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Abstract. The application of automated reasoning to the formal veri-
fication of symbolic computation systems is motivated by the need of
ensuring the correctness of the results computed by the system, beyond
the classical approach of testing. Formal verification of properties of the
implemented algorithms require not only to formalize the properties of
the algorithm, but also of the underlying (usually rich) mathematical
theory.

We show how we can use ACL2, a first-order interactive theorem
prover, to reason about properties of algorithms that are typically im-
plemented as part of symbolic computation systems. We emphasize two
aspects. First, how we can override the apparent lack of expressiveness we
have using a first-order approach (at least compared to higher-order lo-
gics). Second, how we can execute the algorithms (efficiently, if possible)
in the same setting where we formally reason about their correctness.

Three examples of formal verification of symbolic computation algo-
rithms are presented to illustrate the main issues one has to face in this
task: a Gröbner basis algorithm, a first-order unification algorithm based
on directed acyclic graphs, and the Eilenberg-Zilber algorithm, one of
the central components of a symbolic computation system in algebraic
topology.

1 Introduction

Formal verification of the correctness properties of computing systems is one of 
the main applications of mechanized reasoning. This is applied in any situation 
where correctness is so important that one has to verify the system beyond the 
classical approach of testing. For example, safety critical systems or those where 
failures may produce high economic losses (these include hardware, micropro-
cessors, microcode and software systems or, more precisely, models of them). 
In these cases, to increase confidence in the system, a theorem stating its main 
properties is mechanically proved using a theorem prover.

Symbolic computation systems are software systems, so this idea can be ap-
plied to formally verify the correctness of the algorithms implemented in them.
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Since in this case they are usually based on a rich mathematical theory, formal
verification require not only to formalize the properties of the algorithms, but
also of the underlying theory. Another important aspect to take into account is
that the models implemented have to be executable and, if possible, efficient.

ACL2 [7,8] is a theorem prover that uses a first-order logic to reason about
properties of programs written in an applicative programming language. It has
been successfully applied in a number of industrial–strength verification projects
[7]. In this talk, we argue that it can be also applied to the verification of symbolic
computation systems. We emphasize two aspects. First, how we deal with the
apparent lack of expressiveness of a first–order logic (at least compared to higher-
order logics). Second, how we can execute the algorithms modeled (efficiently, if
possible) in a setting where we also formally reason about them.

We illustrate the main issues one has to deal with when facing this task, by
means of three examples. First, Buchberger algorithm for computing a Gröbner
basis of a given polynomial ideal. Second, an algorithm, based on directed acyclic
graphs, for computing most general unifiers of two given first-order terms. Finally
the Eilenberg-Zilber theorem, a central theorem in algebraic topology.

2 The ACL2 System

ACL2 is both a programming language, a logic for reasoning about programs
in the language and a theorem prover to assist in the development of proofs of
theorems in the logic.

As a programming language, ACL2 is an extension of an applicative subset of
Common Lisp. This means that it contains none of Common Lisp that involve
side effects like global variables or destructive updates. In this way, functions in
the programming language behave as functions in mathematics, and thus one
can reason about them using a first-order logic.

The ACL2 logic is a quantifier-free, first-order logic with equality. The logic
includes axioms for propositional logic and for a number of Lisp functions and
data types, describing the programming language. Rules of inference of the logic
include those for propositional calculus, equality and instantiation. But maybe
the main rule of inference is the principle of induction, that permits proofs
by well-founded induction on the ordinal ε0. This include induction on natural
numbers and structural induction.

From the logical point of view, ACL2 functions are total, in the sense that they
are defined on every input, even if it is not an intended input. By the principle
of definition, new function definitions are admitted as definitional axioms only if
there exists a measure in which the arguments of each recursive call decrease with
respect to a well-founded relation, ensuring in this way that no inconsistencies
are introduced by new definitions.

The ACL2 theorem prover mechanizes that logic, being particularly well suited
for obtaining mechanized proofs based on simplification and induction. ACL2 is
automatic in the sense that once a conjecture is submitted to the prover, the
attempt is carried out without interaction with the user. But for non-elementary
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results, is often the case that the prover fails to find a proof in its first attempt.
Thus, we can say that ACL2 is interactive in the sense that the role of the user is
essential for a successful use of the prover: usually, she has to provide a number
of definition and lemmas (what is called the logical world) that the system will
use as simplification (rewrite) rules. The proper definitions and lemmas needed
for the proof are obtained first from a preconceived hand proof, but also from
inspection of failed proof attempts.

3 Gröbner Basis Computation

In [13], a formal verification of a Common Lisp implementation of Buchberger’s
algorithm [4] for computing Gröbner bases of polynomial ideals is presented.
This needed to formalize a number of previous mathematical theories, including
results about coefficient fields, polynomial rings and ideals, abstract reductions,
polynomial reductions, ordinal measures and of course Gröbner bases. All these
notions fit quite well in the first–order ACL2 logic.

It is worth mentioning that this formal project benefited from previous works
done in the system. In particular, an ACL2 theory about term rewriting sys-
tems had been previously developed [14]. It turns out that the notions of critical
pair and of complete rewrite system [2] are closely related to the notions of s-
polynomial and Gröbner basis, respectively. In fact, some of the results needed
in both formalizations are concrete instances of general results about abstract
reductions. Thus, once proved the abstract results, they can applied in any con-
crete context. Encapsulation and functional instantiation [9] in ACL2 are a good
abstraction mechanism that provides some kind of second–order reasoning in
this first–order logic, allowing to reuse previous general results in a convenient
way.

Another key concept in this formalization is the notion of polynomial proof. In
this context, a polynomial ideal basis is seen as a rewriting system that reduces
polynomial in some sense, generalizing the notion of polynomial division. In [13],
the concept of polynomial proof is introduced, as a data structure the contains
explicitly all the components of a sequence of polynomial reductions. It turns
out that the correctness properties of the Buchberger algorithm can be described
as properties of certain functions that transform polynomial proofs.

4 A Dag–Based Quadratic Unification Algorithm

A unification algorithm [1] receives as input a pair of first-order terms and re-
turns, whenever it exists, a most general substitution of its variables for terms,
such that when applied to both terms, they become equal. Unification is a key
component in automated reasoning and in logic programming, for example.

A naive implementation of unification may have exponential complexity in
worst cases. Nevertheless, using more sophisticated data structures and algo-
rithms, it is possible to implement unification quadratic in time and linear in
space complexity. In [15], the ACL2 implementation and formal verification of
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such an efficient algorithm is reported. The key idea is to use a data structure
based on directed acyclic graphs (dags), which allows structure sharing. This
implementation can be executed in ACL2 at a speed comparable to a similar C
implementation, but in addition its correctness properties are formally verified.

Two main issues where encountered in this formalization project:

• For the execution efficiency of the implementation, it is fundamental that
the substitution computed by the algorithm is built by iteratively applying
destructive updates to the dag representing the terms to unify. In principle,
as said before, ACL2 is an applicative programming language, so destructive
updates are not allowed. Nevertheless, ACL2 provides single-threaded objects
(stobjs) [3], which are data structures with a syntactically restricted use, so
that only one instance of the object needs ever exist. This means that when
executing an algorithm that uses a stobj, its fields can be updated by destruc-
tive assignments, while maintaining the applicative semantics for reasoning
about it. In this case, using a stobj to store the input terms as a dag (imple-
menting structure sharing by means of pointers), allows to clearly separate
reasoning about the logic of the unification process (which is independent
of how terms are represented) from the details related to the efficient data
structures used.

• In ACL2, functions are total, and before being admitted in the logic, their
termination for every possible input has to be proved. Thus, in principle,
this unification algorithm cannot be defined in the ACL2 logic, because a
possible input could be, for example, a stobj storing a cyclic graph, which
could lead the algorithm to a non-terminating execution. Nevertheless, we
know that the intended inputs to the algorithm will always be an acyclic
graph and that for those intended inputs, it can be proved that the algo-
rithm terminates. Thus, to accept the definition of the algorithm in the logic,
we need to introduce in its logical definition a condition checking that the
structure stored in the stobj is acyclic and that it represents well-formed
terms. Nevertheless, from the efficiency point of view this is unacceptable,
since this expensive check would be evaluated in every iteration of the algo-
rithm. Fortunately, the combination of the defexec feature [6], together with
the guard verification mechanism allows to safely skip this expensive check
when executing, provided that the function has received a well-formed input
and taking into account that it is previously proved that in every iteration
the well-formedness condition is preserved.

5 The Eilenberg-Zilber Theorem

The Eilenberg–Zilber theorem [12] is a fundamental theorem in Simplicial Alge-
braic Topology, establishing a bridge between a geometrical concept (cartesian
product) and a algebraic concept (tensor product). Concretely, it states homo-
logical equivalence between the cartesian product and the tensor product of two
chain complexes. The Eilenberg-Zilber theorem, expressed as a reduction, has a
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correspondent algorithm that it is a central component of the computer algebra
system Kenzo [5], devoted to computing in Algebraic Topology.

Since Kenzo is implemented in Common Lisp, it seems that ACL2 is a good
choice to verify some of its components, as it is in this case of the Eilenberg-Zilber
algorithm. Although Kenzo is far from being implemented using only applicative
features, we can formally verify an ACL2 version of the algorithm, and use it as
a verified checker for the results obtained using Kenzo.

In [11], it is reported a complete ACL2 formal proof of the Eilenberg-Zilber
theorem. In fact, the formalization presented was developed reusing part of a
previous formal proof of a normalization theorem needed as a preprocessor jus-
tifying the way Kenzo works [10].

The formal proof of the Eilenberg-Zilber theorem is not trivial at all. The first
issue encountered was that the existing (informal) proofs were not suitable for
being formalized in a first–order logic, so a new informal proof had to be carried
out by hand, and then formalized in ACL2. In this proof, the key component is a
new structure called simplicial polynomial, which represent linear combinations
of composition of simplicial operators. Although those linear combinations of
functions are in principle second–order objects, it turns out that they can be
represented as a first-order object. Moreover, the set of simplicial polynomials,
together with addition and composition operations, has a ring structure. It turns
out that the new proof developed is carried out mainly by establishing a number
of lemmas that, although being non-trivial, can be proved by induction and
simplification using the ring properties and the properties given by the simplicial
identities (the identities that define simplicial sets). Induction and simplification
is the kind of reasoning that is suitable for the ACL2 theorem prover.
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