
Noname manuscript No.
(will be inserted by the editor)

Modelling Algebraic Structures and Morphisms in ACL2

Jónathan Heras · Francisco Jesús
Mart́ın–Mateos · Vico Pascual

Received: date / Accepted: date

Abstract In this paper, we present how algebraic structures and morphisms
can be modelled in the ACL2 theorem prover. Namely, we provide a guide-
line to implement a set of tools that facilitates the formalisations related to
algebraic structures — as a result, an algebraic hierarchy ranging from se-
toids to vector spaces has been developed. The resultant tools can be used
to simplify the development of generic theories about algebraic structures. In
particular, the benefits of using the tools presented in this paper, compared to
a from-scratch approach, are especially relevant when working with complex
mathematical structures; for example, the structures employed in Algebraic
Topology. This work shows that ACL2 can be a suitable tool for formalising
algebraic concepts coming, for instance, from computer algebra systems.

Keywords Mathematical structures, ACL2, Algebraic hierarchy, Proof
engineering, Computer Algebra systems, Formal verification.

This works was partially supported by Ministerio de Educación y Ciencia, project
MTM2009-13842-C02-01, and by the European Union’s 7th Framework Programme under
grant agreement nr. 243847 (ForMath).

J. Heras (corresponding author) and V. Pascual
Department of Mathematics and Computer Science, University of La Rioja, Edificio Vives,
Luis de Ulloa, s/n. 26004 Logroño, Spain.
Tel.: (+34) 941299461
Fax: +34 941299460
E-mail: jonathan.heras@unirioja.es, vico.pascual@unirioja.es

F.J. Mart́ın–Mateos
Computational Logic Group, Dept. of Computer Science and Artificial Intelligence, Univer-
sity of Seville, E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain.
E-mail: fjesus@us.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/200977628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Jónathan Heras et al.

1 Introduction

Computer Algebra Systems (CAS) are powerful tools used, almost on a daily
basis, by researchers on different areas. The performance of these systems keeps
improving thanks to the introduction of new algorithms and the use of more
efficient structures. The correctness of these new algorithms and structures is
usually provided by theoretical means; however, bugs can be introduced during
their implementation — e.g. a bug in the computation of some determinants
with big integers was found in Mathematica [22].

Interactive Theorem Provers (ITPs) have been broadly employed to in-
crease the confidence in CAS using different approaches; some examples are:
the formalisation of CAS algorithms [5,18,53], the creation of environments to
develop certified programs for symbolic computation [55], the implementation
of ITPs on top of CAS and viceversa [11,40], and the communication between
CAS and ITPs to ensure the correctness of some computations [1, 10,16,31].

An instrumental component in most CAS are algebraic structures since
they are the basis for several constructions. Therefore, it makes sense to use
ITPs to certify the correctness of the implementation of those structures. The
implementation of algebraic structures in ITPs is a well-known problem; and
most ITPs offer a set of tools to deal with it. In the literature, several imple-
mentations of algebraic structures have been produced for different systems,
and with different aims — most of these implementations were developed in
the form of algebraic hierarchies.

Coq is probably the most prolific system in this sense. Up to the best of
our knowledge, 4 different approaches have been considered in this system to
formalise algebraic structures. An algebraic hierarchy that tries to imitate the
hierarchy of the Axiom computer algebra system [38] was implemented in [56].
The formalisation of the Fundamental Theorem of Algebra, see [26], employed
the hierarchy presented in [25]. The SSReflect hierarchy, introduced in [24],
has played a key role in the formalisation of the Feit-Thompson theorem [27].
Another hierarchy was developed in [63] having as final goal the formalisation
of practical exact real arithmetic.

Two Ph.D. theses have been devoted, at least partially, to this topic. A
hierarchy for the Nuprl system appeared in Jackson’s thesis [37], and was the
basis for proving some results about abstract algebra — this hierarchy had as
final aim the connection with the Weyl computer algebra system [66]. Bailey
implemented in his Ph.D. thesis [7] an algebraic hierarchy that was used to
formalise part of Galois theory in Lego.

There are also different approaches in the family of HOL theorem provers.
A basic theory of groups was developed in HOL using the hierarchy presented
in [29]. As can be seen in [9], the Isabelle/HOL system provides a library
to formalise abstract algebra which has been successfully used to prove, for
instance, Sylow theorems. In addition, there is also a hierarchy for relation
and Kleene algebras in Isabelle [6, 23], and a hierarchy that models Axiom’s
hierarchy [8].



Modelling Algebraic Structures and Morphisms in ACL2 3

We can also find a classical set-theoretic treatment of algebra in Mizar.
The different structures, like group, ring and field are defined in several pa-
pers by various authors [39]. A report about some formalisation issues faced
during these developments can be seen in [60]. Abstract algebra has been also
formalised in constructive set theory using the MetaPRL system [65].

These algebraic hierarchies are interesting on their own (they have been
used to formalise an impressive number of results); but, most of them are not
directly related to CAS. However, there are some hierarchies that have been
applied to study CAS [8,37,56]. An interesting example is the use of different
hierarchies to formalise several constructions coming from the Kenzo computer
algebra system [21].

Kenzo is a Common Lisp system devoted to Algebraic Topology which was
developed by Francis Sergeraert. The Kenzo system has obtained some results
not confirmed nor refuted by neither theoretical or computational means [61],
and also has been used to refute some computations obtained by theoretical
means [57, 58]. This implies that increasing user’s trust in this system is a
relevant issue.

Several ITPs have been used to formalise different instrumental results
implemented in Kenzo. The Basic Perturbation Lemma [59] was formalised in
Isabelle/HOL (see [3]) using the algebraic hierarchy presented in [9]. In the
same line, the Effective Homology of the Bicomplexes was formalised in Coq
(see [20]) extending the algebraic hierarchy of [25]. These formalisations were
related to algorithms and not to the real programs implemented in Kenzo. The
problem of extracting programs from the Isabelle/HOL proofs was studied [4],
but even there, the programs are generated in ML, far from Kenzo.

The ACL2 theorem prover is oriented to prove properties of programs
written in (a subset) of Common Lisp; and, it has been successfully employed
to study some critical fragments of actual Kenzo code [2,35,36,50] — due to the
restrictions of the ACL2 language, some well-known and safe transformations
were required (e.g. loops were replaced by tail-recursive functions). The works
presented in [2, 35,36,50] did not concern algebraic structures, but ACL2 has
also been used to formalise constructions (the Normalisation theorem and the
Eilenberg-Zilberg theorem [59]) involving algebraic structures implemented in
Kenzo, see [44,47]. In contrast to the works in Isabelle and Coq, the algebraic
structures involved in the ACL2 formalisations were developed from scratch
instead of using, as a basis, a previously developed algebraic hierarchy.

The formalisations presented in [44, 47] show that it is possible to reason
about algebraic concepts in ACL2; however, the first-order quantifier-free logic
of ACL2 stands in the way of a widespread use of this ITP to work with
algebraic structures. In this paper, we show how this weakness can be overcome
thanks to two of ACL2’s great strengths: programmable extensibility and proof
automation. In particular, we provide a guideline to implement a set of tools
that makes working with algebraic structures in ACL2 easier — as a result, a
hierarchy of algebraic structures ranging from setoids to vector spaces has been
developed. Using these tools as a basis, we can easily develop generic theories
that model statements like “Let A be an S algebraic structure, then . . .”. This



4 Jónathan Heras et al.

can be applied, for instance, to define generic constructions (e.g. the definition
of the direct product from two generic groups) — generic constructions are
instrumental in CAS, since they simplify the creation of new objects from
others that have been previously defined [62].

Once that ACL2’s weakness is overcome, the use of ACL2 by CAS devel-
opers is justified for two reasons. First, the learning curve in ACL2 is not as
steep as in other ITPs since ACL2’s prover is semi-automatic, and its language
(Common Lisp) is the same as in several CAS (e.g. Kenzo, Axiom [38], Max-
ima [52], Reduce [32] and Weyl [66]). In addition, since the language is the
same, ACL2 formalisations are closer to actual CAS code than formalisations
in other ITPs — this might require some code-transformations and proofs by
successive refinements, as for instance applied in [50].

The rest of this paper is organized as follows. In the next section, we
present a brief introduction to the ACL2 system and the tools employed in
our development. Section 3 is devoted to present how algebraic structures can
be modelled from scratch in ACL2 (this is the approach followed in [44, 47]),
and the difficulties that are associated with this process. To overcome those
problems, we present a guideline to implement a set of tools for algebraic
structures in Section 4. These tools are the basis to simplify the development
of generic theories about algebraic structures, as explained in Section 5. In
Section 6, the ideas presented in Sections 4 and 5 are extrapolated to the
formalisation of a construction implemented in the Kenzo system: the cone of
a chain complex morphism; additionally, this section shows a comparison of
different approaches to tackle this formalisation. Finally, Section 7 concludes
the paper.

2 A Brief Introduction to ACL2

ACL2 [41, 43] is a programming language, a logic, and a theorem prover sup-
porting reasoning in the logic. The ACL2 programming language is an exten-
sion of an applicative subset of Common Lisp. The ACL2 logic is a first-order
logic with equality, used for specifying properties and reasoning about the
functions defined in the programming language. All the variables in the for-
mulas allowed by the ACL2 system are implicitly universally quantified. The
syntax of its terms and formulas is that of Common Lisp, and it includes ax-
ioms for propositional logic, equality, and for a number of predefined Common
Lisp functions and data types. Rules of inference of the logic include those for
propositional calculus, equality and instantiation.

One important rule of inference is the principle of induction, that allows
proofs by well-founded induction on the ordinal ε0. The logic has a constructive
definition of the ordinals up to ε0, in terms of lists and natural numbers. The
system also includes the usual well-founded order relation defined on this set
of ordinals.

By the principle of definition, new function definitions are admitted as ax-
ioms only if there exists a measure and a well-founded relation with respect



Modelling Algebraic Structures and Morphisms in ACL2 5

to which the arguments of each recursive call decrease, thus ensuring that the
function terminates. In this way, new definitions do not introduce inconsisten-
cies. Usually, the system can prove automatically termination properties using
both a predefined ordinal measure and the built-in well-founded relation on
ordinals. Nevertheless, if the termination proof is not trivial, the user has to
explicitly provide a measure on the arguments and a well-founded relation with
respect to which this measure decreases. In addition, new function definitions
must be total on the language of terms, so when functions are naturally de-
fined only working on a subset of terms, some behaviour must also be defined
on arguments outside of that subset.

An additional way to introduce new function symbols in the logic is by
means of the encapsulate mechanism [42]. Instead of giving their definitional
body, only certain properties are assumed about them; to ensure consistency,
witness functions (which are functions local to an encapsulate block) having
the same properties have to be exhibited. Inside an encapsulate, the properties
stated need to be proved for the local witnesses, and outside, they work as
assumed axioms.

A derived rule of inference, called functional instantiation [41], provides a
limited higher-order-like reasoning mechanism instantiating the function sym-
bols of a previously proved theorem. This rule replaces function symbols with
other functions, provided it can be proved that the new functions satisfy the
constraints or the definitional axioms of the replaced functions (depending
on whether they were introduced by an encapsulate or by the principle of
definition, respectively).

The ACL2 theorem prover mechanises the ACL2 logic, and is particularly
successful obtaining mechanical proofs, mainly, based on simplification and
induction. The role of the user in this mechanisation is important: usually a
non-trivial result is not proved in a first attempt, and the user has to lead the
prover to a successful proof providing a set of lemmas, inspired by the failed
proof, that the prover uses mainly as rewriting rules.

In this work, we extensively use macros [41], a mechanism for creating
specialised notation, and for abbreviating commonly occurring expressions in
ACL2. Macros are functions on s-expressions whose output is interpreted as
an ACL2 command containing terms and formulas computed from the input.

We will skip many details and some of the function definitions will be
omitted. The interested reader can consult the complete source code at http:
//www.unirioja.es/cu/joheras/ahomsia/. In addition, a detailed explana-
tion of the implementation of the tools presented in this paper can be read
in [34].

3 Defining Algebraic Structures in ACL2 From Scratch

In this section, we explain how algebraic structures can be modelled from
scratch in ACL2, and the problems associated with this process. As a running
example, we consider the definition of setoids [12].

http://www.unirioja.es/cu/joheras/ahomsia/
http://www.unirioja.es/cu/joheras/ahomsia/


6 Jónathan Heras et al.

A setoid X = (X,∼X) is a set X together with an equivalence relation ∼X

on it. Setoids are commonly used in the mechanised development of algebraic
structures (see [7,9,25,29,56,63]) mainly for two reasons. From a mathematical
point of view, we can form the quotient of a set by changing its equivalence
relation — we will provide an example in Section 5. Moreover, the represen-
tation of a set in a computer needs the encoding of the equality of such a set
(this was deeply studied in [45]), and setoids can be used with this aim.

A setoid can be represented by means of two functions: the characteristic
function of the underlying set (the invariant), and a binary function encoding
the equivalence relation. ACL2 provides a way to define equivalence rules [28],
but those equivalence rules must be total (i.e. they must be equivalence rules
on the whole universe of ACL2 terms); so, we cannot use them in the case of
setoids since the equivalence rules of setoids are restricted to the domain of a
concrete set.

Example 1 The setoid whose underlying set is the integers, and whose equiva-
lence relation makes integers with same absolute value equivalent can be mod-
elled as follows. We use the ACL2 integerp function as invariant (integerp
is a recogniser for integer numbers that returns true if its argument is an
integer, and nil otherwise), and the eq-abs function as equivalence relation.

(defun eq-abs (a b)

(equal (abs a) (abs b)))

To prove that these two functions form a setoid, it is necessary to prove the
theorems (events whose successful evaluation extends the ACL2 logic) ensuring
that eq-abs is an equivalence relation on the set characterised by integerp.
For instance, the reflexivity property is given by the following theorem.

(defthm eq-abs-x-x

(implies (integerp x) (eq-abs x x)))

Example 1 illustrates how concrete setoids can be modelled in ACL2; how-
ever, this representation is not enough to deal with the scenarios that involve
generic setoids (e.g. the proof of universal properties). In order to tackle this
problem, we should use the encapsulate mechanism (see Section 2 or [42]). This
tool can be used to define a generic setoid ; namely, we can define two generic
functions X-inv (the invariant function) and X-eq (the equivalence relation)
assuming the properties of setoids. The definition of a generic setoid can be
seen as an equational algebraic specification of this mathematical structure
where the type information is missed.

Using the functions introduced in the encapsulate to define the generic
setoid (X-inv and X-eq), we could prove universal properties that, afterwards,
could be instantiated for concrete setoids using the functional instantiation
mechanism [41].

Example 2 Based on the encapsulate that defines the generic functions X-inv
and X-eq satisfying the definitional axioms of setoids, we can prove the fol-
lowing general property about setoids:



Modelling Algebraic Structures and Morphisms in ACL2 7

(defthm symmetry-transitive

(implies (and (X-inv x) (X-inv y) (X-inv z)

(X-eq y x) (X-eq y z))

(X-eq x z)))

and, subsequently, instantiate it for the integers setoid defined in Example 1.

The encapsulate mechanism is not only the basis to prove universal prop-
erties, but it also can be used to define generic constructions.

Example 3 Given two setoids X = (X,∼X) and Y = (Y,∼Y ), the Cartesian
product of X and Y, denoted by X ×Y, is given by X ×Y = (X × Y,∼X×Y )
where X × Y is the Cartesian product of sets, and (x1, y1) ∼X×Y (x2, y2) if
x1 ∼X x2 and y1 ∼Y y2.

To model this generic construction in ACL2, we start by using the en-
capsulate mechanism to define two “generic setoids” whose components are
(X-inv, X-eq) and (Y-inv, Y-eq) respectively. From these 4 functions, we can
construct the two functions (invariant and equality) that encode the Cartesian
product:

(defun X-Y-inv (pair)

(and (= (len pair) 2)

(X-inv (first pair)) (Y-inv (second pair))))

(defun X-Y-eq (pair1 pair2)

(and (X-eq (first pair1) (first pair2))

(Y-eq (second pair1) (second pair2))))

Finally, we need to prove the definitional axioms of setoids for the functions
X-Y-inv and X-Y-eq. Once that this is done, the generic Cartesian product
construction can be instantiated for any two concrete setoids. This example
and Example 2 illustrate how the encapsulate mechanism can be used to sim-
ulate higher-order logic in ACL2.

This from-scratch approach to define concrete and generic setoids, prove
universal properties, and create generic constructions can be extrapolated to
deal with any algebraic structure in ACL2. Nevertheless, there are several
problems associated with this approach:

P.1. The functions that are used to define an algebraic structure does not form
an entity, but they are defined separately.

P.2. The definitional axioms for the objects have to be stated manually and
for each instance of an algebraic structure — this can be especially time-
consuming and error-prone when there are several definitional axioms or
several instances.

P.3. Related to the previous problems, algebraic structures share some prop-
erties and components (e.g Abelian groups are groups with an additional
property), but this fact cannot be directly captured with the from-scratch
representation of algebraic structures.



8 Jónathan Heras et al.

P.4. The use of encapsulates to create generic instances of algebraic structures
can be also a time-consuming and an error-prone task for the user when
the structure is complex, or when several encapsulates have to be defined.

P.5. The development of generic theories (e.g. the proof of generic properties, or
the construction of generic objects from generic definitions) involves several
repetitive steps that could be simplified.

The next sections will be devoted to explain how these problems have been
solved.

4 A Set of Tools to Model Algebraic Structures and Morphisms

In this section, we provide a guideline to define a set of tools that fulfils
three goals: the creation of entities gathering the components of an algebraic
structure, the simplification of the statement of the definitional axioms of an
algebraic structure, and the simplification of the definition of generic instances
of an algebraic structure — these goals correspond to Problems P.1–P.4,
Problem P.5 will be tackled in the next section.

We present how this set of tools can be defined for an algebraic structure;
and, subsequently, how the same ideas can be extrapolated to implement a
hierarchy of algebraic structures.

4.1 Tools to Model an Algebraic Structure

Let us present the creation of the three different tools for a given algebraic
structure. As a running example, we retake the definition of setoids presented
in Section 3.

Gathering the components of an algebraic structure. Most ITPs use records
(called class or record in Isabelle [30, 54], Class or Record in Coq [15],
struct in Mizar [60] and so on) to pack the operations of algebraic structures.
In ACL2, we use the same approach gathering the operations of a structure in
a record defined by means of the defstructure macro [13].

Given a structure S with operations op1, . . . , opn, a record called S with
slots op1, . . ., opn is defined. Since ACL2 is an untyped system, there is no type
information attached to the field names of the record. A concrete S instance
whose components are given by the functions f1, . . . , fn is created using the
macro make-S (a macro automatically generated when the record is defined)
having as arguments the names of the functions implementing f1, . . . , fn (those
functions must have been previously introduced in ACL2) — since ACL2 is
not a higher-order system, this is the only way of treating functions as data.
Instances of a given structure will be stored in a constant for latter use (a
constant in ACL2 is a symbol beginning and ending with the character *).

This approach models more accurately an algebraic structure than having
the functions separately (Problem P.1), and provides a name to the structure



Modelling Algebraic Structures and Morphisms in ACL2 9

(we could gather the components of a structure in a list, but that approach
would not assign a name to the structure).

Example 4 In the case of setoids, we define a record called setoid with two
fields (inv and eq) that will store respectively the names of the invariant
function and the intended equivalence relation.

(defstructure setoid

inv eq)

Using this representation, if we want to create the setoid from Example 1,
we construct an instance of the setoid record, where the values of the inv

and eq slots are respectively the names integerp and eq-abs. Moreover, this
instance is assigned to a constant, called *Zabs*, for latter use in our devel-
opment.

(defconst *Zabs* (make-setoid :inv ’integerp :eq ’eq-abs))

Simplifying the statement of definitional axioms. In some ITPs (e.g. Coq or
Isabelle), records not only pack the operations of the structure, but also include
the axioms about such operations. On the contrary, in ITPs like Mizar, the
axioms are external to the record. In ACL2, we follow the latter approach —
the macro defstructure allows us to attach assertions to a record, but this is
not possible if the slots of the record have a functional nature, as in our case.

In order to facilitate the statement of the event that ensures the defini-
tional axioms of an algebraic structure S (Problem P.2), we define a function
called S-algebraic-structure, and a macro called check-S-p. The function
S-algebraic-structure takes as argument an S instance, and produces a
“textual” (quoted in Lisp terminology) conjunction of formulas with the def-
initional axioms of the S structure for the functions of the S instance. The
macro check-S-p takes as argument a constant, *S*, storing an S instance;
and, it internally invokes the function S-algebraic-structure generating a
defthm event, called *S*-is-an-S, that checks whether the S instance stored
in *S* satisfies the definitional axioms of an S structure. The check-S-p can
be seen as a characteristic function for the type of S structures.

Example 5 In our running example about setoids, we define a function called
setoid-algebraic-structure that takes as argument a setoid instance and
produces a conjunction of formulas stating that the eq component of the
setoid instance is an equivalence relation on the set characterised by the
inv component of the setoid instance — i.e. the definitional axioms of se-
toids. Additionally, we define the macro check-setoid-p, that can be used
to certify that a constant storing a setoid instance is really a setoid. For in-
stance, given the constant storing the setoid from Example 4 (*Zabs*), the
macro invocation

(check-setoid-p *Zabs*)



10 Jónathan Heras et al.

expands into a call of defthm whose name is *Zabs*-is-a-setoid stating that
the functions of the setoid instance *Zabs* satisfy the definitional axioms of
setoids. In this example, ACL2 proves automatically such a theorem, but in
other cases, ACL2 could require the user intervention to guide the proof.

As can be seen in the above example, the macro check-S-p greatly reduces
the burden of checking whether an S instance satisfies the axioms of an S
structure. This is especially relevant when working with several instances of a
structure, or when there are several definitional axioms.

Simplifying the definition of generic instances. In mathematical textbooks,
it is usual to start the statement of a theorem with a sentence of the form
“Let A be an S structure”. The translation of such a statement to ITPs like
Isabelle or Coq is straightforward (in Coq, the statement will be given by
forall A:S). However, in ACL2, we need to define an encapsulate providing
both the components and the axioms of the generic S structure (Problem P.4).
This approach is far from the way of working in mathematics and other ITPs.

We tackle this problem defining a macro that can construct generic in-
stances of an S structure. The macro is called defgeneric-S, and internally
invokes the encapsulate mechanism. This macro takes as input a symbol,
<symbol>, and generates a constant, *<symbol>*, storing a generic S instance.
In addition, this macro generates the theorem *<symbol>*-is-an-S stating
that the generic instance stored in *<symbol>* is an S structure — this theo-
rem is generated using the check-S-p macro. The names of the components of
a generic instance created with a macro defgeneric-S follow the convention
<symbol>-<slot> where <symbol> is the symbol given in the macro call, and
<slot> is the name of a slot in S.

Example 6 In the case of setoids, we define the macro defgeneric-setoid.
The macro invocation:

(defgeneric-setoid X)

expands into an encapsulate that produces the constant *X*, storing a generic
setoid (with components X-inv and X-eq), and the theorem *X*-is-a-setoid,
that ensures that *X* satisfies the definitional axioms of setoids. Now, we could
state the property symmetry-transitive in the same way as in Example 2,
but with the advantage of skipping the step of defining the encapsulate.

Similarly to the macro check-S-p, the macro defgeneric-S is especially
useful when it is necessary the definition of several generic instances of an
S structure, or when there are several definitional axioms. We will illustrate
these benefits in Sections 5 and 6.

4.2 A Hierarchy of Algebraic Structures and Morphisms

In the previous subsection, we have introduced a set of tools that simplifies
the interaction with algebraic structures in ACL2. Following that approach,



Modelling Algebraic Structures and Morphisms in ACL2 11

we could define structures like groups, rings and so on; but, we would not
capture the relations between those structures (Problem P.3). The rest of this
section is devoted to explain how the ideas presented previously have been
extrapolated to define the hierarchy of algebraic structures and morphisms
depicted in Figure 1.

Let us start with some general comments about such a hierarchy. We have
depicted the mathematical structures of our hierarchy ranging from setoids
to vector spaces in the left side of Figure 1. As in several algebraic hierar-
chies [7, 9, 25, 29, 56, 63], setoids are the top structure of the hierarchy; other
hierarchies, like [60,65], are set-based, and the SSReflect hierarchy [24] uses a
choice structure as the top level object.

A continuous arrow with an open triangle as tip represents an inheritance
relationship modelling that the source mathematical structure is-a target
mathematical structure, e.g. an Abelian group is a group with some addi-
tional properties. Whereas, a continuous arrow with a normal tip describes a
use relationship, in the sense that the target mathematical structure is used
to define the source structure, e.g. a vector space uses a field in its definition.

The morphisms included in our hierarchy are presented in the right side
of Figure 1. A morphism always consists of a source structure A, a target
structure B of the same type as A, and a map between them.

For each structure and morphism of the hierarchy, we define three tools
(as we have explained in the previous subsection): a record S, and the macros
check-S-p and defgeneric-S where S is the name of the structure or mor-
phism. However, since these tools need to capture the relations between the
structures, they are slightly different to the tools presented in the previous
subsection.

Gathering the components of an algebraic structure. We have defined a record
for each structure and morphism of our hierarchy. In the case of setoids, we use
the representation introduced in Example 4 since this structure does not have
any inheritance or use relationship. The rest of the structures can be split
into three classes: (1) a structure that inherits from another structure, and
has (in some cases) additional operations satisfying further properties; (2) a
structure that uses one or more structures, and has (in some cases) additional
operations satisfying further properties; and (3) a combination of (1) and (2).
Let us see the ACL2 representation for a C structure belonging to Class (3),
where C inherits from an A structure, uses a B structure, and has additional
operations op1, . . . , opn. In such a case, the record for C is defined as follows.

(defstructure C

A B op1 ... opn)

The representation for structures that belong to Classes (1) and (2) is analo-
gous; but for those structures, some slots will not be included.

In the construction of instances of the above C structure (using the macro
make-C), the values of the A and B fields will be an A instance and a B instance
respectively, and the values of op1, . . . , opn slots will be function names. The



12 Jónathan Heras et al.

Setoid

Magma

Semigroup

Monoid

Group

Abelian Group

Ring R-moduleIdeal

Commutative Ring

NonZero Commutative Ring

Integral Domain

Field Vector Space

2

2

2

2

2

2

2

2
2

2

2

2

2

Setoid-Morphism

Magma-Morphism

Semigroup-Morphism

Monoid-Morphism

Group-Morphism

Abelian-Group-Morphism

Ring-Morphism R-module-Morphism

Commutative-Ring-Morphism

NonZero-Commutative-Ring-Morphism

Integral-Domain-Morphism

Field-Morphism Vector-Space-Morphism

Fig. 1 Hierarchy of mathematical structures and morphisms.

construction of instances can be a cumbersome task since we have a hierarchy
of nested structures. For instance, in order to construct an Abelian-group,
it is necessary to use the definition of a group, which in turn needs the def-
inition of a monoid, and so on. To overcome this problem, we have defined a
function called create-S for each structure S of our hierarchy. This function
takes as arguments the names of the functions that are the components of
the S structure, and builds an S instance with them. As we have explained in
Subsection 4.1, we store the instances in constants for latter use.

Example 7 Given a ring R, an R-module is an Abelian group with an external
operation satisfying a number of properties, see [17]. Then, the representation
of R-modules requires both inheritance and use relationships.

(defstructure R-module

Abelian-group Ring external_operation)

The definition of an instance of the R-module structure using the macro
make-R-module will be as follows:



Modelling Algebraic Structures and Morphisms in ACL2 13

(defconst *RM*

(make-R-module

:Abelian-group (make-Abelian-group :group (make-group ...))

:Ring (make-ring :Abelian-group (make-Abelian-group ...) ...)

:external_operation ’f))

This definition can be simplified using the create-R-module function taking
as arguments the names of the functions used to define the Abelian-group in-
stance (a1, . . . , ak), the Ring instance (r1, . . . , rm), and the external operation
(f).

(defconst *RM* (create-R-module ’a1 ... ’ak ’r1 ... ’rm ’f))

Simplifying the statement of definitional axioms. We focus now on the state-
ment of the event that generates the definitional axioms of an algebraic struc-
ture. As we have explained in Subsection 4.1, this is achieved thanks to a func-
tion S-algebraic-structure and a macro check-S-p where S is the name of
the structure. In the case of the structures and morphisms of the hierarchy,
the advantage is that we do not need to define all the functions from scratch,
but we can re-use the functions previously defined for other structures. This
solves the re-usability problem stated at the end of Section 3 (Problem P.3).

Reconsider the case of a C structure that inherits from an A structure, uses
a B structure, and has additional operations op1, . . . , opn. For a C instance, the
function C-algebraic-structure needs to state that: (1) the A component
of the instance is an A structure, (2) the B component of the instance is a
B structure, and (3) the operations of the instance (including the operations
of the A and B slots) satisfy additional properties P1, . . . , Pm. For (1) and
(2), the function C-algebraic-structure can re-use the respective functions
for A and B structures; and for (3), we need to define functions that state
the properties P1, . . . , Pm. All these functions are invoked by the function
C-algebraic-structure.

The macro check-C-p is defined as explained in Subsection 4.1. The macro
takes as argument a constant, *C*, storing a C instance, and it internally in-
vokes the function C-algebraic-structure generating a defthm event, called
*C*-is-a-C. This event checks whether the C instance stored in the constant
*C* satisfies the definitional axioms of the C structure.

Simplifying the definition of generic instances. Following the ideas presented
in Subsection 4.1, we have defined a set of macros (called defgeneric-S where
S is the name of the structure) to work with generic instances of the math-
ematical structures and morphisms of Figure 1; but, without explicitly using
encapsulates. The macros take as argument a symbol and produce: a constant
storing a generic instance of the structure or morphism, and a theorem stating
the definitional axioms for the generic instance.

In addition, we have extended the functionality of the macros for those
structures and morphisms that involve one or more use relationships. Con-
sider a structure A that uses structures A1, . . . , An; for such a structure, we



14 Jónathan Heras et al.

are interested not only in creating generic A instances, but also in creating
a generic A instance with fixed A1, . . . , An instances (e.g. we are interested
in defining generic morphism between generic setoids, but also generic setoid
morphisms where the source and target setoids are the integers setoid given
in Example 4). Therefore, the macros coming from structures that use other
structures have been modified to take a symbol, and optionally as many argu-
ments as used structures — if only the symbol is provided, the macro behaves
as explained in Subsection 4.1; otherwise, it constructs a generic instance pa-
rameterised by the given arguments.

Example 8 Consider the case of setoid morphisms (a structure with two use
relationships), if we invoke the defgeneric macro using only the symbol X as
argument:

(defgeneric-setoid-morphism X)

it will produce the constant *X* storing a generic setoid morphism with generic
setoids as source and target of the morphism. However, if we invoke the macro
with the symbol X, and the setoid *Zabs* (see Example 4) as arguments:

(defgeneric-setoid-morphism X *Zabs* *Zabs*)

it will create the constant *X* storing a generic setoid morphism with *Zabs*

as source and target setoid of the morphism.

5 Developing Generic Theories for Algebraic Structures

The tools presented in the previous section can be used to simplify the develop-
ment of generic theories about algebraic structures. In general, the procedure
to create a generic theory consists of three steps: (1) introduction of generic
function symbols constraining them to have certain properties, this is achieved
using the encapsulate mechanism; (2) definition of functions from the generic
function symbols; and, (3) derivation of theorems from the generic function
symbols. Once a generic theory is defined, it can be instantiated for concrete
functions using the functional instantiation mechanism.

As we have explained in Problem P.5, the from-scratch creation of generic
theories about algebraic structures has several difficulties. However, they can
be overcome using the tools presented in the previous section; namely, we can
take advantage of our tools in Steps (1) and (3). In this section, we illustrate
this fact in the development of three generic theories: the Cartesian product
of setoids, the subalgebra criterion, and the definition of homology groups. We
finish the section with a general proof-scheme to create generic theories about
algebraic structures using our tools.



Modelling Algebraic Structures and Morphisms in ACL2 15

5.1 Cartesian Product of Setoids

Let us reconsider, using the tools presented in Section 4, the definition of the
generic Cartesian product of setoids presented in Example 3. As a first step,
we define two generic setoids:

(defgeneric-setoid X)

(defgeneric-setoid Y)

This will produce two generic setoids *X* and *Y* with operations (X-inv,
X-eq) and (Y-inv, Y-eq) respectively. Using the components of these setoids,
we define the functions X-Y-inv and X-Y-eq, that are exactly the same func-
tions defined in Example 3, and construct a setoid instance that will be stored
in the constant *XxY*.

(defconst *XxY* (create-setoid ’X-Y-inv ’X-Y-eq))

Finally, we certify that *XxY* is a setoid using the macro check-setoid-p

— ACL2 finds automatically the proof of the event generated by this macro
call. This approach is much simpler than the from-scratch approach presented
in Example 3, and it requires less effort from the user point of view: using our
tools, the user has to invoke 3 macros, and define 2 functions and 1 record (a
total of 6 lines of code); on the other hand, using the from-scratch approach
of Example 3, he will need to define 2 encapsulates (involving 4 functions and
8 theorems), 2 definitions and state 4 theorems (more than 50 lines of code).

5.2 Subalgebra Criterion

The subalgebra criterion [17] is a well-known result of Universal Algebra stat-
ing that given X = (X, op1, . . . , opn) a mathematical structure where X is the
underlying set of X , and Y a subset of X closed with respect to op1, . . . , opn;
then, Y = (Y, op1, . . . , opn) is of the same type that X . This result has been
proved for all the structures of our hierarchy, we consider here the proof of
the subalgebra criterion for magmas — the proof of this result for the rest of
structures is analogous.

Theorem 1 Given M = (M,∼M , ◦M ) a magma and N a subset of M closed
with respect to ◦M ; then, N = (N,∼M , ◦M ) is a magma.

We can prove this result in ACL2 using the tools presented in the previ-
ous section as follows. First, we define a generic magma instance using the
defgeneric-magma macro taking the symbol M as argument. Afterwards, a
generic subset of M closed with respect to ◦M is defined using the encapsu-
late principle, where N-inv is the invariant of that generic subset. Note the
benefits of using our tools: a generic magma is defined in one line using the
defgeneric-magma macro; however, the definition of the generic subset re-
quires an explicit encapsulate. This could be solved by defining a defgeneric

macro, parameterised by a magma, that constructs the desired generic subset.



16 Jónathan Heras et al.

Once the generic subset is defined, we construct a magma instance where
N-inv is the invariant, M-eq is the equivalence relation, and M-binary-op is
the binary operation; and store the result in the constant *N*.

(defconst *N* (create-magma ’N-inv ’M-eq ’M-binary-op))

Finally, we use the macro check-magma-p to certify that *N* is a magma:
(check-magma-p *N*). ACL2 finds the proof of the event generated by this
macro call without any external help.

5.3 Definition of Homology Groups

We consider now a more involved example: the definition of homology groups
in the context of Homological Algebra — an introduction to this mathematical
subject can be seen in [64].

Definition 1 Let f : G1 → G2 and g : G2 → G3 be Abelian group morphisms
such that ∀x ∈ G1, gf(x) ∼G3

0G3
(where 0G3

is the neutral element of G3);
then, the homology group of (f, g), denoted by H(f,g), is the Abelian group
H(f,g) = ker(g)/im(f).

The condition ∀x ∈ G1, gf(x) ∼G3
0G3

, known as nilpotency condition,
makes the above definition meaningful, since im(f) ⊆ ker(g). This definition
involves several constructions of Universal Algebra such as subalgebras, mor-
phisms and quotients [17].

Given f : G1 → G2 and g : G2 → G3 Abelian group morphisms such that
∀x ∈ G1, gf(x) ∼G3

0G3
; we can use our tools to define H(f,g) and prove that

it is an Abelian group.
First of all, we define three generic Abelian groups (*G1*, *G2* and *G3*)

using the defgeneric-Abelian-group macro.

(defgeneric-Abelian-group G1)

(defgeneric-Abelian-group G2)

(defgeneric-Abelian-group G3)

The components of these generic Abelian groups are: G<i>-inv, the invari-
ant function of the underlying setoid of the group, G<i>-eq, the equivalence
relation of the group, G<i>-binary-op, the binary operation, G<i>-id-elem,
the identity element, and G<i>-inverse, the inverse function, with <i>=1,2,3.

Now, using the encapsulate principle, we define two generic Abelian group
morphisms f : G1 → G2 and g : G2 → G3 such that the nilpotency condition
is satisfied.

(encapsulate

; Signatures
(((f *) => *)

((g *) => *))



Modelling Algebraic Structures and Morphisms in ACL2 17

; Generic Abelian Group Morphisms Definition
(defconst *f*

(make-Abelian-group-morphism :source *G1*

:target *G2* :map ’f))

(defconst *g*

(make-Abelian-group-morphism :source *G2*

:target *G3* :map ’g))

; Abelian Group Morphism Axioms
(check-Abelian-group-morphism-p *f*)

(check-Abelian-group-morphism-p *g*)

; Nilpotency condition
(defthm nilpotency-condition

(implies (G1-inv x)

(G3-eq (g (f x)) (G3-id-elem))))

)

The above encapsulate must be read as follows. First of all, we provide
the signatures of the functions f and g, the notation ((f *) => *) means
that the function f has an argument, that belongs to the universe of ACL2
terms, as input and returns another term as output — the encapsulate also
requires witnesses for the functions f and g, but we do not include them here
since they are not relevant. Subsequently, we define the constants *f* and *g*

that store the two generic Abelian group morphisms. Afterwards, using the
check-Abelian-group-morphism-p macro, we impose the axioms of Abelian
group morphism to *f* and *g*. Finally, we impose the nilpotency condition.

The macro defgeneric-Abelian-group-morphism cannot be used here
since we do not only want to build generic Abelian group morphisms, but also
impose the nilpotency condition. As in the case of the subalgebra criterion,
we could define a defgeneric macro that constructs two Abelian group mor-
phisms satisfying the nilpotency condition, and that is parameterised by three
Abelian groups. Such a macro would reduce the above encapsulate to just one
macro call.

Once that we have defined the Abelian group morphisms f and g, we can
introduce ker(g), im(f) and, subsequently, the quotient ker(g)/im(f). The
set ker(g) = {x ∈ G2 : g(x) ∼G3 0G3} (the invariant of such a set is encoded
in ACL2 by means of a function called ker-g-inv) is both a subset of the
underlying set of G2, and it is closed with respect to the group operations of
G2. These are the conditions of the subalgebra criterion for Abelian groups
(cf. Subsection 5.2); therefore, we can instantiate such a result for our concrete
case and define the Abelian group ker(g).

(defconst *ker-g*

(create-Abelian-group ’ker-g-inv ’G2-eq ’G2-binary-op

’G2-id-elem ’G2-inverse))



18 Jónathan Heras et al.

Now, we define im(f) = {x ∈ G2 : ∃y ∈ G1, f(y) ∼G2 x} as a subgroup
of G2 using the same idea presented for ker(g). The existential quantifier in
the definition of the invariant function of im(f) is introduced using defun-sk

— the method supported by ACL2 to provide first-order quantification via
Skolem functions [48].

(defun-sk im-f-inv (x)

(exists (y)

(and (G2-inv x) (G1-inv y) (G2-eq (f y) x))))

Then, using im-f-inv and the operations of *G2*, we encode the Abelian
group im(f) using an Abelian-group instance.

Afterwards, we can tackle the definition of the homology groupH(f,g) as the
quotient ker(g)/im(f). Quotienting a structure of our hierarchy is achieved by
changing the equivalence relation of the underlying setoid of the structure with
another equivalence relation compatible with the operations of the structure.
This result has been proved for each structure of our hierarchy following a
similar process to the subalgebra criterion (cf. Subsection 5.2). In addition,
we have proved that if im(f) is a subgroup of ker(g), then im(f) induces an
equivalence relation on ker(g) given in ACL2 by the following definition.

(defun im-f-eq (x y)

(im-f-inv (G2-binary-op x (G2-inverse y))))

Therefore, H(f,g) is defined using ker-g-inv as invariant, im-f-eq as
equivalence relation, G2-binary-op as binary operation, G2-id-elem as the
identity element, and G2-inverse as the inverse operation.

(defconst *homology-fg*

(create-Abelian-group ’ker-g-inv ’im-f-eq ’G2-binary-op

’G2-id-elem ’G2-inverse))

The last step consists in certifying that *homology-fg* satisfies the defi-
nitional axioms of an Abelian group.

(check-Abelian-group-p *homology-fg*)

ACL2 does not find the proof of the event generated by the above macro call
in the first attempt, and some auxiliary lemmas, suggested by the failed proof,
are necessary. The way of facing that proof is the usual when trying to prove a
result with ACL2: inspect the failed proof attempt and provide the necessary
lemmas and hints, this is known in ACL2 as “the Method” [41]. Using this
procedure, we have proved that *homology-fg* is an Abelian group.

5.4 A General Proof-Scheme for Generic Theories

The three examples presented throughout this section follow a common proof-
scheme. Such a proof-scheme can be applied to several generic theories about



Modelling Algebraic Structures and Morphisms in ACL2 19

algebraic structures. In particular, given the generic objects S1, . . . , Sn, and
the generic operations op1, . . . , opm satisfying the properties P1, . . . , Pk, we can
prove in ACL2 that T = (ôp1, . . . , ôpt) (where ôp1, . . . , ôpt are operations de-
rived from the components of S1, . . . , Sn, and/or the operations op1, . . . , opm)
satisfies the definitional axioms of a T structure as follows.

S.1. Definition of the objects S1, . . . , Sn using defgeneric macros.
S.2. Definition of the generic operations op1, . . . , opm satisfying the properties

P1, . . . , Pk using the encapsulate mechanism.
S.3. Definition of the functions ôp1, . . . , ôpt from the operations of Steps S.1

and S.2.
S.4. Construction of a T instance with operations ôp1, . . . , ôpt.
S.5. Proof that the instance satisfies the definitional axioms of a T structure

using the macro check-T-p — this proof might require some user inter-
vention.

Some of these steps might be unnecessary depending on the concrete prob-
lem. For instance, Step S.2 is not required in the Cartesian product construc-
tion (cf. Subsection 5.1) since all the components of the Cartesian product are
defined from the components of the generic setoid; and, Step S.3 is unneces-
sary in the subalgebra criterion (cf. Subsection 5.2) since all the components
of the new magma were introduced previously.

Once a generic theory is completed, it can be instantiated for concrete
instances using the functional instantiation mechanism. As an example, the
subalgebra criterion for Abelian groups (see Subsection 5.2) has been instan-
tiated for ker(f) and im(g) in the definition of homology groups.

6 A Case Study: Formalising the Cone Construction

In the previous sections, we have presented a set of tools to work with the
algebraic structures and morphisms of the hierarchy depicted in Figure 1; in
addition, we have shown how these tools can facilitate the development of
generic theories. The same ideas can be applied to more complex structures,
and it is in those cases when the biggest impact occurs.

In this section, we study how the techniques previously presented can be
extrapolated to an Algebraic Topology construction implemented in the Kenzo
system: the cone of a chain complex morphism [51] — a representative example
of Kenzo’s constructions. Chain complexes and chain complex morphisms, as
many other structures implemented in Kenzo (like simplicial sets), are defined
as indexed families of structures; hence, the first step in the formalisation of
the cone construction is the representation of indexed families of structures in
ACL2. We will finish this section with a comparison of different approaches to
formalise the cone construction.



20 Jónathan Heras et al.

6.1 Indexed Families of Structures

The structures used in Algebraic Topology, such as chain complexes or sim-
plicial sets, are based on families indexed on a set, called the index set. The
method that we have followed to represent these families is based on the ap-
proach presented in [46]. Roughly speaking, the representation of a graded
structure indexed on a set is achieved thanks to the introduction of an addi-
tional parameter, that ranges the elements of the index set, in each operation
of the structure. This method differs from the usual approach followed in other
ITPs to represent indexed families of structures: a function that takes as input
an index, and returns a structure as output (see [20]) — this approach is not
feasible in the first-order setting of ACL2.

Then, in order to deal with families of structures in ACL2, we have created
a hierarchy of graded structures that mirrors the hierarchy presented in the
left side of Figure 1. As in the non-graded hierarchy (cf. Subsection 4.2), we
have defined three tools for each structure of the graded-hierarchy, but these
tools have some particularities that we explain as follows.

Gathering the components of a graded algebraic structure. For each structure
of the graded hierarchy, we have defined a record that gathers the operations
of the structure — the relations between structures are captured using the
same ideas presented in Subsection 4.2.

In this new hierarchy, the basic object is the graded setoid. The record asso-
ciated with this graded structure contains three fields: graded-inv, graded-eq
and index-sets. When we define a concrete graded setoid, the value of the
graded-inv and graded-eq slots will be respectively a function symbol of
arity 2 (representing the underlying graded set of the setoid) and a function
symbol of arity 3 (encoding the intended equivalence relation). The value of
the index-sets slot will be a list with a sole element: a function name that
represents the characteristic function of the index set of the graded setoid.

Using the same record, we can also work with n-graded setoids (i.e. a family
of setoids indexed on n sets). In the general case, the arities of graded-inv and
graded-eq functions will be n+1 and n+2 respectively; and, the value of the
index-sets slot will be a list whose elements are n function names encoding
the n characteristic functions of the n sets. If the value of index-sets is an
empty list, we have an object “equivalent” to a setoid instance as presented
in Section 4. The index-sets slot will be inherited from the graded-setoid

structure to the rest of the graded structures of the hierarchy.

Simplifying the statement of definitional axioms. In addition to the records
in charge of representing each graded structure, we have defined the macros
that provide their definitional axioms (check-S-p macros). As we have just
explained, the same record is used to encode an n-graded structure for different
values of n (this value is determined by the length of the list stored in the
index-set slot of the underlying graded setoid); hence, the check-S-p macros
have been defined to produce a term depending on the value of n.



Modelling Algebraic Structures and Morphisms in ACL2 21

Simplifying the definition of generic instances. Finally, we have introduced a
number of macros to define generic instances of an indexed family of structures
(defgeneric-S macros). These macros are parameterised by a list of function
names. This list encodes the characteristic functions of the underlying index
sets of the generic indexed family of structures.

6.2 Chain Complexes and the Cone Construction

The graded-hierarchy of algebraic structures is the basis to define a set of tools
to work with chain complexes and chain complex morphisms.

Definition 2 A chain complex, C∗, is a family C∗ = (Cn, dCn)n∈Z where
(Cn)n∈Z is a family of R-modules indexed on the integers and (dCn)n∈Z (the
differential map) is a family of R-module endomorphisms of degree −1 (dCn :
Cn → Cn−1) such that dCn−1dCn = 0 (this property is known as nilpotency
condition).

Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be two chain complexes,
a chain complex morphism from C∗ to D∗ is a family of R-module morphisms
f = (fn)n∈Z such that dDnfn = fn−1dCn for each n ∈ Z.

We include some comments about the records that encode chain complexes
and chain complex morphisms. The instrumental notion in the definition of
chain complexes is that of graded R-module. This graded structure is-a graded
Abelian group that uses a ring as part of its definition; then, the graded and
non-graded hierarchy are necessary to define a graded R-module. From this
graded structure, we can represent chain complexes using the following record.

(defstructure chain-complex

graded-R-module diff)

The value of graded-R-module will be a graded-R-module instance, C, in-
dexed on the set of integer numbers, and diff will be a function symbol
of arity 2 encoding the differential map, whose mathematical signature is
diff: Z × C → C — i.e. the differential map is uncurried, the subscript of
the differential map is now one of the inputs (uncurrying is a common mech-
anism to simulate higher-order using first-order tools).

Chain complexes are used to define chain complex morphisms; in particular,
the representation of chain complex morphisms is given by the record

(defstructure chain-complex-morphism

source target map)

where the value of both source and target slots will be chain-complex

instances, and the value of map will be a function symbol whose arity is 2 —
as in the case of the differential map in chain complexes, the map of the chain
complex morphism is uncurried.

As in the rest of the structures and morphisms presented throughout the
paper, we have defined three tools for chain complexes (and chain complex



22 Jónathan Heras et al.

morphisms): the record that we have just presented to gather the operations
of the structure, a macro to check whether the definitional axioms of chain
complexes (or chain complex morphisms) are fulfilled, and a macro to create
generic chain complex (or chain complex morphism) instances. The behaviour
of the macros is analogous to the macros presented previously.

Once that we have introduced the set of tools to work with chain complexes
and chain complex morphisms, we can follow the steps of the proof-scheme
presented in Subsection 5.4 to create generic theories about these notions. In
particular, we consider a construction implemented in Kenzo: the cone of a
chain complex morphism [59] — this construction is important in Homological
Algebra and plays an important role, for instance, in the proof of the Short
Exact Sequences theorems [59].

Definition 3 Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be two chain
complexes and φ : D∗ → C∗ be a chain complex morphism. Then, the cone of
φ, denoted by Cone(φ) = (An, dAn)n∈Z, is defined as: An := Cn+1 ⊕Dn (an
element x ∈ An is a pair such that its first component belongs to Cn+1 and
the second component to Dn); and

dAn : Cn+1 ⊕Dn → Cn ⊕Dn−1

(cn+1, dn) 7→ (dCn+1(cn+1) + φ(dn),−dDn(dn)).

In order to define this construction in ACL2, we start by defining a generic
chain complex morphism φ (Step S.1).

(defgeneric-chain-complex-morphism PHI)

The above macro call produces the constant *PHI* (storing a generic chain
complex morphism), and the theorem that ensures that the components of
*PHI* satisfy the chain complex morphism axioms.

From the components of *PHI*, we introduce the chain complex opera-
tions (9 operations are necessary to define a chain complex) defining the cone
construction (Step S.3). Using these operations, we create a chain-complex

instance that is assigned to a new constant, called *Cone-PHI*, for latter use
(Step S.4) — in this case, Step S.2 is not required since we have the neces-
sary tools to define the generic objects without explicitly using the encapsulate
mechanism.

Subsequently, we use the check-chain-complex-p macro with *Cone-PHI*

as argument to prove the event which ensures that the definitional axioms of
chain complex are satisfied by this instance (Step S.5). ACL2 is not able to
find the proof of the event generated by this macro in the first attempt. In
particular, the user needs to guide the proof for the 9 “trickiest” definitional
axioms of chain complexes; the trivial definitional axioms (40 axioms) are
automatically proven by ACL2. This means that the user can focus on the
difficult parts of the proof; additionally, the proof of these results is guided by
the suggestions generated during the failed proof.

Once that these lemmas are proved, and in order to make the instantiation
of the cone construction for concrete chain complex morphisms easier, we



Modelling Algebraic Structures and Morphisms in ACL2 23

Definition of generic Definition of Proof of the correctness
chain complex morphism cone construction of the construction

from-scratch 19 function symbols 9 definitions 49 theorems
19 witnesses
84 axioms

half-way 19 function symbols 9 definitions 1 macro call
19 witnesses 1 record
84 axioms

hierarchical 1 macro call 9 definitions 1 macro call
1 record

Table 1 Comparison between the different approaches. The approach presented in this
paper is called hierarchical. The columns represent the three steps required in the develop-
ment of a generic theory: (1) the definition of generic function symbols, (2) the definition
of functions from the generic function symbols, and (3) the derivation of theorems from the
generic function symbols.

have used the generic instantiation tool [49] — a procedure which allows us
to instantiate generic theories in a simple way.

Other Kenzo constructions — e.g. the Easy Perturbation Lemma, the cone
equivalence theorem, and the SES theorems [59] — have been formalised using
the same ideas presented for the cone construction, see [33].

6.3 A Comparison with other Approaches

In the above development, we have taken advantage of the tools presented
throughout this paper. However, the same formalisation could be performed
from scratch, but not without difficulty, as we will see as follows.

First of all, we should employ the encapsulate mechanism to define the
generic chain complex morphism φ. The definition of this generic object in-
volves 19 function symbols (to define the operations of the chain complex
morphism) the corresponding 19 witnesses and 84 axioms (to ensure that the
19 function symbols fulfil the properties that characterise the chain complex
morphism operations). Afterwards, from the function symbols of the generic
chain complex morphism, we should introduce the operations that define the
chain complex associated with the cone construction; as we said previously,
this means 9 new definitions. Finally, we state the 49 events that claim that
the 9 operations introduced in the previous step satisfy the definitional axioms
of chain complexes. The non-trivial events are the same as before; then, the
same auxiliary lemmas are necessary to prove 9 of them.

Table 1 shows a comparison between the two approaches. In addition, we
also consider a half-way method presented in [33] where the macros in charge
of certifying that an object satisfies the axioms that characterise an algebraic
structure were defined (check-S-p macros), but not the functionality to gen-
erate generic instances of concrete structures (defgeneric-S macros). Since
the result that we are proving is always the same, there are some figures that
are repeated in all the cases (the number of definitions of the cone construction
and the auxiliary lemmas).



24 Jónathan Heras et al.

To sum up, the use of the tools presented in this paper means a great
improvement with respect to the other two approaches:

– it solves Problems P.1–P.5 (cf. Section 3) that arise in the other two
approaches,

– the amount of definitions and theorems is considerably reduced; then, both
the number of lines of our development and the chance of forgetting some
results decrease,

– the developments are more readable thanks to the use of macros, an im-
portant issue when we are documenting our work, and

– the user only has to focus on the difficult parts of the proofs.

We finish this section with a comparison between the ACL2 formalisation
of the cone construction and the Coq formalisation of the same result [19].
As we explained in the Introduction, the gap between the ACL2 formalisation
and the Kenzo code is much smaller than the one between Coq and Kenzo. In
addition, there are several parts of the proof which are automatised by ACL2
and, therefore, the user only has to focus on the difficult parts; on the contrary,
in the Coq formalisation all the steps must be given by the user. Moreover,
in the cases where ACL2 is not able to finish the proof on its own, the user
receives feedback from the system, a valuable information that can help him
to complete the proof. This shows that ACL2 is as valid as Coq to formalise
results coming from the Kenzo system.

7 Conclusions and Further work

In this paper, we have presented a guideline to develop tools that simplify
the formalisations related to algebraic structures in ACL2. This guideline has
been employed to create a hierarchy of algebraic structures — a task, that
as far as we are aware, had not been undertaken up to now for this system.
The resultant tools facilitate the development of generic theories about al-
gebraic structures; this has been illustrated with several examples requiring
different constructions (such as subalgebras, morphisms and quotients) coming
from Universal Algebra. We have also shown that it is possible to extrapolate
the same ideas to deal with more complex algebraic structures; for example,
structures implemented in the Kenzo computer algebra system.

The benefits of using our tools and ideas have been illustrated throughout
the paper, and are especially noticeable when working with complex algebraic
structures or several instances of a structure. Using these tools, the limitation
of ACL2’s first-order setting can be overcome thanks to the strengths of this
system.

With the acquired experience, the method presented in this paper could be
extrapolated to other algebraic structures; for instance, Tarski Kleene Algebras
which has been previously studied in Isabelle [6,23]. We are also interested in
the formalisation of the generic theory of Universal Algebra, see [14, 63], but
this would require further work in issues like the definition of categories.



Modelling Algebraic Structures and Morphisms in ACL2 25

In addition, as we have seen in Section 4, the definition of morphism be-
tween structures always follows the same pattern; so, it would be desirable to
have a tool able to automatise, at least part of, the process to generate the
tools related to morphisms between structures.

Our main research line for the future is the application of the tools that we
have presented here to verify actual computer algebra systems. We are mainly
interested in the Kenzo system, where the methodologies and tools presented
in this paper can reduce the formalisation effort in works like [44,47].

References

1. A. Adams et al. Computer algebra meets automated theorem proving: Integrating
Maple and PVS. In 14th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2001), volume 2152 of Lecture Notes in Computer Science,
pages 27–42, 2001.

2. M. Andrés, L. Lambán, J. Rubio, and J. L. Ruiz-Reina. Formalizing Simplicial Topol-
ogy in ACL2. In 7th International Workshop on the ACL2 Theorem Prover and its
Applications (ACL2 2007), pages 34–39, 2007.

3. J. Aransay, C. Ballarin, and J. Rubio. A mechanized proof of the Basic Perturbation
Lemma. Journal of Automated Reasoning, 40(4):271–292, 2008.

4. J. Aransay, C. Ballarin, and J. Rubio. Generating certified code from formal proofs: a
case study in homological algebra. Formal Aspects of Computing, 22(2):193–213, 2010.

5. J. Aransay and J. Divasón. Formalization and execution of Linear Algebra: from the-
orems to algorithms. In 23rd International Symposium on Logic-Based Program Syn-
thesis and Transformation (LOPSTR 2013), Lecture Notes in Computer Science (In
Press), 2013.

6. A. Armstrong, G. Struth, and T. Weber. Programming and Automating Mathematics in
the Tarski-Kleene Hierarchy. Journal of Logical and Algebraic Methods in Programming,
83(2):87–102, 2014.

7. A. Bailey. The machine-checked literate formalisation of algebra in type theory. PhD
thesis, Manchester University, 1999.

8. C. Ballarin. Algebraic structures in Axiom and Isabelle: attempt at a comparison. In
Programming Languages for Mechanized Mathematics (PLMMS 2007), number 07-10
in RISC-Linz Report Series, pages 75–80, 2007.

9. C. Ballarin, J. Aransay, S. Hohe, F. Kammller, and L. Paulson. The Isabelle/HOL Alge-
bra Library, 2013. http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.

pdf.

10. C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: an interface be-
tween Isabelle and Maple. In 20th International Symposium on Symbolic and Algebraic
Computation (ISSAC 1995), pages 150–157. ACM PRESS, 1995.

11. A. Bauer, E. M. Clarke, and X. Zhao. Analytica — an experiment in combining theorem
proving and symbolic computation. Journal of Automated Reasoning, 21(3):295–325,
1998.

12. E. A. Bishop. Foundations of constructive analysis. McGraw-Hill Publishing Company,
Ltd., 1967.

13. B. Brock. defstructure for ACL2 version 2.0. Technical report, Computa-
tional Logic, Inc., 1997. www.cs.utexas.edu/users/moore/publications/others/

defstructure-brock.ps.

14. V. Capretta. Universal Algebra in Type Theory. In 12th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 1999), volume 1690 of Lecture
Notes in Computer Science, pages 131–148, 1999.

15. P. Castéran and M. Sozeau. A Gentle Introduction to Type Classes and Relations in
Coq. Technical report, INRIA, 2014. http://hal.inria.fr/hal-00702455.

http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf
www.cs.utexas.edu/users/moore/publications/others/defstructure-brock.ps
www.cs.utexas.edu/users/moore/publications/others/defstructure-brock.ps
http://hal.inria.fr/hal-00702455


26 Jónathan Heras et al.

16. F. Chyzak, A. Mahboubi, T. Sibut-Pinote, and E. Tassi. A computer-algebra-based
formal proof of the irrationality of ζ(3). In 5th International Conference on Interactive
Theorem Proving (ITP 2014), volume 8558 of Lecture Notes in Computer Science,
pages 160–176, 2014.

17. K. Denecke and S. L. Wismath. Universal Algebra and Applications in Theoretical
Computer Science. Chapman Hall/CRC, 2002.

18. M. Dénès, A. Mörtberg, and V. Siles. A refinement-based approach to computational
algebra in Coq. In 3rd International Conference on Interactive Theorem Proving (ITP
2012), volume 7406 of Lecture Notes in Computer Science, pages 83–96, 2012.

19. C. Domı́nguez and J. Rubio. Computing in Coq with Infinite Algebraic Data Struc-
tures. In 17th Symposium on the Integration of Symbolic Computation and Mechanised
Reasoning (Calculemus 2010), volume 6167 of Lecture Notes in Artificial Intelligence,
pages 204–218, 2010.

20. C. Domı́nguez and J. Rubio. Effective Homology of Bicomplexes, formalized in Coq.
Theoretical Computer Science, 412:962–970, 2011.

21. X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret. The Kenzo program. Institut Fourier,
Grenoble, 1998. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.

22. A. J. Durán, M. Pérez, and J. L. Varona. Misfortunes of a mathematicians’ trio using
computer algebra systems: Can we trust? CoRR, abs/1312.3270, 2013.

23. S. Foster, G. Struth, and T. Weber. Automated Engineering of Relational and Alge-
braic Methods in Isabelle/HOL — (Invited Tutorial). In 12th International Conference
Relational and Algebraic Methods in Computer Science (RAMICS 2011), pages 52–67,
2011.

24. F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical struc-
tures. In 22nd International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2009), volume 5674 of Lecture Notes in Computer Science, pages 327–342,
2009.

25. H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. A constructive algebraic hier-
archy in Coq. Journal of Symbolic Computation, 34(4):271–286, 2002.

26. H. Geuvers, F. Wiedijk, J. Zwanenburg, R. Pollack, and H. Barendregt. The “Funda-
mental Theorem of Algebra” Project. Technical report, 2000. http://www.cs.kun.nl/

gi/projects/fta.

27. G. Gonthier et al. A Machine-Checked Proof of the Odd Order Theorem. In 4th
International Conference on Interactive Theorem Proving (ITP 2013), volume 7998 of
Lecture Notes in Computer Science, pages 163–179, 2013.

28. D. Greve. Parameterized Congruences in ACL2. In 6th International Workshop on the
ACL2 Theorem Prover and its Applications, pages 28–34, 2006.

29. E. Gunter. Doing algebra in simple type theory. Technical Report MS-CIS-89-38,
Department of Computer and Information Science, Moore School of Engineering, Uni-
versity of Pennsylvania, 1989. http://repository.upenn.edu/cis_reports/789/.

30. F. Haftmann. Haskell-style type classes with Isabelle/Isar. Technical report, Technische
Universität München, 2014. http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/
Isabelle2014/doc/classes.pdf.

31. J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple. Journal
of Automated Reasoning, 21(3):279–294, 1998.

32. A. C. Hearn et al. Reduce, 2009. http://www.reduce-algebra.com/index.htm.

33. J. Heras. Mathematical Knowledge Management in Algebraic Topology, chapter An
ACL2 infrastructure to formalize Kenzo Higher Order constructors, pages 293–312.
PhD thesis, University of La Rioja, 2011. http://www.unirioja.es/servicios/sp/

tesis/22488.shtml.

34. J. Heras, F. J. Mart́ın-Mateos, and V. Pascual. Implementing Algebraic Structures in
ACL2. Technical report, University of La Rioja, 2012. http://www.unirioja.es/cu/

joheras/ahomsia/.

35. J. Heras, V. Pascual, and J. Rubio. A certified module to study digital images with the
Kenzo system. In 13th International Conference on Computer Aided Systems Theory
(EUROCAST 2011), volume 6927 of Lecture Notes in Computer Science, pages 113–
120, 2011.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www.cs.kun.nl/gi/projects/fta
http://www.cs.kun.nl/gi/projects/fta
http://repository.upenn.edu/cis_reports/789/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/classes.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/classes.pdf
http://www.reduce-algebra.com/index.htm
http://www.unirioja.es/servicios/sp/tesis/22488.shtml
http://www.unirioja.es/servicios/sp/tesis/22488.shtml
http://www.unirioja.es/cu/joheras/ahomsia/
http://www.unirioja.es/cu/joheras/ahomsia/


Modelling Algebraic Structures and Morphisms in ACL2 27

36. J. Heras, V. Pascual, and J. Rubio. Proving with ACL2 the correctness of simplicial sets
in the Kenzo system. In 20th International Symposium on Logic-Based Program Syn-
thesis and Transformation (LOPSTR 2010), volume 6564 of Lecture Notes in Computer
Science, pages 37–51, 2011.

37. P. Jackson. Enhancing the Nuprl proof-development system and applying it to compu-
tational abstract algebra. PhD thesis, Cornell University, 1995.

38. R. Jenks and R. Sutor. AXIOM: The Scientific Computation System. Springer-Verlag,
1992.

39. Journal of Formalized Mathematics. 1990–present. http://www.mizar.org/JFM/.
40. C. Kaliszyk and F. Wiedijk. Certified computer algebra on top of an interactive theorem

prover. In 14th Symposium on the Integration of Symbolic Computation and Mechanised
Reasoning (Calculemus 2007), volume 4108 of Lecture Notes in Computer Science,
pages 94–105, 2007.

41. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

42. M. Kaufmann and J S. Moore. Structured Theory Development for a Mechanized Logic.
Journal of Automated Reasoning, 26(2):161–203, 2001.

43. M. Kaufmann and J S. Moore. ACL2 version 6.5, 2014.
http://www.cs.utexas.edu/users/moore/acl2/.

44. L. Lambán, F. J. Mart́ın-Mateos, J. L. Ruiz-Reina, and J. Rubio. Formalization of a
normalization theorem in simplicial topology. Annals of Mathematics and Artificial
Intelligence, 64(1):1–37, 2012.

45. L. Lambán, V. Pascual, and J. Rubio. Specifying Implementations. In 24th International
Symposium on Symbolic and Algebraic Computation (ISSAC 1999), ACM Press, pages
245–251, 1999.

46. L. Lambán, V. Pascual, and J. Rubio. An object-oriented interpretation of the EAT
system. Applicable Algebra in Engineering, Communication and Computing, 14:187–
215, 2003.

47. L. Lambán, J. Rubio, F. J. Mart́ın-Mateos, and J. L. Ruiz-Reina. Verifying the bridge
between simplicial topology and algebra: the Eilenberg-Zilber algorithm. Logic Journal
of the IGPL, 22(1):39–65, 2014.

48. P. Manolios and J S. Moore. Partial Functions in ACL2. Journal of Automated Rea-
soning, 31(2):107–127, 2003.

49. F. J. Mart́ın-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic
Instantiation Tool and a Case Study: A Generic Multiset Theory. In 3rd International
Workshop on the ACL2 Theorem Prover and its Applications (ACL2 2002), pages
188–201, 2002.

50. F. J. Mart́ın-Mateos, J. Rubio, and J. L. Ruiz-Reina. ACL2 verification of simplicial
degeneracy programs in the Kenzo system. In 16th Symposium on the Integration of
Symbolic Computation and Mechanised Reasoning (Calculemus 2009), volume 5625 of
Lecture Notes in Computer Science, pages 106–121, 2009.

51. C. R. F. Maunder. Algebraic Topology. Dover, 1996.
52. Maxima, a Computer Algebra system, 2012. http://maxima.sourceforge.net.
53. I. Medina-Bulo, F. Palomo-Lozano, and J. L. Ruiz-Reina. A verified Common Lisp

implementation of Buchberger’s algorithm in ACL2. Journal of Symbolic Computation,
45(1):96–123, 2010.

54. W. Naraschewski and M. Wenzel. Object-oriented verification based on record subtyping
in higher-order logic. In 11th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 1998), volume 1479 of Lecture Notes in Computer Science,
pages 349–366, 1998.

55. F. Pessaux, P. Weia, and D. Doligez. The FoCaLiZe essential. Technical report, 2010.
http://focalize.inria.fr/.

56. L. Pottier. User contributions in Coq, Algebra. Technical report, 2001. http://coq.

inria.fr/pylons/pylons/contribs/view/Algebra/v8.4.
57. A. Romero, J. Heras, J. Rubio, and F. Sergeraert. Defining and computing persistent

Z-homology in the general case. CoRR, abs/1403.7086, 2014.
58. A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: An exper-

imental approach. Mathematics of Computation, 82:2237–2244, 2013.

http://www.mizar.org/JFM/
http://maxima.sourceforge.net
http://focalize.inria.fr/
http://coq.inria.fr/pylons/pylons/contribs/view/Algebra/v8.4
http://coq.inria.fr/pylons/pylons/contribs/view/Algebra/v8.4


28 Jónathan Heras et al.

59. J. Rubio and F. Sergeraert. Constructive Homological Algebra and Applications, Lec-
ture Notes Summer School on Mathematics, Algorithms, and Proofs. University of
Genova, 2006.

60. P. Rudnicki, C. Schwarzweller, and A. Trybulec. Commutative Algebra in the Mizar
System. Journal of Symbolic Computation, 32:143–169, 2001.

61. F. Sergeraert. Effective homology, a survey. Technical report, Institut Fourier, 1992.
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf.

62. F. Sergeraert. Common Lisp, Typing and Mathematics. Technical report, Insti-
tut Fourier, 2001. http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Ezcaray.
pdf.

63. B. Spitters and E. van der Weegen. Type Classes for Mathematics in Type Theory.
Mathematical Structures in Computer Science, 21:795–825, 2011.

64. C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge studies
in advanced mathematics. Cambridge University Press, 1994.

65. X. Yu and J. Hickey. Formalizing Abstract Algebra in Constructive Set Theory. Techni-
cal report, California Institute of Technology, 2003. http://authors.library.caltech.
edu/27065/.

66. R. Zippel. The weyl computer algebra substrate. In International Symposium on Design
and Implementation of Symbolic Computation Systems (DISCO 1993), volume 722 of
Lecture Notes in Computer Science, pages 303–318. 1993.

http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Ezcaray.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Ezcaray.pdf
http://authors.library.caltech.edu/27065/
http://authors.library.caltech.edu/27065/

	Introduction
	A Brief Introduction to ACL2
	Defining Algebraic Structures in ACL2 From Scratch
	A Set of Tools to Model Algebraic Structures and Morphisms
	Developing Generic Theories for Algebraic Structures
	A Case Study: Formalising the Cone Construction
	Conclusions and Further work

