]. Therefore, the NDVI values have increased in those areas reaching levels higher
to be more than 0.5. These variability changes in the NDVI values were attributed to some factors,
including human influences on management methods of land resource, type and quality of fertilization
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(minerals or organic), plant status, growth stage, and biomass and photosynthesis intensity [48].
Contrariwise, the effect of the urban sprawl at the north and west of the study area revealed a decrease
of the NDVI values, mainly occurring in scattered areas. Moreover, decreasing NDVI values from
0.5–0.69 in 1995 to 0.4–0.62 in 2018 occurred in areas that were affected by salinization processes.
These observations are consistent with the findings of [49], who also pointed out the negative impact
of soil degradation due to the deterioration of the land cover on the NDVI values.
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3.3. Soil Organic Carbon and Human Activities

The value of soil organic carbon pool (SOCP) in 1995 varied from 0.12 to 60.77 Mg C ha−1,
changing gradually to between 0.10 and 65.64 Mg C ha−1 in the year 2018 (Figure 5). In 1995, the high
values were found in the northern west of the study area, ranging from 23.11 to 60.77 Mg C ha−1, while in
2018 overall the soil organic carbon contents increased to 24.99 to 65.64 Mg C ha−1. Highest values were
observed in the fish farming areas due to additive of organic materials for fish feeding [50]; the expansion
of the fish ponds effected an increase of soil organic matter contents. Meanwhile, the results of soil
organic carbon values increased in 2018 from 24.99 to 65.64 Mg C ha−1 in 2018.



Sustainability 2019, 11, 2644 9 of 16

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 14 

values were found in the northern west of the study area, ranging from 23.11 to 60.77 Mg C ha⁻¹, 
while in 2018 overall the soil organic carbon contents increased to 24.99 to 65.64 Mg C ha⁻¹. Highest 
values were observed in the fish farming areas due to additive of organic materials for fish feeding 
[50]; the expansion of the fish ponds effected an increase of soil organic matter contents. Meanwhile, 
the results of soil organic carbon values increased in 2018 from 24.99 to 65.64 Mg C ha⁻¹ in 2018. 

(a) (b) 

Figure 5. Spatial distribution of soil organic carbon (SOC) pool for the study area between 1995 and 
2018: (a) spatial distribution of SOC pool in 1995; (b) spatial distribution of SOC pool in 2018. 

The spatial distribution of the SOC pool was significantly affected by human activity, in 
particular: 

i) The effect appeared with the urban sprawl on the cultivated lands characterized by high soil 
quality; this urban encroachment led to a decrease of areas suitable for agricultural land-use. 
Nevertheless, the increasing of the population density in Nile Delta initiated a pressure on the 
needs of increasing the agriculture sector yields [51]; 

ii) ii) An increase in SOC pool values in 2018, which can be explained by the enhancement of the 
agricultural practices and managements especially in the western parts of the study area. In 
contrast, in 1995 the agricultural practices predominantly occurred in the western parts of Suez 
Canal and Wadi Altumilatt [52]. 

3.4. Effect of Soil Characteristics on SOCP 

The dynamic change of SOCP is subjected to several factors besides human actions, including 
soil properties and exogenous factors such as global climate change. In spite of the homogenous 
mono cultivation agricultural practices that were applied in the study area region [53], the SOCP 
values underlie notable variations that can be attributed to the climate effects (Figure 6).  

Figure 5. Spatial distribution of soil organic carbon (SOC) pool for the study area between 1995 and
2018: (a) spatial distribution of SOC pool in 1995; (b) spatial distribution of SOC pool in 2018.

The spatial distribution of the SOC pool was significantly affected by human activity, in particular:

(i) The effect appeared with the urban sprawl on the cultivated lands characterized by high soil
quality; this urban encroachment led to a decrease of areas suitable for agricultural land-use.
Nevertheless, the increasing of the population density in Nile Delta initiated a pressure on the
needs of increasing the agriculture sector yields [51];

(ii) An increase in SOC pool values in 2018, which can be explained by the enhancement of the
agricultural practices and managements especially in the western parts of the study area.
In contrast, in 1995 the agricultural practices predominantly occurred in the western parts
of Suez Canal and Wadi Altumilatt [52].

3.4. Effect of Soil Characteristics on SOCP

The dynamic change of SOCP is subjected to several factors besides human actions, including soil
properties and exogenous factors such as global climate change. In spite of the homogenous mono
cultivation agricultural practices that were applied in the study area region [53], the SOCP values
underlie notable variations that can be attributed to the climate effects (Figure 6).
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The spatial distribution of the SOCP in 2018 revealed interesting phenomena paralleled with the
effect of the land surface temperature (LST). SOCP values decreased in particular locations to less
than 30 Mg C ha−1 compared to 1995 where at the same locations’ SOCP totaled more than 30 Mg C
ha−1. While variations in SOCP values can be due to several reasons, such as land surface temperature,
vegetation cover, human activity, and soil characteristic [54], the spatial correlation with satellite
images pointed out that the areas with lower SOCP values in 2018 than 1995 were characterized by
increased land surface temperature (LST), exceeding 38 ◦C in 2018 (Figure 7). An increase of land
surface temperature will accelerate decomposition of SOC by fauna and microorganisms, resulting in
SOC degradation and release the OC into the atmosphere as CO2 [55]. Comparable results for both
SOCP and LST document the heterogeneity distribution in the study area, as the areas with lower LST
values still implement the conventional cultivation systems which are often irregular in agricultural
practices. In addition, organic carbon values are observed in the bare areas. Figure 7 shows the
negative correlation between the spatial distribution of soil organic carbon pool and the land surface
temperature in 2018 as R2 was 0.77, as shown in Figure 6. These results are convenient with the
finding of [56].
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Moreover, the increase in the density of vegetative cover has direct effects on SOC due to
the increase of crop residue available for the composition of soil organic carbon. Figure 8 shows
a positive correlation between NDVI and SOCP with a reasonable correlation coefficient (R2 0.63).
Furthermore, the results point out that a relation between SOCP values and different soil characters:
In clay soils the SOCP varied from 1.7 to 53 Mg C ha−1, while in the sandy loam and sand clay loam
soils are characterized by minimum values of SOCP around 8 Mg C ha−1, and in clay loam soils
minimum SOCP totaled 5.59 Mg C m2 (Figure 8).
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Figure 8. Effect of different soil types (e.g., silty, sand loam, sand clay, sand, etc.) on the soil organic
carbon pool (SOCP).

Sandy soils have relatively low SOCP values ranging from 0.12 to 25 Mg C ha−1. Nevertheless, in the
northern part of the study area which is characterized by clayey soils, the SOCP values reduced
between 1995 and 2018 due to the deterioration of the physical properties such as the bulk density
(Figure 4). The results show that, in 1995 the values were found to be ranging from a minimum of
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1.35 gcm3 to maximum of 1.9 gcm3 (with mean of 1.65 gcm3 in 1995), whereas in 2018 were found to be
ranging from a minimum of 1.25 gcm3 to maximum of 1.7 gcm3 with mean of 1.67 gcm3. The observed
degradation of soil organic carbon pool mainly refers to the relationship between organic matter
contents, soil types, soil porosity and bulk density, which well fit with [57,58].

The decrease of SOCP predominantly refers to an increase of land degradation processes in the
east of Nile Delta, and corresponds to the effects of management practices in terms of the use of
heavy engines for tillage affecting the soil physical properties such structure and soil porosity in the
northern Nile Delta [59–61] in the study area reflected by the decomposition of organic material and
SOCP (Table 2).

Table 2. Effect of different soil types (e.g., silty, sand loam, sand clay, sand, etc.) on the soil organic
carbon pool (SOCP).

Silty Loam Sand Loam Sand Clay
Loam Sand Clay Sand Loamy Sand Loam Clay Loam Clay

Min 18.7 36.4 18.7 13.8 4.9 19.4 36.6 25.0 34.6
Mean 29.3 50.9 25.2 28.6 19.4 26.5 41.8 31.7 44.9
Max 35.0 61.1 29.0 50.2 25.9 34.0 49.7 44.8 54.3
Std. 7.3 11.4 4.6 15.4 9.7 5.9 5.6 8.9 8.1

4. Conclusions

The outputs from our investigation clearly highlighted that the use of satellite data can provide
useful proxy indicators which (i) enable us to satisfactorily model the SOC pool and (ii) make the
approach re-applicable to other study areas and geographic regions also considering that our approach
is based on the use of free of charge satellite data (Landsat 5 TM) available systematically for the whole
globe from the NASA and USGS website. In particular, our analysis has been based on remote sensing
images Landsat 5 TM (acquired in July 1995 and operational land imager (OLI) acquired in July 2018).
The results revealed significant variations of soil organic carbon pool (SOCP) among different soil
textures and land-uses. Spatiotemporal changes of soil organic carbon pool in the east of the Nile
Delta between 1995 and 2018 document the heterogeneity and complexity of processes affecting SOCP
values. With our research we document the positive and negative impacts of human activity on SOCP
values in agricultural systems of Egyptian drylands. In particular, the change from agriculture to
fish farming caused an increase SOCP in the northern parts of the study area as a result of organic
additions. Furthermore, the agricultural expansion of new reclaimed areas between 1995 and 2018
caused an increase in vegetation cover due to an increase of cultivation—finally reflected in increasing
of soil organic matter contents east of the Suez Canal and some of the southern parts of the study area.
In contrast, SOCP values were decreased in some areas in the north and west of the study site as a result
of the negative management practices causing increased land degradation processes such as increasing
soil bulk density and soil salinity that in turn negatively affects biological activity in the soils.

As a whole, our results pointed out that the use of historical archives as well as the past and current
space data today available, even updated weekly, provides an excellent data source suitable to monitor
human activity and support systematic low cost monitoring over large areas. In actuality, satellite data
provide both (i) historical time-series data set and (ii) timely updated information related to the current
and past human activities in terms of land use/land cover and their characteristics as well as parameters
(proxy indicators) suitable to assess, characterize, and better understand and manage the impact of
the human activities on environment. Updated maps and related information are very important
for planners to design sustainable development plans following the Agenda 2030 recommendations.
In particular, the use of satellite technologies today can suitable support the decision maker and the
development plan processes providing suitable free of charge tools useful for multi-temporal analysis
based on the past and the current conditions capturing changes at diverse temporal and spatial scales
from global, down to a local level.



Sustainability 2019, 11, 2644 13 of 16

Author Contributions: The research article included three main contributions; field survey, satellite imagery
interpretation, and writing the text. M.A. and M.A.E.A. provided the field survey. The satellite image data have
been analyzed by M.E. and M.A.E.A. The text of article was written by M.A. and B.S. The last version of the article
was revised by R.L. and B.S.

Acknowledgments: The manuscript presented an efficient scientific participation between the scientific institutions
in three countries (Egypt, German and Italy). The authors would like to thank the University of Basilicata and
Italian National Research Council (CNR) at Potenza, Italy, and the institute of Geographic Sciences, FU Berlin,
Germany, for supporting the research activities. Special thanks to the National Authority for Remote Sensing and
Space Science (NARSS) for funding the satellite data and the field survey.

Conflicts of Interest: The authors would like to hereby certify that no conflict of interest in the data collection,
analyses, and the interpretation; in the writing of the manuscript, and in the decision to publish the results.
Authors would like also to declare that the funding of the study has been supported by the authors’ institutions.

References

1. Tan, Z.X.; Lal, R.; Smeck, N.E.; Calhoun, F.G. Relationships between surface soil organic carbon pool and site
variables. Geoderma 2004, 121, 187–195. [CrossRef]

2. Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt.
Strateg. Glob. Chang. 2002, 7, 85–114. [CrossRef]

3. Abu-hashim, M.; Elsayed, M.; Belal, A.E. Effect of land-use changes and site variables on surface soil organic
carbon pool at Mediterranean Region. J. Afr. Earth Sci. 2016, 114, 78–84. [CrossRef]

4. Silva, E.C.D.; Muraoka, T.; Franzini, V.I.; Villanueva, F.C.A.; Buzetti, S.; Moreti, D. Phosphorus utilization
by corn as affected by green manure, nitrogen and phosphorus fertilizers. Pesquisa Agropecuaria Brasileira
2012, 47, 1150–1157. [CrossRef]

5. Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Li Liu, D.; Simpson, M.; McGowen, I.; Sides, T.
Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of
eastern Australia. Ecol. Indic. 2018, 88, 425–438. [CrossRef]

6. Cambardella, C.A.; Elliott, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence.
Soil Sci. Soc. Am. J. 1992, 56, 777–783. [CrossRef]

7. Abu-Hashim, M.; Mohamed, E.; Belal, A.E. Identification of potential soil water retention using hydric
numerical model at arid regions by land-use changes. Int. Soil Water Conserv. Res. 2015, 3, 305–315.
[CrossRef]

8. Mohamed, E.S.; Saleh, A.M.; Belal, A.A. Sustainability indicators for agricultural land use based on GIS
spatial modeling in North of Sinai-Egypt. Egypt. J. Remote Sens. Space Sci. 2014, 17, 1–15. [CrossRef]

9. Zhou, T.; Shi, P.; Wang, S. Impacts of climate change and human activities on soil carbon storage in China.
Acta Geogr. Sinica 2003, 58, 727–734.

10. Sreenivas, K.; Dadhwal, V.K.; Kumar, S.; Harsha, G.S.; Mitran, T.; Sujatha, G.; Suresh, G.J.R.; Fyzee, M.A.; Ravisankar, T.
Digital mapping of soil organic and inorganic carbon status in India. Geoderma 2016, 269, 160–173. [CrossRef]

11. Lu, W.; Lu, D.; Wang, G.; Wu, J.; Huang, J.; Li, G. Examining soil organic carbon distribution and dynamic
change in a hickory plantation region with Landsat and ancillary data. CATENA 2018, 165, 576–589.
[CrossRef]

12. Ardö, J.; Olsson, L. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY
model. J. Arid Environ. 2003, 54, 633–651. [CrossRef]

13. Mishra, U.; Lal, R.; Liu, D.; Van Meirvenne, M. Predicting the spatial variation of the soil organic carbon pool
at a regional scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [CrossRef]

14. Mohamed, E.S.; Morgun, E.G.; Kovda, I.V. Assessment of soil degradation in the eastern part of the Nile
Delta. Mosc. Univ. Soil Sci. Bull. 2011, 66, 86. [CrossRef]

15. Elfadaly, A.; Attia, W.; Qelichi, M.M.; Murgante, B.; Lasaponara, R. Management of Cultural Heritage
Sites Using Remote Sensing Indices and Spatial Analysis Techniques. Surv. Geophys. 2018, 39, 1347–1377.
[CrossRef]

16. Elfadaly, A.; Attia, W.; Lasaponara, R. Monitoring the Environmental Risks Around Medinet Habu and
Ramesseum Temple at West Luxor, Egypt, Using Remote Sensing and GIS Techniques. J. Archaeol. Method
Theory 2018, 25, 587–610. [CrossRef]

http://dx.doi.org/10.1016/j.geoderma.2003.11.003
http://dx.doi.org/10.1023/A:1015862228270
http://dx.doi.org/10.1016/j.jafrearsci.2015.11.020
http://dx.doi.org/10.1590/S0100-204X2012000800016
http://dx.doi.org/10.1016/j.ecolind.2018.01.049
http://dx.doi.org/10.2136/sssaj1992.03615995005600030017x
http://dx.doi.org/10.1016/j.iswcr.2015.10.005
http://dx.doi.org/10.1016/j.ejrs.2014.05.001
http://dx.doi.org/10.1016/j.geoderma.2016.02.002
http://dx.doi.org/10.1016/j.catena.2018.03.007
http://dx.doi.org/10.1006/jare.2002.1105
http://dx.doi.org/10.2136/sssaj2009.0158
http://dx.doi.org/10.3103/S0147687411030069
http://dx.doi.org/10.1007/s10712-018-9489-8
http://dx.doi.org/10.1007/s10816-017-9347-x


Sustainability 2019, 11, 2644 14 of 16

17. Elfadaly, A.; Wafa, O.; Abouarab, M.A.; Guida, A.; Spanu, P.G.; Lasaponara, R. Geo-Environmental Estimation
of Land Use Changes and Its Effects on Egyptian Temples at Luxor City. ISPRS Int. J. Geo-Inf. 2017, 6, 378.
[CrossRef]

18. Elfadaly, A.; Lasaponara, R.; Murgante, B.; Qelichi, M.M. Cultural Heritage Management Using Analysis of
Satellite Images and Advanced GIS Techniques at East Luxor, Egypt and Kangavar, Iran (A Comparison Case
Study). In International Conference on Computational Science and Its Applications; Springer: Cham, Switzerland,
2017; pp. 152–168.

19. Lasaponara, R.; Murgante, B.; Elfadaly, A.; Qelichi, M.M.; Shahraki, S.Z.; Wafa, O.; Attia, W. Spatial open data
for monitoring risks and preserving archaeological areas and landscape: Case studies at Kom el Shoqafa,
Egypt and Shush, Iran. Sustainability 2017, 9, 572. [CrossRef]

20. Lasaponara, R.; Elfadaly, A.; Attia, W. Low cost space technologies for operational change detection
monitoring around the archaeological area of Esna-Egypt. In International Conference on Computational Science
and Its Applications; Springer: Cham, Switzerland, 2016; pp. 611–621.

21. Guo, P.T.; Li, M.F.; Luo, W.; Tang, Q.F.; Liu, Z.W.; Lin, Z.M. Digital mapping of soil organic matter for rubber
plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma
2015, 237, 49–59. [CrossRef]

22. Geisler-Lee, J.; Caldwell, C.; Gallie, D.R. Expression of the ethylene biosynthetic machinery in maize roots is
regulated in response to hypoxia. J. Exp. Bot. 2009, 61, 857–871. [CrossRef]

23. Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of
variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [CrossRef]

24. Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated
and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [CrossRef]

25. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.I. Assessing the suitability of data
from Sentinel-1A and 2A for crop classification. GIScience Remote Sens. 2017, 54, 918–938. [CrossRef]

26. Egyptian Meteorological Authority. Climatic Atlas of Egypt; Ministry of Transport: Cairo Governorate, Egypt, 1996.
27. Staff, F.A.O. Bibliography on Soil and Related Sciences for Latin America; World Soil Resources Report; FAO:

Roma, Italy, 1966; Volume 23, p. 105.
28. Moussa, W.; El-Nahry, F.; Abd El Galil, A. National Survey for Assessment of Vitamin A Status in Egypt;

National Nutrition Institute/UNICEF: Cairo, Egypt, 1995.
29. Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res.

2006, 87, 194–204. [CrossRef]
30. Leon, C.T.; Shaw, D.R.; Cox, M.S.; Abshire, M.J.; Ward, B.; Wardlaw, M.C.; Watson, C. Utility of remote

sensing in predicting crop and soil characteristics. Precis. Agric. 2003, 4, 359–384. [CrossRef]
31. Lal, R. Soil erosion impact on agronomic productivity and environment quality. Crit. Rev. Plant Sci. 1998, 17, 319–464.

[CrossRef]
32. Neff, J.C.; Townsend, A.R.; Gleixner, G.; Lehman, S.J.; Turnbull, J.; Bowman, W.D. Variable effects of nitrogen

additions on the stability and turnover of soil carbon. Nature 2002, 419, 915. [CrossRef] [PubMed]
33. Lu, F.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen

fertilizer application, straw return and no-tillage in China’s cropland. Glob. Change Biol. 2009, 15, 281–305.
[CrossRef]

34. Chamen, T.; Alakukku, L.; Pires, S.; Sommer, C.; Spoor, G.; Tijink, F.; Weisskopf, P. Prevention strategies for
field traffic-induced subsoil compaction: A review: Part 2. Equipment and field practices. Soil Tillage Res.
2003, 73, 161–174. [CrossRef]

35. Zhang, Z.; Yu, D.; Shi, X.; Warner, E.; Ren, H.; Sun, W.; Tan, M.; Wang, H. Application of categorical
information in the spatial prediction of soil organic carbon in the red soil area of China. Soil Sci. Plant Nutr.
2010, 56, 307–318. [CrossRef]

36. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against
avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

37. El-Zeiny, A. Remote Sensing and GIS for Assessment and Mapping of the Environmental Degradation in the Coastal
Region at Damietta—Egypt. Ph.D. Thesis, Faculty of Sciences, Damietta University, Damietta, Egypt, 2015.

38. Franzen, D.; Peck, T. Field soil sampling density for variable rate fertilization. J. Prod. Agric. 1995, 8, 568–574.
[CrossRef]

http://dx.doi.org/10.3390/ijgi6110378
http://dx.doi.org/10.3390/su9040572
http://dx.doi.org/10.1016/j.geoderma.2014.08.009
http://dx.doi.org/10.1093/jxb/erp362
http://dx.doi.org/10.1097/00010694-194704000-00001
http://dx.doi.org/10.2136/sssaj1998.03615995006200050032x
http://dx.doi.org/10.1080/15481603.2017.1351149
http://dx.doi.org/10.1016/j.still.2005.03.011
http://dx.doi.org/10.1023/A:1026387830942
http://dx.doi.org/10.1080/07352689891304249
http://dx.doi.org/10.1038/nature01136
http://www.ncbi.nlm.nih.gov/pubmed/12410307
http://dx.doi.org/10.1111/j.1365-2486.2008.01743.x
http://dx.doi.org/10.1016/S0167-1987(03)00108-9
http://dx.doi.org/10.1111/j.1747-0765.2010.00457.x
http://dx.doi.org/10.5194/gmd-7-1247-2014
http://dx.doi.org/10.2134/jpa1995.0568


Sustainability 2019, 11, 2644 15 of 16

39. Weisz, R. Map generation in high-value Horticultural Integrated Pest Management: Appropriate Interpolation
Methods for Site- specific pest management of Colorado potato beetle (Coleoptera: Chrysomelidae).
J. Econ. Entomol. 1995, 88, 1650–1657. [CrossRef]

40. Weber, D.; Englund, E. Evaluation and comparison of spatial interpolators. Math. Geol. 1992, 24, 381–391.
[CrossRef]

41. Mohamed, E.S.; Schütt, B.; Belal, A. Assessment of environmental hazards in the north western coast-Egypt
using RS and GIS. Egypt. J. Remote Sens. Space Sci. 2013, 16, 219–229. [CrossRef]

42. El-Zeiny, A.M.; Effat, H.A. Environmental monitoring of spatiotemporal change in land use/land cover and
its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sens. Appl. Soc. Environ.
2017, 8, 266–277. [CrossRef]

43. AbdelRahman, M.A.; Shalaby, A.; Mohamed, E.S. Comparison of two soil quality indices using two methods
based on geographic information system. Egypt. J. Remote Sens. Space Sci. 2018. [CrossRef]

44. Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great
Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium,
Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 48–62.

45. Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC)
prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2017, 20, 61–70. [CrossRef]

46. Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van
Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands.
ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [CrossRef]

47. Bratley, K.; Ghoneim, E. Modeling Urban Encroachment on the Agricultural Land of the Eastern Nile Delta
Using Remote Sensing and a GIS-Based Markov Chain Model. Land 2018, 7, 114. [CrossRef]

48. Luo, H.; Dai, S.; Xie, Z.; Fang, J. NDVI-Based analysis on the influence of human activities on vegetation
variation on Hainan Island. In IOP Conference Series: Earth and Environmental Science; IOP Publishing:
Bristol, UK, 2018; Volume 121, p. 032045.

49. Hammam, A.A.; Mohamed, E.S. Mapping soil salinity in the East Nile Delta using several methodological
approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2018. [CrossRef]

50. Oldeman, L.R.; Hakkeling, R.T.; Sombroek, W.G. World Map of the Status of Human-Induced Soil Degradation:
An Explanatory Note, 2nd ed.; ISRIC: Wageningen, The Netherlands, 1991.

51. Mohamed, E.S.; Belal, A.; Shalaby, A. Impacts of soil sealing on potential agriculture in Egypt using remote
sensing and GIS techniques. Eurasian Soil Sci. 2015, 48, 1159–1169. [CrossRef]

52. El Nahry, A.H. Using Aerial Photo Techniques for Soil Mapping in Some Areas East of the Nile Delta. Master
Degree Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt, 1997.

53. Elnaggar, A.A. Spatial and temporal changes in agricultural lands eastern Nile-delta, Egypt. J. Soil Sci. Agric.
Eng. Mansoura Univ. 2013, 4, 187–201.

54. Cao, Q.; Wang, H.; Zhang, Y.; Lal, R.; Wang, R.; Ge, X.; Liu, J. Factors affecting distribution patterns of organic
carbon in sediments at regional and national scales in China. Sci. Rep. 2017, 7, 5497. [CrossRef]

55. Janzen, H.H.; Campbell, C.A.; Ellert, B.H.; Bremer, E. To Soil Quality. In Soil Quality for Crop Production and
Ecosystem Health; Elsevier Science & Technology: Oxford, UK, 1997; Volume 25, p. 277.

56. Göl, C. Assessing the amount of soil organic matter and soil properties in high mountain forests in Central
Anatolia and the effects of climate and altitude. J. For. Sci. 2017, 63, 199–205.

57. Belal, A.E.; Elsayed, M.; Abu-hashim, M. Land Evaluation Based on GIS-Spatial Multi-Criteria Evaluation
(SMCE) for Agricultural Development in Dry Wadi, Eastern Desert, Egypt. Int. J. Soil Sci. 2015, 10, 100–116.
[CrossRef]

58. Tanveera, A.; Kanth, T.A.; Tali, P.A.; Naikoo, M. Relation of soil bulk density with texture, total organic matter
content and porosity in the soils of Kandi Area of Kashmir valley, India. Int. Res. J. Earth Sci. 2016, 4, 1–6.

59. Mohamed, E.S.; Belal, A.; Saleh, A. Assessment of land degradation east of the Nile Delta, Egypt using
remote sensing and GIS techniques. Arab. J. Geosci. 2013, 6, 2843–2853. [CrossRef]

http://dx.doi.org/10.1093/jee/88.6.1650
http://dx.doi.org/10.1007/BF00891270
http://dx.doi.org/10.1016/j.ejrs.2013.11.003
http://dx.doi.org/10.1016/j.rsase.2017.10.003
http://dx.doi.org/10.1016/j.ejrs.2018.03.001
http://dx.doi.org/10.1016/j.ejrs.2016.06.004
http://dx.doi.org/10.1016/j.isprsjprs.2018.11.026
http://dx.doi.org/10.3390/land7040114
http://dx.doi.org/10.1016/j.ejrs.2018.11.002
http://dx.doi.org/10.1134/S1064229315100075
http://dx.doi.org/10.1038/s41598-017-06035-z
http://dx.doi.org/10.3923/ijss.2015.100.116
http://dx.doi.org/10.1007/s12517-012-0553-2


Sustainability 2019, 11, 2644 16 of 16

60. Hassaan, A.M.; Belal, A.A.; Hassan, M.A.; Farag, F.M.; Mohamed, E.S. Potential of thermal remote sensing techniques
in monitoring waterlogged area based on surface soil moisture retrieval. J. Afr. Earth Sci. 2019, 155, 64–74. [CrossRef]

61. Mohamed, E.S.; Ali, A.; El-Shirbeny, M.; Abutaleb, K.; Shaddad, S. Mapping soil moisture and their correlation
with crop pattern using remotely sensed data in arid region. Egypt. J. Remote Sens. Space 2019. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jafrearsci.2019.04.005
http://dx.doi.org/10.1016/j.ejrs.2019.04.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Site 
	Soil Organic Carbon Pool Calculation 
	Land Surface Temperature Estimation 
	Spatial Distribution Mapping and Validation 

	Results and Discussion 
	Land Use Changes and Anthopogenic Activities 
	NDVI Changes and Human Activity 
	Soil Organic Carbon and Human Activities 
	Effect of Soil Characteristics on SOCP 

	Conclusions 
	References

